

### Electronic Supplementary Information

# Toward fractioning of isomers through binding-induced acceleration of azobenzene switching

Rosaria Vulcano,<sup>†</sup> Paolo Pengo,<sup>§</sup> Simone Velari,<sup>#</sup> Johan Wouters,<sup>†</sup> Alessandro De Vita, <sup>#,‡</sup> Paolo Tecilla,<sup>§</sup> and Davide Bonifazi<sup>¥,†,\*</sup>

<sup>†</sup>Department of Chemistry, University of Namur (UNamur), Rue de Bruxelles 61, Namur, 5000 (Belgium); <sup>§</sup>Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, Trieste, 34127 (Italy); <sup>#</sup>Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, Trieste, 34127 (Italy); <sup>‡</sup>Department of Physics, King's College London, Strand, London, WC2R 2LS (UK); <sup>\*</sup>School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT (UK).

### **Table of contents**

| General remarks                                                                                  | .3              |
|--------------------------------------------------------------------------------------------------|-----------------|
| Materials and general methods                                                                    | 4               |
| Synthetic procedures and spectral data                                                           | . 6             |
| Synthesis of 4-tert-butylbenzenediazonium tetrafluoroborate. <sup>[13]</sup> (3)                 | 7               |
| Synthesis of 5-iodo-2,4-dioxo-1-propyl-3-hydropyrimidine. (2)                                    | .8              |
| Synthesis of 5-((4-(tert-butyl)phenyl)diazenyl)-1-propylpyrimidine-2,4(3H)-dione. (4, 5AUP)      | .8              |
| Synthesis of 5-iodo-2,4-dioxo-1,3-dipropylpyrimidine. (5)                                        | 9               |
| Synthesis of 5-((4-(tert-butyl)phenyl)diazenyl)-1,3-dipropylpyrimidine-2,4-dione. (6, 5AUPP)     | 10              |
| Synthesis of 6-iodo-2,4-dioxo-1,3-dihydropyrimidine. <sup>[17]</sup> (8)                         | 11              |
| Synthesis of 6-iodo-2,4-dioxo-1-propyl-3-hydropyrimidine. (9)                                    | 11              |
| Synthesis of 6-((4-(tert-butyl)phenyl)diazenyl)-2,4-dioxo-1-propyl-3-hydropyrimidine. (10, 6AUP) | 12              |
| Synthesis of 2,4-dioxo-1-propyl-3-hydropyrimidine. (12, Upr)                                     | 13              |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra                                                   | 14<br>20        |
| Mass spectra of 5AUP (4)                                                                         | <b>20</b><br>20 |
| Mass spectra of 5AUPP (6)                                                                        | 20              |
| Mass spectra of 6AUP (10)                                                                        | 21              |
| Crystal data and structure refinement                                                            | 22              |
| Table S1. Crystal data and structure refinement for 5AUP (CCDC 1435199)                          | 22              |
| Table S2. Crystal data and structure refinement for 5AUP·DAP (CCDC1474613)                       | 23              |
| Table S3. Crystal data and structure refinement for 6AUP (CCDC1435200)                           | 24              |
| Table S4. Crystal data and structure refinement for 6AUP·DAP(CCDC1435201)                        | 25              |
| UV-Vis kinetic studies                                                                           | <b>26</b><br>26 |
| Thermal $Z \rightarrow E$ isomerization of SAUPP.                                                | 26              |
| <sup>1</sup> H-NMR kinetic studies                                                               | 27              |
| Thermal Z $\rightarrow$ E isomerization of 5AUP                                                  | 27              |
| Thermal Z $\rightarrow$ E isomerization of 5AUP in the presence of DAP                           | 28              |
| Thermal Z $\rightarrow$ E isomerization of 5AUP in the presence of DAP excess                    | 31              |
| <sup>1</sup> H-NMR complexation studies<br>Determination of complex stoichiometry                | <b>33</b><br>33 |
| Dimerization of E-5AUP                                                                           | 34              |
| Dimerization of Upr                                                                              | 35              |
| Titration of E-5AUP.                                                                             | 36              |
| Titration of Z-5AUP.                                                                             | 37              |
| Titration of Upr.                                                                                | 38              |
| DFT calculation of gas-phase models                                                              | 39<br>46        |

### **General remarks**

#### Instrumentation

Preparative Thin Layer Chromatography (preparative TLC) were performed on SiO<sub>2</sub> pre-made glass backed plate prepared as follows: for fifteen 20 x 20 cm plates 440 g of silica gel 60 PF<sub>254</sub> (Merck 107747) was shaken with 880 ml of phosphate buffer solution to obtain a free-flowing slurry. Using a CAMAG 21602 automatic preparative spreader, the glass plates were covered with an even coating of adsorbent (1.5 mm). Just after coating, the plates are put down in a non-ventilated closed hood for 20 h. The dried plates are activated (140 °C, 10 h) prior use. Melting points (M.p.) were measured on a Büchi Melting Point B-545 in open capillary tubes and have not been corrected. Nuclear magnetic resonance (NMR) <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F spectra were obtained on a 270 MHz NMR (Jeol JNM EX-270) or 400 MHz (Jeol JNM ECX-400) or 500 MHz (Jeol Resonance ECZ500R) at rt otherwise stated. Chemical shifts were reported in ppm according to tetramethylsilane using the solvent residual signal as an internal reference (CDCl<sub>3</sub>:  $\delta_{\rm H}$  = 7.26 ppm,  $\delta_{\rm C}$  = 77.16 ppm; CD<sub>3</sub>CN:  $\delta_{\rm H}$  = 1.94, ppm,  $\delta_{\rm C}$  = 1.32 ppm; DMSO- $d_6$ :  $\delta_{\rm H} = 2.50$  ppm,  $\delta_{\rm C} = 39.52$ ; toluene- $d_8$ :  $\delta_{\rm H} = 2.08$  ppm,  $\delta_{\rm C} = 20.43$ ). Coupling constants (J) were given in Hz. Resonance multiplicity was described as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), dt (doublet of triplets), td (triplet of doublets), q (quartet), m (multiplet) and broad (broad signal). Carbon spectra were acquired with a complete decoupling for the proton. Infrared spectra (IR) were recorded on a Perkin-Elmer Spectrum II FT-IR System with Specac Silver Gate Evolution single-reflection ATR mounted with a diamond mono-crystal. High-resolution mass spectrometry (HRMS) measurements were generally performed by the "Fédération de Recherche" ICOA/CBM (FR2708) platform of Orléans in France. High-resolution ESI mass spectra (HRMS) were performed on a Bruker maXis Q-TOF in the positive ion mode. The analytes were dissolved in a suitable solvent at a concentration of 1 mg/mL and diluted 200 times in methanol ( $\approx$  5 ng/mL). The diluted solutions (1µL) were delivered to the ESI source by a Dionex Ultimate 3000 RSLC chain used in FIA (Flow Injection Analysis) mode at a flow rate of 200 µL/min with a mixture of CH<sub>3</sub>CN/H<sub>2</sub>O+0.1% of HCO<sub>2</sub>H (65/35). ESI conditions were as follows: capillary voltage was set at 4.5 kV; dry nitrogen was used as nebulizing gas at 0.6 bars and as drying gas set at 200°C and 7.0 L/min. ESI-MS spectra were recorded at 1 Hz in the range of 50-3000 m/z. Calibration was performed with ESI-TOF Tuning mix from Agilent and corrected using lock masses at *m/z* 299.294457 (methyl stearate) and 1221.990638 (HP-1221). Data were processed using Bruker DataAnalysis 4.1 software. Liquid chromatography mass

