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ABSTRACT: We describe, in detail, a basis set approach to the multichannel
scattering problem. The full set of linearly independent scattering states at each
prefixed energy of the continuum spectrum can be obtained via a least-squares
approach. To test the algorithm in a concrete setup, we report a parallel
implementation of the close-coupling method in which the final states are treated
within the configuration−interaction singles (CIS) approximation. The method
requires, as input, a set of orthonormal orbitals, obtained from any quantum
chemistry package. A one-center expansion (OCE) basis set consisting of products
of radial B-splines and symmetry adapted angular functions is then used to expand
the continuum electron wave function. To assess the quality of the CIS
approximation, we compute total and partial cross sections and angular asymmetry
parameters for the photoionization of a selection of closed-shell atoms (He, Ne,
and Ar), H2, H2O, and ethylene. Results are compared with the experimental data
and with theoretical predictions obtained with time-dependent density functional theory (TDDFT). It is seen that, generally, the
photoionization observables obtained at the CIS level compare well with TDDFT predictions. The same basis can be employed
to describe molecular multiphoton or strong field ionization.

1. INTRODUCTION

The description of the photoemission process, which entails the
measurement of angle-resolved photoelectron intensities, as a
function of the incident photon energy, provides a wealth of
information on the nature of the ground and excited states of
the target sample and of the photoemission dynamics.1

Therefore, a large class of spectroscopic techniques, such as
photoelectron spectroscopy2 (PES and XPS) and Auger
electron spectroscopy3 (AE), are also routinely used for
analytical purposes, to characterize a large class of materials.
Among them, resonant Auger electron spectroscopy (RAE) is
currently being used to unravel the interplay of electron and
nuclear dynamics following the core excitation and decay in
isolated molecules, ranging from simple diatomics and
triatomics to molecules of biological relevance.4 A further
interest in the detailed dynamics of the ionization process is its
use as a probe of ultrafast processes in femto and attosecond
pump−probe experiments (TRPES).5

Dominant electron correlation effects in the photoemission
process can be subdivided into two main classes: intrinsic and
dynamic.6 Intrinsic correlation effects are present even in the
absence of ionization, and are related to the multiconfigura-
tional nature of bound initial and final target states; dynamic
correlation effects can be described in terms of configuration−
interaction (CI) in the continuum, and are usually referenced as
interchannel coupling effects. An accurate description of the
many-body physics of the process thus requires development of
a method capable of describing, at the same level of accuracy,

both bound (initial and final) states and the correlation in the
continuum. This is by no means a trivial task, because standard
GTO bases are of very limited use for the description of
continuum states. Moreover, common quantum chemistry
approaches to the many-body problem do not lend themselves
naturally to the close coupling form necessary to implement
continuum boundary conditions. Finally, nontrivial over-
completeness problems7 that require special treatments arise.
This is the main reason most theoretical studies on small and
medium size molecules are still based on a one-electron
description of the phenomenon.
A renewed interest in continuum processes has arisen from

spectacular advances in photon sources and multiparticle
coincidence detectors. Several groups have presented different
methodologies for the calculation of molecular continuum
states in small polyatomics. The groups of McKoy and
Lucchese have developed a general variational formalism
based on the multichannel Schwinger method, together with
a single center expansion of bound and continuum orbitals.8−12

The complex Kohn approach to electron-molecule scattering
and photoionization has been presented by the groups of
Rescigno and McCurdy.13−15 An approach that combines
Gaussians and a discrete variable representation for the
electronic continuum has been recently proposed by the
same authors.16 Moccia et al.17,18 developed a general algorithm
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based on the random-phase approximation and using large basis
sets of Gaussian-type orbitals and a K-matrix-based technique.
The group of Martiń et al.19,20 developed a rather sophisticated
algorithm based on the use of B-splines and the solution of the
time-dependent Schrödinger equation (TDSE) in a basis of
vibronic states. The approach is computationally very
demanding but has been applied with success to H2

+ and H2.
Recently, they have been actively pursuing extension of the
algorithms to general polyatomics.21,22 In principle, the R-
matrix approach23,24 is capable of describing the ionization
process of medium-size molecules, and it shares some common
ideas with the LCAO B-spline methods that we have
developed.25−27 Recent efforts directed toward the extension
of the UKRmol28 code to compute low-energy photoionization
and recombination cross sections,29−31 has given very
encouraging results. Furthermore, the full CC expansion has
been recently implemented by Scrinzi et al.,32 based on a
quantum chemistry multireference configuration interaction
(MRCI) description of initial and target states, plus localized
correlation functions, and finite elements for the unbound
electron, and the method has been applied with success to the
strong-field ionization of atoms and small molecules.32−34

One may further mention two more restricted approaches
that have received significant attention recently. One is the use
of Dyson orbitals as initial states in a single-channel approach
that neglects dynamic correlation, but may describe accurately
intrinsic correlation in the bound states. This can be coupled
either to a very simple (orthogonalized) plane of Coulomb
wave for the continuum,35 or to an accurate single-particle
continuum orbital.36 The other is the extraction of photo-
ionization cross sections from a finite basis set pseudospectrum
of bound excited states via the Stielties Imaging technique.37,38

The technique allows the use of approaches developed for the
treatment of bound states, and it can accurately describe both
intrinsic and dynamical correlation effects;37,38 however, lacking
asymptotic boundary conditions, it cannot describe angular
distributions, and cleanly separate partial cross sections, besides
suffering from the relatively poor energy resolution available in
practice from Stieltjes Imaging.
It is the purpose of this paper to document recent efforts to

generalize algorithms developed in the group toward the
implementation of a general close-coupling (CC) structure39 of
the continuum wave function, applicable in principle to general
polyatomics. While the framework currently adopted for the
calculation of continuum orbitals,25−27 namely, expansion of
the radial part in a B-spline basis, and the Galerkin approach
and block inverse iteration for the calculation of the continuum
eigenvectors remains valid,40,41 the issue of whether a
generalization of the algorithms retains their accuracy and
numerical stability when the coupling of continua of different
ionic states is derived from a multicentric potential still needs to
be checked. Moreover, the structure and evaluation of
Hamiltonian and overlap matrix elements must be completely
reworked. Therefore, we present a generalization of the
Galerkin approach to arbitrary closed-shell molecules where
the final states are treated within the configuration−interaction
singles (CIS) method42 in a single-center basis (OCE), to take
advantage of the already available algorithms for the
calculations of two-electron integrals between B-splines.40,41,43

The CIS approach has enjoyed recent popularity to describe
complex physical processes driven by strong laser fields, both in
atoms and molecules, as a basis for the solution of the
TDSE.44−53 In this context, the present approach is optimally

suited because of its ability to fully describe the ionization
continuum, and electrons reaching far out the molecular region.
The plan of the paper is as follows: in section 2, we present a

summary of the CC method as applied to photoionization,
while details of the multichannel generalization of the least-
squares approach to the continuum spectrum, in a concrete
setup provided by the CIS implementation, are presented in
section 3. In section 4, we apply the formalism to the valence
ionization dynamics of closed-shell atoms (He, Ne, and Ar) and
polyatomics (H2, H2O, and ethylene). Finally, a summary and
perspectives are given in section 5.

