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Abstract

Artificial neural networks (ANNs) can be employed as controllers for robotic agents. Their

structure is often complex, with many neurons and connections, especially when the robots

have many sensors and actuators distributed across their bodies and/or when high expressive

power is desirable. Pruning (removing neurons or connections) reduces the complexity of the

ANN, thus increasing its energy efficiency, and has been reported to improve the generalization

capability, in some cases. In addition, it is well-known that pruning in biological neural networks

plays a fundamental role in the development of brains and their ability to learn. In this work,

we consider the evolutionary optimization of neural controllers for the case study of Voxel-

based Soft Robots, a kind of modular, bio-inspired soft robots, applying pruning during fitness

evaluation. For a locomotion task, and for centralized as well as distributed controllers, we

experimentally characterize the effect of different forms of pruning on after-pruning effectiveness,

life-long effectiveness, adaptability to new terrains, and behavior. We find that incorporating some

forms of pruning in neuroevolution leads to almost equally effective controllers as those evolved

without pruning, with the benefit of higher robustness to pruning. We also observe occasional

improvements in generalization ability.

1 Introduction

In recent years, Artificial Neural Networks (ANNs) have been employed to face a large variety of

problems in many domains, with remarkable success. As it is well-known, the architecture of the

network, which encompasses the number of neurons and connections (or synapses), and many

other significant hyper-parameters, has to be carefully chosen to achieve sufficient expressivity

for the task at hand. The choice of a large fully-connected ANN may be considered a safe solution

when the ideal topology for the task is not known. Indeed, the availability of computational power

and the increasingly sophisticated training algorithms allow to train very large networks (possibly,

heavily overparametrized). However, the current trend of scaling to ever-larger neural networks,

such as DALL-E, a 12 billion parameters version of GPT-3 (Ramesh et al. 2021), or Switch

Transformers, a trillion parameters language models (Fedus et al. 2021), has been criticized in

terms of carbon footprint and computational costs (Strubell et al. 2019). The energy consumption

and, more generally, the complexity of a network become critical when it has to be physically

implemented in devices, such as robotic systems, having limited resources. Pruning of ANNs,

i.e., removing unnecessary or less important connections, as a means of reducing complexity and

consumption of ANNs, is an active area of research, and has a notable biological counterpart.

Indeed, biological brains undergo a developmental process which initially creates a very large
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number of synapses, too many in fact (Raman et al. 2019). While a large number of synapses is

beneficial for faster incremental learning and allows for redundancy, it is not beneficial in the long

term. Therefore, the brain is subsequently optimized through a rather large process of synaptic

pruning.

Here, we study the pruning of ANNs optimized with neuroevolution to control Voxel-based

Soft Robots (VSRs). VSRs are a class of modular robots made of connected soft components

(voxels), that resemble biological soft tissues. Since in VSRs each voxel may contain sensing

elements, actuators, as well as the neural controller itself (Medvet, Bartoli, De Lorenzo & Fidel

2020), unnecessary neural network wiring is not desirable: thus the idea to resort to pruning.

In addition, despite VSRs simplicity, their unique features make them a particularly suited case

study for experimentally characterizing the effects of real life phenomena on artificial agents, e.g.,

morphological development (Kriegman, Cheney & Bongard 2018, Kriegman, Cheney, Corucci &

Bongard 2018) or environmental influence on the agents features (Bongard 2011, Cheney et al.

2015). Moreover, the embodied cognition paradigm is best expressed in robots like VSRs, where

the global behavior derives from the conjunction of possibly simpler behaviors (Pfeifer & Bongard

2006): as a consequence, VSRs are extremely suitable for investigating body-brain interactions

(Lipson et al. 2016) in artificial agents. Therefore, VSRs are ideal candidates for addressing

the overall research question of whether the pruning of synapses may result in an optimized

controller by eliminating network connections with negligible contributions and/or redundant.

For answering this question, we consider different methods for identifying the synapses to be

pruned and we experimentally measure the impact of these methods on the overall effectiveness

and adaptability of the ANNs optimized by means of neuroevolution for controlling VSRs in the

task of locomotion.

This work is an extended version of (Nadizar et al. 2021); the novel contributions can be

summarized as follows. First, in addition to centralized controllers, we consider two kinds

of distributed controllers, namely the homo-distributed and the hetero-distributed controllers,

described in Section 3.2.2: the three variants differ in their physical feasibility, expressiveness,

and size of the corresponding search space, when optimized. Second, we deepen the analysis,

by considering a different goal for the optimization. Specifically, in addition to maximizing the

locomotion effectiveness, i.e., the velocity of the robot, after the pruning, we also consider the

velocity of the robot before and after the pruning, i.e., the life-long locomotion effectiveness.

Finally, we widen the analysis and systematically characterize the behavior of the evolved robots,

taking into account some behavioral features introduced in (Medvet et al. 2021).

Our experimental results show that the application of a proper pruning strategy during the

evolution can result in controllers that are as effective as the ones obtained without pruning, as

well as more robust to pruning than the latter ones, both in terms of effectiveness and in terms of

behavior. In addition, we show that individuals evolved with pruning do not appear significantly

less adaptable to different tasks, i.e., locomotion on unseen terrains, than those evolved without

pruning.

2 Related work

Our work is related to several topics and lines of research, that are briefly recalled in the next

sections. In particular, Section 2.1 shows the connections with biological pruning, which occurs

during the life of individuals and inspired the adopted pruning scheme. Section 2.2 is dedicated to

the pruning of ANNs and the various techniques (most of them iterative) that have been recently

proposed, especially in the Deep Learning literature. Section 2.3 deals with pruning in the context

of neuroevolution and, finally, Section 2.4 briefly recalls the pruning of spiking networks, which

resemble more closely the biological networks, but are not employed here.
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2.1 Synaptic pruning in the nervous system

Biological neural networks are not engineered but self-organized, and they are able to adapt to

form efficient computational structures (Johnson 2001, Power & Schlaggar 2017, Yuste 2015).

Much of their developmental growth and adaptation depends upon pruning, where an initial

overgrowth of neurons, axons, and synapses is followed by removal of inactive or inefficient

components of the network (Low & Cheng 2006, Riccomagno & Kolodkin 2015, Sakai 2020).

In humans, this process begins shortly after birth; the neonatal brain contains approximately

10× 1010 neurons, which are pruned to 8.6× 1010 in the adult, a reduction of almost 15 %.

Similarly, the synaptic density between the neurons decreases by nearly 50 % in the adult brain

compared to that of a 1- to 2-year-old, following an initial growth after birth (Herculano-Houzel

2012, Sakai 2020).

The cellular and molecular mechanisms underlying this pruning are numerous and highly

complex, but at an abstract level they are hypothesized to be guided by certain constraints,

namely metabolic energy and robustness to perturbation (Herculano-Houzel 2012, Aerts et al.

2016, Laughlin et al. 1998, Riccomagno & Kolodkin 2015). Biological neural networks need to

perform their computations with limited local and global pools of metabolic energy, which drive

the networks to develop towards more efficient network topologies—that can be analyzed by

means of computational tools and properties (Heiney et al. 2021)—and modes of computation

and prune connections that do not contribute enough given their metabolic cost. Inversely, these

networks also need to be robust against perturbations such as injury or degeneration, creating a

need for redundancy and adaptability (Denève et al. 2017). These two constraints, working both

in opposition and collectively, drive pruning in biological neural networks to network topologies

that are highly efficient computational structures, such as small-world, hierarchical, and modular

networks (Bassett & Sporns 2017, Sporns 2013).

Moreover, these constraints differ across the brain many regions, which in turn drives

development, including pruning, to form specialized network topologies (Sporns et al. 2004).

As different regions perform different computational tasks, the pruning mechanisms reflect this

disparity by ensuring networks in, for example, sensory cortices are shaped with different inputs

than those for executive or motor function. The network requirements for these computational

tasks differ in terms of redundancy, parallelization, recurrency, and interregional signaling,

therefore requiring different pruning targets and timescales (Bordier et al. 2017, Liao et al. 2017,

Meunier et al. 2010, Schuldiner & Yaron 2015, Vézquez-Rodŕıguez et al. 2020). Importantly,

this form of task-directed pruning stems from the same pruning mechanisms across the different

regions. In general, neurons are pruned in an activity-dependent manner: low-activity neurons

or synapses are marked for removal either by themselves or by microglia (glial immune cells)

(Arcuri et al. 2017, Riccomagno & Kolodkin 2015, Schuldiner & Yaron 2015). Since the input

to each region drives and shapes the activity of every neuron, the neurons and synapses which

contribute to the output more often avoid pruning, allowing the region to both adapt to the input

and retain the most efficient components of the network. By initially growing a large network,

before pruning it down to fit the computational task, the human nervous system can adapt to

multiple environments more easily than constructed or engineered networks.