spectrometry (LC-HRMS) measurements were conducted on an Agilent 6210 series TOF mass spectrometer equipped with ESI and APCI ionization sources and a Time Of Flight (TOF) detector, operating in positive mode. The analyte solutions were delivered to the ESI or APCI source by an Agilent 1200 series LC system at a flow rate of 0.25 mL/min. Typical elution gradient start from H<sub>2</sub>O (90%) to CH<sub>3</sub>CN (100%) for 20 minutes. ESI mode: Typical ESI conditions were capillary voltage 2.0 kV; cone voltage 65 V; source temperature 150 °C; desolvation temperature 250 °C; drying gas 5 L/min, nebulizer 60 psig. APCI: Typical APCI conditions were, capillary voltage 2.0 kV; cone voltage 65 V; source temperature 250 °C; desolvation temperature 350°C; drying gas 5L/min; nebuliser 60 psig. Dry nitrogen was used as the ESI and APCI gas. Data were processed using Mass Hunter software. High-resolution Electron Ionization mass spectrometry (EI-HRMS) measurements were performed by the "Groupe de Recherche en Spectrométrie de Masse" GRSM/ZMa of Mons in Belgium. Highresolution electron ionization mass spectra (EI-HRMS) were performed on a Waters Autospec 6F. UV/Vis absorption spectra were recorded with a Varian Cary 5000 UV-Vis-NIR spectrophotometer, using quartz cells with path length of 1.0 cm. All photophysical experiments were carried out in air-equilibrated solutions at 25 °C otherwise stated. Light irradiation experiments were performed with monochromatic light produced with a LOT Oriel equipment, consisting of a 1000 W Xe lamp (LSB551 ozone free) connected via an axial optical path to a computer controlled monochromator MSH-300. The 180° optical path was composed of a condenser lens, which collimated the light emitted from the source, and a focusing lens aligned to the monochromator entrance slit. The entrance and the exit slits of the monochromator were adjusted in order to have a 20 nm bandwidth output light. The sample was placed in the collimated beam of the monochromatic light. X-ray measurements were performed on a Gemini Ultra R system (4-circle kappa platform, Ruby CCD detector) using Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) or Cu K $\alpha$  radiation ( $\lambda = 1.54178$  Å) at Université de Namur (UNamur) in Belgium. After mounting and centering of the single crystal on the diffractometer, cell parameters were estimated from a pre-experiment run and full data sets collected at room temperature. Structures were solved by direct methods with SHELXS-86 program and then refined on F<sup>2</sup> using SHELXL-97 software.<sup>[1]</sup> Non-hydrogen atoms were anisotropically refined.

#### Materials and general methods

Synthesis. Chemicals were purchased from *Sigma Aldrich*, *Acros Organics*, *TCI* and *ABCR* and used as received. Solvents were purchased from *Sigma Aldrich*, except for deuterated

solvents from *Eurisotop*, and anhydrous DMF from *Acros Organics*. Anhydrous THF and  $CH_2Cl_2$  were distilled from Na/benzophenone and  $P_2O_5$  respectively. Toluene- $d_8$  for NMR studies was dried over molecular sieves. Low temperature baths from -15 °C to -20 °C were prepared with crushed ice and solid NaCl, those at -84 °C with AcOEt/ liquid N<sub>2</sub>. Anhydrous conditions were achieved by flaming the glassware (Schlenk tubes or two neck round bottom flasks) with a heat gun under vacuum and then purging them with Argon. The dry and inert atmosphere was maintained using Argon-filled balloons equipped with a syringe and needle that was used to penetrate the silicon stoppers used to close the flasks' necks. Additions of liquid reagents were performed using dried plastic or glass syringes.

Determination of the binding stoichiometry by Job's plot analysis. The binding stoichiometry of the HOST-GUEST complexes was determined as it follows. Two stock solutions were prepared, solution A containing 3.0 mM of HOST in toluene- $d_8$  ([H]<sub>0</sub>) and solution B containing the same concentration of DAP in toluene- $d_8$  ([G]<sub>0</sub>). Then, nine NMR tubes were filled with solutions A and B in the following volume ratios A:B (maximum volume 500 µL): 50:450, 100:400, 150:350, 250:250, 300:200, 350:150, 400:100, 450:50 and 500:0 µL. <sup>1</sup>H-NMR were recorded on a 500 MHz NMR (*Jeol Resonance ECZ500R*) at 25 °C, for each mixture and then the complex concentration ([HG]) defined by *Equation 1* plotted against the HOST molar fraction  $x_{\rm H}$ .

$$[HG] = [H]_0 \cdot \frac{\Delta\delta}{\Delta\delta sat}$$
[Eq. 1]

The observed change in chemical shift ( $\Delta\delta$ ) of the HOST signals is defined as the absolute difference between the chemical shift observed at a given HOST-GUEST complex concentration and the chemical shift of the free host. The difference in chemical shift at saturation is expressed by  $\Delta\delta$ sat. The HOST molar fraction (is defined by *Equation 2*:

$$x_{\rm H} = \frac{[{\rm H}]_0}{[{\rm H}]_0 + [{\rm G}]_0}$$
[Eq. 2]

