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Abstract
We study the Ehresmann–Schauenburg bialgebroid of a noncommutative principal
bundle as a quantization of the gauge groupoid of a classical principal bundle. We
show that the gauge group of the noncommutative bundle is isomorphic to the group of
bisections of the bialgebroid, and we give a crossedmodule structure for the bisections
and the automorphisms of the bialgebroid. Examples include: Galois objects of Taft
algebras, a monopole bundle over a quantum sphere and a not faithfully flat Hopf–
Galois extension of commutative algebras. For each of the latter two examples, there
is in fact a suitable invertible antipode for the bialgebroid making it a Hopf algebroid.

Keywords Quantum principal bundles · Gauge theory · Hopf algebroids · Crossed
modules

Mathematics Subject Classification 81R50 · 55R10 · 18G45

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Algebraic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Algebras, coalgebras and all that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Noncommutative principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Hopf–Galois extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

B Xiao Han
xhan@impan.pl

Giovanni Landi
landi@units.it

1 SISSA, via Bonomea 265, 34136 Trieste, Italy
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1 Introduction

The study of groupoids on the one hand and gauge theories on the other hand is impor-
tant in different areas of mathematics and physics. In particular, these subjects meet
in the notion of the gauge groupoid of a principal bundle. In view of the considerable
amount of recent work on noncommutative principal bundles, it is desirable to come
up with a noncommutative version of groupoids and study their relations to noncom-
mutative principal bundles. For all of this, there is a need for a better understanding
of bialgebroids.

In the present paper, having inmind applications to noncommutative gauge theories,
we consider the Ehresmann–Schauenburg bialgebroid associated with a noncommu-
tative principal bundle as a quantization of the classical gauge groupoid. Classically,
bisections of the gauge groupoid are closely related to gauge transformations. In par-
allel with this result, we show that in a rather general context the gauge group of a
noncommutative principal bundle is group isomorphic to the group of bisections of the
corresponding Ehresmann–Schauenburg bialgebroid. To illustrate the theory, wework
out all the details of the gauge group of the principal bundle and of the bialgebroid
with corresponding group of bisections, for the noncommutative U(1) bundle over the
quantum standard Podleś 2-sphere, and for a commutative not faithfully flat Hopf–
Galois extension obtained in [3] from a particular coaction on the algebra O(SL(2)).
In fact, in each of these two cases there is also an invertible antipode which satisfies the
conditions for a Hopf algebroid. In general, for a bialgebroid there is a coproduct and
a counit but not an antipode. Here, we wish to emphasise one important property that
the O(SL(2)) example shows, that is that at least for a commutative algebra (of coin-
variants) the Hopf–Galois extension needs not be faithfully flat for our constructions
to be well defined and our results to be valid.

Part of the paper deals with Galois objects. A Galois object of a Hopf algebra H is
a noncommutative principal bundle over a point in a sense: a Hopf–Galois extension
of the ground field C. In contrast to the classical case where a bundle over a point is
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trivial, for the isomorphism classes of noncommutative principal bundles over a point
this needs not be the case. An antipode can always be defined for the Ehresmann–
Schauenburg bialgebroid of a Galois object which (the bialgebroid that is) is then a
Hopf algebra. Notable examples are group Hopf algebrasC[G], whose corresponding
principal bundle areC[G]-graded algebras and are classified by the cohomology group
H2(G,C×), and Taft algebras TN . The equivalence classes of TN -Galois objects are
in bijective correspondence with the abelian groupC. Thus, part of the paper concerns
the Ehresmann–Schauenburg bialgebroid of a Galois object and corresponding groups
of bisections, been they algebra maps from the bialgebroid to the ground field (and
thus characters) or more general transformations. For these bialgebroids, some of the
results we report could be and have been obtained in an abstract and categorical way.
Here, we re-obtained them in an explicit and more workable fashion, for potential
applications to noncommutative gauge theory.

Automorphisms of a (usual) groupoid with natural transformations form a strict
2-group or, equivalently, a crossed module. The crossed module involves the product
of bisections and the composition of automorphisms, together with the action of auto-
morphisms on bisections by conjugation. Bisections are the 2-arrows from the identity
morphisms to automorphisms, and the composition of bisections can be viewed as the
horizontal composition of 2-arrows. In the present paper, this construction is extended
to the Ehresmann–Schauenburg bialgebroid of a Hopf–Galois extension by construct-
ing a crossed module for the bisections and the automorphisms of the bialgebroid.

The paper is organised as follows. After a recap in Sect. 2 of algebraic preliminaries
and notation, in Sect. 3 we give the relevant concepts for noncommutative principal
bundles (Hopf–Galois extensions), gauge groups and bialgebroids that we need. We
then work out in Sect. 3.3 the gauge group for the noncommutative U(1) principal
bundle over the quantum sphere and in Sect. 3.4 for a commutative not faithfully flat
Hopf–Galois extension associated toO(SL(2)). In Sect. 4, we first have Ehresmann–
Schauenburg bialgebroids and the group of their bisections. Then, we show that the
group of gauge transformations of a noncommutative principal bundle is group iso-
morphic to the group of bisections of the corresponding Ehresmann–Schauenburg
bialgebroid. In Sect. 5, we describe the Hopf algebroid structure for the U(1) princi-
pal bundle over the quantum sphere in Sect. 3.3 and for the commutative not faithfully
flat Hopf–Galois extension out of O(SL(2)) considered in Sect. 3.4. In Sect. 6, we
consider Galois objects with several examples, such as Galois objects for a cocommu-
tative Hopf algebra, in particular group algebras, regular Galois objects (Hopf algebras
as self-Galois objects) and Galois objects of Taft algebras. Finally, in Sect. 7, we study
the crossed module (or 2-group) structure coming from the bisections and the auto-
morphism group of a Ehresmann–Schauenburg bialgebroid. When restricting to Hopf
algebras, one is lead to the representation theory of crossed modules on them. In the
present paper, we work out this construction for the Taft algebras; more general results
will be reported elsewhere.

2 Algebraic preliminaries

We recall here some known facts from algebras and coalgebras and corresponding
modules and comodules. We also recall the more general notions of rings and corings
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over an algebra as well as the associated notion of bialgebroid. We move then to
Hopf–Galois extensions, as noncommutative principal bundles, and to the definitions
of gauge groups.

2.1 Algebras, coalgebras and all that

We work over the field C of complex numbers, but this could be substituted by any
commutative field k. Algebras (coalgebras) are assumed to be unital and associative
(counital and coassociative) with morphisms of algebras taken to be unital (of coal-
gebras taken counital). For the coproduct of a coalgebra � : H → H ⊗ H , we
use the Sweedler notation �(h) = h(1) ⊗ h(2) (sum understood) and its iterations:
�n = (id⊗�H )◦�n−1

H : h �→ h(1) ⊗h(2) ⊗· · ·⊗h(n+1) . We denote by ∗ the convolu-
tion product in the dual vector space H ′ := Hom(H ,C), ( f ∗g)(h) := f (h(1))g(h(2)).
The antipode of a Hopf algebra H is denoted S.

Given an algebra A, a left A-module is a vector space V carrying a left A-action,
that is with a C-linear map �V : A ⊗ V → V such that

(ab) �V v = a �V (b �V v), 1 �V v = v.

Dually, with a coalgebra (H ,�), a right H -comodule is a vector space V carrying a
right H -coaction, that is with a C-linear map δV : V → V ⊗ H such that

(id ⊗ �) ◦ δV = (δV ⊗ id) ◦ δV , (id ⊗ ε) ◦ δV = id.

In Sweedler-like notation, δV (v) = v(0) ⊗ v(1), and the right H -comodule properties
read

v(0) ⊗ (v(1))(1) ⊗ (v(1))(2) = (v(0))(0) ⊗ (v(0))(1) ⊗ v(1) =: v(0) ⊗ v(1) ⊗ v(2),

and v(0) ε(v(1)) = v, for all v ∈ V . The C-vector space tensor product V ⊗ W of two
H -comodules is a H -comodule with the right tensor product H -coaction

δV⊗W : V ⊗ W −→ V ⊗ W ⊗ H , v ⊗ w �−→ v(0) ⊗ w(0) ⊗ v(1)w(1). (2.1)

An H -comodule map ψ : V → W between two H -comodules is a C-linear map
ψ : V → W which is H -equivariant (or H -colinear), that is δW ◦ψ = (ψ ⊗ id) ◦ δV .

In particular, a right H -comodule algebra is an algebra A which is a right H -
comodule such that the multiplication and unit of A are morphisms of H -comodules.
This is equivalent to requiring the coaction δA : A → A⊗H to be amorphismof unital
algebras (where A⊗H has the usual tensor product algebra structure). Corresponding
morphisms are H -comodule maps which are also algebra maps.

In the same way, a right H -comodule coalgebra is a coalgebra C which is a right
H -comodule and such that the coproduct and the counit of C are morphisms of H -
comodules. Explicitly, this means that, for each c ∈ C ,

(c(1))(0) ⊗ (c(2))(0) ⊗ (c(1))(1)(c(2))(1) = (c(0))(1) ⊗ (c(0))(2) ⊗ c(1),
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and ε(c(0))c(1) = ε(c)1H . Corresponding morphisms are H -comodule maps which are
also coalgebra maps. There are right A-modules and left H -comodule versions of the
above.

Next, let H be a coalgebra and let A be a right H -comodule algebra. An (A, H)-
relative Hopf module V is a right H -comodule with a compatible left A-module
structure. That is the left action �V : A ⊗ V → V is a morphism of H -comodules:
δV ◦ �V = (�V ⊗ id) ◦ δA⊗V . Explicitly, for all a ∈ A and v ∈ V : (a �V v)(0) ⊗
(a �V v)(1) = a(0) �V v(0) ⊗ a(1)v(1).

Amorphism of (A, H)-relative Hopf modules is a morphism of right H -comodules
which is also a morphism of left A-modules. In a similar way, one can consider the
case for the algebra A to be acting on the right, or with a left and a right (bimodule)
A-actions.

For an algebra B, a B-ring is a triple (A, μ, η). Here, A is a B-bimodule with
B-bimodule maps μ : A ⊗B A → A and η : B → A, satisfying the associativity and
unit conditions:

μ ◦ (μ ⊗B idA) = μ ◦ (idA ⊗B μ), μ ◦ (η ⊗B idA) = idA = μ ◦ (idA ⊗B η).

(2.2)

A morphism of B-rings f : (A, μ, η) → (A′, μ′, η′) is a B-bimodule map f : A →
A′ such that f ◦ μ = μ′ ◦ ( f ⊗B f ) and f ◦ η = η′.

From [5, Lemma2.2], there is a bijective correspondence between B-rings (A, μ, η)

and algebra automorphisms η : B → A. Starting with a B-ring (A, μ, η), one obtains
a multiplication map A ⊗ A → A by composing the canonical surjection A ⊗ A →
A ⊗B A with the map μ. Conversely, starting with an algebra map η : B → A, a B-
bilinear associative multiplication μ : A⊗B A → A is obtained from the universality
of the coequaliser A⊗ A → A⊗B Awhich identifies an element ab⊗a′ with a⊗ba′.

Dually, for an algebra B a B-coring is a triple (C,�, ε). Here, C is a B-bimodule
with B-bimodule maps � : C → C ⊗B C and ε : C → B, satisfying the coassocia-
tivity and counit conditions:

(� ⊗B idC ) ◦ � = (idC ⊗B �) ◦ �, (ε ⊗B idC ) ◦ � = idC = (idC ⊗B ε) ◦ �.

(2.3)

A morphism of B-corings f : (C,�, ε) → (C ′,�′, ε′) is a B-bimodule map f :
C → C ′, such that �′ ◦ f = ( f ⊗B f ) ◦ � and ε′ ◦ f = ε.

Let B be an algebra. A left B-bialgebroid L consists of a (B ⊗ Bop)-ring together
with a B-coring structures on the same vector space L with mutual compatibility
conditions [26]. From what said above, a (B ⊗ Bop)-ring L is the same as an algebra
map η : B ⊗ Bop → L. Equivalently, one may consider the restrictions

s := η( · ⊗B 1B) : B → L and t := η(1B ⊗B · ) : Bop → L

which are algebra maps with commuting ranges in L, called the source and the target
map of the (B ⊗ Bop)-ring L. Thus, a (B ⊗ Bop)-ring is the same as a triple (L, s, t)
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withL an algebra and s : B → L and t : Bop → L both algebramapswith commuting
range.

For a left B-bialgebroid L, the compatibility conditions are required to be

(i) The bimodule structures in the B-coring (L,�, ε) are related to those of the
B ⊗ Bop-ring (L, s, t) via

b � a 
 b̃ := s(b)t(b̃)a for b, b̃ ∈ B, a ∈ L. (2.4)

(ii) Considering L as a B-bimodule as in (2.4), the coproduct � corestricts to an
algebra map from L to

L ×B L :=
⎧
⎨

⎩

∑

j

a j ⊗B ã j |
∑

j

a j t(b) ⊗B ã j =
∑

j

a j ⊗B ã j s(b),∀b∈ B

⎫
⎬

⎭
, (2.5)

where L ×B L is an algebra via component-wise multiplication.
(iii) The counit ε : L → B satisfies the properties,

(1) ε(1L) = 1B ,
(2) ε(s(b)a) = bε(a),
(3) ε(as(ε(ã))) = ε(aã) = ε(at(ε(ã))), for all b ∈ B and a, ã ∈ L.
An automorphism of the left bialgebroid (L,�, ε, s, t) over the algebra B is a pair

(�, ϕ) of algebra automorphisms, � : L → L, ϕ : B → B such that:

� ◦ s = s ◦ ϕ, � ◦ t = t ◦ ϕ, (2.6)

(� ⊗B �) ◦ � = � ◦ �, ε ◦ � = ϕ ◦ ε. (2.7)

In fact, the map ϕ is uniquely determined by � via ϕ = ε ◦ � ◦ s and one can just
say that � is a bialgebroid automorphism. Automorphisms of a bialgebroid L form
a group Aut(L) by map composition. A vertical automorphism is one of the type
(�, ϕ = idB).