Such biological findings raise questions in regards to ANN controllers for artificial agents, and

in particular the identification of suitable network sizes and number of parameters needed to

learn a given task. The possibility of optimizing the networks in regards to learning, robustness

to noise, and other factors such as energetic cost remains still an open area of research. In the

following sections, several pruning strategies for ANNs are reviewed.

2.2 Pruning in ANNs

The name “pruning” is not specific to ANNs, being adapted from the decision trees, where

it has been in use as early as 1984 (Breiman et al. 1984) to indicate methods of structural
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simplification, i.e., branches pruning, of large trees having a tendency to overfit or badly generalize

to unseen data. Generally, since its inception, pruning, or the top-down removal of excess pieces

of architecture from a Machine Learning model, has been motivated as an aim towards simplicity,

drawing parallels with Occam’s razor (Thodberg 1991, Zhang & Mühlenbein 1993).

Pruning in the context of ANNs is a procedure encompassing many different techniques whose

common goal is the sparsification of the network, i.e., the removal of connections (synapses)

between neurons, leading to a thinner subnetwork of the original model. The need for this removal

can be driven by different factors: for instance, some pruning techniques have been shown to have

a chance at decreasing the error committed by the model (LeCun et al. 1989, Han et al. 2015). It

may be also of interest to shed off unnecessary structure from the ANN in order to reduce training

and inference time. Additional drivers may include a better generalization capability (Bartoldson

et al. 2019) or an increased robustness (Ye et al. 2019). Finally, it could be of interest to operate

pruning in order to analyze symmetries between artificial and biological sparsification processes,

the latter explained in Section 2.1.

ANN pruning can be subdivided in two major categories, structured or unstructured, depending

upon which group(s) of connection(s) are targeted for the removal (Anwar et al. 2017). Structured

pruning targets well defined formations of synapses: for example, all the connections entering

one specific neuron, or, in the case of Convolutional Neural Networks, one or more specific

channels. This has immediate computational advantages as the removal of neurons or filters imply

smaller parameters tensors, thus faster calculations. Conversely, unstructured pruning techniques

remove connections without concern for the geometry of the deleted synapses. This leads to

an irregular form of sparsity which does not directly impact the way the parameters tensors

are stored in memory; thus, in order to take advantage of the smaller number of connections,

specific software—like CUSPARSE (Naumov et al. 2010)—or hardware—like Graphics Processing

Units with dedicated sparsity support—are required (Liu et al. 2019). Despite this, unstructured

techniques usually lead to models performing better than the original ANN, even at high pruning

rates (Frankle & Carbin 2019, Renda et al. 2020), this being the reason why they can also be

seen as powerful regularizers (Laurenti et al. 2019). In opposition to this, models pruned with

structured techniques usually struggle to keep up with the performance of the unpruned network,

although recent developments (Cai et al. 2021) seem to have overcome this hurdle. It is to be

noted, though, that even structured pruning techniques can be used as regularizers (Prakash

et al. 2019), without necessarily removing the pruned parameters from the structure.

An additional categorization of pruning techniques for ANNs takes into consideration the

heuristics used for the removal of connections. Hoefler et al. (2021) distinguish between

(a) data-free heuristics, which prune synapses based only on the state of the parameters, and

(b) data-driven heuristics, which prune depending upon the evaluation of the model on a given

batch of data. What sets these two heuristics apart is the fact that, while data-free heuristics

lead to a fast enucleation of the connections to be pruned, data-driven techniques let a larger

bunch of criteria be used for determining the weights to remove: for instance, information flow

in the network (Thimm & Fiesler 1995), gradient flow and hessian (LeCun et al. 1989), etc.

In this work, we will be using both types of heuristic. Namely, we will be using Least-Magnitude

Pruning (LMP) (Bishop 1995, Han et al. 2015), a data-free technique which removes connections

exhibiting a small magnitude, and variants of Contribution Variance Pruning (CVP) (Thimm &

Fiesler 1995), a data-driven heuristic which deletes parameters having low variance (possibly re-

integrating the average in the bias term corresponding to the same layer). In addition to that, we

will also be employing further data-driven heuristic based on the value or magnitude of the signal

passing through the synapse. Finally, we will consider random pruning as a further technique to

construct a “control group” for the pruning heuristics. A more extensive overview on the selected

techniques is presented in Section 4.

These pruning techniques are usually introduced within the realm of gradient-based ANN

training, like (Stochastic) Gradient Descent (SGD). When the network is improved via iterative
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training procedures, we can further distinguish between in-training sparsification techniques and

after-training ones (Hoefler et al. 2021). With reference to the former, maybe the most famous

approach at in-training pruning is the LASSO, originally introduced in linear models (Santosa &

Symes 1986, Tibshirani 1997); later its L1-norm based penalty term was translated to ANNs

(Bengio et al. 2006). A more recent method (Lin et al. 2020) uses feedbacks to reactivate

precociously deleted connections. Regarding after-training techniques, we can find here the vast

majority of pruning schemes, both structured and unstructured, like the aforementioned LMP.

In this case, these procedures require the ANN to be fully trained before pruning is applied. The

immediate effect of pruning is possibly a loss of performance, which has to be recovered through

a re-training of the now-sparser model (LeCun et al. 1989). This can give rise to an iterative

scheme where the network is trained, pruned, re-trained, re-pruned, etc. Various methods differ

on re-training schedules and there is still not a clear indication on which practice leads to better

results. For instance, concerning LMP, it is debated whether full re-training (Frankle & Carbin

2019, Renda et al. 2020) or fine-tuning (Liu et al. 2019) or hybrid methods (Zullich et al. 2021,

You et al. 2019) obtain higher accuracy. In addition to this, it is still matter of debate what

are the effects of pruning and successive re-training schedules on the features learned by the

pruned models (Ansuini et al. 2020a,b). From a computational viewpoint, in-training procedures

pose certainly an advantage as only one training pass is required, but, usually, after-training

schemes are able to reach higher performance also at high sparsity, despite a recent work seem to

have greatly reduced the gap: Liu et al. (2021) show that, by drawing inspiration from biological

pruning, specifically from the concept of neuroreconstruction, i.e., the ability of a biological neural

network to reconstruct previously removed synapses, in-training pruning can lead to performance

almost as high as the dense ANN. Concurrently, the same work also sets a new state-of-the art

for the so called sparse-to-sparse training, which refers to the training of pruned ANNs whose

parameters have been randomly re-initialized: indeed, all methods cited previously rely on either

(a) re-training a pruned ANN while keeping the same parameters as the previous training, or

(b) re-training a pruned ANN whose parameters have been rewound to the values they had before

the unpruned network was trained.

2.3 Pruning ANNs in the context of neuroevolution

The concept of iterative pruning can be hardly fit to neuroevolution as it does not employ an

iterative training strategy like SGD; instead, the parameters and the structure of the ANN are

varied making use of evolutionary variation operators, like crossover or mutation (or both). There

is no proper training phase; rather, ANNs are subject to random variations at each generation. For

instance, the main staple of neuroevolution, NEAT (Stanley & Miikkulainen 2002), incorporates

both crossover and mutation, enabling structural growth in addition to the modification of

the weight of synapses. This implies that, usually, when evolving an ANN with NEAT, the

starting network is rather small and it grows as new generations are produced. This contrasts

with the prevailing paradigm in Deep Learning, which consists in starting off with a very large,

overparametrized ANN, as large models exhibit higher generalization capabilities (Neyshabur

et al. 2019), especially in the Natural Language Processing domain (Brown et al. 2020).

This does not necessarily mean that pruning cannot be incorporated into the evolutionary

process. For instance, Real et al. (2017) incorporated a phase of parameter removal (which

corresponds to pruning) in their evolutionary algorithm. Also EANT (Kassahun & Sommer 2005),

a NEAT variant, incorporates pruning as a structural modification of the ANN.

Pruning techniques do not necessarily need to be tied to a neuroevolution algorithm, as they

are essentially oblivious to the training or evolutionary method, and can be decoupled from

it, as we propose in this work. For example, Siebel et al. (2009) operate pruning on neural

controllers employing a technique inspired from (LeCun et al. 1989). More recently, Gerum et al.