<sup>1</sup>H-NMR titrations. <sup>1</sup>H-NMR spectra were obtained on a 500 MHz NMR (*Jeol Resonance ECZ500R*) at 25 °C. Titrations were performed with multiple additions of the GUEST solution (DAP, around 15 mM concentration) in 0.5 mL of the HOST solution (uracil derivatives Upr and 5AUP, around 3 mM concentration), using standard NMR tubes and keeping the samples in the dark. For the *Z*-5AUP titration, the HOST solution was introduced in a quartz NMR tube and the sample was irradiated for 50 min at 360 nm before the NMR analysis and the additions. HOST samples were prepared dissolving uracil derivatives in toluene-*d*<sub>8</sub>, GUEST samples were prepared dissolving 2,6-diacetylamino-4-[(trimethylsilyl)ethynyl]pyridine (DAP) in the HOST solution, except for the *Z*-5AUP

titration were the GUEST was dissolved in toluene- $d_8$ . The chemical shift data of the imide protons were fitted against GUEST concentration using *Dynafit* software package.<sup>[2]</sup> The formation constant for the complexes are the average values of few independent experiments with consistent results, otherwise discharged. The stoichiometry of the different complexes was established by Job's plot experiments. The dimerization constants were established by <sup>1</sup>H-NMR dilution experiments of 5 mM HOST solution in toluene- $d_8$  at 25 °C, in all cases the values obtained were lower than 100 M<sup>-1</sup>, small enough to neglect the interference of the dimerization process on the binding events.

<sup>1</sup>H-NMR kinetic studies. <sup>1</sup>H-NMR spectra were obtained on a 500 MHz NMR (*Jeol Resonance ECZ500R*) at 25 °C. The sample was introduced in a quartz NMR tube and irradiated at 360 nm for 40 min before the NMR analysis. The sample was kept in the NMR instrument with the probe at 25 °C for all the experiment duration. Isomers concentrations were calculated on the integrals of the peaks area corresponding to the N-H imide protons or to the N-CH<sub>2</sub> methylene protons for both isomers, depending on the resolution of those signals.

UV-Vis kinetic studies. UV/Vis absorption spectra were recorded with a Varian Cary 5000 UV-Vis-NIR spectrophotometer at 25 °C. The samples solutions were introduced in quartz cells with path length of 1.0 cm and irradiated at  $\lambda_{max}$  for 40 min before starting the kinetic studies. The extinction coefficients were determined in prior experiments.

**DFT calculations.** DFT calculations were performed using the ab initio pseudopotential plane-wave method as implemented in the PWSCF code of the Quantum ESPRESSO distribution,<sup>[3]</sup> using Ultrasoft pseudopotentials from the publicly available repository.<sup>[4]</sup> For the exchange-correlation term, a GGA-PBE approximation has been used.<sup>[5]</sup> The valence electronic wave functions were expanded onto a plane wave basis set with a kinetic energy cutoff of 408 eV. The Brillouin zone integration for the gas-phase systems investigated has been limited to the  $\Gamma$ -point only. Since van der Waals interactions play a non-negligible role in this system, we adopted the VdW-DF functional developed by Langreth and coworkers,<sup>[6][7][8]</sup> implemented in the QE package, which uses a very efficient FFT formulation.<sup>[9]</sup> Ball and stick models are rendered using the XCrySDen software.<sup>[10]</sup>

### Synthetic procedures and spectral data

2,6-Diacetylamino-4-[(trimethylsilyl)ethynyl]pyridine and 6-chlorouracil were prepared according to literature procedure.<sup>[11,12]</sup>



Synthesis of 4-*tert*-butylbenzenediazonium tetrafluoroborate.<sup>[13]</sup> (3)



A solution of *tert*-buthylaniline (1.7907 g, 12 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (24 mL) was added to BF<sub>3</sub>·Et<sub>2</sub>O (2.5547 g, 18 mmol) at -15 °C under Ar, followed by the dropwise addition of a solution of *tert*-buthylnitrite (90 % wt, 1.4849 g, 14 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (12 mL). The reaction mixture was stirred for 10 min at -15 °C, before allowing the temperature to increase to rt over 2 h 30 min. The resulting violet mixture was added dropwise to 50 mL of cold Et<sub>2</sub>O. The precipitate was filtered under reduced pressure and washed with cold Et<sub>2</sub>O (3 x 5 mL) to afford pure compound **3** as white powder (2.8348 g, 95 % yield). C<sub>10</sub>H<sub>13</sub>BF<sub>4</sub>N<sub>2</sub>, MW: 248.04 g/mol. M.p.: 84 °C (dec.). IR v<sub>max</sub> (KBr) (cm<sup>-1</sup>): 3428, 3089, 2968, 2265 (N=N), 1641, 1578, 1478, 1416, 1369, 1304, 1078, 844, 537. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 8.56 (d, *J* = 9.0 Hz, 2H, *H<sub>b</sub>*), 1.35 (s, 9H, *H<sub>a</sub>*). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ : -149.19. All characterizations are in full agreement with the previously reported in the literature.<sup>[14][15]</sup>

### Synthesis of 5-iodo-2,4-dioxo-1-propyl-3-hydropyrimidine. (2)



To a solution of 5-iodouracil (1, 2.400 g, 10 mmol) in dry DMF (50 mL) was added K<sub>2</sub>CO<sub>3</sub> (0.6010 g, 4.3 mmol) and the resulting mixture was stirred at rt for 15 min under Ar. After the addition of iodopropane (0.7310 g, 4.3 mmol) the mixture was stirred for further 15 h at rt under Ar. The reaction was quenched with 10 ml of H<sub>2</sub>O. AcOEt (50 ml) was added to the mixture and the two phases were separated. The aqueous phase was acidified to pH 5 by dropwise addition of HCl 1 M solution before the extraction with AcOEt (7 x 20 ml). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and solvents removed under reduced pressure. The crude was purified by column chromatography (silica gel, CH<sub>2</sub>Cl<sub>2</sub>/AcOEt 9/1) to afford pure compound **2** as white powder (0.7815 g, 65 % yield). C<sub>7</sub>H<sub>9</sub>IN<sub>2</sub>O<sub>2</sub>. MW: 280.07 g/mol. M.p.: 189 °C. IR v<sub>max</sub> (cm<sup>-1</sup>): 3158, 3029, 2990, 2871, 1693, 1644, 1602, 1441, 1413, 1328, 1240, 1158, 1026, 854, 755, 616, 534, 456. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 8.39 (bs, 1H, *H<sub>a</sub>*), 7.61 (s, 1H, *H<sub>b</sub>*), 3.71 (m, 2H, *H<sub>c</sub>*), 1.73 (m, 2H, *H<sub>d</sub>*), 0.97 (t, *J* = 7.6 Hz, 3H, *H<sub>e</sub>*). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ : 160.3, 150.3, 149.1, 67.5, 50.9, 22.6, 11.0. LC-HRMS (ESI-): [M-H]<sup>-</sup> calc. 278.9636, found 278.9618.