The pair of algebra maps (�, ϕ) can be viewed as a bialgebroid map (see [24, §4.1])
between two copies of L with different source and target maps (and so B-bimodule
structures). If s, t are the source and target maps on L, one defines on L new source
and target maps by s′ := s ◦ ϕ and t ′ := t ◦ ϕ with the new bimodule structure given
by b �ϕ c 
ϕ b̃ := s′(b)t ′(b̃)a, for any b, b̃ ∈ B and a ∈ L (see (2.4)). Therefore, one
gets a new left bialgebroid with product, unit, coproduct and counit not changed.

From the conditions (2.6), � is a B-bimodule map: �(b � c 
 b̃) = b �ϕ �(c) 
ϕ b̃.
The first condition (2.7) is well defined once the conditions (2.6) are satisfied (the
balanced tensor product is induced by s′ and t ′). Conditions (2.6) imply that � is a
coring map; therefore, (�, ϕ) is an isomorphism between the starting bialgebroid and
the new one.

Finally, we recall from [6, Def. 4.1] the conditions for a Hopf algebroid with invert-
ible antipode. Given a left bialgebroid (L,�, ε, s, t) over the algebra B, an invertible
antipode S : L → L in an algebra anti-homomorphism with inverse S−1 : L → L
such that
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S ◦ t = s (2.8)

and satisfying compatibility conditions with the coproduct:

(S−1h(2))(1′) ⊗B (S−1h(2))(2′)h(1) = S−1h ⊗B 1L
(Sh(1))(1′)h(2) ⊗B S(h(1))(2′) = 1L ⊗B Sh, (2.9)

for any h ∈ L. These then imply S(h(1)) h(2) = t ◦ ε ◦ Sh.

3 Noncommutative principal bundles

We start with a brief recall of Hopf–Galois extensions as noncommutative principal
bundles. Then, we consider gauge transformations as equivariant automorphisms of
the total space algebra which are vertical so that they leave invariant the base space
algebra.

3.1 Hopf–Galois extensions

These extensions are H -comodule algebras A with a canonically defined map χ :
A ⊗B A → A ⊗ H which is required to be invertible [22].

Definition 3.1 Let H be a Hopf algebra and let A be a H -comodule algebra with
coaction δA. Consider the subalgebra B := AcoH = {b ∈ A | δA(b) = b ⊗ 1H

} ⊆ A
of coinvariant elements with balanced tensor product A ⊗B A. The extension B ⊆ A
is called a H -Hopf–Galois extension if the canonical Galois map

χ := (m ⊗ id) ◦ (id ⊗B δA) : A ⊗B A −→ A ⊗ H , a′ ⊗B a �→ a′a(0) ⊗ a(1)

is an isomorphism.

Remark 3.2 For a Hopf–Galois extension B ⊆ A, we take (apart from Sects. 3.4 and
5.2) the algebra A to be faithfully flat as a right B-module. One possible way to state
this property is that for any left B-module map F : M → N , the map F is injective
if and only if the map idA ⊗B F : A ⊗B M → A ⊗B N is injective; injectivity of F
implying the injectivity of idA ⊗B F would state that A is flat as a right B−module
(see [27, Chap. 13]. For a faithfully flat H -Hopf–Galois extension, the category of
(A, H)-relative Hopf modules is equivalent to the category of left B-modules by
M → A ⊗B M [22, Thm. 1].

The canonical map χ is a morphism of relative Hopf modules for A-bimodules and
right H -comodules [23, §1.1]. Both A ⊗B A and A ⊗ H are A-bimodules. The left
A-module structures are left multiplication on the first factor, while the right A-actions
are

(a ⊗B a′)a′′ := a ⊗B a′a′′ and (a ⊗ h)a′ := aa′
(0) ⊗ ha′

(1).
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For the H -comodule structure, the right tensor product H -coaction as in (2.1):

δA⊗A : A ⊗ A → A ⊗ A ⊗ H , a ⊗ a′ �→ a(0) ⊗ a′
(0) ⊗ a(1)a

′
(1), (3.1)

for all a, a′ ∈ A, descends to the quotient A ⊗B A because B ⊆ A is the subalgebra
of H -coinvariants. Similarly, A ⊗ H is endowed with the tensor product coaction,
where one regards the Hopf algebra H as a right H -comodule with the right adjoint
H -coaction

Ad : h �−→ h(2) ⊗ S(h(1)) h(3).

The right H -coaction on A ⊗ H is then given, for all a ∈ A, h ∈ H , by

δA⊗H (a ⊗ h) = a(0) ⊗ h(2) ⊗ a(1) S(h(1)) h(3) ∈ A ⊗ H ⊗ H .

Since the canonical Galois map χ is left A-linear, its inverse is determined by the
restriction τ := χ−1

|1A⊗H
, named translation map,

τ = χ−1
|1A⊗H

: H → A ⊗B A , h �→ τ(h) = h<1> ⊗B h<2>.

Thus by definition:

h<1>h<2>
(0) ⊗ h<2>

(1) = 1A ⊗ h. (3.2)

The translation map enjoys a number of properties [23, 3.4] that we list here for later
use. For any h, k ∈ H and a ∈ A, b ∈ B:

h<1> ⊗B h<2>
(0) ⊗ h<2>

(1) = h(1)
<1> ⊗B h(1)

<2> ⊗ h(2), (3.3)

h<1>
(0) ⊗B h<2> ⊗ h<1>

(1) = h(2)
<1> ⊗B h(2)

<2> ⊗ S(h(1)), (3.4)

h<1>h<2> = ε(h)1A, (3.5)

a(0)a(1)
<1> ⊗B a(1)

<2> = 1A ⊗B a, (3.6)

(hk)<1> ⊗B (hk)<2> = k<1>h<1> ⊗B h<2>k<2>, (3.7)

h(1)
<1> ⊗B h(1)

<2>h(2)
<1> ⊗B h(2)

<2> = h<1> ⊗B 1A ⊗B h<2>, (3.8)

b h<1> ⊗B h<2> = h<1> ⊗B h<2> b . (3.9)

Two Hopf–Galois extensions A, A′ for the Hopf algebra H of the algebra B are
isomorphic provided there exists an isomorphism of H -comodule algebras A →
A′. This is the algebraic counterpart for noncommutative principal bundles of the
geometric notion of isomorphism of principal G-bundles over the same base space.

3.2 The group of gauge transformations

In [7], gauge transformations for a noncommutative principal bundles were defined to
be invertible and unital comodule maps, with no additional requirement. In particular
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they were not asked to be algebra maps. However, the resulting gauge group might be
very big, even in the classical case. For example, the gauge group of a G-bundle over
a point would be much bigger than the structure group G. In contrast, in [2] gauge
transformations were taken to be algebra homomorphisms. This property implies in
particular that they are invertible.

Proposition 3.3 Let B = AcoH ⊆ A be a faithfully flat Hopf–Galois extension. Then,
the collectionAutH (A) of right H-comodule unital algebramaps of A into itself which
restrict to the identity on the subalgebra B is a group for map composition.

Moreover, recall the notation τ(h) = h<1> ⊗B h<2> for the translation map. Then,
for F ∈ AutH (A) its inverse F−1 ∈ AutH (A) is given, for all a ∈ A, by

F−1(a) = a(0)F(a(1)
<1>) a(1)

<2> . (3.10)

Proof That vertical H -comodule algebra maps are invertible is in [22, Rem. 3.11].
We check the expression of the inverse in (3.10). The B-linearity and the alge-
bra map property assure that the inverse is well defined: a(0)F(a(1)

<1>b) a(1)
<2> =

a(0)F(a(1)
<1>) ba(1)

<2>, for b ∈ B; also F−1(b) = b for b ∈ B. For any a ∈ A, using
the H -equivariance of F ,

F−1(F(a)) = F(a)(0)F(F(a)(1)
<1>) F(a)(1)

<2> = F(a(0))F(a(1)
<1>) a(1)

<2>

= F(a(0)a(1)
<1>) a(1)

<2> = a. (3.11)

Now, the action of the canonical map χ yields the equality

1A ⊗B a(0)F(a(1)
<1>)a(1)

<2> = a(0)F(a(1)
<1>) ⊗B a(1)

<2>. (3.12)

Indeed, using (3.3), for the right hands side:

χ(a(0)F(a(1)
<1>) ⊗B a(1)

<2>) = a(0)F(a(1)
<1>) a(1)

<2>
(0) ⊗ a(1)

<2>
(1)

= a(0)F(a(1)(1)
<1>) a(1)(1)

<2> ⊗ a(1)(2)

= a(0)F(a(1)
<1>) a(1)

<2> ⊗ a(2).

Next, using equivariance, (3.3) and (3.4), for the left hand side:

χ(1A⊗B a(0)F(a(1)
<1>)a(1)

<2>) =a(0)F(a(2)
<1>)(0)a(2)

<2>
(0) ⊗ a(1)F(a(2)

<1>)(1)a(2)
<2>

(1)

= a(0)F(a(2)
<1>

(0)) a(2)
<2>

(0) ⊗ a(1)a(2)
<1>

(1) a(2)
<2>

(1)

= a(0)F(a(3)
<1>) a(3)

<2>
(0) ⊗ a(1)S(a(2)) a(3)

<2>
(1)

= a(0)F(a(1)
<1>) a(1)

<2>
(0) ⊗ a(1)

<2>
(1)

= a(0)F(a(1)
<1>) a(1)

<2> ⊗ a(2).
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Then bijectivity of the canonical map χ yields the identity (3.12). With B-linearity of
F , using idA ⊗B F on both sides of equality (3.12), the right faithful flatness leads to

F(F−1(a)) = F
(
a(0)F(a(1)

<1>)
)
F(a(1)

<2>) = a(0)F(a(1)
<1>)F(a(1)

<2>)

= a(0)F(a(1)
<1> a(1)

<2>) = a.

Thus F−1 is the inverse map of F ∈ AutH (A). That F−1 is a H -comodule algebra
map follows directly from such properties of F . 
�
Elements F ∈ AutH (A) preserve the (co)-action of the structure quantum group since
they are such that δA ◦ F = (F ⊗ id)δA (or F(a)(0) ⊗ F(a)(1) = F(a(0)) ⊗ a(1)). And
they also preserve the base space algebra B. This group will be called the gauge group.

Remark 3.4 A similar proposition was given in [2], for H a coquasitriangular Hopf
algebra, and A a quasi-commutative H -comodule algebra. As a consequence, B is in
the centre of A. In the present paper, there is no restriction on the coinvariant subalgebra
B.

3.3 Noncommutative U(1)-bundles

Let G be a group and C[G] be its group algebra. Its elements are finite sums
∑

λg g
with λg ∈ C. The algebra product follows from the group product in G, with unit
1C[G] = e, the neutral element of G. The coproduct, counit and antipode, making
C[G] a Hopf algebra, are �(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.

It is known that C[G]-Hopf–Galois extensions are the same as strongly graded
algebras over G. Now, an algebra A is G-graded, A = ⊕g∈G Ag with Ag Ah ⊆ Agh

for all g, h ∈ G, if and only if A is a right C[G]-comodule algebra with coaction
δA : A → A⊗C[G]givenbya �→∑

ag⊗g fora =∑ ag ,ag ∈ Ag . Then, the algebra
A is strongly G-graded, that is Ag Ah = Agh , if and only if B = Ae := AcoC[G] ⊆ A
is Hopf–Galois (see [15, Thm.8.1.7]).

Let us concentrate on taking H = O(U(1)) := C[z, z−1]/(1 − zz−1) where (1 −
zz−1) is the ideal generated by 1 − zz−1 in the polynomial algebra C[z, z−1] in two
variables. The Hopf algebra structure of H is now, for all n ∈ Z, the coproduct
� : zn �→ zn ⊗ zn , the antipode S : zn �→ z−n and the counit ε : zn �→ 1.

A strongly graded Z-algebra A = ⊕n∈Z An with coaction determined by

δA(a) : A → A ⊗ O(U(1)), x �→ x ⊗ z−n, for x ∈ An

results into a right comodule algebra for H = O(U(1)) which will be referred to as a
noncommutative U(1) principal bundle over the algebra B := A0.

From [16, Cor. I.3.3], for A a strongly Z-graded algebra, the right-modules A1 and
A−1 are finitely generated and projective over A0. In fact, the total space algebra can
be recovered out of the ‘line bundles’ A1 and A−1 as a Pimsner algebra [1].

Then, if F ∈ AutH (A) is a gauge transformation the equivariance F(a)(0) ⊗
F(a)(1) = F(a(0)) ⊗ a(1) implies that F respects the grading and in fact F is com-
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pletely determined by its restrictions to A1 and A−1 as B-module maps, given that F
is required to be the identity on B and that it is then extended as an algebra map.