(2020) operated random pruning on neural controllers, concluding that this practice improved

generalization when these controllers were tasked with navigating agents through a maze. This
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work is maybe the closest example to ours, although our conclusions are different, having noticed

that random pruning was detrimental in our observations.

2.4 Pruning biologically-inspired ANNs

Spiking Neural Networks (SNNs) (Gerstner & Kistler 2002) are a variant of ANNs in which

(a) information (inputs and outputs) is encoded as a sequence of temporal spikes, and (b) a

neuron activates when its membrane potential exceeds a given threshold. As such, SNNs have

deeper biological inspiration with respect to regular ANNs. In addition to that, due to the discrete

nature of the input, the loss function in SNNs is not differentiable with respect to the parameters,

hence gradient-free techniques are used, like the unsupervised Hebbian neuroplasticity (Hebb

2005). Moreover, due to the inapplicability of gradient-based optimization in SNNs, there exists

a large body of works showing how the training of these models can be enhanced using various

neuroevolution techniques (Floreano et al. 2008, Elbrecht & Schuman 2020, Qiu et al. 2018),

while Pontes-Filho & Nichele (2019) propose an approach to mix neuroevolution with Hebbian

learning, thus highlighting that SNNs synergize well with neuroevolution.

Inspired by the discoveries on human brain connectivity introduced in Section 2.1, there exist

works having applied pruning to SNNs. For example, Iglesias et al. (2005) pruned SNNs with a

criterion similar to CVP in order to observe the connectivity patterns after various iterations of

pruning. In addition to that, Shi et al. (2019) applied LMP to SNNs mid-training, without being

able to recuperate the performance of the original, unpruned networks.

3 Voxel-based Soft Robots

In this study, we employ Voxel-based Soft Robots (VSRs) (Hiller & Lipson 2012), a kind of

modular robots composed of several soft cubes (voxels). Such robots achieve movement thanks

to the contraction and expansion of the voxels, in a similar way to the muscular tissue of living

organisms. To ease simulation and optimization, we consider a 2-D variant of VSRs in which

voxels are actually squares rather than cubes, but we argue that our findings are conceptually

portable to the 3-D case.

A VSR is defined by a morphology, or body, and a controller, or brain. The morphology

describes how the VSR voxels are arranged in a 2-D grid and which sensors each voxel is equipped

with. The controller is in charge of processing sensory information in order to determine how the

area of each voxel varies over the time.

3.1 VSR morphology

The morphology of a VSR is a grid arrangement of voxels, i.e., deformable squares in the 2-D

case that we consider in this study. Figure 1 displays two examples of VSR morphologies, both

composed of 10 voxels.

To achieve movement, the size of each voxel varies over time, due to external forces, i.e.,

forces caused by its interaction with other connected voxels and the ground, and to an actuation

value that causes the voxel to actively contract or expand. Namely, at each simulation time step,

the actuation value of each voxel is assigned by the controller and is defined in [−1, 1], where

−1 corresponds to maximum requested expansion and 1 corresponds to maximum requested

contraction.

More precisely, the size variation mechanism depends on the mechanical model of the voxel,

either physically implemented or simulated. In this work, we experiment with 2D-VSR-Sim

(Medvet, Bartoli, De Lorenzo & Seriani 2020), that models each voxel with four masses at the

corners, some spring-damper systems, which confer softness, and ropes, which limit the maximum

distance two bodies can have. In this simulator, actuation is modeled as a variation of the rest-

length of the spring-damper systems which is linearly dependent on the actuation value.
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(a) Biped (b) Worm

Figure 1: Frames of the two VSR morphologies used in the experiments. The color of each voxel

encodes the ratio between its current area and its rest area: red indicated contraction, yellow rest

state, and green expansion. The circular sector drawn at the center of each voxel indicates the

current sensed values: subsectors represent sensors and are, where appropriate, internally divided

in slices according to the sensor dimensionality m. The rays of the vision sensors are shown in

red.

Moreover, a VSR can be equipped with sensors, that are located in its voxels. At each time step,

the output of a sensor S, i.e., the sensor reading, is rS ∈ [0, 1]m, where m is the dimensionality of

the sensor type. Here we employ four types of sensors, which provide the VSR with information

about its state and about the surrounding environment:

• Sensors of type area perceive the ratio between the current area of the voxel and its rest

area (m= 1).

• Sensors of type touch sense if the voxel is in contact with the ground or not and output a

value being 1 or 0, respectively (m= 1).

• Sensors of type velocity perceive the velocity of the center of mass of the voxel along the x-

and y-axes (m= 2) of voxel itself.

• Sensors of type vision perceive the distance towards close objects, as the terrain or any

obstacle, within some field of view, i.e., along a set of directions. For each direction, the

corresponding element of the sensor reading rS is the distance of the closest object, if any,

from the voxel center of mass of the voxel along that direction. If the distance is greater

than a threshold d, it is clipped to d. We use the vision sensor with the following directions

with respect to the voxel positive x-axis: − 1
4π, − 1

8π, 0, 1
8π, 1

4π; the dimensionality is hence

m= 5.

Velocity and vision sensors employ a soft normalization of the outputs, using respectively the

tanh function and re-scaling, to ensure that the output is defined in [0, 1]m.

3.2 VSR controller

The VSR controller is, in general, a parametric multi-variate function, fθ, which computes the

actuation value for each voxel given some inputs, e.g., the sensor readings, at every simulation

time step. Given a morphology and a parametric function, a VSR can be optimized for a given

task by optimizing the controller parameters θ.
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In this work, we experiment with two architectures of neural controllers, i.e., controllers based

on ANNs, taking inspiration from (Talamini et al. 2019) and (Medvet, Bartoli, De Lorenzo &

Fidel 2020).

3.2.1 Centralized neural controller
The first controller architecture we experiment with is the one proposed by Talamini et al. (2019).

The controller function fθ is implemented by a fully connected feedforward ANN, also known as

multilayer perceptron, where the number of input neurons corresponds to the overall number of

sensor readings, and the number of outputs corresponds to the number of voxels in the VSR.

At each time step, this controller processes the concatenation r = [rS1 rS2 . . . ] of the current

sensor readings and uses its output a ∈ [−1, 1]n = fθ(r) as actuation values for the n voxels

composing the VSR. We use tanh as activation function in the neurons of the ANN.

We call this variant a centralized controller as there is a single central ANN processing the

sensory information coming from each voxel to compute all the actuation values of the VSR.

The centralized controller parameters coincide with the synaptic weights of the ANN, θ ∈ Rp,

with p depending on the ANN topology, i.e., the number and size of the ANN layers—we recall

that the size of the input and output layers are determined by the sensors the VSR is equipped

with and the number of voxels, respectively.

A schematic representation of a centralized controller for a simple VSR composed of three

voxels is shown in Figure 2. In this example, each voxel is equipped with two sensors and the

ANN has one hidden layer consisting of 5 neurons. As a result, this centralized controllers has

p= |θ|= (6 + 1) · 5 + (5 + 1) · 3 = 53 parameters, the +1 being associated with the bias.

3.2.2 Distributed neural controller
The second controller architecture we consider is the distributed controller developed by Medvet,

Bartoli, De Lorenzo & Fidel (2020) to exploit the intrinsic modularity of VSRs. The key idea is

that each voxel is equipped with an ANN, which processes local inputs to produce the actuation

value for said voxel. Hence fθ is the ensemble of the functions f iθi
implemented by each ANN.

In order to enable the transfer of information along the body of the VSR, neighboring voxels are

connected by means of nc communication channels. Namely, each ANN reads the sensors values

together with the 4nc values coming from adjacent voxels, and in turn outputs an actuation signal

and 4nc values to feed to contiguous voxels. Note that this controller architecture results in an

overall recurrent ANN, which is responsible for introducing an additional dynamics to the one

deriving from the mechanical model of the VSR.

More in detail, each ANN takes as input a vector xi =
[
riS iN iE iS iW

]
where riS are the

local sensor readings, and iiN , iiE , iiS , iiW (each one ∈ Rnc) are the input communication values

coming from the adjacent voxel placed above, right, below, left—if the voxel is not connected

to another voxel on a given side, the corresponding vector of communication values is the zero

vector 0 ∈ Rnc . Each ANN outputs a vector yi = f iθi

(
xi
)

=
[
a oiN oiE o

i
S o

i
W

]
where a is the

local actuation value, and oiN , oiE , oiS , oiW are the vectors of nc output communication values

going towards the adjacent voxel placed above, right, below, left of the voxel.