## Synthesis of 5-((4-(*tert*-butyl)phenyl)diazenyl)-1-propylpyrimidine-2,4(3H)-dione. (4, 5AUP)



A solution of LiCl in dry THF (0.5 M, 4 mL, 2 mmol)<sup>[16]</sup> was added to 5-iodo-2,4-dioxo-1propyl-3-hydropyrimidine (**2**, 0.5610 g, 2 mmol). The resulting solution was cooled at -20 °C before the dropwise addition of a MeMgCl solution (22 % wt in dry THF, 0.67 mL, 2 mmol). After the end of the CH<sub>4</sub> bubbling, the mixture was stirred for further 20 min at -20 °C. A solution of *i*PrMgCl·LiCl (1.3 M in dry THF, 1.85 mL, 2.4 mmol) was added to the mixture and allowed to warm up to rt stirring over 2 h. The resulting mixture was then cooled down to -20 °C before the dropwise addition of a solution of 4-tert-butylbenzenediazonium tetrafluoroborate (3, 0.5953 g, 2.4 mmol) in dry THF (20 mL). The reaction mixture was allowed to warm up to rt stirring over 4 h 30 min and quenched with 10 mL of H<sub>2</sub>O. The two layers were separated and the aqueous phase was extracted with AcOEt (3 x10 mL). The combined organic layers were dried over MgSO4 and solvents removed under reduced pressure. The crude was purified by column chromatography (silica gel, CH<sub>2</sub>Cl<sub>2</sub>/AcOEt 9/1) affording compound 4 as sticky red oil. Further precipitation from Et<sub>2</sub>O (5 mL) upon addition of toluene (1 mL) afforded pure compound 4 as orange powder (57.8 mg, 9 % yield). C<sub>17</sub>H<sub>22</sub>N<sub>4</sub>O<sub>2</sub>. MW: 314.39 g/mol. M.p.: 195-197 °C. IR v<sub>max</sub> (cm<sup>-1</sup>): 2963, 1707, 1668, 1600, 1579, 1465 (N=N), 1442, 1421, 1364, 1337, 1240, 1102, 832, 819, 798, 755, 592, 563, 542, 502. <sup>1</sup>H-NMR (CD<sub>3</sub>CN, 400 MHz)  $\delta$ : 9.24 (bs, 1H,  $H_h$ ), 8.02 (s, 1H,  $H_d$ ), 7.71 (d, J = 8.8 Hz, 2H,  $H_c$ ), 7.56 (d, J = 8.8 Hz, 2H,  $H_b$ ), 3.76 (m, 2H,  $H_e$ ), 1.73 (m, 2H,  $H_f$ ), 1.35 (s, 9H,  $H_a$ ), 0.94 (t, J = 7.4 Hz, 3H,  $H_g$ ). <sup>13</sup>C-NMR (CD<sub>3</sub>CN, 100 MHz)  $\delta$ : 161.0, 155.6, 151.5, 151.1, 137.6, 130.2, 127.3, 123.1, 51.5, 35.6, 31.4, 23.0, 11.1. LC-HRMS (ESI+): [M+H]<sup>+</sup> calc. 315.1821, found 315.1874. UV-Vis (toluene, 25 °C)  $\lambda_{\text{max}}$  ( $\epsilon$ , Lmol<sup>-1</sup>cm<sup>-1</sup>): 360 nm (20727). Crystals obtained by slow evaporation of toluene solution, space group: P21/n.

#### Synthesis of 5-iodo-2,4-dioxo-1,3-dipropylpyrimidine. (5)



To a solution of 5-iodouracil (1, 1.1899 g, 5 mmol) in dry DMF (25 mL) was added K<sub>2</sub>CO<sub>3</sub> (0.6911 g, 5 mmol) and the resulting mixture was stirred at rt for 15 min under Ar. After the addition of iodopropane (1.8152 g, 11 mmol) the mixture was stirred for further 15 h at rt under Ar. The reaction was quenched with 10 ml of H<sub>2</sub>O. AcOEt (50 mL) was added to the mixture and the two phases were separated. The aqueous phase was acidified to pH 5 by dropwise addition of HCl 1 M solution before the extraction with AcOEt (7 x 20 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and solvents removed under reduced pressure. The crude was purified by column chromatography (silica gel, CH<sub>2</sub>Cl<sub>2</sub>/AcOEt 9/1) to afford pure compound **5** as white powder (0.7672 g, 48 % yield). C<sub>10</sub>H<sub>15</sub>IN<sub>2</sub>O<sub>2</sub>. MW:

322.15 g/mol. M.p.: 91 °C. IR  $v_{max}$  (cm<sup>-1</sup>): 2967, 1696, 1650, 1637, 1612, 1434, 1421, 1377, 1356, 1301, 1240, 1204, 1053, 926, 764, 752, 607, 548, 466. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 7.59 (s, 1H,  $H_a$ ), 3.95 (m, 2H,  $H_b$ ), 3.71 (m, 2H,  $H_e$ ), 1.66 (m, 4H,  $H_{c,f}$ ), 0.95 (m, 6H,  $H_{d,g}$ ). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$ : 160.2, 151.1, 147.0, 67.7, 51.8, 44.7, 22.6, 20.9, 11.4, 10.0. HRMS (ESI+): [M+H]<sup>+</sup> calc. 323.0251, found 323.0249; [M+Na]<sup>+</sup> calc. 345.0070, found 345.0069.