Let us consider an explicit example of the above construction, that is the U(1)
principal bundle over the standard Podleś sphere S2q of [17].With q ∈ R a deformation
parameter, the coordinate algebra O(SLq(2)) of the quantum group SLq(2) is the
algebra generated by elements a, c and d, b with relations

a c = q c a and b d = q d b, a b = q b a and c d = q d c,

c b = b c, a d − d a = (q − q−1) b c and d a − q−1b c = 1. (3.13)

Then, the Hopf algebra H = O(U(1)) coacts on the algebra O(SLq(2)) via

δ(a) = a ⊗ z, δ(d) = d ⊗ z−1 and δ(c) = c ⊗ z, δ(b) = b ⊗ z−1. (3.14)

The subalgebra of coinvariant elements inO(SLq(2)) for this coaction is the coordinate
algebra B = O(S2q) of the standard Podleś sphereO(S2q) := O(SLq(2))U(1). As a set
of generators for O(S2q), one may take

B− := −q−1a b, B+ := c d and B0 := −q−1c b, (3.15)

for which one finds the relations

B− B0 = q2 B0 B− and B+ B0 = q−2 B0 B+,

B− B+ = q2 B0
(
1 − q2 B0

)
and B+ B− = B0

(
1 − B0

)
. (3.16)

The algebra inclusionO(S2q) ⊂ O(SLq(2)), a noncommutative principal bundle [8], is
a faithfully flat Hopf–Galois extension. The translation map on generators ofO(U(1))
is

τ(z) = d ⊗B a − q−1b ⊗B c, τ (z−1) = a ⊗B d − qc ⊗B b. (3.17)

The total space algebra decomposes as O(SLq(2)) = ⊕

n∈Z
An where

An := {x ∈ O(SLq(2))
∣
∣ δ(x) = x ⊗ z−n}. (3.18)

In particular as B-modules, A−1 is generated by a, c while A1 is generated by d, b.
Any gauge transformation will be then determined by the images

F(a) = Xa + Yc, F(c) = Za + Wc,

F(d) = X̃d + Ỹ b, F(b) = Z̃d + W̃b, (3.19)

with coefficients which are elements in the algebra B, and extended as an algebra map.
Let us first consider the classical case, q = 1 of commutative algebras, to clarify

the structures. Asking for the coinvariant generators in (3.15) to be left unchanged by
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F in (3.19) reduces the coefficient to a single one X , any non-vanishing function from
S2 → C:

F(a) = Xa, F(c) = Xc, and F(d)= X−1d, F(b) = X−1b,

(3.20)

and the sphere relation is automatically satisfied. We get AutH SL(2) = Map(S2 →
C

∗).
In contrast, when q �= 1, requiring that F be an algebra map and so to respect the

commutation relations in (3.13), one gets X ∈ C
∗ since the centre ofO(S2q) is just the

algebra C. Thus, AutH SLq(2) = C
∗, the non-vanishing complex numbers.

3.4 A gauge group without faithfully flatness

We give an example of the above construction of the gauge group for a Hopf–Galois
extension over a commutative algebra of coinvariants which is flat but not faithfully
flat.

This example was studied in [3, Ex. 2.4]. Consider the Hopf algebra H = C[x]
with x a primitive element. Let A = O(SL(2)) = C[a, b, c, d]/(ad − bc − 1). The
algebra A is made into a H -comodule algebra with coaction δ : A → A ⊗ H given
on generators by

δ(a) = a ⊗ 1 + c ⊗ x, δ(b) = b ⊗ 1 + d ⊗ x, δ(c) = c ⊗ 1, δ(d) = d ⊗ 1.

(3.21)

Then, the algebra of coinvariants is B = C[c, d] and the inclusion B = AcoH ⊂ A is
a Hopf–Galois extension (that is the corresponding canonical map is bijective). It is
shown in [3, Ex. 2.4], that the extension is flat but not faithfully flat. It is easy to see
that the corresponding translation map τ : H → A ⊗B A is given by

τ(1) = 1 ⊗B 1, τ (x) = x<1> ⊗B x<2> = a ⊗B b − b ⊗B a. (3.22)

Consider then the group AutH (A) of gauge transformations. Any such a map is
determined by its values on the generators, being F(c) = c and F(d) = d by the
B-linearity. We claim that given F(a) and F(b) their inverse is as in the formula
(3.10):

F−1(a) = a + c
(
F(a)b − F(b)a

)
, F−1(b) = b + d

(
F(a)b − F(b)a

)
,

clearly together with F−1(c) = c and F−1(d) = d.

Lemma 3.5 Let F be any gauge transformation : A → A. Then,

F(a)b − F(b)a ∈ B.
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Proof A direct computation using the equivariance:

δ
(
F(a)b − F(b)a

) = (F(a(0)) ⊗ a(1)) δ(b) − (F(b(0)) ⊗ b(1)) δ(a)

= (F(a)b − F(b)a
)⊗ 1 + (F(a)d − F(b)c

+ cb − da
)⊗ x + (cd − dc) ⊗ x2

= (F(a)b − F(b)a
)⊗ 1,

and also using the ‘commutation relations’ of the algebra (just commutativity in the
present case) to remove the terms in x and x2. 
�

Next one checks that (3.6) is satisfied for all generators. Then, F−1 ◦ F = idA goes
as in (3.11) given the expressions in (3.22): using equivariance and B-linearity,

F−1(F(a)) = F(a) + c
(
F(a)b − F(b)a

)

= F(a) + F(a)(ad − 1) − F(ad − 1)a

= a + F(a)ad − F(a)da = a,

with the relation ad − bc = 1. Conversely, from Lemma 3.5, using B-linearity and
the determinant condition:

F(F−1(a)) = F(a) + c
(
F(a)b − F(b)a

) = F(a) + cF(a)b − F(cb)a

= F(a) + cF(a)b + a − F(ad)a = a + F(a) + F(a)(cb − da)

= a + F(a) − F(a) = a.

Asimilar computation shows that F−1(F(b)) = b = F(F−1(b)). The groupAutH (A)

is not trivial. Besides the identity map, it contains for instance unital maps of the kind

F(a) = a + h c, F(b) = b + h d (3.23)

for h an arbitrary element in B, and F(c) = c, F(d) = d, extended as an algebra
map. This F is equivariant and preserves the determinant condition: F(ad − bc) =
F(1) = 1.

4 Ehresmann–Schauenburg bialgebroids

To any Hopf–Galois extension B = Aco H ⊆ A, one associates a B-coring and a
bialgebroid [19] (see [9, §34.13 and 34.14]). These can be viewed as a quantization
of the gauge or Ehresmann groupoid that is associated to a principal fibre bundle (see
[12]).

123



140 Page 14 of 43 X. Han, G. Landi

4.1 The Ehresmann coring

The coring can be given in a few equivalent ways. Let B = Aco H ⊆ A be a Hopf–
Galois extension with right coaction δA : A → A ⊗ H . Recall the diagonal coaction
(3.1), given for all a, a′ ∈ A, by

δA⊗A : A ⊗ A → A ⊗ A ⊗ H , a ⊗ a′ �→ a(0) ⊗ a′
(0) ⊗ a(1)a

′
(1).

Let τ be the translation map of the Hopf–Galois extension. We have the following:

Lemma 4.1 The B-bimodule of coinvariant elements for the diagonal coaction,

(A ⊗ A)coH = {a ⊗ ã ∈ A ⊗ A; a(0) ⊗ ã(0) ⊗ a(1)ã(1) = a ⊗ ã ⊗ 1H } (4.1)

is the same as the B-bimodule

C := {a ⊗ ã ∈ A ⊗ A; a(0) ⊗ τ(a(1))ã = a ⊗ ã ⊗B 1A}. (4.2)

Proof The B-bimodule structure of C is left and right multiplication by elements of
B. Let a ⊗ ã ∈ (A⊗ A)coH . By applying (idA ⊗ χ) on a(0) ⊗ a(1)

<1> ⊗B a(1)
<2>ã, we

get

a(0) ⊗ a(1)
<1>a(1)

<2>
(0)ã(0) ⊗ a(1)

<2>
(1)ã(1) = a(0) ⊗ ã(0) ⊗ a(1)ã(1)

= a ⊗ ã ⊗ 1H = a ⊗ χ(ã ⊗B 1A)

= (idA ⊗ χ)(a ⊗ ã ⊗B 1A),

where the first step uses (3.2). This shows that (A ⊗ A)coH ⊆ C.
Conversely, let a ⊗ ã ∈ C. By applying (idA ⊗ χ−1) on a(0) ⊗ ã(0) ⊗ a(1)ã(1) and using
the fact that χ−1 is left A-linear and (3.7), we get

a(0) ⊗ ã(0)ã(1)
<1>a(1)

<1>⊗B a(1)
<2>ã(1)

<2> =a(0) ⊗ a(1)
<1> ⊗B a(1)

<2>ã=a⊗ã⊗B 1A

= (idA ⊗ χ−1)(a ⊗ ã ⊗ 1H ),

where in the first step we used (3.6). This shows that C ⊆ (A ⊗ A)coH . 
�
We have then the following definition [19] (see [9, §34.13]).

Definition 4.2 Let B = Aco H ⊆ A be a faithfully flat Hopf–Galois extension with
translation map τ . Then, the B-bimodule C in (4.2) is a B-coring with coproduct and
counit:

�(a ⊗ ã) = a(0) ⊗ τ(a(1)) ⊗ ã = a(0) ⊗ a(1)
<1> ⊗B a(1)

<2> ⊗ ã, (4.3)

ε(a ⊗ ã) = aã. (4.4)
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Applying the map mA ⊗ idH to elements of (4.1) one gets aã ∈ B. The above B-
coring is called the Ehresmann or gauge coring; we denote it C(A, H). Using the
known relation between the coinvariants of a tensor product of comodules and their
cotensor product [23, Lemma 3.1], the coring C(A, H) can also be given as a cotensor
product A� HA.

The Ehresmann coring of a Hopf–Galois extension is in fact a bialgebroid
[19], called the Ehresmann–Schauenburg bialgebroid (see [9, 34.14]). One see that
C(A, H) = (A ⊗ A)coH is a subalgebra of A ⊗ Aop; indeed, given x ⊗ x̃, y ⊗ ỹ ∈
(A ⊗ A)coH , one computes δA⊗A(xy ⊗ ỹ x̃) = x (0)y(0) ⊗ ỹ(0) x̃ (0) ⊗ x (1)y(1) ỹ(1) x̃ (1) =
x (0)y ⊗ ỹ x̃ (0) ⊗ x (1) x̃ (1) = xy ⊗ ỹ x̃ ⊗ 1H .

Definition 4.3 Let C(A, H) be the coring associated with a faithfully flat Hopf–Galois
extension B = Aco H ⊆ A. Then, C(A, H) is a (left) B-bialgebroid with product

(x ⊗ x̃) •C(A,H) (y ⊗ ỹ) = xy ⊗ ỹ x̃,

for all x ⊗ x̃, y ⊗ ỹ ∈ C(A, H) (and unit 1A ⊗ 1A). The target and the source maps
are

t(b) = 1A ⊗ b and s(b) = b ⊗ 1A.

We refer to [9, 34.14] for the check that all defining properties are satisfied. When
there is no risk of confusion we drop the decoration •C(A,H) in the product.

4.2 Bisections and gauge groups

The bialgebroid of a Hopf–Galois extension can be viewed as a quantization (of the
dualization) of the classical gauge groupoid, recalled in Appendix A, of a (classical)
principal bundle. Dually to the notion of a bisection on the classical gauge groupoid,
there is the notion of a bisection on the Ehresmann–Schauenburg bialgebroid. These
bisections correspond to gauge transformations.

The notion of a bisection as in the following definition could be given for any
bialgebroid, not only for the Ehresmann–Schauenburg bialgebroid. However, for the
general case one would need some additional requirements so to get a proper com-
position of bisections extending (4.6) below. We shall address this general definition
elsewhere.

Definition 4.4 LetC(A, H) be theEhresmann–Schauenburg bialgebroid of a faithfully
flat Hopf–Galois extension B = AcoH ⊆ A. A bisection of C(A, H) is a B-bilinear
unital left character on the B-ring (C(A, H), s). That is, a map σ : C(A, H) → B
such that:

(1) σ(1A ⊗ 1A) = 1B , unitality,
(2) σ

(
s(b)t(b̃)(x ⊗ x̃)

) = bσ(x ⊗ x̃)b̃, B-bilinearity,
(3) σ

(
(x ⊗ x̃) s(σ (y ⊗ ỹ))

) = σ
(
(x ⊗ x̃)(y ⊗ ỹ)

)
, associativity,

for all b, b̃ ∈ B and x ⊗ x̃, y ⊗ ỹ ∈ C(A, H).
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There is also a middle B-linearity, that is for any bisection σ :

σ(xb ⊗ x̃) = σ(x ⊗ bx̃), (4.5)

for any x ⊗ x̃ ∈ C(A, H) and b ∈ B. Indeed,

σ(x ⊗ bx̃) = σ((x ⊗ x̃)(1 ⊗ b)) = σ((x ⊗ x̃)s(σ (1 ⊗ b)))

= σ((x ⊗ x̃)s(b)) = σ(xb ⊗ x̃),

using the associativity in the 2nd step and B-bilinearity and unitality in the 3rd step.

Remark 4.5 As mentioned, one could consider more general bisections by requiring
left B-linearity up to an automorphism of B and substitute the above condition (2) by
σ
(
s(b)t(b′)(x⊗ x̃)

) = φ(b)σ (x⊗ x̃)b′, and the condition (3) by σ
(
(x⊗ x̃)(y⊗ ỹ)

) =
σ
(
(x ⊗ x̃)s(φ−1(σ (y⊗ ỹ)))

)
, for φ ∈ Aut(B). We limit ourselves to the smaller class

of bisections as in Definition 4.4, that could be called vertical bisections, being dual
to the vertical bisections on a classical gauge groupoid. Much of what follows can
be adapted to the general bisections in a direct, if technically and notationally quite
cumbersome, way.

The collection B(C(A, H)) of bisections of the bialgebroid C(A, H) is made a
group by the convolution product of any two σ1 bisections σ2:

σ1 ∗ σ2(x ⊗ x̃) := σ1((x ⊗ x̃)(1)) σ2((x ⊗ x̃)(2))

= σ1(x (0) ⊗ x (1)
<1>) σ2(x (1)

<2> ⊗ x̃) (4.6)

for any element x ⊗ x̃ ∈ C(A, H), recalling the B-coring coproduct (4.3).
The product is well defined over the B-balanced tensor product since the bisections

are B-bilinear; by the same reason σ1 ∗ σ2 is B-bilinear. We are left to show the
associativity property (3) in the Definition 4.4. For simplicity write X = x ⊗ x̃ and
Y = y⊗ ỹ for elements of C(A, H) and use a Sweedler-like notation for the B-coring
coproduct (4.3), �(X) = X (1) ⊗B X (2) and �(Y ) = Y (1) ⊗B Y (2). Then,

σ1 ∗ σ2(XY ) = σ1(X (1)Y (1))σ2(X (2)Y (2))

= σ1(X (1)t(σ1(Y (1))))σ2(X (2)s(σ2(Y (2))))

= σ1(X (1)t(σ1(Y (1))σ2(Y (2))))σ2(X (2))

= σ1(X (1)s(σ1(Y (1))σ2(Y (2))))σ2(X (2))

= σ1 ∗ σ2(Xs(σ1 ∗ σ2(Y ))),

where the 2nd and 4th steps use (4.5), and the 3rd step uses (2.5). The product is
associative since C(A, H) is coassociative as a B-coring.