2. THEORY
The Hamiltonian of the atomic/molecular system is invariant
under the operations of a given point group. The irreducible
representations (irreps) of the group are labeled by a couple of
indices: (λ, μ) for one-particle wave functions, and (Λ, M) for a
general many-particle state. Here, λ (Λ) is the irreducible
representation, and μ (M) is the degeneracy label. Moreover,
since we assume the Hamiltonian to be spin independent, the
total spin is also a good quantum number. To simplify the
notation, we will call (ΓM) the couple of indices, which will
include both space and spin symmetries, e.g., (ΓM) =
(ΛMΛSMS) Γ = (Λ, S); M = (MΛ, MS) .
To exploit molecular symmetry, we work with symmetry-

adapted functions, and the continuum orbitals are expanded in
a symmetry-adapted angular basis, obtained from complex
spherical harmonics by a unitary transformation:54

∑= =λμ λμ λμX X b Yj lh
m

mlh lm
(1)

In eq 1, j = lh, where h represents the number of linearly
independent angular functions Xlhλμ for given l and symmetry λ.
So l = l(j) ≡ lj and we shall use j or lh as indices interchangeably
(bmlhλμ = bmjλμ). Present implementation is limited to abelian
groups having real representations, namely, D2h and its
subgroups. A generalization to non-abelian point groups will
be the focus of future works.
In photoionization, one starts with an initial bound atomic/

molecular N particle state, Ψ0Γ0M0

N (usually, but not necessarily,
the ground state), solution of the N-particle Schrödinger
equation:

Ψ = ΨΓ Γ ΓH EN
M

N N
M

N
0 0 00 0 0 0 0 (2)

The target (ionic) states ΨIΓIMI

N−1 will be labeled by their
symmetry indices (ΓI, MI), which will run over all target
symmetries, and an index I which counts different eigenstates
within the same symmetry. They are assumed to diagonalize
the N − 1 particle Hamiltonian:

Ψ = Ψ−
Γ

−
Γ

−
Γ

−H EN
I M

N
I

N
I M

N1 1 1 1
I I I I I (3)

Given the final total energy E in the continuum spectrum, open
channels are all accessible target states, (I ΓI) = 1, ..., no (where
no is the number of open channels), i.e., all target states with
energy EIΓI

N−1 < E, corresponding to an asymptotic kinetic

energy of the photoelectron εIΓI
= E − EIΓI

> 0 and asymptotic

momentum ε=Γ Γk 2I II I
.

Conservation of energy can be written as

ε ω ω= − − = −Γ Γ
−

ΓE E( ) IPI I
N N

I
1

0I I I (4)
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where ω is the incident photon energy, and IPIΓI
is the

ionization potential relative to the state ΨIΓI

N−1 of the ion. All
other target states are called closed channels, where nc is the
number of closed channels and nt is the total number of target
states (nt = no + nc).
2.1. The Close-Coupling Wave Function. Let us consider

the continuum eigenvectors of the Schrödinger equation for a
given eigenvalue E, belonging to the irreps Γf: these solutions
can be expanded in terms of basis functions, ΦαΓfMf

, which are
coupled products of the target states and the angular part of the
continuum electron:

∑ λμΦ = Φ = Φ ⟨Γ |Γ ⟩α λ
μ

λμΓ Γ Γ Γ M MM I j M
M

I M j I I f fI

I

I If f f f
(5)

where, in eq 5, spin coupling is implicitly included for ease of
notation, and

θ ϕΦ = Ψλμ λμΓ Γ
− X ( , )I M j I M

N
j N N

1
I I I I (6)

The compound index α ≡ I ΓIjλ then labels the set of
degenerate solutions at energy E, which are, in practical
calculations, finite in number, because of the truncation of the
photoelectron’s angular momentum to a maximum value lmax.
Solutions (channel functions, ΨEα′ΓfMf

N) can now be written
in a close-coupling form:

∑ ∑Ψ = Φ + Φα
α

α αα α′Γ Γ ′Γ Γ ′ΓR CE M
N

M E
K

K M
N

EKf f f f f f f f

(7)

where, in eq 7, is the antisymmetrizer and REαα′ Γf
is the

radial wave function of the continuum electron. Equivalently,
dropping in the following the subspecies indices, and defining

∑φ θ ϕ=λα αα λμΓ ′Γ ′ΓR r Xr( ) ( ) ( , )EI N
j

E N j N NI f f
(8)

eq 7 can be rewritten as

∑ ∑φΨ = Ψ + Φα
λ

λα α′Γ
Γ

Γ
−

Γ ′Γ Γ Γ ′ΓC( )E
N

I
I

N
EI

K
K

N
EK

1

I

I If f f f f

(9)

In eq 9, spin coupling is included implicitly, and spatial
symmetry adaptation of the N-electron wave function is
symbolized as (·)Γf

. According to eq 9, the solutions can be
written as a sum of target states coupled to continuum wave
functions plus a sum over a set of N electron localized basis
functions ΦKΓf

N, which address the remaining square integrable
part, and, in principle, can converge to the exact solutions.
Channel functions are characterized by their asymptotic

behavior. It is computationally convenient to employ real
“standing wave” or “K-matrix” boundary conditions, which
specify the asymptotic behavior of the radial functions

=αα αα′Γ ′ΓR r P r( ) ( )E N r E N
1

Nf f
as follows:

δ→ +αα αα αα′Γ ′ ′
ΓP r f k r g k r K( ) ( ) ( )E l I l I

j jf
f

(10)

In eq 10, lj is relative to Xjλμ, kI is the photoelectron
momentum relative to the target state ΨI ΓI

N−1 (kI = kI ΓI
), and f l,

gl are the regular and irregular radial solution of the asymptotic
problem (spherical bessel functions for neutral targets o
Coulomb functions in the case of charged ions). Kαα′

Γf defines
the K-matrix, real and symmetric, block diagonal on Γf, with

dimensions equal to the number of channel functions. In actual
calculations, the radial part of the photoelectron’s wave
function is expanded in a set of B-splines of a given order,
defined in a box large enough to reach the asymptotic region.
K-matrix boundary conditions are then easily implemented by
fitting, in correspondence to the last two knots, the
(unnormalized) radial solutions obtained from the block-
inverse iteration procedure, P̅Eαα′ Γf