Synthesis of 5-((4-(*tert*-butyl)phenyl)diazenyl)-1,3-dipropylpyrimidine-2,4-dione. (6, 5AUPP)



A solution of 5-iodo-2,4-dioxo-1,3-dipropylpyrimidine (5, 96.6 mg, 0.3 mmol) in dry THF (1 mL) was cooled at -20 °C before the dropwise addition of *i*PrMgCl·LiCl (1.3 M in THF, 0.25 mL, 0.33 mmol). The resulting mixture was stirred under Ar allowing the temperature to increase to rt over 2 h. A solution of 4-tert-butylbenzenediazonium tetrafluoroborate (3, 96.7 mg, 0.39 mmol) in dry THF (6 mL) was added dropwise to the reaction mixture and stirred for further 4 h allowing the temperature to increase to rt. The reaction was quenched with H<sub>2</sub>O (10 mL) and the two layers separated. The aqueous phase was extracted with AcOEt (3 x 20 mL), the combined organic layers were dried over MgSO<sub>4</sub> and solvents removed under reduced pressure. The crude was purified by preparative TLC (silica gel, CH<sub>2</sub>Cl<sub>2</sub>/AcOEt 95/5) affording pure compound 6 as red oil (63.4 mg, 59 % yield). C<sub>20</sub>H<sub>28</sub>N<sub>4</sub>O<sub>2</sub>. MW: 356.47 g/mol. IR v<sub>max</sub> (cm<sup>-1</sup>): 2962, 2907, 2875, 1711, 1662, 1610, 1499, 1458 (N=N), 1380, 1363, 1334, 1267, 1232, 1163, 1105, 844, 775, 758, 566, 498. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz) δ: 7.91 (s, 1H,  $H_d$ ), 7.80 (d, J = 8.4 Hz, 2H,  $H_c$ ), 7.49 (d, J = 8.4 Hz, 2H,  $H_b$ ), 4.05 (m, 2H,  $H_h$ ), 3.85 (m, 2H,  $H_e$ ), 1.77 (m, 4H,  $H_{f,i}$ ), 1.35 (s, 9H,  $H_a$ ), 1,00 (m, 6H,  $H_{g,j}$ ). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$ : 160.2, 154.9, 150.7, 150.5, 132.7, 129.0, 126.1 122.8, 52.2, 43.5, 35.1, 31.3, 22.6, 21.0, 11.5, 11.1. HRMS (ESI+):  $[M+H]^+$  calc. 357.2285, found 357.2282. UV-Vis (toluene, 25 °C)  $\lambda_{max}$  $(\varepsilon, \text{Lmol}^{-1}\text{cm}^{-1})$ : 364 nm (12561).



To a solution of 6-chlorouracil (7, 1.3189 g, 9 mmol) in HI (57 %, 24 mL) was added NaI (6.745 g, 45 mmol). The reaction mixture was stirred at rt for 24 h before filtering it under reduced pressure. The solid obtained was washed with cold CH<sub>3</sub>CN (3 x 5 mL) followed by cold Et<sub>2</sub>O (3 x 5mL), and finally dried under high vacuum to afford pure compound **8** as pale yellow powder (2.100 g, 98 % yield). C<sub>4</sub>H<sub>3</sub>IN<sub>2</sub>O<sub>2</sub>. MW: 237.98 g/mol. M.p.: 250 °C (dec.). <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>, 400 MHz)  $\delta$ : 11.57 (s, 1H, *H*<sub>a</sub>), 11.19 (s, 1H, *H*<sub>b</sub>), 6.01 (s, 1H, *H*<sub>c</sub>). <sup>13</sup>C-NMR (DMSO-*d*<sub>6</sub>, 100 MHz)  $\delta$ : 162.97, 151.12, 111.71, 110.62. All characterizations are in full agreement with the previously reported in the literature.<sup>[17,18]</sup>

### Synthesis of 6-iodo-2,4-dioxo-1-propyl-3-hydropyrimidine. (9)



To a solution of 6-iodo-2,4-dioxo-1,3-dihydropyrimidine (**8**, 1.3267 g, 5.6 mmol) in dry DMF (80 mL), was added K<sub>2</sub>CO<sub>3</sub> (0.2764 g, 2 mmol). The mixture was stirred under Ar at rt for 15 min, before the addition of iodopropane (0.2 mL, 2 mmol). The reaction was stirred for further 15 h at rt, under Ar and the solvent removed under reduced pressure. The crude mixture was taken up in H<sub>2</sub>O (10 mL), followed by addition of AcOEt (20 mL). The two phases were separated, the aqueous phase acidified to pH 5 by dropwise addition of HCl 1 M solution and extracted with AcOEt (7 x 20 mL). Combined organic layers are washed with H<sub>2</sub>O (5 mL) and brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and solvent removed under reduced pressure. The crude was purified by column chromatography (silica gel, CH<sub>2</sub>Cl<sub>2</sub>/AcOEt 9/1) to afford pure compound **9** as light yellow powder (0.2334 g, 42 % yield). C<sub>7</sub>H<sub>9</sub>IN<sub>2</sub>O<sub>2</sub>. MW: 280.07 g/mol. M.p.: 168 °C. IR v<sub>max</sub> (cm<sup>-1</sup>): 3159, 3029, 2955, 2866, 1660, 1558, 1429, 1392, 1348, 1312, 1166, 1060, 997, 825, 786, 750, 638, 573, 558, 533. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 8.48 (s, 1H,  $H_a$ ), 6.41 (s, 1H,  $H_b$ ), 4.03 (m, 2H,  $H_c$ ), 1.72 (m, 2H,  $H_d$ ), 0.98 (t, J = 7.6 Hz,

3H, *H<sub>e</sub>*). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 68 MHz) δ: 161.2, 148.1, 115.8, 113.9, 55.1, 22.3, 10.8. HRMS (ESI +): [M+H]<sup>+</sup> calc. 280.9782, found 280.9777; [M+Na]<sup>+</sup> calc. 302.9601, found 302.9598.