The counit of the bialgebroid is a bisection by definition and one checks that ε∗σ =
σ = σ ∗ ε for any bisection σ and ε is the unit element. The inverse of the bisection
σ is

σ−1(x ⊗ x̃) = x σ(x̃ (0) ⊗ x̃ (1)
<1>) x̃ (1)

<2>, (4.7)
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for x⊗ x̃ ∈ C(A, H) as we shall see below. Indeed, all group properties ofB(C(A, H))

with the product (4.6) follow from the following proposition that parallels Proposition
3.3.

Proposition 4.6 Let B = AcoH ⊆ A be a faithfully flat Hopf–Galois extension, and
let C(A, H) be the corresponding Ehresmann–Schauenburg bialgebroid. There is a
group isomorphism α : AutH (A) → B(C(A, H)) between gauge transformations
and bisections.

Proof Firstly, given a bisection σ ∈ B(C(A, H)) we define a map Fσ : A → A by

Fσ (a) := σ(a(0) ⊗ a(1)
<1>) a(1)

<2>, (4.8)

for any a ∈ A. This is well defined since σ is right B-linear and a(0) ⊗ a(1)
<1> ⊗B

a(1)
<2> ∈ C(A, H) ⊗B A. Clearly Fσ |B = idB , and Fσ is an algebra map:

Fσ (aa′) = σ(a(0)a
′
(0) ⊗ a′

(1)
<1>a(1)

<1>)a(1)
<2>a′

(1)
<2>

= σ(a(0) ⊗ σ(a(0) ⊗ a′
(1)

<1>)a(1)
<1>)a(1)

<2>a′
(1)

<2>

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2>σ(a′
(0) ⊗ a′

(1)
<1>)a′

(1)
<2>

= Fσ (a)Fσ (a′),

using (3.7) for the 1st step, (4.5) for the 2nd, (3.9) for the third. Also, Fσ is H -
equivariant:

Fσ (a)(0) ⊗ Fσ (a)(1) = σ(a(0) ⊗ a(1)
<1>)a(1)

<2>
(0) ⊗ a(1)

<2>
(1)

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)

= Fσ (a(0)) ⊗ a(1),

where the 2nd step uses (3.3). Thus, Fσ ∈ AutH (A).
Conversely, let F ∈ AutH (A) a gauge transformation and define σF ∈ B(C(A, H))

by

σF (a ⊗ ã) := F(a)ã, (4.9)

for any a ⊗ ã ∈ C(A, H). This is well defined since

δA(F(a)ã) = (F(a)ã)(0) ⊗ (F(a)ã)(1) = F(a)(0)ã(0) ⊗ F(a)(1)ã(1)

= F(a(0))ã(0) ⊗ a(1)ã(1) = F(a)ã ⊗ 1H ,

using (4.1). Clearly, σF is unital and B-bilinear. Also, for any a⊗ã, a′⊗ã′ ∈ C(A, H),

σF ((a ⊗ ã)(a′ ⊗ ã′)) = F(aa′)ã′ã = F(a)F(a′)ã′ã
= F(aF(a′)ã′)ã = σF (aσF (a′ ⊗ ã′) ⊗ ã),

where the 3rd step uses the fact that F(a′)ã′ ∈ B. Thus, σF is a bisection.
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The correspondence is bijective: one easily checks that σFσ = σ and FσF = F . Also
σidA = ε and for any a ⊗ ã ∈ C(A, H) we have,

σG ∗ σF (a ⊗ ã) = σG(a(0) ⊗ a(1)
<1>) σF (a(1)

<2> ⊗ ã)

= G(a(0))a(1)
<1>F(a(1)

<2>)ã = F
(
G(a(0))a(1)

<1>a(1)
<2>
)
ã

= F(G(a)) ã = σ(G◦F)(a ⊗ ã),

where the 3th step uses that G(a(0))a(1)
<1> ⊗B a(1)

<2> = 1 ⊗B G(a(0))a(1)
<1>a(1)

<2>

similarly to (3.12), and the 4th step uses (3.5).
Thus, the correspondence is a group isomorphism. Via this, we can get the

inverse (4.7) directly from (3.10): σ−1(a ⊗ ã) = σF−1
σ

(a ⊗ ã) = F−1
σ (a)ã =

a(0)Fσ (a(1)
<1>)a(1)

<2>ã = aFσ (ã) = aσ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>, where the 4th step
uses (4.2). 
�

We have already mentioned that gauge transformations for a noncommutative prin-
cipal bundles could be defined without them being algebra maps [7]. Mainly for the
sake of completeness, we record here a version of these via bialgebroids and bisec-
tions. To distinguish them from the analogous concepts introduced previously, and
for lack of a better name, we call them extended gauge transformation and extended
bisections.

Thus following [7], the extended gauge groupAutextH (A) of aHopf–Galois extension
B = AcoH ⊆ A consists of invertible H -comodule unital maps F : A → A which
are such that F(ba) = bF(a) for any b ∈ B and a ∈ A. The group structure is map
composition.

In parallel with this, we have then the following.

Definition 4.7 Let C(A, H) be the Ehresmann–Schauenburg bialgebroid of the Hopf–
Galois extension B = Aco H ⊆ A. An extended bisection is a convolution invertible,
for the product (4.6), unital B-bilinear map σ : C(A, H) → B.

Since extended bisections are B-bilinear, the product (4.6) is indeed well defined, and
the counit ε is still the unit element for the product. Thus, the collectionBext(C(A, H))

of extended bisections form a group, of which B(C(A, H)) is a subgroup. Notice that
now (4.7) is not the inverse in Bext(C(A, H)) for the product in (4.6) since for an
extendedbisectionwe are not asking it to be a left character for the B-ring (C(A, H), s),
and thus, the expression in (4.7) is not right B-linear.

Finally, in analogy with Proposition 4.6, we have the following.

Proposition 4.8 Let B = AcoH ⊆ A be a faithfully flat Hopf–Galois extension
with Ehresmann–Schauenburg bialgebroid C(A, H). Then, there is a group isomor-
phism between extended gauge transformations AutextH (A) and extended bisections
Bext(C(A, H)).

Proof This uses the same methods as Proposition 4.6. Given F ∈ AutextH (A), define
its image as in (4.9): σF (a ⊗ ã) = F(a)ã. For all b ∈ B, we have,

σF (a ⊗ ãb) = F(a)ã b = σF (a ⊗ ã) b,

σF (ba ⊗ ã) = F(ba)ã = bF(a)ã = bσF (a ⊗ ã).
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Conversely, given σ ∈ Bext(C(A, H)) define its image in AutextH (A) as in (4.8):
Fσ (a) = σ(a(0)⊗a(1)

<1>)a(1)
<2>. Then Fσ (ba) = σ(ba(0)⊗a(1)

<1>)a(1)
<2> = bFσ (a).

The rest of the proof goes as that of Proposition 4.6. 
�

5 Hopf algebroids

As examples, we construct the Ehresmann–Schauenburg bialgebroid for the U(1)
principal bundle over the quantum sphere in Sect. 3.3 and for the commutative not
faithfully flat Hopf–Galois extension out ofO(SL(2)) considered in Sect. 3.4. In both
cases, there is a suitable invertible antipode satisfying conditions 2.8 and 2.9 for a
Hopf algebroid. It is worth stressing that the results for O(SL(2)) in Sects. 3.4 and
5.2 below show that at least for an algebra of coinvariants which is commutative,
the Hopf–Galois extension needs not be faithfully flat for all constructions to be well
defined. An analysis of the role of the faithful flatness in a general context will be
reported elsewhere.

5.1 Themonopole bundle over the quantum sphere

With reference to Sect. 3.3, let us denote H = O(U(1)) coacting as in (3.14) on the
generators in (3.13) of A = O(SLq(2)) with algebra of coinvariants B = O(S2q) with
generators in 3.16. From its definition C(A, H) = (A ⊗ A)coH , the bialgebroid is
generated by elements

α = a ⊗ d, γ = −q−1c ⊗ b, α̃ = −q−1a ⊗ b, γ̃ = c ⊗ d (5.1)

and their ‘conjugated’:

δ = d ⊗ a, β = −q−1b ⊗ c, β̃ = d ⊗ c, δ̃ = −q−1b ⊗ a. (5.2)

By using the expression (3.17) for the translation map and the relations (3.13), one
checks that the abovegenerators h⊗k satisfy the conditionh(0)⊗τ(h(1))k = h⊗k⊗B1A
as it should be from the alternative description (4.2) of the bialgebroid C(A, H). For
instance:

α �→ a ⊗ τ(z)d = a ⊗ (d ⊗B ad − q−1b ⊗B cd)

= a ⊗ (dad − q−1bcd) ⊗B 1A
= a ⊗ d(ad − qbc) ⊗B 1A = a ⊗ d ⊗B 1A = α ⊗B 1A.

δ �→ d ⊗ τ(z−1)a = d ⊗ (a ⊗B da − qc ⊗B ba)

= d ⊗ (ada − qbca) ⊗B 1A

= d ⊗ a(da − q−1bc) ⊗B 1A = d ⊗ a ⊗B 1A = δ ⊗B 1A.
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Similar computations work for the other generators. A direct computation leads to

βγ + δ̃γ̃ = B0 ⊗ 1 = s(B0), βγ + β̃α̃ = 1 ⊗ B0 = t(B0),

αδ̃ + q2α̃β = B− ⊗ 1 = s(B−), α̃δ + q2γ δ̃ = 1 ⊗ B− = t(B−),

γ̃ δ + q2γ β̃ = B+ ⊗ 1 = s(B+), αβ̃ + q2γ̃ β = 1 ⊗ B+ = t(B+),

with source s : B → C(A, H) and target t : B → C(A, H) maps respectively.
The eight generators in (5.1) and (5.2) are not independent. Indeed, define

A = a ⊗ d − q b ⊗ c, B = b ⊗ a − q−1a ⊗ b,

C = c ⊗ d − q d ⊗ c, D = d ⊗ a − q−1c ⊗ b. (5.3)

Then, a direct computation shows that

DA − q−1CB = 1 ⊗ 1 = AD − qBC . (5.4)

Also, the sphere relations in (3.16) translate into

(
B+ B− − B0 (1 − B0)

)⊗ 1 = 0 = 1 ⊗ (B+ B− − B0 (1 − B0)
)
. (5.5)

An alternative way to show the relations among the generators is to observe by a direct
computation that there are four ‘circle’ relations:

δα = (1 − B0) ⊗ (1 − B0), βγ = B0 ⊗ B0,

β̃α̃ = B0 ⊗ (1 − B0), δ̃γ̃ = (1 − B0) ⊗ B0. (5.6)

These in turn imply

δα + βγ + β̃α̃ + δ̃γ̃ = 1 ⊗ 1. (5.7)

Notice that the above relations, which survive the classical limit q = 1, are con-
straints among the generators and not commutation relations. For the latter one has
the following.

Lemma 5.1 For the product and structure as in Definition 4.3, the generators in (5.1)
and (5.2) of the bialgebroid C(A, H) satisfy the relations:

αγ = q2γα, αα̃ = qα̃α, αγ̃ = qγ̃ α

αβ = q2βα, αβ̃ = qβ̃α + (1 − q2)γ̃ β, αδ̃ = q δ̃α + (1 − q2)̃αβ

γ α̃ = q−1α̃γ, γ γ̃ = q−1γ̃ γ, γ β̃ = qβ̃γ, γ δ̃ = q δ̃γ ,

α̃γ̃ = γ̃ α̃, α̃δ̃ = q2δ̃α̃,
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as well as

γβ = βγ, γ̃ δ̃ = δ̃γ̃ + (1 − q2)βγ, α̃β̃ = β̃α̃ + (1 − q2)βγ

αδ = δα + (1 − q2)(̃δγ̃ + β̃α̃) + (1 − q2)2βγ

(There are also ‘conjugated’ relations directly derived from the previous ones.) As a
consequence BC = CB, for the generators in (5.3).