(r), (or, equivalently, their
logarithmic derivative at the last knot) to a linear combination
of the regular and irregular radial solution of the asymptotic
problem:

̅ → +αα αα αα′Γ ′ ′P r f k r A g k r B( ) ( ) ( )E l I l I
j jf (11)

from which the K-matrix is calculated as KΓf = BA−1, and
channel functions obeying K-matrix boundary conditions are
obtained by the linear transformation:

∑Ψ = Ψ̅α
β

β βα′ ′
−AE

N
E

N 1

(12)

Channel functions satisfying complex, incoming-wave
boundary conditions, are then obtained with a further linear
transformation from the K-matrix normalized ones:

∑|Ψ ⟩ = Ψ +α
β

β βα′
−

′
−iK(1 )E

N
E

N 1

(13)

from which integrated cross sections and photoelectron’s
angular distributions are readily obtained from dipole matrix
elements and phase shifts by using standard formulas.55−57 In
our implementation, the transformation from standing wave to
S-matrix asymptotic conditions (eq 13) is done directly on the
dipole matrix elements between the initial state and K-matrix
normalized solutions.
The CC expansion (eq 7 or eq 9) generally suffers from

problems of overcompleteness, even if the L2 term on the right-
hand side of eqs 7 and 9 is omitted (a “pure” CC expansion).
One way to cope with this problem is to enforce orthogonality
between the continuum orbitals and single-particle orbitals used
to construct the bound-state wave functions. The condition
then is

φ φ⟨ | ⟩ = ∀λ λαΓ ′Γ k0k EI I f (14)

However, to ensure that no single particle contributions is
lost in the full CC wave function, one must ensure that all
terms of the form ΨI ΓI

N−1φkλ are effectively contained in the

space spanned by the set {ΦKΓf

N}.

3. IMPLEMENTATION OF THE CIS METHOD
We assume to have a set of occupied orthonormal atomic/
molecular orbitals (AOs/MOs) {φkλμ}, for instance, the N/2
lowest energy solutions of the closed-shell restricted Hartree−
Fock58 (HF) equations for the ground-state configuration of
the system, but not necessarily so. In the CIS approximation,42

Ψ0Γ0

N ≡ Φ0 is the closed-shell Slater determinant built from the

N spin orbitals, while target states ΨI ΓI

N−1 are (N − 1)-electron
Slater determinants obtained from the reference state by
annihilating an electron in a specific orbital. In this model,
accounting for orbital relaxation following the creation of a
core−hole is anticipated to be problematic if Φ0 is the HF
reference state, and it would be more convenient to start from
relaxed orbitals, optimized for the ion.
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Defining the OCE B-spline basis as

ξ θ φ=λμ λμr
B r X

1
( ) ( , )ij i j (15)

the N-electron basis set used to expand the channel wave
functions ΨEα′ Γf

N of eqs 7 and 9 is therefore obtained by
coupling the target states ΨIΓ

N−1 with the one-particle basis ξijλμ
to final symmetry ΓfMf. If, for the sake of simplicity, we restrict
ourselves to abelian point groups, then these singlet-coupled N-
electron basis functions can be written in a short-hand notation
as |1Φi

μ⟩ where now the compound index i ≡ IΛI runs on the
list of the occupied spatial orbitals grouped by symmetry
species, and μ ≡ ij of eq 15, since now λ = Λf ⊗ ΛI and there is
no need for subspecies indices, so that, henceforth, Greek
letters μ (μ ≡ ij) and ν (ν ≡ i′j′) will be used to identify
products of radial B-splines Bi (Bi′) and angular functions Xjλ
(Xj′λ′). Therefore, the task is the formulation of overlap and
Hamiltonian matrix elements for the singly excited (1h−1p)
singlet-coupled configurations Φi

μ = aμ
†aiΦ0 (spin multiplicity is

henceforth omitted). A detailed derivation of the CIS equations
is provided in the Appendix, so we only quote the results here.
For the overlap matrix, one obtains:

∑δ

⟨Φ |Φ ⟩ =

⟨Φ |Φ ⟩ = − +

μ
μ

μ ν
μν μ ν μ ν

S

S S S S S

2

( ) 2

i i

i j ij
k

k k i j

0

(16)

where, in eq 16, Siμ = ⟨φi|ξμ⟩, and Sμν = ⟨ξμ|ξν⟩ while the
Hamiltonian matrix elements can be written as

∑

∑ ∑

∑ ∑

∑

∑

∑

∑ ∑

δ δ

μ ν μ ν

μ μ

ν ν

⟨Φ | |Φ ⟩ = + −

⟨Φ | |Φ ⟩ = − − + −

− + + ⟨ | ⟩ − ⟨ | ⟩

− ⟨ | ⟩ − ⟨ | ⟩

− ⟨ | ⟩ − ⟨ | ⟩

+ ⟨ | ⟩ − ⟨ | ⟩

+ − + −

+

μ
μ μ μ

μ ν
μν μ ν μν μ ν

μ ν μ ν

ν

μ

μ ν

μ ν ν ν μ μ

μ ν

H E S F F S

H E F S S S F F S

S F S F S j i j i

j il j li S

S kj i kj i

S kj il kj li S

S F F S S F F S

S S E

2 [ ]

( )[ ] [

] 2

(2 )

(2 )

(2 )

2 ( ) 2 ( )

2

i i i
k

ik k

i j ij ij
k

k k ij
l

l l

k
k k

kl
k kl l

l
l

k
k

kl
k l

i j
k

jk k j i
k

ki k

i j

0 0

0

0

(17)

In the derivation of eq 17, we only assumed that the
reference state is a closed-shell Slater determinant constructed
from a set of orthonormal orbitals. E0 is the energy of the
reference state, i.e.,

∑= ⟨Φ | |Φ ⟩ = +
=

E H h F( )
i

N

ii ii0 0 0
1

/2

(18)

where, in eq 18, = + ∑ −=F h J K(2 )i
N

i i1
/2 is the Fock

operator, in terms of closed-shell Coulomb and exchange
operators. Then, Fij = ⟨φi|F|φj⟩ are matrix elements of the Fock
operator, between two occupied orbitals, Fiμ = ⟨φi|F|ξμ⟩ and so
on. Indices k, l of eq 17 run over the set of occupied MOs in
the reference state. For the two-electron matrix elements, we
use the physicist’s notation,58 namely,