Figure 3 shows a scheme of a distributed neural controller for a 3× 1 VSR.

Output communication values produced by the ANN of a voxel at time step k − 1 are used by

the adjacent voxels ANNs at k, which introduces some delay in the propagation of signals across

the VSR body. Not only could such propagation delay be beneficial, as shown by Cheney et al.

(2014), but it also has a biological foundation (Segev & Schneidman 1999).

Concerning the controller parameters, they consist of the concatenation of the parameters of

each voxel ANN: θ = [θ1 θ2 . . . θn], where n is the number of voxels composing the VSR.

The distributed controller in a VSR can be instantiated according to two design choices:

(a) there could be an identical ANN in each voxel, both in terms of architecture and weights

(homo-distributed), or (b) each voxel can have its own independent ANN that can differ from
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Figure 2: A schematic representation of the centralized controller for a 3× 1 VSR with two

sensors in each voxel. Blue and red curved arrows represent the connection of the ANN with

inputs (sensors) and outputs (actuators), respectively.

S1 S2

A

IS OS

INON

IW

OW

OE

IE

S1 S2

A

IS OS

INON

IW

OW

OE

IE

S1 S2

A

IS OS

INON

IW

OW

OE

IE

Figure 3: A schematic representation of the distributed controller for a 3× 1 VSR with two

sensors in each voxel and nc = 1 communication channel per side. Blue and red curved arrows

represent the connection of the ANN with inputs (sensors and input communication channels)

and outputs (actuator and output communication channels), respectively.

others in weights, hidden layers, and number of inputs and outputs (hetero-distributed). The

main differences between the two proposed configurations regard the optimization process and

the allowed sensor equipment of the VSRs. Namely, for a VSR controlled by a homo-distributed
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controller, each voxel needs to have the same amount of sensor readings to pass to the controller,

to ensure the number of inputs fed to the ANN is the same. In addition, evolving a single ANN

for each voxel requires less exploration, given the reduced number of parameters to optimize (all

θi are the same), but likely requires more fine-tuning to make it adequate for controlling each

voxel and achieve a good global performance. On the contrary, the hetero-distributed architecture

leaves more freedom, allowing any sensor configuration, but has a much larger search space in

terms of number of parameters to optimize.

The distributed neural controllers for VSRs used in this work have a similarity with neural

cellular automata (NCA) techniques (Nichele et al. 2017, Mordvintsev et al. 2020), in which the

lookup table of each cellular automaton (CA) cell is replaced by an ANN. The ANN therefore

defines the cell next state by processing the local information of its nearest neighbors. NCA

have been successfully used to grow and replicate CA shapes and structures with neuroevolution

(Nichele et al. 2017) and with differentiable learning (Mordvintsev et al. 2020), to produce self-

organising textures (Niklasson et al. 2021), to grow 3D artifacts (Sudhakaran et al. 2021), for

regenerating soft robots (Horibe et al. 2021), and for controlling reinforcement learning agents

(Variengien et al. 2021).

4 Pruning techniques

We consider different forms of pruning of a fully connected feed-forward ANN. They share a

common working scheme and differ in three parameters that define an instance of the scheme:

the scope, i.e., the subset of connections that are considered for the pruning, the criterion, defining

how those connections are sorted in order to decide which ones are to be pruned first, and the

pruning rate, i.e., the rate of connections in the scope that are actually pruned. In all cases, the

pruning of a connection corresponds to setting to 0 the value of the corresponding element θi of

the network parameters vector θ.

Since we are interested in the effects of pruning of ANNs used as controllers for robotic agents,

we assume that the pruning can occur during the life of the agent, at a given time tp. As a

consequence, we may use information related to the working of the network up to the pruning

time, as, e.g., the actual values computed by the neurons, when defining a criterion.

Algorithm 1 shows the general scheme for pruning. Given the vector θ of the parameters

of the ANN, we first partition its elements, i.e., the connections between neurons, using the

scope parameter (as detailed below): in Algorithm 1, the outcome of the partitioning is a list

(h1, . . . , hn) of lists of indices of θ. Then, for each partition, we sort its elements according

to the criterion, storing the result in a list of indices h. Finally, we set to 0 the θ elements

corresponding to an initial portion of h: the size of the portion depends on the pruning rate ρ

and is b|h|ρc.

1 function prune(θ):

2 (h1, . . . , hn)← partition(θ, scope)

3 foreach j ∈ {1, . . . , n} do
4 h← sort(hj , criterion)

5 foreach k ∈ {1, . . . , b|h|ρc} do
6 θhk

← 0

7 end

8 end

9 return θ

10 end
Algorithm 1: The algorithm for pruning a vector θ of ANN parameters given the parameters

scope, criterion, and pruning rate ρ.
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We explore three options for the scope parameter and five for the criterion parameter;

concerning the pruning rate ρ ∈ [0, 1], we experiment with many values (see Section 5).

For the scope, we have:

• Network : all the connections are put in the same partition.

• Layer : connections are partitioned according to the layer of the destination neuron.

• Neuron: connections are partitioned according to the destination neuron (also called post-

synaptic neuron).

For the criterion, we have:

• Weight : connections are sorted according to the absolute value of the corresponding weight.

This corresponds to LMP (see Section 2).

• Signal mean: connections are sorted according to the mean value of the signal they carried

from the beginning of the life of the robot to the pruning time.

• Absolute signal mean: similar to the previous case, but considering the mean of the absolute

value.

• Signal variance: similar to the previous case, but considering the variance of the signal.

This corresponds to CVP (see Section 2).

• Random: connections are sorted randomly.

All criteria work with ascending ordering: lowest values are pruned first. Obviously, the ordering

does not matter for the random criterion. When we use the signal variance criterion and prune a

connection, we take care to adjust the weight corresponding to the bias of the neuron the pruned

connection goes to by adding the signal mean of the pruned connection: this basically corresponds

to making that connection carry a constant signal.

We highlight that the three criteria based on signal are data-driven; on the contrary, the weight

and the random criteria are data-free. In other words, signal-based criteria operate based on the

experience the ANN acquired up to the pruning time. As a consequence, they constitute a form

of adaptation acting on the time scale of the robot life, that is shorter than the adaptation that

occurs at the evolutionary time scale; that is, they are a form of learning. As such, we might

expect that, on a given robot that acquires different experiences during the initial stage of its life

the pruning may result in different outcomes. Conversely, the weight criterion always results in

the same outcome, given the same robot. In principle, hence, signal-based criteria might result in

a robot being able to adapt and perform well also in conditions that are different than those used

for the evolution. We experimentally verified this hypothesis: we discuss the results in Section 5.

5 Experiments and results

We performed various experiments to the extent of answering to the following research questions:

RQ1 Is the evolution of effective VSR controllers hindered by pruning? What are the factors that

mostly influence the effects of pruning?

RQ2 Does pruning have an impact on the adaptability of the evolved VSR controllers to different

tasks? Is the impact of pruning dependent on the same factors highlighted for RQ1?

RQ3 Can evolution find a path towards VSR controllers that are life-long effective, i.e., effective

both before and after pruning? How do these controllers perform in terms of adaptability?
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For answering these questions, we experimented evolving the controller parameters of various

combinations of controller architectures, ANN topologies, and VSR morphologies. During the

evolution, we enabled different variants of pruning, including, as a baseline, the case of no pruning.

We considered the task of locomotion, in which the goal for the robot is to travel as fast as

possible on a terrain. We describe in detail the experimental procedure and discuss the results in

Section 5.2.

Each evolved VSR was then re-evaluated on different terrains to measure its adaptability, as

described in Section 5.3.

In order to evaluate whether a VSR could evolve to be effective both with and without pruning,

we repeated the experimental procedure presented for RQ1 and RQ2, with some minor variations,

thoroughly detailed in Section 5.4.

For evolved VSRs, we also examined the resulting behaviors, performing a systematic analysis

based on the features proposed by Medvet et al. (2021), which should capture the different

gaits achieved by VSRs. We provide a brief description of the analysis pipeline and of the

aforementioned features together with the obtained results in Section 5.5.