Proof This is the result of a direct computation given the relations in (3.13). 
�

Lemma 5.2 The bialgebroid C(A, H) has a structure of a Hopf algebroid with coprod-
uct (4.3) which results into:

�(α) = α ⊗B α + α̃ ⊗B γ̃ , �(̃α) = α ⊗B α̃ + α̃ ⊗B γ,

�(γ ) = γ̃ ⊗B α̃ + γ ⊗B γ, �(γ̃ ) = γ̃ ⊗B α + γ ⊗B γ̃ ,

�(δ) = δ ⊗B δ + q2β̃ ⊗B δ̃, �(β̃) = δ ⊗B β̃ + q2β̃ ⊗B β,

�(β) = δ̃ ⊗B β̃ + q2β ⊗B β, �(̃δ) = δ̃ ⊗B δ + q2β ⊗B δ̃; (5.8)

counit (4.4) which results into:

ε(α) = 1 − q2B0, ε(γ ) = B0, ε(̃α) = B−, ε(γ̃ ) = B+
ε(δ) = 1 − B0, ε(β) = B0, ε(β̃) = q−1B+, ε(̃δ) = q−1B−; (5.9)

and antipode S = S−1:

S(α) = δ, S(γ ) = β S(̃α) = δ̃, S(γ̃ ) = β̃. (5.10)

Proof The expressions for the counit are clear. For the coproduct, from Definition 4.3,

�(α) = a ⊗ τ(z) ⊗ d = a ⊗ (d ⊗B a ⊗ d − q−1b ⊗B c ⊗ d)

= a ⊗ d ⊗B a ⊗ d − q−1a ⊗ b ⊗B c ⊗ d

= α ⊗B α + α̃ ⊗B γ̃ ,

using the expression (3.17) for the translation map. Similarly,

�(δ) = d ⊗ τ(z−1) ⊗ a = d ⊗ (a ⊗B d ⊗ a − qc ⊗B b ⊗ a)

= d ⊗ a ⊗B d ⊗ a − qa ⊗ c ⊗B b ⊗ a

= δ ⊗B δ + q2β̃ ⊗B δ̃.
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Similar computations work for the other generators. Finally, the antipode in (5.10)
clearly satisfies (2.8). Then, on the one hand, for condition (2.9) for the generator α:

S(α(1))(1)α(2) ⊗B S(α(1))(2) = S(α)(1)α ⊗B S(α)(2) + S(̃α)(1)γ̃ ⊗B S(̃α)(2)

= δ(1)α ⊗B δ(2) + δ̃(1)γ̃ ⊗B δ̃(2)

= δα ⊗B δ + q2β̃α ⊗B δ̃ + δ̃γ̃ ⊗B δ + q2βγ̃ ⊗B δ̃

= (da − q−1bc) ⊗ da ⊗B δ+q2(da−q−1bc)⊗dc ⊗B δ̃

= 1 ⊗ 1 ⊗B d(aδ + q2c̃δ)

= 1 ⊗ 1 ⊗B d(ad − qcb) ⊗ a

= 1 ⊗ 1 ⊗B d ⊗ a

= 1 ⊗ 1 ⊗B δ = 1 ⊗ 1 ⊗B S(α).

using the relations da − q−1bc = 1 and ad − qcb = 1. On the other hand, being
S−1 = S,

S(α(2))(1) ⊗B S(α(2))(2)α(1) = S(α)(1) ⊗B S(α)(2)α + S(γ̃ )(1) ⊗B S(γ̃ )(2)α̃

= δ(1) ⊗B δ(2)α + β̃(1) ⊗B β̃(2)α̃

= δ ⊗B δα + q2β̃ ⊗B δ̃α + δ ⊗B β̃α̃ + q2β̃ ⊗B βα̃

= δ ⊗B da⊗(da − q−1bc)−qβ̃⊗B ba⊗(da − q−1bc)

= (δd − qβ̃b)a ⊗B 1 ⊗ 1

= d ⊗ (ad − qcb)a ⊗B 1 ⊗ 1

= d ⊗ a ⊗B 1 ⊗ 1

= δ ⊗B 1 ⊗ 1 = S(α) ⊗B 1 ⊗ 1,

using again the relations da − q−1bc = 1 and ad − qcb = 1. Similar computations
go for the other generators. This concludes the proof. 
�

Again, Proposition 4.6 determines the group of bisectionsB(C(A, H)) out of gauge
transformationsworkedout inSect. 3.3.Both equations (4.8) and (4.9) arewell defined.
In particular for the equation (4.8), the map

A � h �→ h(0) ⊗ h(1)
<1> ⊗B h(1)

<2> ∈ C(A, H) ⊗B A

is well defined. Using the expression (3.17) for the translation map, one gets on gen-
erators:

a �→ a ⊗ d ⊗B a − q−1a ⊗ b ⊗B c = α ⊗B a + α̃ ⊗B c

c �→ c ⊗ d ⊗B a − q−1c ⊗ b ⊗B c = γ̃ ⊗B a + γ ⊗B c

b �→ b ⊗ a ⊗B d − qb ⊗ c ⊗B b = −q δ̃ ⊗B d + q2β ⊗B b

d �→ d ⊗ a ⊗B d − qd ⊗ c ⊗B b = δ ⊗B d − qβ̃ ⊗B b.
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Given the generic gauge transformation in (3.20), formula (4.9) determines a generic
bisection. This is then given on generators by

σ(α) = Xad, σ (γ ) = −q−1Xcb, σ (̃α) = −q−1Xab, σ (γ̃ ) = Xcd

σ(δ) = X−1da, σ (β) = −q−1X−1bc, σ (β̃) = X−1dc, σ (̃δ) = −q−1X−1ba.

As before in Sect. 3.3, X is any map from the sphere S2 → C
∗ when q = 1, while is

any non-vanishing element X ∈ C
∗ when q �= 1.

5.2 A commutative not faithfully flat example

We work out the bialgebroid, in fact a Hopf algebroid, of the flat but not faithfully
flat Hopf–Galois extension that we considered in Sect. 3.4. Again there is an antipode
leading to a Hopf algebroid.

Referring to that section, the Hopf algebra H = C[x] with x a primitive element,
coacts as in (3.21) on the algebra A = O(SL(2)) = C[a, b, c, d]/(ad − bc − 1)
with algebra of coinvariants B = C[c, d]. The bialgebroid C(A, H) = (A⊗ A)coH is
generated by elements

α = a ⊗ d − c ⊗ b, β = b ⊗ d − d ⊗ b,

γ = c ⊗ a − a ⊗ c, δ = d ⊗ a − b ⊗ c, (5.11)

easily seen to be invariant for the diagonal coaction. The following is easily established.

Lemma 5.3 For the product and structure as in Definition 4.3, the generators above of
the bialgebroid C(A, H) commute with each other while satisfying a sphere relation:

α δ − βγ = 1 ⊗ 1. (5.12)

Furthermore, they also give

αc + γ d = c ⊗ 1 = s(c), βc + δd = d ⊗ 1 = s(d),

cδ − dγ = 1 ⊗ c = t(c), dα + −cβ = 1 ⊗ d = t(d), (5.13)

with source s : B → C(A, H) and target maps t : B → C(A, H).

Also in the present case, the bialgebroid C(A, H) can be given as in (4.2) since
the generators h ⊗ k satisfy the condition h(0) ⊗ τ(h(1))k = h ⊗ k ⊗B 1A. Using the
expression (3.22) for the translation map, the coinvariance of c and d to pass them
over the balanced tensor product, and the relation ad − bc = 1, one computes for
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instance,

α = a ⊗ d − c ⊗ b �→ (
a ⊗ τ(1) + c ⊗ τ(z)

)
d − c ⊗ τ(1)b

= a ⊗ d ⊗B 1 + c ⊗ a ⊗B bd − c ⊗ b ⊗B ad − c ⊗ 1 ⊗B b

= a ⊗ d ⊗B 1 + c ⊗ ad ⊗B b − c ⊗ b ⊗B ad − c ⊗ 1 ⊗B b

= a ⊗ d ⊗B 1 + c ⊗ bc ⊗B b − c ⊗ b ⊗B ad

= a ⊗ d ⊗B 1 + c ⊗ b ⊗B bc − c ⊗ b ⊗B ad

= (a ⊗ d − c ⊗ b) ⊗B 1 = α ⊗B 1,

and similarly for the other generators.

Lemma 5.4 The bialgebroid C(A, H) has a structure of a Hopf algebroid with coprod-
uct (4.3) which results into:

�(α) = α ⊗B α + γ ⊗B β, �(δ) = δ ⊗B δ + β ⊗B γ,

�(β) = β ⊗B α + δ ⊗B β, �(γ ) = γ ⊗B δ + α ⊗B γ, (5.14)

counit (4.4) which results into:

ε(α) = ε(δ) = 1, ε(β) = ε(γ ) = 0, (5.15)

and antipode:

S(α) = δ, S(δ) = α, S(β) = −β, S(γ ) = −γ. (5.16)

Proof The form of the counit is clear. For the coproduct, from Definition (4.3) and
translation map (3.22), one computes on the generators (5.11),

�(α) = a ⊗ 1 ⊗B 1 ⊗ d + c ⊗ a ⊗B b ⊗ d − c ⊗ b ⊗B a ⊗ d − c ⊗ 1 ⊗B 1 ⊗ b

while, crossing d and c over the balanced tensor product,

α ⊗B α + γ ⊗B β

= a ⊗ 1 ⊗B da ⊗ d − a ⊗ 1 ⊗B dc ⊗ b − c ⊗ b ⊗B a ⊗ d + c ⊗ bc ⊗B 1 ⊗ b

+ c ⊗ a ⊗B b ⊗ d−c ⊗ ad ⊗B 1 ⊗ b − a ⊗ 1 ⊗B cb ⊗ d+a ⊗ 1 ⊗B cd ⊗ b,

which coincides with the previous expression when using the relation ad − bc = 1.
Also,

�(β) = b ⊗ 1 ⊗B 1 ⊗ d + d ⊗ a ⊗B b ⊗ d − d ⊗ b ⊗B a ⊗ d − d ⊗ 1 ⊗B 1 ⊗ b
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which is the same as

β ⊗B α + δ ⊗B β

= b ⊗ 1 ⊗B da ⊗ d − b ⊗ 1 ⊗B dc ⊗ b − d ⊗ b ⊗B a ⊗ d + d ⊗ bc ⊗B 1 ⊗ b

+ d ⊗ a ⊗B b ⊗ d−d ⊗ ad ⊗B 1 ⊗ b − b ⊗ 1 ⊗B cb ⊗ d+b ⊗ 1 ⊗B cd ⊗ b.

Similar computationswork for the remaining generators. Finally, the antipode in (5.16)
clearly satisfies (2.8). Then, on the one hand, for condition (2.9) for the generator α:

S(α(1))(1)α(2) ⊗B S(α(1))(2) = S(α)(1)α ⊗B S(α)(2) + S(γ )(1)β ⊗B S(γ )(2)

= δ(1)α ⊗B δ(2) − γ (1)β ⊗B γ (2)

= δα ⊗B δ + βα ⊗B γ − γβ ⊗B δ − αβ ⊗B γ

= 1 ⊗ 1 ⊗B δ = 1 ⊗ 1 ⊗B S(α),

using the relation α δ − βγ = 1 ⊗ 1. On the other hand, being S−1 = S,

S(α(2))(1) ⊗B S(α(2))(2)α(1) = S(α)(1) ⊗B S(α)(2)α + S(β)(1) ⊗B S(β)(2)γ

= δ(1) ⊗B δ(2)α − β(1) ⊗B β(2)γ

= δ ⊗B δα + β ⊗B γα − β ⊗B αγ − δ ⊗B βγ

= δ ⊗B 1 ⊗ 1 = S(α) ⊗B 1 ⊗ 1.

Similar computations go for the other generators. This concludes the proof. 
�
Finally, once again both equations (4.8) and (4.9) are well defined since the map

A � h �→ h(0) ⊗ h(1)
<1> ⊗B h(1)

<2> ∈ C(A, H) ⊗B A

is well defined. Indeed, using once more the expression (3.22) for the translation map
one gets on the generators a and b (the not coinvariant ones):

a �→ a ⊗ 1 ⊗B 1 + c ⊗ (a ⊗B b − b ⊗B a)

= a ⊗ 1 ⊗B (ad − bc) + c ⊗ (a ⊗B b − b ⊗B a)

= (a ⊗ d − c ⊗ b) ⊗B a + (c ⊗ a − a ⊗ c) ⊗B b

= α ⊗B a + γ ⊗B b, (5.17)

having inserted ad − bc = 1 and using the coinvariance of c and d to cross them over
the balanced tensor product. Similarly for b, one finds:

b �→ b ⊗ 1 ⊗B 1 + d ⊗ (a ⊗B b − b ⊗B a)

= (d ⊗ a − b ⊗ c) ⊗B b + (b ⊗ d − d ⊗ b) ⊗B a

= β ⊗B a + δ ⊗B b. (5.18)
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Thus, Proposition 4.6 relates gauge transformations of the Hopf–Galois extension to
the group of bisections of the bialgebroid. Let us illustrate this isomorphism by com-
puting explicitly the identifications FσF = F and σFσ = σ . Firstly, with definitions
(4.8) and (4.8), using (5.17), one computes

FσF (a) = σF (α)a + σF (γ )b = (F(a)d − cb)a + (ca − F(a)c)b

= F(a)(ad − bc) = F(a). (5.19)

A similar computation goes with the generator b, the statement being trivial for the
coinvariant elements c and d. Conversely,

σFσ (α) = Fσ (a)d − cb = (σ (α)a + σ(γ )b)d − bc

= σ(α)(1 + bc) + σ(γ )bd − bc

= σ(α) + (σ (αc) + σ(γ )d)b − cb

= σ(α) + (σ (αc + γ d))b − cb

= σ(α) + σ(c ⊗ 1)b − cb = σ(α) + cb − cb = σ(α)

(5.20)

using the first relation in (5.13). Similar computations go with the remaining genera-
tors. As an example, one gets for the gauge transformations in (3.23) the bisection:

σF (α) = 1 + h cd, σF (β) = h d2, σF (γ )=−h c2, σF (δ)=1−h dc,

(5.21)

for h an arbitrary element in B.

6 Galois objects

We shall now consider Galois objects of a Hopf algebra H . Such an object could be
thought of as a noncommutative principal bundle over a point. In contrast to the clas-
sical result that any fibre bundle over a point is trivial, the set GalH (C) of isomorphic
classes of H -Galois objects needs not be trivial (see [4,11]). We shall illustrate later
on this non-triviality with examples coming from group algebras and Taft algebras.

As already mentioned, the results of this section could be and have been obtained
in an abstract and categorical way. Here, we re-obtained them in a more explicit and
more workable way, having in mind potential application to noncommutative gauge
theory.

6.1 The bialgebroid of a Galois object

Definition 6.1 Let H be a Hopf algebra. A Galois object of H is an H -Hopf–Galois
extension A of the ground field C.
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Thus, for aGalois object the coinvariant subalgebra is the groundfieldC = Aco H .With
coaction δA : A → A⊗ H , δA(a) = a(0) ⊗ a(1), and translation map τ : H → A⊗ A,
τ(h) = h<1> ⊗ h<2>, for the Ehresmann–Schauenburg bialgebroid of a Galois object,
being B = C, one has (see also [18, Def. 3.1]):

C(A, H) = {a ⊗ ã ∈ A ⊗ A : a(0) ⊗ ã(0) ⊗ a(1)ã(1) = a ⊗ ã ⊗ 1H }
= {a ⊗ ã ∈ A ⊗ A : a(0) ⊗ a(1)

<1> ⊗ a(1)
<2>ã = a ⊗ ã ⊗ 1A}.