### Synthesis of 6-((4-(tert-butyl)phenyl)diazenyl)-2,4-dioxo-1-propyl-3hydropyrimidine. (10, 6AUP)



A solution of 6-iodo-2,4-dioxo-1-propyl-3-hydropyrimidine (9, 42.0 mg, 0.15 mmol) in dry THF (3 mL) was cooled at -84 °C and stirred 30 min before the dropwise addition of PhMgCl (2.0 M in toluene, 0.15 mL, 0.30 mmol). The reaction mixture was further stirred at -84 °C for 1 h before the dropwise addition of the solution of 4-tert-butylbenzenediazonium tetrafluoroborate (3, 44.6 mg, 0.18 mmol) in dry THF (3 mL). The mixture was stirred for further 4 h 30 min allowing the temperature to increase to 0 °C. The reaction was quenched with H<sub>2</sub>O, the two layers separated, and the aqueous phase neutralized by dropwise addition of a saturated solution of NH<sub>4</sub>Cl. The aqueous phase was extracted with AcOEt (3 x 20 mL), combined organic layers were dried over MgSO4, and solvents removed under reduced pressure. The crude was purified by preparative TLC (cyclohexane/AcOEt 7/3) to afford pure compound **10** as orange powder (13.0 mg, 28 % yield). C<sub>17</sub>H<sub>22</sub>N<sub>4</sub>O<sub>2</sub>. MW: 314.39 g/mol. M.p.: 179 °C. IR v<sub>max</sub> (cm<sup>-1</sup>): 3170, 3047, 2959, 2871, 1692, 1667, 1599, 1441 (N=N), 1408, 1364, 1341, 1101, 1028, 850, 828, 575, 554, 524. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz) δ: 8.19 (s, 1H,  $H_{h}$ ), 7.86 (d, J = 8.6 Hz, 2H,  $H_{c}$ ), 7.60 (d, J = 8.6 Hz, 2H,  $H_{h}$ ), 5.74 (s, 1H,  $H_{d}$ ), 4.16 (m, 2H,  $H_e$ , 1.74 (m, 2H,  $H_f$ ), 1.39 (s, 9H,  $H_a$ ), 0.95 (t, J = 7.4 Hz, 3H,  $H_g$ ). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 100 MHz) δ: 163.1, 159.3, 158.9, 150.9, 150.4, 126.8, 124.5, 87.1, 44.9, 35.6, 31.2, 22.8, 11.3. EI-HRMS:  $[M]^+$  calc. 314.1743, found 314.1754. UV-Vis (toluene, 25 °C)  $\lambda_{max}$  ( $\epsilon$ , Lmol<sup>-1</sup>cm<sup>-1</sup>): 329 nm (24111). Crystals obtained by slow evaporation of toluene solution, space group: P-1.

#### Synthesis of 2,4-dioxo-1-propyl-3-hydropyrimidine. (12, Upr)



To a solution of Uracil (**11**, 0.5 g, 4.5 mmol) in dry DMF (63 mL) were added K<sub>2</sub>CO<sub>3</sub> (0.6 g, 4.5 mmol) and iodopropane (0.44 mL, 4.5 mmol). The reaction mixture was stirred under Ar at rt for 24 h. The reaction was quenched with a saturated solution of NH<sub>4</sub>Cl (10 mL) and extracted with AcOEt (3 x 15 mL). The combined organic layers were washed with brine (2 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and solvent removed under reduced pressure. The crude was purified by column chromatography (silica gel, CH<sub>2</sub>Cl<sub>2</sub>/EtOH 95/5) to afford pure compound **12** as white powder (0.3093 g, 45 % yield). C<sub>7</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>. MW: 154.17 g/mol. M.p.: 112-115 °C. IR v<sub>max</sub> (cm<sup>-1</sup>): 3039, 1622, 1456, 1353, 1247, 806, 759, 722, 546. <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 8.27 (s, 1H, *H<sub>a</sub>*), 7.15 (d, *J* = 8.0 Hz, 1H, *H<sub>c</sub>*), 5.69 (dd, *J* = 8.0, 2.4 Hz, 1H, *H<sub>b</sub>*), 3.69 (m, 2H, *H<sub>d</sub>*), 1.73 (m, 2H, *H<sub>e</sub>*), 0.97 (t, *J* = 7.2 Hz, 3H, *H<sub>f</sub>*). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, 68 MHz)  $\delta$ : 161.7, 150.9, 144.6, 102.2, 50.6, 22.5, 11.0. HRMS (ESI +): [M+H]<sup>+</sup> calc. 155.0815, found 155.0818; [M+Na]<sup>+</sup> calc. 177.0634, found 177.0637. Crystals obtained by slow evaporation of CH<sub>3</sub>CN solution, space group: P21/n. All characterizations are in full agreement with the previously reported in the literature.<sup>[19]</sup>

### <sup>1</sup>H and <sup>13</sup>C NMR spectra

5-iodo-2,4-dioxo-1-propyl-3-hydropyrimidine. (2)







5-((4-(*tert*-butyl)phenyl)diazenyl)-2,4-dioxo-1-propyl-3-hydropyrimidine (4, 5AUP)



5-iodo-2,4-dioxo-1,3-dipropylpyrimidine. (5)





#### 5-((4-(tert-butyl)phenyl)diazenyl)-2,4-dioxo-1,3-dipropylpyrimidine (6, 5AUPP)

6-iodo-2,4-dioxo-1-propyl-3-hydropyrimidine. (9)





6-((4-(*tert*-butyl)phenyl)diazenyl)-2,4-dioxo-1-propyl-3-hydropyrimidine (10, 6AUP)



### Mass analysis Mass spectra of 5AUP (4)

### Mass spectra of 6AUP (10)



### Crystal data and structure refinement

### Table S1. Crystal data and structure refinement for 5AUP (CCDC 1435199)

| Crystal data                           |                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------------------------------------|-----------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Formula                                | $C_{17}H_{22}N_4O_2$              |                                                                      | C32<br>C33 N5 C26<br>C31 N5 C26<br>C25 C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Formula Weight                         | 314.39                            | C8<br>C3<br>C7<br>C4<br>C5<br>C6<br>C5<br>C6<br>C5<br>C6<br>C6<br>N2 | <b>2.875</b><br>01<br><b>2.903</b><br>C14<br><b>2.903</b><br>C4<br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C24</b><br><b>C25</b><br><b>C25</b><br><b>C26</b><br><b>C26</b><br><b>C26</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C27</b><br><b>C2</b> |  |  |
| Crystal system                         | Monoclinic                        | C10 C3 C2 C12                                                        | C13<br>O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Space group                            | <i>P2</i> <sub>1</sub> / <i>n</i> |                                                                      | C15 Profile view :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Unit cell dimensions                   | a                                 | = 9.9256(5) Å                                                        | $\alpha = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                        | b                                 | = 12.5657(7) Å                                                       | $\beta = 95.471(5)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                        | c                                 | = 25.9625(14) Å                                                      | $\gamma = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Volume                                 | 32                                | 223.3(3) Å <sup>3</sup>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Z                                      | 8                                 |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Density (calculated)                   | 1.                                | .296 g/cm <sup>3</sup>                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Absorption coefficient                 | 0.                                | $.087 \text{ mm}^{-1}$                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| F(000)                                 | 1.                                | 344                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Crystal size                           | 0.                                | .14 x 0.25 x 0.31 mm                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                        | ]                                 | Data collection                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Temperature                            | 1:                                | 50 K                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Wavelength                             | 0.                                | .71073 Å                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Theta range for data colle             | ection 3.                         | .3 to 25.0°                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Index range                            | -1                                | 0≤h≤11, -14≤k≤14, -29≤                                               | ≤l≤30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Reflections collected                  | 14                                | 4756                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Independent reflections                | 5.                                | 355 [R(int) = 0.025]                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Observed data [ $I \ge 2\sigma(I)$ ]   | 4:                                | 509                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                        |                                   | Refinement                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Data / restraints / parame             | ters                              | 5355 / 0 / 455                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| R, wR2, S                              |                                   | 0.0486, 0.1310, 1.04                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $w = 1/[(\sigma^2 F_0^2) + (0.0567P)]$ | ) <sup>2</sup> +2.1977P]          | where $P = (F_0^2 + 2F_c^2)/3$                                       | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Largest diff. peak and ho              | le                                | -0.31 and 0.72 e.Å <sup>-3</sup>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