∫ ∫μ ν ξ φ φ ξ⟨ | ⟩ = * *μ νj i
r

r r r r r r( ) ( )
1

( ) ( ) d dj i1 2
12

1 2 1 2
(19)

and they can be readily calculated as sums of products of MOs
coefficients in the OCE basis, B-splines two electron integrals,
and angular integrals.20,41 In the special case that the MOs basis
{φkλμ} diagonalizes the Fock operator, i.e., Fφkλμ = εkλφkλμ, eq
17 is simplified since some terms cancel out:

∑

∑

∑

∑

∑

ε

δ ε

δ ε μ ν

μ ν μ μ

ν ν

⟨Φ | |Φ ⟩ = − +

⟨Φ | |Φ ⟩ = − −

+ − + + ⟨ | ⟩

− ⟨ | ⟩ − ⟨ | ⟩ − ⟨ | ⟩

− ⟨ | ⟩ − ⟨ | ⟩

+ ⟨ | ⟩ − ⟨ | ⟩

μ
μ μ

μ ν
μν μ ν

μν μ ν μ ν

ν

μ

μ ν

H E S F

H E S S S

F S S S S E j i

j i j il j li S

S kj i kj i

S kj il kj li S

2 [( ) ]

( )[ ]

[ ] 2 2

(2 )

(2 )

(2 )

i i i i

i j ij i
k

k k

ij
l

l l l i j

l
l

k
k

kl
k l

0 0

0

0

(20)

but we keep the option of using non-HF orbitals of the ground
state, e.g., to describe strong relaxation effects.
The core of the algorithm is the evaluation of overlap and

Hamiltonian matrix elements. Operatively, the set of AOs/
MOs, which represent solution of the closed-shell HF
equations for the ground-state configuration of the system,
are projected on the OCE basis. This procedure provides us
directly with the scalar products Sμk that enter in the
expressions of the overlap and Hamiltonian matrix elements
(see eqs 16 and 17). Instead, the Sμν integrals are trivially
obtained by radial integration. AOs have been obtained with an
in-house atomic HF program in B-splines, and we checked that,
to numerical accuracy, the general expression of eq 17 reduces
to eq 20. For H2, H2O, and ethylene, restricted closed-shell
MOs obtained with the MOLPRO quantum chemistry
program59 and projected on the OCE basis are no longer
SCF solutions of the HF Hamiltonian in the OCE basis.
Therefore, the HF Hamiltonian is rebuilt using these projected
orbitals and diagonalized to get a set of N/2 orthonormal
occupied orbitals. These orbitals are then used to evaluate the
matrix elements Fμν, Fμk, and Fkl of eqs 17 and 18.
At each prefixed energy E, the correct number of linearly

independent scattering states are obtained as eigenvectors
relative to minimum modulus eigenvalues (actually very close
to zero) of the energy-dependent matrices A(E) or A†A, where
A(E) = H − ES, by block inverse iteration.25−27 The energy-
independent products H†H, S†S, and H†S + S†H are evaluated
once and stored on disk from which A†A can be assembled by
linear combination at each energy. To obtain a unique solution,
orthogonality constraints must be applied to the photo-
electron’s orbitals. In the CIS case, there is no ambiguity, and
the condition reduces to require orthogonality of the
continuum orbitals to those occupied in the reference state.
These can be easily introduced, following the procedure
outlined by Brage et al.,7 and each orthogonality condition
introduces one additional row and column to the matrix
equation:

λ
=

†

†
⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝

⎞
⎠

A A E b

b

c( )

0
0

(21)
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where, in eq 21, c is the solution vector, λ the Lagrange
multiplier, and b a column vector with elements bμ = ⟨φi|ξμ⟩ ≡
Siμ. The number of orthogonality constraints (as checked from
the inspection of the eigenvalues of the overlap matrix)
corresponds to enforcing orthogonality of the continuum
orbitals to all occupied orbitals of the same symmetry.
Finally, dipole matrix elements between the reference state

and K-matrix normalized solutions, i.e.,

= ⟨Ψ | |Φ ⟩αγ α γ′D DE E
N

0 (22)

are calculated in the molecular frame for both length and
velocity form of the dipole operator. These are further
transformed to S-matrix boundary conditions via the linear
transformation of eq 13, from which partial cross sections and
angular asymmetry parameters are calculated according to
standard formulas.55−57 The parallel implementation of the
algorithm outlined above uses a standard MPI protocol60 and
proved good scaling properties up to 128 cores.
Before presenting a comparison of the accuracy of the CIS

and TDDFT methods, which will be discussed at length in the
forthcoming section, it is worthwhile to compare the present
CIS algorithm as applied to photoionization, which is a
stationary method, with other CIS methods which are based on
the numerical solution of the TDSE. The core of both
algorithms is the construction of the overlap and Hamiltonian
matrices over the N-electron the basis of singly excited
determinants (or configuration state functions). Provided that
the N-electron basis spans an adequate portion of the 1h−1p
space, the two methods are equivalent and give the same results
in the weak-field regime, which is the focus of this paper. In our
method, the dynamical observables are obtained after a
generalized diagonalization of an energy-dependent matrix,
while the Hamiltonian and overlap matrix calculated over the
1h−1p configurations constructed from an orthonormal spin−
orbital basis ({φp}) enter into the equation of motion for the
expansion coefficients of the time-dependent wave func-
tion.32,48,49,52,53

4. SAMPLE APPLICATIONS

To assess both the generality and robustness of the
multichannel least-squares approach, and the quality of the
CIS approximation to atomic/molecular photoionization, here,
we report its application to a variety of atomic and molecular
systems. Given this objective, we shall not discuss the systems
in detail, or compare with the extensive literature available. The
noble gases helium, neon, and argon have been the subject of a
large amount of experimental investigations and theoretical
predictions. H2 and H2O are among the best studied molecular
systems. The valence photoionization of ethylene has been the
subject of several theoretical and experimental studies.61−66

However, the theoretical methods employed were restricted to
single-channel approaches,61,66 and therefore it is worthwhile to
investigate how interchannel coupling affects the photo-
ionization dynamics of the outermost ionizations. Since both
CIS and TDDFT are relatively simple computational schemes
that can be applied to large molecules, it is also important to
judge the CIS performances, with respect to the more widely
used TDDFT. For CIS, transition-matrix elements are
calculated in both the length and velocity forms of the dipole
operator. Cross sections and angular asymmetry parameters
calculated in both gauges will be presented and compared with
the available experimental data and results of TDDFT

calculations that employ the LB9467 xc functional and that
use the same OCE B-spline basis set. Otherwise explicitly
stated, all dipole allowed channels are included in CIS and
TDDFT calculations.
In all calculations, B-splines of order 10 have been employed,

and a linear grid of knots with step size of h = 0.2 a.u. The
range of the grid (Rmax) is 10. a.u. for helium, and 20 a.u. for all
other systems (h = 0.25 a.u. and Rmax = 25 a.u. for H2). For all
molecules, the ground-state HF orbitals were obtained with an
aug-cc-pVTZ basis set and the MOLPRO59 program, and then
projected onto the OCE B-spline basis. All results reported are
convergent with respect to the basis, namely the radial grid
step, the range of the radial grid and the number of asymptotic
angular momenta included, as checked by preliminary
calculations at the CIS and TDDFT level.