The coproduct (4.3) and counit (4.4) become�C(a⊗ ã) = a(0) ⊗a(1)
<1> ⊗a(1)

<2> ⊗ ã,
and εC(a ⊗ ã) = aã ∈ C respectively, for any a ⊗ ã ∈ C(A, H). But now there is
also an antipode [18, Thm. 3.5] given, for any a ⊗ ã ∈ C(A, H), by

SC(a ⊗ ã) := ã(0) ⊗ ã(1)
<1>aã(1)

<2>. (6.1)

Thus the Ehresmann–Schauenburg bialgebroid of a Galois object is a Hopf algebra.
Recall that an (A, H)-relative Hopf module M is a H -comodule with a compatible

A-module structure. That is, the action is a morphism of H -comodules such that
δM (ma) = m(0)a(0) ⊗ m(1)a(1) for all a ∈ A, m ∈ M . The multiplication induces an
isomorphism [22],

Mco H ⊗ A → M,

whose inverse is M � m �→ m(0)m(1)
<1> ⊗ m(1)

<2> ∈ Mco H ⊗ A (see [19, eq. 2.7]).
Then, given that C(A, H) = (A ⊗ A)coH , this yields an isomorphism

A ⊗ A � C(A, H) ⊗ A, χ̃(a ⊗ ã) = a(0) ⊗ a(1)
<1> ⊗ a(1)

<2>ã.

We finally collect some results of [18] (see Lemma 3.2 and Lemma 3.3) in the follow-
ing:

Lemma 6.2 Let H be a Hopf algebra, and A a Galois object of H. There is a right
H-equivariant algebra map δC : A → C(A, H) ⊗ A given by

δC(a) = a(0) ⊗ a(1)
<1> ⊗ a(1)

<2>

which is universal in the following sense: Given an algebra M and a H-equivariant
algebra map φ : A → M ⊗ A, there is a unique algebra map � : C(A, H) → M
such that φ = (� ⊗ idA) ◦ δC . Explicitly, �(a ⊗ ã) ⊗ 1A = φ(a)ã.

Being algebra maps, now bisections are characters of the Hopf algebra C(A, H)

with product in (4.6) and inverse in (4.7) that, with the antipode in (6.1) is written
σ−1 = σ ◦ SC , as it is the case for characters. From Proposition 4.6 we have the
isomorphism

AutH (A) � B(C(A, H)) = Char(C(A, H)). (6.2)
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This recover the result [21, Cor. 3.1.4].When H is theHopf algebra of a compact quan-
tum group G this isomorphism is the result of [10] that equivariant endomorphisms
of H are automorphisms and are ‘translations’ by elements of the largest classical
subgroup of G.

For extended bisections and automorphisms, Proposition 4.8 gives an isomorphism,

AutextH (A) � Bext(C(A, H)) = Charext(C(A, H)), (6.3)

withCharext(C(A, H)) the group of convolution invertible unitalmapsφ : C(A, H) →
C.

Example 6.3 Any Hopf algebra H is a H -Galois object with its coproduct as coaction.
Then, H is isomorphic to the corresponding left bialgebroid C(H , H).

Indeed, if H is a Hopf algebra with coproduct �(h) = h(1) ⊗ h(2), for the cor-
responding coinvariants: h(1) ⊗ h(2) = h ⊗ 1, we have ε(h(1)) ⊗ h(2) = ε(h) ⊗ 1,
this imply h = ε(h) ∈ C and Hco H = C. Moreover, the canonical Galois map
χ : g⊗h �→ gh(1)⊗h(2) is bijectivewith inverse givenbyχ−1(g⊗h) := g S(h(1))⊗h(2).
Thus, H is a H -Galois object.

With A = H , the corresponding left bialgebroid becomes

C(H , H) = {g ⊗ h ∈ H ⊗ H : g(1) ⊗ h(1) ⊗ g(2)h(2) = g ⊗ h ⊗ 1H }
= {g ⊗ h ∈ H ⊗ H : g(1) ⊗ S(g(2)) ⊗ g(3)h = g ⊗ h ⊗ 1A}.

We have a linear map φ : C(H , H) → H given by φ(g ⊗ h) := g ε(h). The map φ

has inverse φ−1 : H → C(H , H), defined by φ−1(h) := h(1) ⊗ S(h(2)). This is well
defined since

�H⊗H (h(1) ⊗ S(h(2))) = h(1) ⊗ S(h(4)) ⊗ h(2)S(h(3)) = h(1) ⊗ S(h(2)) ⊗ 1H ,

showing that h(1)⊗S(h(2)) ∈ C(H , H).Moreover,φ(φ−1(h)) = φ(h(1)⊗S(h(2))) = h,
and φ−1(φ(g ⊗ h)) = ε(h) φ−1(g) = ε(h) g(1) ⊗ S(g(2)) = g ⊗ h. The map φ is an
algebra map:

φ((g ⊗ h) •C (g′ ⊗ h′)) = φ(gg′ ⊗ h′h)=gg′ε(h′)ε(h)=φ(g ⊗ h) •C φ(g′ ⊗ h′).

It is also a coalgebra map:

(φ ⊗ φ)(�C(g ⊗ h)) = (φ ⊗ φ)(g(1) ⊗ g(2)
<1> ⊗ g(2)

<2> ⊗ h)

= (φ ⊗ φ)(g(1) ⊗ S(g(2)) ⊗ g(3) ⊗ h)

= g(1) ⊗ g(2) ε(h)�H (φ(g ⊗ h));
εC(g ⊗ h) = gh = εH (gh) = εH (g)εH (h) = εH (φ(g ⊗ h)).
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6.2 Group Hopf algebras

With a cocommutative Hopf algebra H and A a Galois object for H , the bialgebroid
C(A, H) is isomorphic to H as a Hopf algebra [18, Rem. 3.8; Thm. 3.5]. We work out
some of the details for the case of a group algebra whose Galois objects are classified
by group cohomology [15, Chap. 8].

Let H = C[G] be a group algebra and let A = ⊕g∈G Ag be a strongly G-graded
algebra. If A is a C[G]-Galois object, that is Ae = C, each component Ag is one-
dimensional. If we pick a nonzero element ug in each Ag , the multiplication of A is
determined by the products uguh for each pair g, h of elements of G:

uguh = λ(g, h) ugh (6.4)

for a non-vanishing λ(g, h) ∈ C. Associativity of the product requires that λ satisfies
a 2-cocycle condition, that is for any g, h ∈ G,

λ(g, h)λ(gh, k) = λ(h, k)λ(g, hk).

With a different nonzero element vg ∈ Ag , we have vg = μ(g)ug , for some nonzero
μ(g) ∈ C. The multiplication (6.4) will become vgvh = λ′(g, h)vgh with

λ′(g, h) = μ(g)μ(h)(μ(gh))−1λ(g, h),

that is the two 2-cocycles λ′ and λ are cohomologous. Thus, the multiplication in A
depends only on the cohomology class of λ ∈ H2(G,C×), the second cohomology
group of G with values in C

×. Thus, equivalence classes of C[G]-Galois objects are
in bijective correspondence with the cohomology group H2(G,C×).

Example 6.4 For any cyclic group G, one has H2(G,C×) = 0 and any corresponding
C[G]-Galois object is trivial. On the other hand, H2(Zr ,C×) = (C×)r(r−1)/2 for the
free abelian group of rank r ≥ 2. Hence, there are infinitelymany isomorphism classes
of C[Zr ]-Galois objects (see [11, Ex. 7.13]).

Being H = C[G] cocommutative, as mentioned the bialgebroids C(A, H) are
all isomorphic to H as Hopf algebra. It is instructive to see this directly. For any
ug ⊗ uh ∈ C(A, H), the coinvariance condition ug ⊗ uh ⊗ gh = ug ⊗ uh ⊗ 1H ,
requires h = g−1 so that C(A, H) is generated as vector space by elements ug ⊗ug−1 ,
g ∈ G, with multiplication

(ug ⊗ ug−1) •C (uh ⊗ uh−1) = λ(g, h)λ(h−1, g−1)ugh ⊗ u(gh)−1 . (6.5)

Now, the cocycle �(g, h) = λ(g, h)λ(h−1, g−1) is trivial in H2(G,C×). Indeed,

�(g, h) = λ(g, g−1)λ(h, h−1)/λ(gh, (gh)−1) = μ(g)μ(h)(μ(gh))−1,

with μ(g) = λ(g, g−1). Consequently, by rescaling the generators ug → vg =
λ(g, g−1)− 1

2 ug the multiplication rule (6.4) becomes vgvh = λ′(g, h) vgh , with
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λ′(g, h) = �(g, h)− 1
2 λ(g, h) that we rename back to λ(g, h). As for the bialgebroid

product in (6.5), one has,

(vg ⊗ vg−1) •C (vh ⊗ vh−1) = vgh ⊗ v(gh)−1,

and the isomorphism �−1 : H → C(A, H) is simply �−1(g) = τL(g) = vg ⊗ vg−1 .
The group of bisections B(C(A, H)) of C(A, H), and the gauge group AutH (A) of

the Galois object A coincide with the group of characters on C[G], which is the same
as Hom(G,C×) the group (for point-wise multiplication) of group morphisms from
G to C×. Explicitly, since F ∈ AutH (A) is linear on A, on a basis {vg}g∈G of A, it is
of the form

F(vg) =
∑

h∈G
fh(g)vh,

for complex numbers, fh(g) ∈ C. Then, the H -equivariance of F ,

F(vg)(0) ⊗ F(vg)(1) = F(vg (0)) ⊗ vg (1) = F(vg) ⊗ g,

requires F(vg) to be contained in to Ag and we get fh(g) = 0, if h �= g while
fg := fg(g) ∈ C

× from the invertibility of F . Finally, F is an algebra map:

λ(g, h) fghvgh = F(λ(g, h) vgh) = F(vgvh) = F(vg)F(vh) = λ(g, h) fg fh vgh,

implies fgh = fg fh , for any g, h ∈ G. Thus, we re-obtain that AutH (A) �
Hom(G,C×). Note that the requirement F(ve = 1A) = 1 = Fe implies that
Fg−1 = (Fg)−1.

In contrast to this, the group AutextH (A) and then Bext(C(A, H)) can be quite big. If
F ∈ AutextH (A), that is one does not require F to be an algebra map, the corresponding
fg can take any value in C× with the only condition that fe = 1.

6.3 Taft algebras

Let N ≥ 2 be an integer and let q be a primitive N -th root of unity. TheTaft algebra TN ,
introduced in [25], is aHopf algebrawhich is neither commutative nor cocommutative.
Firstly, TN is the N 2-dimensional unital algebra generated by generators x , g subject
to the relations:

xN = 0, gN = 1, xg − q gx = 0.

It is a Hopf algebra with coproduct:

�(x) := 1 ⊗ x + x ⊗ g, �(g) := g ⊗ g;

counit: ε(x) := 0, ε(g) := 1, and antipode: S(x) := −xg−1, S(g) := g−1. The
four-dimensional algebra T2 is also known as the Sweedler algebra.

123



Gauge groups and bialgebroids Page 31 of 43 140

For any s ∈ C, let As be the unital algebra generated by elements X ,G with
relations:

XN = s, GN = 1, XG − q GX = 0.

The algebra As is a right TN -comodule algebra, with coaction defined by

δA(X) := 1 ⊗ x + X ⊗ g, δA(G) := G ⊗ g. (6.6)

The algebra of corresponding coinvariants is just the ground field C and so As is a
TN -Galois object. It is known (see [13], Prop. 2.17 and Prop. 2.22) that any TN -Galois
object is isomorphic to As for some s ∈ C and that any two such Galois objects As

and At are isomorphic if and only if s = t . Thus, the equivalence classes of TN -Galois
objects are in bijective correspondence with the abelian group C. It is easy to see that
the translation map of the coaction (6.6) is given on generators by

τ(g) = G−1 ⊗ G, τ (x) = 1 ⊗ X − XG−1 ⊗ G. (6.7)

For the Ehresmann–Schauenburg bialgebroid C(As, TN ), we have then [20, Cor. 2.4]:

Proposition 6.5 For any complex number s, there is a Hopf algebra isomorphism

� : C(As, TN ) � TN .

Proof Again we give a sketch of the explicit proof. It is easy to see that the elements

� = X ⊗ G−1 − 1 ⊗ XG−1, � = G ⊗ G−1

are coinvariants for the right diagonal coaction of TN on As⊗As and that they generate
C(As, TN ) = (As ⊗ As)

co TN as an algebra. These elements satisfy the relations:

�N = 0, �N = 1, � •C � = q � •C �.