### Table S2. Crystal data and structure refinement for 5AUP·DAP (CCDC1474613)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Crystal data                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Profile view :   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  | C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ••••••           |
| Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>31</sub> H <sub>41</sub> N <sub>7</sub> O <sub>4</sub> S1 | ₩ <b>₩</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| Formula Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 603.80                                                           | C13 QC47 _ 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monoclinic                                                       | 9 N1 C1 2211 C46<br>N1 C1 C2 19 C45<br>N1 C1 C2 19 C45<br>N1 C45 C44 C55<br>N1 C45 C44 C55<br>N1 C45 C44 C55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 C51<br>SI1 C52 |
| Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P 21/c                                                           | $\begin{array}{c} \mathbf{C}_{4} \\ \mathbf{C}_{7} \\ \mathbf{C}_{6} \\ \mathbf{C}_{6} \\ \mathbf{C}_{6} \\ \mathbf{C}_{4} \\ \mathbf{C}_{6} \\ \mathbf{C}_{4} \\ \mathbf{C}_{6} \\ \mathbf{C}_{4} \\ \mathbf{C}_{6} \\ \mathbf{C}$ | C54              |
| Unit cell dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a = 19.5588(4) Å                                                 | $\alpha = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b = 14.0407(3) Å                                                 | Å $\beta = 100.254(2)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c = 26.4137(7) Å                                                 | $\Lambda \qquad \gamma = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7137.9 (3) Å <sup>3</sup>                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Density (calculated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.124 \text{ g/cm}^3$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Absorption coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.920 \text{ mm}^{-1}$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| F(000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2576                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Crystal size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.11 x 0.12 x 0.1                                                | 3 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data collectio                                                   | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 293 K                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.54184 Å                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Theta range for data collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion $3.4 \text{ to } 66.6^{\circ}$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Index range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -23≤h≤16, -16≤k                                                  | x≤15, <b>-</b> 30≤l≤31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Reflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27063                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Independent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12394 [R(int) =                                                  | 0.057]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Observed data [ $I \ge 2\sigma(I)$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8015                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Refinement                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Data / restraints / parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rs 12394 / 41 /                                                  | / 847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| R, wR2, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0932, 0.30                                                     | 057, 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| $w = 1/[(\sigma^2 F_0^2) + (0.1808P)^2 + (0.1808$ | -0.1103P] where $P = (1)$                                        | $F_0^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Largest diff. peak and hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.53 and 0.                                                     | .71 e.Å <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |

### Table S3. Crystal data and structure refinement for 6AUP (CCDC1435200)

|                                               | Crystal data                                                         |  |  |  |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| Formula                                       | $C_{17}H_{22}N_4O_2$                                                 |  |  |  |  |  |  |
| Formula Weight                                | 314.39 C14 C1 C10 N4 C2 2355 C10 |  |  |  |  |  |  |
| Crystal system                                | Triclinic C13 C11 C7 C15 C15 C15 C1                                  |  |  |  |  |  |  |
| Space group                                   | P-1 Profile view :                                                   |  |  |  |  |  |  |
| Unit cell dimensions                          | a = 8.2330(4) Å $\alpha$ = 75.055 (7)°                               |  |  |  |  |  |  |
|                                               | b = 10.0136(9) Å $\beta$ = 82.521(5)°                                |  |  |  |  |  |  |
|                                               | $c = 10.5735(7) \text{ Å}$ $\gamma = 87.889(6)^{\circ}$              |  |  |  |  |  |  |
| Volume                                        | 853.04(10) Å <sup>3</sup>                                            |  |  |  |  |  |  |
| Ζ                                             | 2                                                                    |  |  |  |  |  |  |
| Density (calculated)                          | 1.250 g/cm <sup>3</sup>                                              |  |  |  |  |  |  |
| Absorption coefficient                        | 0.681 mm <sup>-1</sup>                                               |  |  |  |  |  |  |
| F(000)                                        | 336.0                                                                |  |  |  |  |  |  |
| Crystal size                                  | 0.12 x 0.30 x 0.50 mm                                                |  |  |  |  |  |  |
|                                               | Data collection                                                      |  |  |  |  |  |  |
| Temperature                                   | 150 K                                                                |  |  |  |  |  |  |
| Wavelength                                    | 1.54184 Å                                                            |  |  |  |  |  |  |
| Theta range for data collection               | 5.4 to 66.6°                                                         |  |  |  |  |  |  |
| Index range                                   | -8≤h≤9, -10≤k≤11, -12≤l≤12                                           |  |  |  |  |  |  |
| Reflections collected                         | 5541                                                                 |  |  |  |  |  |  |
| Independent reflections                       | 2865 [R(int) = 0.025]                                                |  |  |  |  |  |  |
| Observed data [ $I > 2\sigma(I)$ ]            | 2639                                                                 |  |  |  |  |  |  |
|                                               | Refinement                                                           |  |  |  |  |  |  |
| Data / restraints / parameters                | 2865 / 0 / 216                                                       |  |  |  |  |  |  |
| R, wR2, S                                     | 0.0579, 0.1576, 1.11                                                 |  |  |  |  |  |  |
| $w = 1/[(\sigma^2 F_0^2) + (0.0365P)^2 + 1.1$ | 541P] where $P = (F_0^2 + 2F_c^2)/3$                                 |  |  |  |  |  |  |
| Largest diff. peak and hole                   | -0.17 and 0.21 e.Å <sup>-3</sup>                                     |  |  |  |  |  |  |