In order to reduce the number of variants of pruning to consider when answering RQ1, RQ2,

and RQ3, we first performed a set of experiments to assess the impact of pruning in a static

context, i.e., in ANNs not subjected to evolutionary optimization and not used to actually control

a VSR. We refer to these conditions as static and disembodied and present the experiments and

the corresponding findings in the next section.

5.1 Characterization of pruning variants in static and disembodied conditions

We aimed at evaluating the effect of different forms of pruning on ANNs in terms of how the

output changes with respect to no pruning, given the same input. In order to make this evaluation

significant with respect to the use case of this study, i.e., ANNs employed as controllers for VSRs,

we considered ANNs with topologies that resemble the ones used in the next experiments and

fed them with inputs that resemble the readings of the sensors of a VSR doing locomotion.

In particular, for the ANN topology we considered three input sizes ninput ∈ {10, 25, 50} and

three depths nlayers ∈ {0, 1, 2}, resulting in 3 · 3 = 9 topologies, all with a single output neuron.

For the topologies with inner layers, we set the inner layer size to the size of the input layer. In

terms of the dimensionality p of the vector θ of the parameters of the ANN, the considered ANN

topologies correspond to values ranging from p= (10 + 1) · 1 = 11, for ninput = 10 and nlayers = 0,

to p= (50 + 1) · (50 + 1) · (50 + 1) · 1 = 132 651, for ninput = 50 and nlayers = 2, where the +1 is

the bias. We instantiated 10 ANNs for each topology, setting θ by sampling the multivariate

uniform distribution U(−1, 1)p of appropriate size, hence obtaining 90 ANNs.

Concerning the input, we fed the network with sinusoidal signals with different frequencies for

each input, discretized in time with a time step of ∆t= 1
10 s. Precisely, at each time step k, with

t= k∆t, we set the ANN input to x(k), with x
(k)
i = sin

(
k∆t
i+1

)
, and we read the single output

y(k) = fθ
(
x(k)

)
.

We considered the 3 · 5 pruning variants (scope and criteria) and 20 values for the pruning

rate ρ, evenly distributed in [0, 0.75]. We took each one of the 90 ANNs and each one of the 300

pruning variants, we applied the periodic input for 10 s, triggering the actual pruning at tp = 5 s,

and we measured the mean absolute difference e between the output fθ
(
x(k)

)
during the last

5 s, i.e., after pruning, and the output fθ̂
(
x(k)

)
of the corresponding unpruned ANN:

e=
1

50

k=100∑
k=50

∥∥∥fθ (x(k)
)
− fθ̂

(
x(k)

)∥∥∥ . (1)

Figure 4 summarizes the outcome of this experiment. It displays one plot for each ANN

topology (i.e., combination of nlayer and ninput) and one line showing the mean absolute difference

e, averaged across the 10 ANNs with that topology, vs. the pruning rate ρ for each pruning variant:
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Figure 4: Mean absolute difference e between the output of a pruned ANN and the output of

the corresponding unpruned ANN vs. the pruning rate ρ, for different ANN structures and with

different pruning criteria (color) and scopes (linetype).

the color of the line represents the criterion, the line type represents the context. Larger ANNs

are shown in the bottom right of the matrix of plots.

By looking at Figure 4 we can do the following observations. First, the factor that appears to

have the largest impact on the output of the pruned ANN is the criterion (the color of the line

in Figure 4). Weight and absolute signal mean criteria consistently result in lower values for the

difference e, regardless of the scope and the pruning rate. On the other hand, with the signal

mean criterion, e becomes large even with low pruning rates: for ρ > 0.1 there seems to be no

further increase in e. Interestingly, the random criterion appears to be less detrimental, in terms

of e, than signal mean in the vast majority of cases. We explain this finding by the kind of input

these ANNs have been fed with, that is, sinusoidal signals: the mean of periodic signals with a

period shorter enough than the time before pruning is close to 0 and this results in connections

actually carrying some information to be pruned. We recall that we chose to use sinusoidal signals

because they are representative of the sensor readings a VSR doing locomotion could collect, in

particular when exhibiting an effective gait, that likely consists of movements that are repeated

over the time.

Second, apparently, there are no bold differences among the three values for the scope

parameter. As expected, for the shallow ANNs (with nlayers = 0) the scope parameter does not
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Figure 5: Comparison of the output of pruned and unpruned versions of two ANNs of different

structures: ninput = 10, nlayers = 0, above, and ninput = 100, nlayers = 2, below. Pruning occurs at

tp = 5 s.

play any role, since there is one single layer and one single output neuron (being the same

destination for all connections).

Third, the pruning rate ρ impacts on e as expected: in general, the larger ρ, the larger e.

However, the way e changes by increasing ρ seems to depend on the pruning criterion: for weight

and absolute signal mean, Figure 4 suggests a linear dependency. For the other criteria, e quickly

increases with ρ and then remains stable, for signal mean, or increases more slowly, for signal

variance and random.

Fourth and finally, the ANN topology appears to play a minor role in determining the impact of

pruning. The ANN depth (i.e., nlayers) seems to impact slightly on the difference between pruning

variants: the deeper the ANN, the fuzzier the difference. Concerning the number of inputs ninput,

by looking at Figure 4 we are not able to make any strong claim.

Based on the results of this experiment, summarized in Figure 4, we decided to consider

only weight, absolute signal mean, and random criteria and only the network scope for the next

experiments.

To better understand the actual impact of the chosen pruning variants on the output y(k) of

an ANN, we show in Figure 5 the case of two ANNs. The figure shows the value of the output of

the unpruned ANN (in gray), when fed with the input described above (up to t= 20 s), and the

outputs of the 3 · 4 pruned versions of the same ANN, according to the three chosen criteria and

four values of ρ.

5.2 RQ1: impact on the evolution

In order to understand if the evolution of VSR controllers is hindered by pruning, we performed

various experiments.

First, we evaluated the effect of pruning on different controller architectures and ANN

topologies. To this extent, we evolved nine VSR controllers, resulting from the combination of

three architectures and three ANN topologies, and one morphology.
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nlayers Centralized Hetero-dist. Homo-dist.

0 360 1125 117

1 1620 2623 273

2 2880 4121 429

Table 1 Number of parameters to be optimized by the EA for each controller architecture and ANN
topology.

We experimented with the three controller architectures presented in Section 3.2: centralized,

homo-distributed, and hetero-distributed. We combined each of these with different ANN

topologies, considering ANNs with nlayers ∈ {0, 1, 2}. For the ANNs with hidden layers, we set

the size of those layers to match the size of the input layer. Regarding the distributed controllers,

we set nc = 2, and for the hetero-distributed architecture we kept the amount of hidden layers

homogeneous throughout the entire VSR.

Concerning the VSR morphology, we employed the biped, which consists of 10 voxels arranged

in a 4× 3 grid, as shown in Figure 1a. We experimented with two different sensor configurations:

uniform, where each voxel is equipped with velocity, touch, and area sensors; and spined-touch-

sighted, with area sensors in each voxel, velocity sensors in the voxels in the top row, touch sensors

in the voxels in the bottom row, and vision sensors in the voxels of the rightmost column. These

two configurations resulted in 40 and 35 overall sensor readings, respectively.

We combined the spined-touch-sighted configuration with the centralized and the hetero-

distributed controller architectures, whereas we used the uniform configuration in conjunction

with the homo-distributed architecture due to its requirements of having the same amount of

sensors in each voxel. Table 1 summarizes the number of parameters to be optimized for each

VSR controller we evolved.

For each of the nine combinations of controller architecture and ANN topology, we used three

different pruning criteria: weight, absolute signal mean, and random, all with network scope,

as thoroughly described in Section 4. For each criterion, we employed the following pruning

rates: ρ ∈ {0.125, 0.25, 0.5, 0.75}. We remark that for distributed controllers we applied pruning

separately for each voxel ANN. Furthermore, we evolved, for each combination, a controller

without pruning to have a baseline for meaningful comparisons.

To perform evolution we used the simple evolutionary algorithm (EA) described in Algorithm 2,

a form of evolutionary strategy. At first, npop individuals, i.e., numerical vectors θ, are put in

the initially empty population, all generated by assigning to each element of the vector a value

sampled from the uniform distribution U(−1, 1). Subsequently, ngen evolutionary iterations are

performed. On every iteration, which corresponds to a generation, the fittest quarter of the

population is chosen to generate npop − 1 children, each obtained by adding values sampled from

a normal distribution N(0, σ) to each element of the element-wise mean µ of all parents. The

generated offspring, together with the fittest individual of the previous generation, end up forming

the population of the next generation, which maintains the fixed size npop.