4.1. Valence Photoionization of Helium, Neon, and
Argon. The CIS total cross sections in both the length
(denoted hereafter as CIS-len) and velocity (denoted hereafter
as CIS-vel) form of the dipole operator for helium are reported
in Figure 1, along with the available experimental data,68,69 a

recent time-dependent CIS (TD-CIS) calculation,51 and the
TDDFT results. The TD-CIS formalism is based on the direct
solution of the time-dependent Schrödinger equation, while our
method is based on a time-independent formulation of
scattering theory. The two methods give exactly the same
results (the TD-CIS results were obtained in the length
gauge51). This furnished a good indication of the correctness of
our implementation. The comparison between the CIS results
and the experimental data indicates generally good agreement,
especially at higher photoelectron kinetic energy. In particular,
while the CIS-len cross section slightly overestimates the total
intensity, the CIS-vel results agree perfectly with both TDDFT
predictions and the experimental data. The dip in the
experimental total cross section at ∼60 eV of photon energy
is the signature of two-electron excited states, which are not
included in either CIS or TDDFT formalisms. Since He has
only the 1s orbital occupied, from symmetry considerations, the
angular asymmetry parameter has a constant, energy-
independent value of 2, and is therefore not reported.
The electronic configuration of Ne is 1s22s22p6. The CIS

total cross sections of Ne are reported in Figure 2, up to a
photon energy of ∼120 eV, along with the experimental values

Figure 1. CIS photoionization cross section of He in both length and
velocity forms of the dipole operator, and comparison with the
available experimental data,68,69 recent TD-CIS results,51 and a
TDDFT calculation (this work).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00627
J. Chem. Theory Comput. 2016, 12, 4996−5008

5000

5

http://dx.doi.org/10.1021/acs.jctc.6b00627


from the literature70,71 and the TDDFT results. The two sets of
experimental data agree in the near threshold region up to ∼44
eV of photon energy. Above 44 eV, the more recent
experimental data of Samson et al.71 lie consistently above
the dipole (e,e) results of Chan et al.70 Overall, the TDDFT
results agree better with both experimental datasets when
compared to the CIS predictions, expecially in the near-
threshold region. The CIS-len results overestimate the
experimental data while the CIS-vel profile underestimates
them. Above 44 eV, the CIS-vel results agree perfectly with the
older experimental data,70 while the TDDFT predictions are
consistent with the more-recent photoionization cross-section
measurements.71 Since a TDDFT treatment of the photo-
ionization dynamics does include interchannel coupling only
among singly excited configurations, as the CIS method, a
disagreement between the two treatments must, at least in part,
be due to the different treatment of correlation effects in the
bound states (both the ground state and the ionized target
states). Another possible reason is that TDDFT can, at least in
an average way, describe double excitations, which are
completely absent in the CIS approximation. On the other
hand, we should also keep in mind that the close-coupling
implementation is, in principle, general, and correlation in the
initial and final ionic states can be introduced later in a
systematic way within ab initio CC approaches, at variance with
DFT.
The asymmetry parameter profile for the 2p orbital

ionization of Ne is reported in the upper panel of Figure 3.
The asymmetry parameter starts from negative values at the
threshold and is then characterized by a monotonic increase up
to a value close to 1.5 for higher excitation energies. The
modulations in the CIS profiles at ∼45 eV, which are more
visible in the total cross section profiles, are due to singly
excited configurations decaying in the continuum (auto-
ionization resonances). Overall, there is good agreement
between the theoretical CIS and TDDFT profiles and the
experimental data.72 The 2s−1 partial cross section of Ne is
reported in the lower panel of Figure 3. Here, we see that both
CIS cross sections are in much better agreement with the
experiment,73 compared to the TDDFT results, which, in turn,
overestimates the cross section by a factor of ∼3. This large
discrepancy between TDDFT and the experimental data is
attributed to the incorrect treatment of exchange in TDDFT.74

The electronic configuration of Ar is [Ne]3s23p6. The total
cross section of Ar is reported in Figure 4, up to a photon
energy of ∼120 eV, along with the experimental values from the
literature.71,75 The CIS profiles are in qualitative agreement
with experimental data from various sources:71,75 both predict
the occurrence of a delayed onset of the 3p → ϵd channel, with
a maximum at a photon energy of ∼25 eV and the occurrence
of a Cooper’s minimum at higher photon energies. However,
disagreement does exist concerning both the absolute value of
cross section at the maximum, and the exact energy position of
the Cooper’s minimum (lower panel of Figure 4). The
Cooper’s minimum is a one-electron effect, since it is related
to the presence of a radial node in the 3p orbital of Ar;
consequently, the dipole matrix element for the transition 3p→
ϵd changes sign as the photoelectron kinetic energy increases.
In Figure 5, we report the 3p−1 asymmetry parameter profile

(upper panel) and the 3s−1 partial cross section (lower panel).
The occurrence of the Cooper’s minimum in the 3p−1

ionization channel is responsible for the strong modulation of
the 3p angular asymmetry parameter, visible in Figure 5. Both
CIS and TDDFT calculations agree well with the experimental
data76 available. The agreement between experimental data and
the calculations is fair in the case of the 3s−1 partial cross
section. Interchannel coupling effects between the 3s−1 and
3p−1 are responsible for the occurrence of a cross-sectional
minimum in the 3s ionization cross section. We note that, in
the CIS calculations, the position of the minimum is strongly

Figure 2. Total photoionization cross section of Ne. CIS results in
both length and velocity forms are reported along with the available
experimental data70,71 and the TDDFT results.