The last two relations are easy to see. For the first one, one finds

�N = XN ⊗ G−N +
N−1∑

r=1

cr X
N−r ⊗ XrG−N + (−1)N ⊗ (XG−1)N

=
[

XN ⊗ 1 +
N−1∑

r=1

cr X
N−r ⊗ Xr + (−1)Nq

n(n−1)
2 ⊗ XN

]

G−N

when shifting powers of G−1 to the right, for coefficients cr depending on q. Then,
using the samemethods as in [25], beingq a primitive N -th root of unity, all coefficients
cr vanish and so �N = XN ⊗ G−N + (−1)N ⊗ (XG−1)N which then vanishes from
XN = 0.
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Thus, � and � generate a copy of the algebra TN and the isomorphism � maps �

to x and � to g. The map � is a coalgebra map. Indeed, �(�(�)) = �(g) = g ⊗ g,
while,�C(�) = G(0)⊗G(1)

<1>⊗G(1)
<2>⊗G−1 = G⊗G−1⊗G⊗G−1 = �⊗�.Thus

(�⊗�)(�C(�)) = g⊗g = �(�(�)). Similarly,�(�(�)) = �(x) = 1⊗x+x⊗g,
while

�C(�) = �C(X ⊗ G−1) − �C(1 ⊗ XG−1)

= X (0) ⊗ X (1)
<1> ⊗ X (1)

<2> ⊗ G−1 − 1 ⊗ 1 ⊗ 1 ⊗ XG−1

= 1 ⊗ x<1> ⊗ x<2> ⊗ G−1 + X ⊗ g<1>⊗g<2> ⊗ G−1−1 ⊗ 1⊗1 ⊗ XG−1

=1⊗
(
1⊗X−XG−1⊗G

)
⊗G−1+X ⊗ G−1⊗G ⊗ G−1−1⊗1⊗1⊗XG−1

= 1 ⊗ 1 ⊗
(
X ⊗ G−1−1 ⊗ XG−1

)
+
(
X ⊗ G−1−1⊗XG−1

)
⊗ G ⊗ G−1

= 1 ⊗ � + � ⊗ �.

Thus, (� ⊗ �)(�C(�)) = 1 ⊗ x + x ⊗ g = �(�(�)). Finally: εC(�) = 1 = ε(g)
and εC(�) = 0 = ε(x). This concludes the proof. 
�
The group of characters of the Taft algebra TN is the cyclic group ZN : indeed any
character φ must be such that φ(x) = 0, while φ(g)N = φ(gN ) = φ(1) = 1. Then,
for the group of gauge transformations of the Galois object As—the same as the group
of bisections of the bialgebroid C(As, TN ) —due to Proposition 6.5 we have,

AutTN (As) � B(C(As, TN )) = Char(TN ) = ZN .

An element F of AutextTN
(As) � Bext(C(As, TN ), due to equivariance F(a)(0) ⊗

F(a)(1) = F(a(0)) ⊗ a(1) for any a ∈ As , can be given as a block diagonal matrix

F = diag(M1, M2, . . . , MN−1, MN )

with each Mj a N × N invertible lower triangular matrix

Mj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0 0
b21 aN−1 0 . . . 0 0

b31 b32 aN−2
. . .

. . .
...

...
. . .

. . .
. . . 0 0

bN−1,1 bN−1,2
. . .

. . . a2 0
bN1 bN2 . . . bN ,N−2 bN ,N−1 a1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

All matrices Mj have in common the diagonal elements a j (ciclic permuted) which
are all different from zero for the invertibility of Mj . For the subgroup AutTN (As),
the Mj are diagonal as well with ak = (a1)k and (a1)N = 1 so that Mj ∈ ZN . The
reason all Mj share the same diagonal elements (up to permutation) is the following:
firstly, the ‘diagonal’ form of the coaction of G in (6.6) implies that the image F(Gk)
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is proportional to Gk , say F(Gk) = αkGk for some constant αk . Then, due to the first
term in the coaction of X in (6.6), the ‘diagonal’ component along the basis element
XlGk of the image F(XlGk) is given again by αk for any possible value of the index
l.

Let us illustrate the construction for the cases of N = 2, 3. Firstly, F(1) = 1 since
F is unital. When N = 2, on the basis {1, X ,G, XG}, the equivariance F(a)(0) ⊗
F(a)(1) = F(a(0)) ⊗ a(1) for the coaction (6.6) becomes

F(X)(0) ⊗ F(X)(1) = 1 ⊗ x + F(X) ⊗ g,

F(G)(0) ⊗ F(G)(1) = F(G) ⊗ g,

F(XG)(0) ⊗ F(XG)(1) = F(G) ⊗ xg + F(XG) ⊗ 1.

Next, write F(a) = f1(a) + f2(a) X + f3(a)G + f4(a) XG, for complex numbers
fk(a). And compute F(a)(0) ⊗ F(a)(1) = f1(a) 1 ⊗ 1 + f2(a) (1 ⊗ x + X ⊗ g) +
f3(a)G⊗g+ f4(a) (G⊗xg+XG⊗1). Then comparing generators, the equivariance
gives

f1(X) = f4(X) = 0

f1(G) = f2(G) = f4(G) = 0

f2(XG) = f3(XG) = 0,

while the remaining coefficients are related by the system of equations

f2(X) (1 ⊗ x + X ⊗ g) + f3(X)G ⊗ g = 1 ⊗ x + F(X) ⊗ g,

f3(G)G ⊗ g = F(G) ⊗ g,

f1(XG) 1 ⊗ 1 + f4(XG) (G ⊗ xg + XG ⊗ 1) = F(G) ⊗ xg + F(XG) ⊗ 1.

One readily finds solutions

f2(X) = 1, f3(X) = γ, f1(XG) = β, f3(G) = f4(XG) = α

with α, β, γ arbitrary complex numbers. Thus, a generic element F of AutextT2
(As) can

be represented by the matrix:

F :

⎛

⎜
⎜
⎝

1
XG
G
X

⎞

⎟
⎟
⎠ �→

⎛

⎜
⎜
⎝

1 0 0 0
β α 0 0
0 0 α 0
0 0 γ 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
XG
G
X

⎞

⎟
⎟
⎠ . (6.8)

Asking F to be invertible requires α �= 0.
On the other hand, any F ∈ AutT2(As) is an algebra map and so is determined

by its values on the generators G, X . From F(G) = αG and F(X) = γG + X :
requiring s = F(X2) = (γG + X)2 = γ + (GX + XG) + s yields γ = 0; then
β + αXG = F(XG) = αXG yields β = 0; and 1 = F(G2) = (αG)2 leads to
re-obtain that AutT2(As) � Z2.
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When N = 3 a similar, if longer computation, gives for AutexpT3
(As) an eight-

parameter group with its elements of the following block diagonal form

F :
⎛

⎝
1

XG2

X2G

⎞

⎠ �→
⎛

⎝
1 0 0
β α2 0
η −qδ α1

⎞

⎠

⎛

⎝
1

XG2

X2G

⎞

⎠ .

F :
⎛

⎝
G
X

X2G2

⎞

⎠ �→
⎛

⎝
α1 0 0
γ 1 0
θ −qβ α2

⎞

⎠

⎛

⎝
G
X

X2G2

⎞

⎠ .

F :
⎛

⎝
G2

XG
X2

⎞

⎠ �→
⎛

⎝
α2 0 0
δ α1 0
λ −qγ 1

⎞

⎠

⎛

⎝
G2

XG
X2

⎞

⎠ .

One needs α j �= 0, j = 1, 2 for invertibility.
By going as before, for any F ∈ AutTN (As) one starts from it values on the

generators, F(G) = α1G and F(X) = γG+X , to conclude that F is a diagonalmatrix
(in particular F(X) = X ) with α2 = (α1)

2 and 1 = (α1)
3; thus AutT3(As) � Z3.

7 Crossedmodule structures on bialgebroids

Automorphisms of a groupoid with its natural transformations form a strict 2-group
or, equivalently, a crossed module (see [14, Def. 3.21]). The crossed module combines
automorphisms andbisections.Abisectionσ is the 2-arrow from the identitymorphism
to an automorphism Adσ and the composition of bisections can be viewed as the
horizontal composition of 2-arrows. Then, the crossed module involves the product on
bisections and the composition on automorphisms, and the group homomorphism from
bisections to automorphisms together with the action of automorphisms on bisections
by conjugation.

In this section, we quantise this construction for the Ehresmann–Schauenburg bial-
gebroid of a Hopf–Galois extension. We construct a crossed module for the bisections
and the automorphisms of the bialgebroid, thus giving a generalization of a crossed
module on a groupoid. Notice that the antipode of the bialgebroid is not needed in the
construction.

7.1 Crossedmodules and bisections

A crossed module is the data (M, N , μ, α) of two groups M , N together with group
homomorphisms μ : M → N and α : N → Aut(M) such that, denoting αn : M →
M for every n ∈ N , the following conditions are satisfied:

(1) μ(αn(m)) = nμ(m)n−1, for any n ∈ N and m ∈ M ,
(2) αμ(m)(m′) = m m′ m−1, for any m,m′ ∈ M .

We aim at proving the following.
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Theorem 7.1 Let B = AcoH ⊆ A be a faithfully flat Hopf–Galois extension,
with corresponding Ehresmann–Schauenburg bialgebroid C(A, H). Then, there is
a group morphism Ad : B(C(A, H)) → Aut(C(A, H)) and an action � of
Aut(C(A, H)) on B(C(A, H)) that give a crossed module structure to the pair(B(C(A, H)),Aut(C(A, H))

)
.

We give the proof in a few lemmas.

Lemma 7.2 With the hypothesis of Theorem 7.1, consider a bisection σ ∈ B(C(A, H))

with Fσ ∈ AutH (A) the associated gauge transformation as in (4.8). Then, the map
Adσ : C(A, H) → C(A, H) defined by

Adσ (a ⊗ ã) := Fσ (a) ⊗ Fσ (ã)

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2> (7.1)

for any a ⊗ ã ∈ C(A, H), is a vertical automorphism of C(A, H).

Proof Since Fσ is an algebra automorphism so is Adσ . Then, for any b ∈ B it is
immediate to show that Adσ (t(b)) = t(b) and Adσ (s(b)) = s(b). So conditions (2.6)
are satisfied. The second one also shows that Adσ is vertical, that is ε ◦ Adσ ◦ s = idB ,
and then ε ◦ Adσ = ε. For the first condition in (2.7), the H -equivariance of Fσ yields

(�C(A,H) ◦ Adσ )(a ⊗ ã) = Fσ (a(0)) ⊗ a(1)
<1> ⊗B a(1)

<2> ⊗ Fσ (ã) (7.2)

for any a ⊗ ã ∈ C(A, H). On the other hand,

(Adσ ⊗B Adσ ) ◦ �C(A,H)(a ⊗ ã)=Fσ (a(0))⊗Fσ (a(1)
<1>)⊗B Fσ (a(1)

<2>)⊗Fσ (ã).

(7.3)

Now, for any F ∈ AutH (A), given h ∈ H , one has

F(h<1>) ⊗B F(h<2>) = h<1> ⊗B h<2>

as can be seen by applying the canonical map χ (an isomorphism) and using equivari-
ance of F . Using it for the right hand sides of (7.2) and (7.3) shows that they coincide.
Thus, the left hand side expressions coincide and the first of (2.7) is satisfied as well.


�

Remark 7.3 The map Adσ in (7.1) can also be written in the following useful ways:

Adσ (a ⊗ ã) = σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>σ−1(a(2)

<2> ⊗ ã)

= σ((a ⊗ ã)(1)) � (a ⊗ ã)(2) 
 σ−1((a ⊗ ã)(3)) (7.4)
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with the B-bimodule action (2.4). Indeed, for a ⊗ ã ∈ C(A, H), insert (3.5) and
compute:

Adσ (a ⊗ ã) = σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>a(2)

<2>σ(ã(0) ⊗ ã(1)
<1>)ã(1)

<2>

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>σ(ã(0) ⊗ ã(1)

<1>)a(2)
<2>ã(1)

<2>

= σ(a(0) ⊗ a(1)
<1>)a(1)

<2> ⊗ a(2)
<1>σ−1(a(2)

<2> ⊗ ã)
)

= σ((a ⊗ ã)(1)) � (a ⊗ ã)(2) 
 σ−1((a ⊗ ã)(3)).

One sees that Adσ ◦ Adτ = Adτ∗σ for any σ , τ ∈ B(C(A, H)), while (Adσ )−1 =
Adσ−1 and Adε = idC(A,H). Thus, Ad is a group morphism Ad : B(C(A, H)) →
Aut(C(A, H)).

Next, given an automorphism (�, ϕ) of C(A, H) with inverse (�−1, ϕ−1), we
define an action of (�, ϕ) on the group of bisections B(C(A, H)) as follows:

� � σ := ϕ−1 ◦ σ ◦ � (7.5)

for any σ ∈ B(C(A, H)). The result is a well-defined bisection. It is clearly unital.
Then, for b, b′ ∈ B, X ∈ C(A, H), using (2.6) for the automorphism � and B-
bilinearity of σ :

� � σ
(
s(b)t(b′)X

) = ϕ−1 ◦ σ ◦ �
(
s(b)t(b′)X

) = ϕ−1 ◦ σ
(
s(ϕ(b))t(ϕ(b′))�(X)

)

= ϕ−1(ϕ(b)(σ ◦ �(X))ϕ(b′)
) = b

(
ϕ−1 ◦ σ ◦ �(X)

)
b′

= b (� � σ(X)) b′)

and � � σ is B-bilinear as well. Finally, for all X ,Y ∈ C(A, H),

� � σ
(
X s(� � σ(Y )

) = ϕ−1 ◦ σ ◦ �
(
X s(ϕ−1 ◦ σ ◦ �(Y )

)

= ϕ−1 ◦ σ
(
�(X) s(σ (�(Y ))

)

= ϕ−1 ◦ σ
(
�(X)�(Y )

) = ϕ−1 ◦ σ ◦ �(XY )

= � � σ(XY )

using again (2.6) and the associativity of σ . Thus, � � σ is associative. One checks
that

(� � σ)−1 = ϕ−1 ◦ σ−1 ◦ �. (7.6)

Lemma 7.4 Given an automorphism (�, ϕ) the action (7.5) is in Aut(C(A, H)), the
group automorphisms of B(C(A, H)).
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Proof Let σ, τ ∈ B(C(A, H)) and X ∈ C(A, H). We compute:

(� � τ) ∗ (� � σ)(X) = (� � τ)(X (1))(� � σ)(X (2))

= ϕ−1 ◦ τ ◦ �(X (1)) ϕ−1 ◦ σ ◦ �(X (2))

= ϕ−1(τ(�(X (1))) σ (�(X (2)))
)=ϕ−1(τ(�(X)(1)) σ (�(X)(2))

= ϕ−1 ◦ (τ ∗ σ) ◦ �(X)
)

= � � (τ ∗ σ)(X)

using the first equivariant condition (2.7). Also

� � ε = ϕ−1 ◦ ε ◦ � = ϕ−1 ◦ ϕ ◦ ε = ε.