We used the following EA parameters: npop = 48, ngen = 416 (corresponding to 20 000 fitness

evaluations), and σ = 0.35. We verified that, with these values, evolution was in general capable

of converging to a solution, i.e., longer evolutions would have resulted in negligible fitness

improvements.

We optimized VSRs for the task of locomotion: the goal of the VSR is to travel as fast as

possible on a terrain along the positive x-axis. We quantified the degree of achievement of the

locomotion task of a VSR by performing a simulation of duration tf and measuring the VSR

average velocity vx =
x(tf )−x(ti)

tf−ti , x(t) being the position of the robot center of mass at time t and

ti being the initial time of assessment. In the EA of Algorithm 2 we hence used vx as fitness for

selecting the best individuals. We set tf = 60 s and ti = 20 s to discard the initial transitory phase.
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1 function evolve():

2 P ←∅
3 foreach i ∈ {1, . . . , npop} do
4 P ← P ∪ {0 + U(−1, 1)p}
5 end

6 foreach g ∈ {1, . . . , ngen} do
7 Pparents← bestIndividuals

(
P,
⌊
|P |
4

⌋)
8 µ← mean(Pparents)

9 P ′←{bestIndividuals(P, 1)}
10 while |P ′|< npop do

11 P ′← P ′ ∪ {µ+N(0, σ)p}
12 end

13 P ← P ′

14 end

15 return bestIndividuals(P, 1)

16 end
Algorithm 2: The EA, a form of evolutionary strategy, used for neuroevolution.

For the controllers with pruning, we set the pruning time at tp = 20 s: this way the evaluation

of the fitness of the VSR only takes into consideration the velocity after pruning. In section

Section 5.4, instead, we investigate the effects of determining the VSR fitness considering both

the pre- and the post-pruning velocities (ti < tp).

We remark that the EA of Algorithm 2 constitutes a form of Darwinian evolution with respect

to pruning: the effect of pruning on an individual does not impact on the genetic material that is

passed to the offspring by that individual. More precisely, the element-wise mean µ is computed

by considering the parents θ vectors before the pruning.

For favoring generalization, we evaluated each VSR on a different randomly generated hilly

terrain, i.e., a terrain with hills of variable heights and distances between each other. To avoid

propagating VSRs that were fortunate in the random generation of the terrain, we re-evaluated,

on a new terrain, the fittest individual of each generation before moving it to the population of

the next generation.

For each of the 3 · 3 · (3 · 4 + 1) combinations of controller architecture, ANN topology,

pruning criterion, and pruning rate (the +1 being associated with no pruning) we performed 10

independent, i.e., based on different random seeds, evolutionary optimizations of the controller

with the aforementioned EA. We hence performed a total of 1170 evolutionary optimizations. We

used 2D-VSR-Sim (Medvet, Bartoli, De Lorenzo & Seriani 2020) for the simulation, setting all

parameters to default values.

5.2.1 Impact of the controller architecture and the ANN topology

Figure 6 summarizes the findings of this experiment. In particular, the plots show how the pruning

rate ρ impacts the fitness of the best individual of the last generation, for the different controller

architectures and ANN topologies employed in the experiment.

The most remarkable trait of the plots is that individuals whose controllers have been pruned

with weight or absolute signal mean criteria significantly outperform those who have undergone

random pruning. This suggests that randomly pruning controllers at each fitness evaluation is

detrimental to their evolution. In fact, individuals with a good genotype could perform poorly

after the removal of important connections, while others could surpass them thanks to a luckier

pruning, hence the choice of fittest individuals for survival and reproduction could be distorted.

Moreover, Figure 6 confirms that the heuristics employed, based on weight and absolute signal
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Figure 6: Fitness vx (median with lower and upper quartiles across the 10 repetitions) vs.

pruning rate ρ, for different pruning criteria (color), controller architectures (plot row), and

ANN topologies (plot column).

mean criteria (Section 4), successfully choose connections that are less important for the controller

to be removed, thus limiting the damage of connection removal.

In addition, comparing the subplots of Figure 6 there are no bold differences between the

rows, which leads us to conclude that the architecture of the controller does not play a key role

in determining the impact of pruning on the performance of the controller.

Similarly, different ANN topologies are not affected much diversely by pruning, as we notice

no sharp distinctions between the columns of the plots. The first subplot, however, stands out

from the others, as the trend of the lines seems to suggest that for the centralized controller

architecture with no hidden layers pruning could have a beneficial effect. However, the upper and

lower quartiles reveal that the distribution of the fitness vx is spread across a considerably large

interval, hence it is difficult to draw any sharp conclusion on the possible benefits of pruning for

such controller.

For all other subplots we can note that a higher pruning rate ρ leads to weaker performance of

the controller. In this case, the result is in line with expectations, as an increasing ρ means that

we are removing more connections from the ANN, thus reducing its expressiveness. Nevertheless,

controllers pruned with a proper heuristic have evolved to achieve results comparable to those who

have not undergone pruning during their evolution, considered here as baseline. We performed

a Mann-Whitney U test with the null hypothesis that, for each combination of controller

architecture, ANN topology, pruning criterion, and pruning rate ρ, the distribution of the best

fitness is the same as obtained from the corresponding baseline controller, i.e., with the same
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Figure 7: Fitness vx (median with lower and upper quartiles across the 10 repetitions) vs. pruning

rate ρ, for different pruning criteria (color), VSR morphologies (plot row), and ANN topologies

(plot column).

controller architecture and ANN topology, evolved without pruning, and we found that the p-

value is greater than 0.05 in 66 out of 108 cases.

5.2.2 Impact of the VSR morphology

Having noticed no significant difference between the centralized and distributed controller

architectures, we decided to assess the impact of pruning on different VSR morphologies using only

the centralized controller architecture. To do so, we performed the evolutionary optimization of

three additional VSRs, combining the three ANN topologies employed in the previous experiment

with the worm morphology.

Such morphology consists of 10 voxels arranged in a 5× 2 grid, as displayed in Figure 1b.

We equipped the VSR with the spined-touch-sighted sensor configuration, similarly to what we

have done in the previous experiment with the centralized controller architecture and the biped

morphology. The amount of parameters to be optimized is the same as in the first column of

Table 1, as the two VSR morphologies share the same amount of voxels and sensor readings,

hence the number of inputs and outputs of the controller ANNs is the same in both cases.

We repeated the exact experimental pipeline as before, employing the same pruning criteria and

pruning rates, without changing any hyper-parameter. For each of the 3 · (3 · 4 + 1) combinations

of ANN topology, pruning criterion, and pruning rate, we performed 10 independent evolutionary

optimizations, for a total of 390 runs.

The results are displayed in Figure 7, together with the outcomes of the previous experiment

for the centralized controller architecture for the biped morphology. The conclusions we can draw

from this matrix of plots are rather similar to what we have observed for Figure 6, both in terms

of pruning criteria and in terms of differences among the various ANN topologies employed. We

can assess the effect of pruning on different VSR morphologies by comparing the rows of the

figure, deducing that the biped and the worm are impacted in a substantially equal manner by

pruning.



Pruning and Neuroevolution for Robust and Efficient Controllers for VSRs 19

0.2 0.4 0.6 0.8
0

2

4

6

ρ

v x
nlayers = 0

0.2 0.4 0.6 0.8
ρ

nlayers = 1

0.2 0.4 0.6 0.8
ρ

nlayers = 2

weight abs. signal mean random

ev. w/ pruning ev. w/o pruning
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assessment pruning rate ρ of individuals evolved with and without pruning for different ANN

topologies for the centralized controller and biped morphology.

As before, controllers pruned with a proper heuristic achieve results comparable to those who

have not undergone pruning during their evolution. To confirm this, we performed a Mann-

Whitney U test with the null hypothesis that, for each combination of VSR morphology, ANN

topology, pruning criterion, and pruning rate ρ, the distribution of the best fitness is the same

as obtained from the corresponding baseline controller, i.e., with the same VSR morphology and

ANN topology, evolved without pruning, and we found that the p-value is greater than 0.05 in

30 out of 72 cases.

5.2.3 Pruning after the evolution

Based on the results of Figure 6 and Figure 7, we speculate that controllers pruned with weight

and absolute signal mean criteria look robust to pruning because they result from an evolution

in which VSRs are subjected to pruning, rather than because those kinds of pruning are, per se,

not particularly detrimental. To test this hypothesis, we carried out an additional experiment.