Figure 3. (Upper panel) CIS asymmetry parameter profiles for the
2p−1 ionization of Ne, and comparison with experimental data72 and
TDDFT results. (Lower panel) CIS Ne partial 2 s−1 photoionization
cross sections and comparison with the experimental data73 and
TDDFT results.
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dependent on the dipole gauge, and again the CIS results in the
velocity form of the dipole operator is in somewhat better
agreement with the experimental data.77 At higher energy,
instead, the length form seems to reproduce the experimental
results somewhat better.
4.2. Valence Photoionization of H2, H2O, and Ethyl-

ene. H2 provides a good test of the methodology, since the
nonspherical molecular potential couples different angular
momentum channels and, thus, also increases the computa-
tional complexity. Since there is only one ionized state (1σg

−1),
interchannel coupling effects between main-line channels are
absent. However, the importance of two-electron excited
configurations can be assessed by comparison of the CIS and
TDDFT predictions with the experimental data. The origin of
the single-center expansion has been put in the center of mass
of the system. The maximum value of angular momentum used
in the partial wave expansion of the continuum orbitals is lmax =
10. In preliminary calculations, we checked that this parameter
is sufficient to obtain very convergent results for both the cross
section and the angular asymmetry parameter.
In Figure 6, we report the photoionization cross section and

the angular asymmetry parameter for the ionization of the 1σg
orbital, and a comparison with the available experimental
data.78,79 Concerning the total cross section, TDDFT and CIS
results in the velocity gauge are both in excellent agreement
with the experimental data of Samson et al.,78 while CIS results

obtained in the length gauge slightly overestimate the
experimental data. For both the cross section and the angular
asymmetry parameter, the CIS results (velocity form) are also
in excellent agreement with recent static-exchange calculations
of Zimmermann et al.79 The agreement of the theoretical data
with the most recent experimental values79 of the asymmetry
parameter is fair in the entire spectral region investigated. Low-
energy scatter in the experimental β values at a photon energy
of ∼30 eV are attributed to the occurrence of doubly excited
states,80 which are not included in our CIS and TDDFT
calculations.
We present the total photoionization cross section of H2O in

Figure 7. In water, beside the coupling of different continuum
partial waves, due to the nonspherical nature of the potential,
we also have interchannel coupling effects between main-lines.
The origin of the single-center expansion has been put on the
O atom. The maximum value of angular momentum used in
the partial wave expansion of the continuum orbitals is lmax = 6,
which provides convergent results for both cross sections and
angular asymmetry parameters in the entire photon energy
range explored. Strong near-threshold modulations in both CIS
and TDDFT profiles are due to autoionization resonances that
have been smoothed by convolution of the calculated profiles
with Gaussian functions having a full-width at half-maximum
(fwhm) of 1.0 eV.

Figure 4. CIS and TDDFT total photoionization cross section profiles
for Ar, and comparison with the available experimental data.71,75 The
Cooper’s minimum in the total cross section is clearly visible in the
lower panel at ∼50 eV.

Figure 5. (Upper panel) CIS and TDDFT asymmetry parameter
profiles for the 3p ionization of Ar, and comparison with the available
experimental data.76 (Lower panel) CIS and TDDFT partial 3 s−1

photoionization cross sections and comparison with experimental
data.77
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The predicted sharp autoionization features are not visible in
the experimental data, partially due to the experimental
resolution, and partially due to our neglect of vibrational
effects that broaden the spectral features. As noted in several
instances in this work, while there is nice agreement between
TDDFT, CIS results in the velocity gauge, and the
experimental data over the entire energy region, the CIS

results in the length gauge have a tendency to overestimate the
total cross section, although all three theoretical curves present
a similar shape.
This trend is also apparent from the inspection of the partial

cross sections for the 1b1
−1, 1b2

−1, and 3a1
−1 ionic states, which

are reported in Figure 8, along with the corresponding
asymmetry parameter profiles. With the exception of the
partial cross section for the production of the 1b2

−1 ionic state,
CIS results in the velocity form and TDDFT are of comparable
accuracy, while CIS results in the length gauge invariably
overestimate the experimental cross sections.82,83 A close
agreement between CIS-len and CIS-vel results is obtained
for the asymmetry parameters profiles, where the agreement
with the experimental data82,84 can be considered quantitative.
The electronic configuration of the ground state of ethylene

(D2h symmetry) is

Σ+a b b a b bKK(2 ) (2 ) (1 ) (3 ) (1 ) (1 ) ( )g
2

1u
2

2u
2

g
2

3g
2

3u
2 1

g

The origin of the single-center expansion has been put on the
middle of the CC double bond. The maximum value of
angular momentum used in the partial wave expansion of the
continuum orbitals is given as lmax = 18, which provides
convergent results for both cross sections and angular
asymmetry parameters for the 1b3u

−1 and the 1b3g
−1 ionizations

in the entire photon energy range explored. To assess the
effects of interchannel coupling on the computed observables,
we carried out two sets of calculations: a two-channel
calculation (CIS-2ch), where only coupling between the
continuum partial waves from the 1b3u

−1 and the 1b3g
−1 target

states were included, and a five-channel calculation (CIS-5ch),
where all dipole-allowed channels originating from the
outermost five ionizations were included in the close-coupling
expansion. Since photoionization observables calculated in the
velocity gauge of the dipole operator are generally in better
agreement with the experimental data, compared to the results
obtained in the length gauge, and to avoid cluttering of the
figures, we have decided not to display the latter. Suffice to say
that, as observed for the other systems presented in the paper,
partial cross sections obtained in the length gauge are invariably
overestimated, compared to both CIS (velocity gauge) and
TDDFT profiles, while, generally, a much closer agreement
between the two gauges is obtained for the asymmetry
parameter profiles. Strong near-threshold modulations in both
CIS and TDDFT profiles, which are due to autoionization
resonances not resolved in the experimental data, have been
smoothed by convolution of the calculated profiles with
Gaussian functions of full-width at half-maximum of 1.0 eV.
The cross section and asymmetry parameter profiles for the

ionization leading to the ground ionic state, X2B3u, and the
A2B3g of ethylene are reported in Figure 9. We start our
discussion with the ionization from the HOMO (1b3u

−1), which
is of π character. The near-threshold photoionization dynamics
is dominated by resonant features due to autoionization, which
can be described both at the CIS and TDDFT levels, but not at
the single-channel level. In fact, both frozen-core HF (FCHF)
and continuum multiple scattering (CMS) calculations are not
able to predict the strong oscillatory behavior of the
experimental data in this energy range but show a smooth
decreasing behavior.61,66 In the near-threshold energy range,
the CIS-5ch profile is in somewhat better agreement with both
TDDFT and the experimental data, compared to the CIS-2ch
profile. However, there are some discrepancies between

Figure 6. CIS and TDDFT photoionization cross sections (upper
panel) and asymmetry parameter profiles (lower panel) for the 1σg

−1

ionization of H2.The available experimental data from the
literature78,79 have also been reported.