Finally, for any two automorphisms (�, ϕ) and (�,ψ) of C(A, H), we have

� � (� � (σ )) = ϕ−1 ◦ ψ−1 ◦ σ ◦ � ◦ � = (ψ ◦ ϕ)−1 ◦ σ ◦ � ◦ � = (� ◦ �) � σ.

In particular�−1�(��(σ )) = σ and so the action is an automorphism ofB(C(A, H)).

�

Lemma 7.5 For any automorphism (�, ϕ), and any σ ∈ B(C(A, H)) we have

Ad��σ = �−1 ◦ Adσ ◦ �.

Proof With X ∈ C(A, H), from (7.4) we get

(Adσ ◦ �)(X) = σ((�(X))(1)) � (�(X))(2) 
 σ−1((�(X))(3)

)
, (7.7)

while, using (7.5) and (7.6), we have

Ad��σ (X) = ((� � σ)(X (1))
) � X (2) 
 ((� � σ)−1(X (3))

)

= (ϕ−1 ◦ σ(�(X (1)))
) � X (2) 
 (ϕ−1 ◦ σ−1(�(X (3)))

)
.

Since � is a bimodule map: �(b � X 
 b̃) = ϕ(b) � �(X) 
 ϕ(b̃), for all b, b̃ ∈ B, we
get,

(� ◦ Ad��σ )(X) = σ(�(X (1))) � �(X (2)) 
 σ−1(�(X (3))
)
. (7.8)

The right hand sides of (7.7) and (7.8) are equal from the equivariance condition (2.7).

�

Lemma 7.6 Let σ , τ ∈ B(C(A, H)), then Adτ � σ = τ ∗ σ ∗ τ−1.
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Proof Recall that Adτ is vertical. With X ∈ C(A, H), using definition (7.4) we com-
pute:

Adτ � σ(X) = σ ◦ Adτ (X)) = σ
(
τ(X (1)) � X (2) 
 τ−1(X (3))

)

= τ(X (1)) σ (X (2)) τ−1(X (3))

= τ ∗ σ ∗ τ−1(X)

where we used the definition (4.6) for the product. 
�
Taken together the previous lemmas establish the content of Theorem 7.1 that is a
crossed module structure for

(B(C(A, H)),Aut(C(A, H)), Ad, �).
Example 7.7 Given a Hopf algebra H and a character φ : H → C, one defines a Hopf
algebra automorphisms (see [18, page 3807]) by

coinn(φ) : H → H , coinn(φ)(h) := φ(h(1))h(2)φ(S(h(3))), (7.9)

for any h ∈ H . Recall that for a character φ−1 = φ ◦ S. The set CoInn(H) of co-inner
automorphisms of H is a normal subgroup of the group AutHopf(H) of Hopf algebra
automorphisms (this is just Aut(H) if one thinks of H as a bialgebroid over C).

We have seen that for a Galois object A of a Hopf algebra H , the bialgebroid
C(A, H) is a Hopf algebra. Also, the group of gauge transformations of the Galois
object, which is the same as the group of bisections B(C(A, H), is the group of
characters of C(A, H) (see (6.2)). It turns out that these groups are also isomorphic
to CoInn(C(A, H)). If φ ∈ Char(C(A, H)), substituting φ−1 = φ ◦ SC in (7.4), for
X = a ⊗ a′ ∈ C(A, H), we get

Adφ(X) = φ(X (1)) X (2) (φ ◦ SC)(X (3)) = coinn(φ)(X). (7.10)

As a particular case, let us consider again the Taft algebra TN . We know from
Sect. 6.3 that for any TN -Galois object As the bialgebroid C(TN , As) is isomorphic
to TN . And bisections of C(TN , As) are the same as characters of TN the group of
which is isomorphic to ZN . A generic character is a map φr : TN → C, given on
generators x and g by φr (x) = 0 and φr (g) = r for r a N -root of unity r N = 1. The
corresponding automorphism Adφr = coinn(φr ) is easily found to be on generators
given by

coinn(φr )(g) = g, coinn(φr )(x) = r−1x .

It is known [20, Lem. 2.1] that Aut(TN ) � AutHopf(TN ) � C
×: Indeed, given r ∈ C

×,
one defines an automorphism Fr : TN → TN by Fr (x) := r x and Fr (g) := g.
Thus, Ad : Char(TN ) → Aut(TN ) is the injection sending φr to Fr−1 . Moreover,
for F ∈ Aut(TN ) and φ ∈ Char(TN ), one checks that AdF�φ(x) = Adφ(x) and
AdF�φ(g) = Adφ(g). Thus, as a crossed module, the action of Aut(TN ) on Char(TN )

is the identity and the crossed module (Char(C(TN , As)),Aut(C(TN , As)), Ad, id)
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is isomorphic to (ZN ,C×, j, id), with inclusion j : ZN → C
× given by j(r) :=

e−i2rπ/N and C
× acting trivially on ZN .

7.2 More general bisections

In parallel with the crossedmodule structure on bialgebroid automorphisms and bisec-
tions, there is a similar structure on extended bisections as in Definition 4.7 and
‘extended bialgebroid automorphisms’. These are pairs (�, ϕ) with ϕ : B → B an
algebra automorphism and � : L → L an unital invertible linear map, not required
in general to be an algebra map, satisfying the equivariance properties in (2.7), while
(2.6) is replaced by the bimodule property: �(b � a 
 b̃) = ϕ(b) � �(a) 
 ϕ(b̃), for
b, b̃ ∈ B. They form a group Autext(L) by map composition.

We sketch the construction that goes in the lines ofTheorem7.1.Given any bisection
σ ∈ Bext(C(A, H)), definition (7.4) gives a map Adσ : C(A, H) → C(A, H) that we
repeat,

Adσ (a ⊗ ã) = σ((a ⊗ ã)(1)) � (a ⊗ ã)(2) 
 σ−1((a ⊗ ã)(3)). (7.11)

This still covers the identity of B, that is ε◦ Adσ ◦s = idB , but is not an algebra map in
general; it is an extended automorphism of C(A, H). Indeed, it satisfies the properties
(2.6) and (2.7), and for two extended bisections σ and τ one shows as before that
Adσ ◦ Adτ = Adτ∗σ , and thus Adσ is invertible with inverse Adσ−1 . Moreover, if� is
an extended automorphism of C(A, H)with inverse�−1 the formula (7.5) is an action
of � on Bext(C(A, H)), a group automorphism of Bext(C(A, H)). One really needs
only to check that ��σ is well defined as an extended bisection since the rest goes as
in the previous section. Andwith similar computations as those of Lemmas 7.5 and 7.6
one shows that Ad��σ = �−1 ◦ Adσ ◦ �, for any extended automorphism � and any
σ ∈ Bext(C(A, H)), and that Adτ � σ = τ ∗ σ ∗ τ−1, with any σ , τ ∈ Bext(C(A, H)).

We sum up the above with an analogous of Theorem 7.1:

Proposition 7.8 Given a faithfully flat Hopf–Galois extension B = AcoH ⊆ A, let
C(A, H) be the corresponding Ehresmann–Schauenburg bialgebroid. Then, there is
a group morphism Ad : Bext(C(A, H)) → Autext(C(A, H)) and an action � of
Autext(C(A, H)) on Bext(C(A, H)) such that the groups of extended automorphisms
Autext(C(A, H)) and of extended bisections Bext(C(A, H)) form a crossed module.

Example 7.9 Consider a H -Galois object A with C(A, H) the corresponding bial-
gebroid, a Hopf algebra itself. Given an extended bisection σ ∈ Bext(C(A, H)) �
Charext(H), in parallel with (7.9) and (7.10) one can use (7.11) to define an extended
coinner automorphism of C(A, H),

coinn(σ )(X) := Adσ (X) = σ(X (1)) X (2) σ
−1(X (3)),

for any X = a ⊗ ã ∈ C(A, H). This reduces to (7.10) when σ = φ is a character.

Example 7.10 In Example 7.7,we gave an abelian crossedmodule for theTaft algebras.
The use of extended characters and extended automorphisms yields a non-abelian
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crossed module. As we know the bialgebroid C(As, TN ) of a Galois object As for
the Taft algebra TN is isomorphic to TN . Thus, Autext(C(As, TN )) � Autext(TN ) is
the group of unital invertible maps � : TN → TN such that �(h(1)) ⊗ �(h(2)) =
�(h)(1) ⊗ �(h)(2) for h ∈ TN .

Let us illustrate this for the case N = 2. The coproduct of T2 on the generators x, g
will then require the following condition for an automorphism �:

�(g)(1) ⊗ �(g)(2) = �(g) ⊗ �(g)

�(x)(1) ⊗ �(x)(2) = 1 ⊗ �(x) + �(x) ⊗ g

�(xg)(1) ⊗ �(xg)(2) = g ⊗ �(xg) + �(xg) ⊗ 1.

A little algebra then shows that

�(g) = g, �(x) = c (g − 1) + a2 x, �(xg) = b (1 − g) + a1 xg

for arbitrary parameters b, c ∈ C and a1, a2 ∈ C
× (for� to be invertible). As in (6.8),

we can represent � as a matrix:

� :

⎛

⎜
⎜
⎝

1
xg
g
x

⎞

⎟
⎟
⎠ �→

⎛

⎜
⎜
⎝

1 0 0 0
b a1 −b 0
0 0 1 0

−c 0 c a2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
xg
g
x

⎞

⎟
⎟
⎠ . (7.12)

One checks that matrices M� of the form above form a group: Autext(TN ) �
AutHopf(TN ).

Given σ ∈ Charext(T2), we shall denote σa = σ(a) ∈ C for a ∈ {1, x, g, xg}. For
the convolution inverse σ−1, from the condition σ ∗ σ−1 = ε we get on the basis that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ1 = (σ−1)1 = 1

σg(σ
−1)g = 1

σg(σ
−1)x + σx = 0

σg(σ
−1)xg + σxg = 0

⇒

⎧
⎪⎨

⎪⎩

(σ−1)g = (σg)
−1

(σ−1)x = −σx (σg)
−1

(σ−1)xg = −σxg(σg)
−1

.

Then, computing Adσ (h) = σ(h(1))h(2)σ
−1(h(3)) leads to

Adσ

⎛

⎜
⎜
⎝

1
xg
g
x

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 0 0 0
σxg σg −σxg 0
0 0 1 0

−σx (σg)
−1 0 σx (σg)

−1 (σg)
−1

⎞

⎟
⎟
⎠ . (7.13)

We see that the matrix (7.13) is of the form (7.12) with the restriction that a2 = a−1
1

so that Adφ has determinant 1. Clearly, the image of Charext(T2) form a subgroup of
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Autext(C(As, T2)) � Autext(TN ). Moreover, Ad : Charext(T2) → Autext(T2) is an
injective map. Finally, the action Ad��σ is represented by the matrix product:

MAd��σ
= M�−1 MAdσ

M�

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
a−1
1 [σxg + b(σg − 1)] σg −a−1

1 [σxg + b(σg − 1)] 0

0 0 1 0

−a−1
2 [σx (σg)

−1 + c((σg)−1 − 1)] 0 a−1
2 [σx (σg)

−1 + c((σg)−1 − 1)] (σg)
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We conclude that as a crossed module the action on Charext(T2) is not trivial.
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Appendix A: The classical gauge groupoid

We collect here some basic facts of the gauge groupoid associated with a principal
bundle and of the corresponding group of bisections [12]. Let π : P → M be
a principal bundle over the manifold M with structure Lie group G. Consider the
diagonal action (u, v)g := (ug, vg) of G on P × P; denote by [u, v] the orbit of
(u, v) and by � = P ×G P the collection of orbits. Then, � is a groupoid over M ,
— the gauge or Ehresmann groupoid of the principal bundle, with source and target
projections given by

s([u, v]) := π(v), t([u, v]) := π(u).

The object inclusion M → P ×G P is m �→ idm := [u, u], for m ∈ M and u
any element in π−1(m). And the partial multiplication [u, v′] · [v,w], defined when
π(v′) = π(v) is

[u, v] · [v′, w] = [u, wg],

123

http://creativecommons.org/licenses/by/4.0/


140 Page 42 of 43 X. Han, G. Landi

for the unique g ∈ G such that v = v′g. Here, one is really using the classical trans-
lation map t : P ×M P → G, (ug, u) �→ g. One can always choose representatives
such that v = v′ and the multiplication is then simply [u, v] · [v,w] = [u, w]. The
inverse is

[u, v]−1 = [v, u].

A bisection of the groupoid � is a map σ : M → �, which is right-inverse to the
source projection, s ◦ σ = idM , and is such that t ◦ σ : M → M is a diffeomorphism.
The collection of bisections, denoted B(�), form a group: given two bisections σ1 and
σ2 their multiplication is defined by

σ1 ∗ σ2(m) := σ1
(
(t ◦ σ2)(m)

)
σ2(m), for m ∈ M .

The identity is the object inclusion m �→ idm , simply denoted id, with inverse given
by

σ−1(m) = (σ ((t ◦ σ)−1(m)
))−1;

here (t ◦ σ)−1 as a diffeomorphism of M while the second inversion is the one in �.
The subset BP/G(�) of ‘vertical’ bisections, that is those bisections that are right-

inverse to the target projection as well, t ◦ σ = idM , form a subgroup of B(�).
It is a classical result [12] that there is a group isomorphism between B(�) and the

group of principal (G-equivariant) bundle automorphisms of the principal bundle

AutG(P) := {ϕ : P → P; ϕ(pg) = ϕ(p)g},

while BP/G(�) is isomorphic to the subgroup of gauge transformations, that is prin-
cipal bundle automorphisms which are vertical (project to the identity on the base
space):

AutP/G(P) := {ϕ : P → P; ϕ(pg) = ϕ(p)g, π(ϕ(p)) = π(p)}.
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