We took the best individuals of the last generations for the centralized controller with the biped

morphology and we re-assessed them (on a randomly generated hilly terrain similar to the one used

in evolution). For the individuals that were evolved without pruning, we performed 3 · 4 additional

evaluations, introducing pruning after tp = 20 s with the previously mentioned 3 criteria and 4

rates ρ.

Figure 8 shows the outcome of this experiment, i.e., vx on the re-assessment plotted against the

re-assessment pruning rate ρ for both individuals evolved with (solid line) and without (dashed

line) pruning. The foremost finding is that individuals evolved with pruning visibly outperform the

ones whose ancestors have not experienced pruning, for almost all pruning rates. This corroborates

the explanation we provided above, that is, VSRs whose ancestors evolved experiencing pruning

are more robust to pruning than VSRs that evolved without pruning.

Besides analyzing the aggregate results, we also examined the behavior of a few evolved

VSRs in a comparative way, i.e., with and without pruning in re-assessment. We found that,

interestingly, in some cases the VSR starts to move effectively only after pruning: this might

suggest that pruning shaped the evolutionary path at the point that the lack of pruning becomes

detrimental, similarly to what happens in the brain of complex animals (see Section 2). We provide

videos of a few VSRs exhibiting a change in their behavior after pruning at https://youtu.

be/-HCHDEb9azY, https://youtu.be/oOtJKri6vyw, and https://youtu.be/uwrtNezTrx8. We

https://youtu.be/-HCHDEb9azY
https://youtu.be/-HCHDEb9azY
https://youtu.be/oOtJKri6vyw
https://youtu.be/uwrtNezTrx8
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(a) Flat. (b) Hilly. (c) Steppy.

(d) Uphill. (e) Downhill.

Figure 9: Different types of terrains employed for measuring VSR adaptability.

speculate that choosing ti = tp might be a contributing cause to this neat behavioral shift, hence

in Section 5.4 we investigate the effects of setting ti < tp.

5.3 RQ2: impact on the adaptability

For the sake of this research question, we defined VSR controllers as adaptable if they are able

to effectively accomplish locomotion on terrains that none of their ancestors ever experienced

locomotion on. Hence, to assess the adaptability of evolved controllers, we measured the

performance in locomotion of the best individuals of the last generations on a set of different

terrains. We experimented with the following terrains: (a) flat, (b) hilly with 6 combinations of

heights and distances between hills, (c) steppy with 6 combinations of steps heights and widths,

(d) downhill with 2 different inclinations, and (e) uphill with 2 different inclinations (Figure 9).

As a result, each individual was re-assessed on a total of 17 different terrains. Note that, in this

experiment, controllers were not altered in between evolution and re-assessment, i.e., they were

re-evaluated with the same pruning criterion, if any, and pruning rate ρ as experienced during

evolution.

Figure 10 displays the outcome of this experiment. Namely, for each of the different controller

architectures, VSR morphologies, ANN topologies, and pruning criteria, the re-assessment

velocity vx (averaged on the 17 terrains) is plotted against the pruning rate ρ. The results in

Figure 10 are coherent with the findings of Section 5.2: comparing the subplots, we can conclude

that neither the controller architecture nor the morphology of the VSR are relevant in determining

the effect of pruning on adaptability, whereas the ANN topology is somewhat of impact. More in

details, for shallow networks, pruning seems to enhance adaptability for the centralized controller

architecture, whereas it has a slightly detrimental effect in all other cases.

Anyway, for controllers evolved employing weight or absolute signal mean pruning criteria,

the re-assessment results are comparable to those of controllers evolved without pruning. We

performed a Mann-Whitney U test with the null hypothesis that, for each combination of

controller architecture, VSR morphology, ANN topology, pruning criterion, and pruning rate

ρ, the distribution of the average re-assessment velocities across all terrains is the same as the

one obtained from the re-assessment of the corresponding baseline controller, i.e., with the same
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Figure 10: Median, lower quartiles, and upper quartiles of re-assessment velocity vx vs. pruning

rate ρ averaged across re-assessment terrains for different pruning criteria, VSR controller

architectures, VSR morphologies, and ANN topologies.

VSR morphology and ANN topology, evolved without pruning, and we found that the p-value is

greater than 0.05 in 79 out of 144 cases.

5.4 RQ3: life-long effectiveness

In the previous experiments, the behavior of the VSR before the pruning played no role in

determining the fitness of the robot, hence in driving the evolution. To determine whether

evolution could eventually find a path towards VSR controllers that are life-long effective, we

repeated the experimental pipeline described for RQ1, setting ti = 5 s and tp = 20 s for the velocity

vx calculation—we still “discard” the first 5 s of each simulation to avoid considering transient

behaviors. This way, the VSR fitness is computed by taking into account both phases of the life

of the VSR, before and after the occurrence of pruning. Such procedure has stronger biological

resemblance than discarding the pre-pruning life for fitness computation, as in nature the survival
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Figure 11: Fitness vx (median with lower and upper quartiles across the 10 repetitions) vs.

pruning rate ρ, for controllers evolved with ti = tp = 20 s (first column) and controllers evolved

with ti = 5 s and tp = 20 s (second column). Both controllers share the centralized architecture,

the ANN topology with nlayers = 1, and the biped morphology.

and mating likelihoods are estimated on the entire lifespan of an individual, and not only after

full brain development.

Since for RQ1 and RQ2 we have noticed no significant differences between the different

controller architectures, VSR morphologies, and ANN topologies, for this analysis we only

experiment with the centralized controller architecture with an ANN with one hidden layer on

the biped morphology. Again, we perform 10 independent evolutionary optimizations, each based

on a different random seed.

Figure 11 displays the results for this experiment (right plot), paired with those obtained

with the corresponding configuration for RQ1 (left plot). Namely, for each pruning criterion the

median and the quartiles of velocity at the end of evolution vx are plotted against the pruning rate.

Observing the plots we can answer affirmatively to RQ3: evolution has indeed managed to find

a successful path towards controllers that can perform effectively both before and after pruning.

Comparing the two plots of Figure 11 there are no outstanding differences, so we can draw similar

conclusions as for RQ1, in the sense that pruning remains not significantly detrimental, provided

that it is applied with proper heuristics and not randomly.

To gain further insights, we considered the velocity of the evolved VSRs separately for the two

phases of life (before and after pruning). More in detail, we computed the pre-pruning velocity

using ti = 5 s and tf = 20 s and the post-pruning velocity with ti = 20 s and tf = 60 s. The results

are shown in Figure 12, where, similarly as before, the measured velocity is plotted against the

pruning rate for each pruning criterion applied. In the plots, the solid line indicates the pre-

pruning velocities, while the dashed line represents the post-pruning velocities. Comparing the

two lines for each criterion, we can note that for the weight and absolute signal mean criteria

there is a small gap between the two lines, which indicates that most of the controllers abilities

are retained after pruning. Contrarily, for the random criterion there is a significant performance

decrease after the occurrence of pruning, which is in line with the previous findings (Section 5.2).

We explain this result as follows: since random pruning acts differently on individuals of the

same evolutionary lineage, evolution is not able to “guarantee” good performance after pruning.

However, since it is driven also by the performance before pruning, evolution produces controllers

that are effective in terms of pre-pruning velocity. Put simply, with random pruning only one of

the two objective in a bi-objective evolutionary optimization is actually improvable.
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Figure 12: Median, lower quartiles, and upper quartiles of velocity vx vs. pruning rate ρ of

individuals before (solid line) and after (dashed line) pruning for different pruning criteria (color).
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Figure 13: Average re-assessment velocity vx (median with lower and upper quartiles across

the 10 repetitions) vs. pruning rate ρ, for controllers evolved with ti = tp = 20 s (first column)

and controllers evolved with ti = 5 s and tp = 20 s (second column). Both controllers share the

centralized architecture, the ANN topology with nlayers = 1, and the biped morphology.

Having observed that, similarly to biological organisms, controllers can evolve to be effective

both before and after pruning, we decided to investigate the performance of such controllers also

in terms of adaptability. To this extent, we repeated the experimental pipeline described for RQ2.

Figure 13 shows the re-assessment velocities for this experiment (right plot), paired with those

obtained with the corresponding configuration for RQ2 (left plot). From the comparison of the

two subplots, individuals that were evolved in a more biologically plausible fashion, i.e., taking

into account both the pre- and post-pruning velocities for fitness evaluation, seem to be slightly

more adaptable than those whose evolution was carried out considering only the post pruning

performance. However, the difference between the two plots is not significant, hence we cannot

draw sharp conclusions on this.