Figure 7. CIS and TDDFT total photoionization cross sections of
H2O and comparison with experimental data.81
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theoretical (CIS-5ch and TDDFT) profiles and the exper-
imental data that demand further experimental verification.
Compared to the CIS-5ch calculation, the TDDFT result shows
sligthly better agreement with the experiment in the photon
energy interval of 15−25 eV, whereas, for higher excitation
energies, all theoretical profiles rapidly converge to the
experimental points. Concerning the asymmetry parameter
profile, we see that neither the two CIS calculations nor
TDDFT can achieve a quantitative agreement with the
experiment in the energy region of autoionizating states.
Above a photon energy of 20 eV, the agreement between
theoretical profiles (CIS-5ch, TDDFT) and the experiment can
be considered quantitative, at variance with earlier FCHF and
CMS results.61,66 The near-threshold dynamics of the 1b3g

−1

ionization carries signatures of both one-electron and multi-
electron resonances. Earlier CMS and FCHF calculations
predicted, in agreement with our CIS-2ch results (not shown in
the figure), the occurrence of shape resonances in the kb1u and
kb2u channels, and are in surprisingly good agreement with the
available experimental data for both cross section and
asymmetry parameter profiles.61,66 In addition to this resonant
behavior, both CIS-5ch and TDDFT calculations predict the

occurrence of autoionizating decay of excited states, giving rise
to strong modulations that have been partially washed out by
the convolution procedure. It is interesting to note (i) the good
agreement between TDDFT and CIS-5ch profiles for both
partial cross section and asymmetry parameter and (ii) the CIS-
2ch calculation gives results in better agreement with the
experimental data, which is surprising, and probably fortuitous,
but consistent with the good agreement between the
experimental data and predictions from single-channel theories,
as observed in the literature.61,66 For higher excitation energies,
the calculated cross-sectional profiles rapidly converge to the
experimental data available, while the CIS-5ch and TDDFT
asymmetry parameter profiles are observed to underestimate
the experimental data.

5. CONCLUSIONS AND OUTLOOK

In this paper, we present a multichannel continuum algorithm
at the ab initio configuration−interaction singles (CIS) level,42

based on a B-spline basis, Galerkin approach, and block inverse
iteration for the calculation of the continuum eigenvectors. The
core of the algorithm is the calculation of Hamiltonian and
overlap matrix elements in a multielectron basis of close-

Figure 8. (Left) CIS and TDDFT partial photoionization cross sections for the 1b1
−1 (upper panel), 3a1

−1 (central panel), and 1b2
−1 (lower panel)

ionizations of H2O and comparison with the experimental data.82,83 (Right) CIS and TDDFT asymmetry parameter profiles for the 1b1
−1 (upper

panel), 3a1
−1 (central panel), and 1b2

−1 (lower panel) ionizations of H2O and comparison with the experimental data.82,84
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coupling form, as antisymmetrized products of target (ionic)
state eigenfunctions times a B-spline function to describe the
continuum electron. As such, it is immediately generalizable to
correlated target states. Moreover, such a basis is ideally suited
to describe multiphoton or strong field ionization phenomena
via solution of the TDSE, without the limitations of the usual
GTO bases,44−46 and allows extraction of the fully energy and
angle-resolved cross sections. Actually, the more elaborate B-
spline ADC(2) approach has been already employed in the
calculation of total cross section via Stieltjes Imaging, or high
harmonic generation.85 However, because of the lack of proper
boundary conditions, it is not currently possible to employ that
approach for full continuum calculations.
To test the new algorithms in a concrete setup, we presented

a generalization of the Galerkin approach to arbitrary closed-
shell molecules, where the final states are treated within the
configuration interaction singles method.42 The continuum
wave function is expanded in a single-center basis, taken as a
product of symmetry-adapted angular functions and radial B-
splines functions, to take advantage of the already available
algorithms for the calculations of two-electron integrals
between B-splines.40,41 This represents the first step toward
the implementation of a general close-coupling (CC)
structure39 applicable to general polyatomics. Details of the
implementation are presented, in particular, the structure and
evaluation of Hamiltonian and overlap matrix elements. Since
the CIS method has been only sparsely applied to the study of
atomic/molecular photoionization dynamics, here, we present
several applications to the valence ionization dynamics of
closed-shell atoms (He, Ne, Ar) and polyatomics (H2, H2O,
and ethylene). Partial cross sections and asymmetry parameter
profiles for atoms and randomly oriented molecules have been
calculated in both length and velocity form of the dipole
operator, and compared with TDDFT and the experimental
data, when available. In almost all instances, CIS results in the

velocity gauge are in very good agreement with the
experimental data and with TDDFT predictions. The Ne 2s
ionization is well-described at the CIS level, whereas, because of
the incorrect treatment of exchange, it represents a pathological
case for TDDFT. Since both CIS and TDDFT are relatively
simple and inexpensive methods for the calculation of
molecular excited states, we anticipate that CIS could be used
as an alternative to TDDFT for all cases where TDDFT loses
its predictive power, because of inaccuracies in existing
exchange-correlation functionals (e.g., charge transfer excita-
tions,74 which are commonly observed in transition-metal
compounds).
To boost the applicability of the CIS method to medium-

sized molecules, one must supplement the OCE expansion with
basis sets centered on the off-center atoms.25,27,86 This requires
new algorithms for the calculation of the two-electron integrals
between basis functions located on different centers. A parallel
algorithm based on the solution of the Poisson’s equation is
being currently developed in the group, and tests of its accuracy
are underway.
Although CIS and TDDFT are among a restricted number of

computational methods beyond mean-field approaches that can
be used for the calculation of the excitation spectrum and
ionization dynamics of large molecular systems, the restriction
of the excitation space to the 1h−1p manifold usually cannot
provide an accurate description of the residual electron−
electron interaction,87 although this impacts different observ-
ables in different ways. In fact, the impact of multielectron
excitations in computed vertical excitation energies is reflected
in large absolute errors for the excitation spectrum of water
computed at the CIS level, compared to other ab initio
methods, specifically multireference methods, that include a
larger portion electron correlation effects,87 but it is somewhat
less pronounced in the case of computed asymmetry parameter
profiles, as evidenced from the results reported in this work.