5.5 VSR behavior analysis

Having observed that pruning does not significantly affect the velocities of VSRs in locomotion,

we decided to investigate its behavioral impact. Namely, we aimed at systematically evaluating

whether the pre- and post-pruning behaviors of VSRs were substantially different. To this
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extent, we relied on a consolidated data analysis procedure consisting of 1. feature extraction,

2. dimensionality reduction, and 3. visualization.

The features we employed to capture a VSR behavior in locomotion (Medvet et al. 2021) are

based on the movement of the center of mass of the VSR over time and on the way the VSR

touches the ground during gait, i.e., its footprints. Here we provide just a brief description of the

feature extraction procedure—we refer the reader to (Medvet et al. 2021) for further details.

Concerning the center of mass movement, we extracted its signals on the x- and y-axis from

a sequence H of snapshots—a snapshot is the description of the spatial configuration of every

voxel of the VSR at a given time step—and we computed the signals of their first differences.

From these, we calculated the Fast Fourier Transforms (FFT), from which we took the magnitude

and we filtered out frequency components not in the range [0 Hz, 10 Hz]. Last, we re-sampled the

obtained signals to have nfreq = 100 components for each axis, constituting the final feature vector

related to the center of mass movement.

Regarding the footprints, for each snapshot at each time step k, we projected the minimal

bounding square of the VSR on the x-axis, i.e., the smallest square parallel to the x-axis that

completely contains the VSR, and we partitioned the projection in 8 equal sections, from which

we built a binary vector (of size 8), the footprint, where each element was set to 1 iff the VSR was

touching the ground for more than half of the corresponding segment. To extract some features

from the footprints, we considered a sequence of snapshots H, which we processed in the following

way:

1. We split H in a sequence of non-overlapping subsequences, each corresponding to

∆tfootprint = 0.5 s.

2. We computed the sequence M of footprints, where each element was obtained as the

element-wise mode of the footprints in the corresponding subsequence;

3. We considered all the non-overlapping n-grams of footprints in M , 2≤ n≤ 10 occurring at

least twice, we computed their overall duration and we selected the main n-gram M? as

the one with the longest overall duration.

4. We processed M? to obtain the following descriptors: average touch area of the footprints

in M?, overall duration of all M? occurrences, length of the main n-gram |M?|, mode of

the intervals between consecutive occurrences of M?, and rate of intervals that are equal

to the mode.

We obtained the feature vector related to the footprints of the VSR through the concatenation

of the features extracted from M?.

Given the concatenation of the feature vectors of the center of mass movement and of the

footprints, we performed dimensionality reduction using the principal component analysis (PCA)

from 25 to 2 components, in order to visualize the results in scatter plots.

We exploited the aforementioned analysis pipeline to evaluate the impact of pruning on the

behavior of a VSR. In addition, we investigated whether changing the beginning evaluation time

ti with respect to the pruning time tp would result in more or less visible behavioral differences.

To this extent, we focused on the VSR configuration we employed both in RQ1 and RQ3, namely,

the biped morphology with the centralized controller architecture with an ANN with 1 hidden

layer.

For each evolved VSR, we extracted the behavior features in a re-assessment performed on flat

terrain, in order to minimize the impact of any terrain irregularities on the features. To distinguish

pre- and post-pruning behaviors, we performed the feature extraction on two separate intervals

of the VSR lifetime: before pruning, from 5 s to 20 s, and after pruning, from 20 s to 60 s.

The results are shown in the scatter plots of Figure 14 and Figure 15, for VSRs evolved with

ti = tp = 20 s (i.e., with the evolution driven only by post-pruning performance) and ti = 5 s and
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Figure 14: Scatter plots of the first two components resulting from the PCA analysis of the

features described in Section 5.5 for the biped VSR with a centralized controller. Each subplot

corresponds to a pruning criterion (row) and a pruning rate ρ (column); pruning is applied at

tp = ti = 20 s. The color of the bubble indicates whether the evaluation of velocity and feature

extraction were performed before or after the occurrence of pruning, while the size of the bubble

is proportional to the achieved velocity vx.

tp = 20 s (i.e., with the evolution driven by life-long performance), respectively. Each point in the

scatter plot corresponds to a behavior defined by the aforementioned features, its size depends

on the velocity achieved by the VSR in the evaluation interval.

Comparing the two figures, the most outstanding trait is that in Figure 14 the distributions

of behaviors achieved after pruning seem to detach more from the pre pruning behaviors

distributions, compared to Figure 15, where the two distributions show in general a greater

overlap—this difference is particularly visible for small pruning rates. To give an explanation to

this result, we recall that the VSRs of Figure 14 have been evolved with ti = tp = 20 s, hence the

evaluation of fitness does not consider the pre-pruning behavior of the robot. We hypothesize that

in these circumstances evolution pushes the VSR towards a reasonable post-pruning behavior, but

does not incentive pre-pruning effectiveness. Therefore, we can notice a significant shift between

the pre- and post-pruning behaviors. Contrarily, VSRs of Figure 15 have been evolved with

ti = 5 s, i.e., driven by life-long performance. This explains the smaller shift in behaviors, since

the VSRs are required to achieve successful locomotion both before and after pruning.

Focusing on Figure 15, it can be seen that for large pruning rates pre- and post-pruning

distributions seem to diverge more. Nevertheless, there is a small but non negligible behavior

shift also for VSRs whose controllers do not undergo pruning (first column, ρ= 0). Moreover,

diversity among behaviors of different robots evolved and re-assessed in the same conditions (i.e.,

markers of the same color in the same plot) is itself quite large. Based on these considerations, we

cannot spot any sharp general trend concerning the effect of pruning on the behavior of evolved

VSRs.
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Figure 15: Scatter plots of the first two components resulting from the PCA analysis of the

features described in Section 5.5 for the biped VSR with a centralized controller. Each subplot

corresponds to a pruning criterion (row) and a pruning rate ρ (column); pruning is applied at

tp = 20 s (ti = 5 s). The color of the bubble indicates whether the evaluation of velocity and feature

extraction were performed before or after the occurrence of pruning, while the size of the bubble

is proportional to the achieved velocity vx.

Concerning the behavioral shifts induced by different pruning criteria, we cannot draw any

sharp conclusion from the plots, either. Comparing the rows of Figure 15, we can notice that with

ρ≤ 0.25 the greatest deviation is induced by the absolute signal mean criterion, while the VSRs

still retain most of their abilities. With a larger pruning rate, instead, the shifts caused by all

criteria are comparable, but, while the VSRs pruned with a proper heuristic generally preserve

their velocities, the randomly pruned ones suffer from a significant performance decrease.

6 Concluding remarks

We analyzed the effects of incorporating pruning in the evolution of neural controllers for Voxel-

based Soft Robots (VSRs). In particular, we aimed at evaluating whether this biologically inspired

technique could impact artificial agents similarly to living creatures, i.e., favoring adaptability, or

if it would prove detrimental for the resulting individuals. To this extent, we considered the task of

locomotion and we evolved the controller of VSRs employing several pruning criteria and pruning

rates. Overall, we investigated three controller architectures (centralized, homo-distributed, and

hetero-distributed), two VSR morphologies (biped and worm), three ANN topologies, and two

kinds of fitness measures (post-pruning and life-long). Finally, we carried out a behavioral analysis

based on frequency-domain and gait features.

Our experimental results show that the application of pruning with a limited rate and a proper

criterion during evolution can result in individuals that are comparable to those obtained without

pruning, as well as more robust to pruning than the latter ones. In addition, we have shown that

individuals evolved with pruning do not appear significantly less adaptable to different tasks,
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i.e., locomotion on unseen terrains, than those evolved without pruning. We believe, hence, that

the potential advantages deriving from reducing the network complexity by pruning, could be

actually achieved without sacrificing the effectiveness of evolved controllers.

As an extension of this work, it might be possible to explore the effects of pruning on more

biologically plausible neural controllers as, e.g., those based on Spiking Neural Networks (SNNs)

(Pontes-Filho & Nichele 2019): we have already highlighted in Section 2.4 that SNNs have been

successfully coupled with neuroevolution, thus an extension toward that direction seems a natural

continuation of our experimentation. Moreover, the relationship between pruning and forms of

regeneration of the controller (Horibe et al. 2021) might be studied.
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