Figure 9. (Left) Five-channel CIS, two-channel CIS, and TDDFT partial photoionization cross sections for the 1b3u
−1 (upper panel), and 1b3g

−1 (lower
panel) ionizations of ethylene and comparison with the experimental data.62,65 (Right) Five-channel CIS, two-channel CIS, and TDDFT asymmetry
parameter profiles for the 1b3u

−1 (upper panel), and 1b3g
−1 (lower panel) ionizations of ethylene, and comparison with the experimental data.64
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In atomic and molecular single photon ionization, accounting
for both static and dynamic electron correlation effects is
needed for an accurate description of the dynamics of the
process.7,10,37,88,89 In fact, the lack of correlation in the target
states (as, for example, when using approximate HF target
states) can sometimes overestimate the extent of continuum
correlation effects (interchannel coupling).90 Multielectron
excitations have also been recently demonstrated to affect
multiphoton and strong-field ionization.32,34,51,91 An accurate
treatment of the ionization process thus requires a balanced
description of both static and dynamic correlation effects. The
former can be included by allowing a multiconfigurational
description of N electron initial and ionized target states, which
can be achieved by using standard quantum-chemistry
approaches, such as multiconfigurational self-consistent field
(MCSCF), restricted configuration−interaction (CI) expan-
sions,10,29,88 or multireference CI methods,32 while the latter is
automatically included in the form of a close coupling approach
(as described in this paper) with carefully chosen ionic states
and penetration terms that are needed for the description of
final-state correlation effects.12,92,93

In conclusion, the multichannel algorithm described in this
work is efficient, stable, and general, and it requires relatively
small modifications for the use of correlated wave functions for
the bound states involved. These currently can be obtained
from standard quantum chemistry approaches, such as
complete-active-space self-consistent field (CASSCF) methods
and multireference CI, in a Gaussian basis. This task requires
the extraction of reduced density matrices up to three particles,
which will be the subject of future works.

■ APPENDIX: REDUCTION OF MANY-PARTICLE
MATRIX ELEMENTS

Here, we give a complete derivation of eqs 16 and 17 in the
paper. We assume to have n orthonormal orbitals {φi}i=1,...,n,
which define the reference configuration Φ0 = |φ1, ..., φn⟩.
These can be considered members of a complete orthonormal
set {φp}p=1,...,∞. We shall adopt the following convention for the
indices: i, j, k, l, ... for the orbitals occupied in the reference
configuration, a, b, ... for the orbitals not occupied in the
reference ket, while p, q, ... will denote generic elements of the
basis, so that ∑p = ∑i + ∑a. The derivation proceeds in two
steps. We will first derive expressions for the CIS Hamiltonian
and overlap matrix elements for singlet spin eigenfunctions (or
configuration state functions, CSFs) associated with the case of
a closed-shell restricted reference determinant, Φ0. The case of
single excitations into a separate nonorthogonal basis, which
leads to eqs 16 and 17 in this paper, will then be described in
detail.

A.1. Singlet Configuration State Functions (CSFs) from a
Closed-Shell Determinant
Consider the set of 1h1p states as single determinants in the
orthonormal spin-orbital basis {φp}, defined with respect to Φ0

(that is, {Φi
p} = {Φi

a} + {Φi
k}. Only Φi

a are true excited states;
however, it will be useful to consider also determinants Φi

k = δik
Φ0. Since the spin-orbital basis is orthonormal, the following
relations are straightforwardly obtained:

δ δ

δ δ
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while the Fock operator, with respect to Φ0, reads

∑ φ φ= + ⟨ || ⟩F h
j

j j
(A2)

with matrix elements Fpq = hpq + ∑j ⟨pj||qj⟩.
By using standard Slater−Condon rules58 for the matrix

elements of one- and two-electron operators between N-
electron Slater determinants, we obtain the following
expressions for the Hamiltonian matrix elements over singly
excited determinants:
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Since we are only interested in singlet coupled configurations
defined as

Φ = Φ + Φ ̅
̅1

2
( )i

a
i
a

i
a1

(A4)

(here, an overbar is used to denote β spin), by using eqs A1 and
A3, we obtain the following for the overlap and Hamiltonian
matrix elements, respectively (all indices now refer to spatial
orbitals):
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and
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A.2. Single Excitations into a Separate Nonorthogonal
Basis
To derive eqs 16 and 17, we need to consider a second,
nonorthogonal, one-electron basis, i.e., the OCE B-spline basis
of eq 15, {ξμ}. Call the overlap matrix elements ⟨ξμ|ξν⟩ = Sμν
and ⟨φi|ξμ⟩ = Siμ. We can develop the generic basis element ξμ
into the complete orthonormal basis ϕp as follows:

∑ ∑ ∑ ∑ξ φ φ ξ φ φ φ= ⟨ | ⟩ = = +μ μ μ μ μS S S
p

p p
p

p p
a

a a
k

k k

(A7)
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In the following, we consider only singlet-spin configurations
and omit the spin multiplicity index. By using eq A7, the
overlap matrix element ⟨Φi

μ|Φj
ν⟩ of eq 16 can be written as

∑ ∑ ∑

∑

δ δ δ δ

δ
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where, in deriving eq A8, the results of eq A5 have been used.
To obtain the result quoted in eq 16, we note that the sum over
the full set of virtual orbitals φa, appearing on the right-hand
side of eq A8, can eventually be replaced by a sum over the
orbitals occupied in the reference ket |Φ0⟩ by using the
property of completeness of the orthonormal basis {φp}. Along
the same lines, one obtains the expression for ⟨Φ0|Φi

μ⟩ quoted
in eq 16. The expressions for the Hamiltonian matrix elements
reported in eq 17 are derived along similar lines. By using eq
A7, the matrix element ⟨Φi

μ|H|Φj
ν⟩ can be written as

∑

∑ ∑

∑

⟨Φ | |Φ ⟩ = * ⟨Φ | |Φ ⟩
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+ ⟨Φ | |Φ ⟩ + ⟨Φ | |Φ ⟩
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a b i

a
j
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b
i b i

i
j
b

a
a j i

a
j
j

i j i
i

j
j

(A9)

Let us consider each term appearing on the right hand side of
eq A9 separately. For the first term, by using the results of eq
A6, together with the completeness of the {φp} basis, one
obtains

∑ ∑

∑ ∑ ∑

∑

∑ ∑

δ

δ μ ν

μ ν μ μ

ν ν

⟨Φ | |Φ ⟩ = − −

+ − − + + ⟨ | ⟩
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(A10)

For the second term, one obtains

∑ ∑

∑

⟨Φ | |Φ ⟩ =

= −

μ ν μ ν

μ ν ν

S S H S S F

S F F S

2 2

2 ( )

b
i b i

i
j
b

i
b

b jb

i j
k

jk k
(A11)

Similarly, the third and the last term can be reduced to the
following expressions:

∑ ∑⟨Φ | |Φ ⟩ = −μ ν ν μ μS S H S F F S2 ( )
a

a j i
a

j
j

j i
k

ki k
(A12)

and

⟨Φ | |Φ ⟩ =μ ν μ νS S H S S E2i j i
i

j
j

i j 0 (A13)

By collecting all terms, one gets the result quoted in eq 17 of
the text. With similar steps, one also can derive the expression
for ⟨Φ0|H|Φi

μ⟩ reported in eq 17.
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