### Table S4. Crystal data and structure refinement for 6AUP·DAP(CCDC1435201)

| Crystal data                               |                                                                 |                |                               |                                  |                   |
|--------------------------------------------|-----------------------------------------------------------------|----------------|-------------------------------|----------------------------------|-------------------|
| Formula                                    | C <sub>31</sub> H <sub>41</sub> N <sub>7</sub> O <sub>4</sub> S | Si ola         | C9 C10 C4                     | C1 01 019 020                    | 21 023 024 025    |
| Formula Weight                             | 603.80                                                          | 014            |                               | 3.026<br>N1 N7<br>C2 2.009 C18 C | 22 C27            |
| Crystal system                             | Triclinic                                                       | G13            |                               |                                  | 3                 |
| Space group                                | P-1                                                             |                | Pro                           | ofile view :                     | alt at the second |
| Unit cell dimensions                       | a = 12.2322(                                                    | 7) Å           | $\alpha = 118.238(6)^{\circ}$ | <b>ه</b><br>ک                    |                   |
|                                            | b = 12.9303(                                                    | 8) Å           | $\beta = 94.607(5)^{\circ}$   |                                  |                   |
|                                            | c = 13.2865(                                                    | 7) Å           | $\gamma = 107.892(5)^{\circ}$ |                                  |                   |
| Volume                                     | 1696.80(17)                                                     | Å <sup>3</sup> |                               |                                  |                   |
| Ζ                                          | 2                                                               |                |                               |                                  |                   |
| Density (calculated)                       | 1.182 g/cm <sup>3</sup>                                         |                |                               |                                  |                   |
| Absorption coefficient                     | 0.113 mm <sup>-1</sup>                                          |                |                               |                                  |                   |
| F(000)                                     | 644.0                                                           |                |                               |                                  |                   |
| Crystal size                               | 0.18 x 0.26 x                                                   | 0.48 m         | ım                            |                                  |                   |
|                                            | ]                                                               | Data co        | ollection                     |                                  |                   |
| Temperature                                |                                                                 | 293 K          |                               |                                  |                   |
| Wavelength                                 |                                                                 | 0.7107         | 73 Å                          |                                  |                   |
| Theta range for data coll                  | ection                                                          | 2.9 to         | 25.0°                         |                                  |                   |
| Index range                                |                                                                 | -14≤h          | ≤13, -15≤k≤15, -              | 15≤l≤15                          |                   |
| Reflections collected                      |                                                                 | 13392          |                               |                                  |                   |
| Independent reflections                    |                                                                 | 5986 [         | R(int) = 0.026]               |                                  |                   |
| Observed data [ $I > 2\sigma(I)$ ]         |                                                                 | 4603           |                               |                                  |                   |
|                                            |                                                                 | Refin          | ement                         |                                  |                   |
| Data / restraints / parame                 | eters                                                           | 5986 /         | 3 / 409                       |                                  |                   |
| R, wR2, S                                  |                                                                 | 0.0770         | ), 0.2225, 1.20               |                                  |                   |
| $w = 1/[(\sigma^2 F_0^2) + (0.0926F_0^2)]$ | P) <sup>2</sup> +0.9956P]                                       | where          | $P = (F_0^2 + 2F_c^2)/3$      |                                  |                   |
| Largest diff. peak and he                  | ole                                                             | -0.66 a        | and 0.90 e.Å <sup>-3</sup>    |                                  |                   |

### **UV-Vis kinetic studies**

#### Thermal $Z \rightarrow E$ isomerization of 5AUP.

The isomerization of Z-5AUP to its *E* diastereoisomer was monitored by UV-Vis analysis of a 5AUP solution (3.0 x 10<sup>-5</sup> M in toluene) previously irradiated. The kinetic experiment was run by taking full scans of the irradiated solution. The extinction coefficient of the *E*-5AUP was determined in prior experiments and is:  $\varepsilon = 20727 \text{ M}^{-1} \text{ cm}^{-1}$ . The fitting of the experimental data, *i.e.* the absorbance change at  $\lambda_{max}$  over the time, (Fig. S1) was performed with Origin 8 considering a first order kinetic model and gives an observed rate constant  $k_{est}$ = (2.7 ± 0.01) x 10<sup>-5</sup> s<sup>-1</sup> and  $\Delta A = 0.534$ .



Figure S1. Fitting of the experimental data with a first order kinetic model.

#### Thermal $Z \rightarrow E$ isomerization of 5AUPP.

The isomerization of Z-5AUPP to its *E* diastereoisomer was monitored by UV-Vis analysis of a 5AUPP solution (5.2 x 10<sup>-5</sup> M in toluene) previously irradiated. The kinetic experiments were run by recording the absorbance change at 364 nm, over a time span of 560 minutes. The extinction coefficient of the *E*-**5AUPP** was determined in prior experiments and is:  $\varepsilon =$ 12561 M<sup>-1</sup> cm<sup>-1</sup>. The fitting of the experimental data gives an observed rate constant k<sub>est</sub>= (3.06 ± 0.03) x 10<sup>-5</sup> s<sup>-1</sup> and  $\Delta A = 0.377$ .



Figure S2. Fitting of the experimental data with a first order kinetic model.

### <sup>1</sup>H-NMR kinetic studies

### Thermal $Z \rightarrow E$ isomerization of 5AUP.

The isomerization of Z-5AUP to its *E* diastereoisomer was studied also by <sup>1</sup>H NMR analysis of a 5AUP solution (3.0 mM in toluene- $d_8$ ) previously irradiated, by monitoring the initial rate of formation of the *E* isomer. The analysis of the experimental data was performed according to the initial rate method, the isomerization rate is given by the slope of the straight lines reported in Figure S3; the initial concentration of *Z*-5AUP ([*Z*]<sub>0</sub>) is instead given by the intercept of the straight line describing the consumption of *Z*-5AUP. The composition of the reaction mixture as a function of time is reported in Table S5 and Fig. S3.

**Table S5.** Experimental data for the Z to E isomerization of Z-5AUP monitored by <sup>1</sup>H NMR experiments.

| Time (s) | integral N-CH <sub>2</sub> E | integral N-CH <sub>2</sub> Z | % Z  | % E  | [ <i>E</i> ] (mM) | [ <i>Z</i> ] (mM) |
|----------|------------------------------|------------------------------|------|------|-------------------|-------------------|
| 600      | 0.01926                      | 0.26                         | 93.1 | 6.9  | 0.206904          | 2.793             |
| 780      | 0.01949                      | 0.26                         | 93.0 | 7.0  | 0.209202          | 2.791             |
| 1200     | 0.02233                      | 0.26                         | 92.1 | 7.9  | 0.237276          | 2.763             |
| 1440     | 0.02533                      | 0.26                         | 91.1 | 8.9  | 0.266323          | 2.734             |
| 1620     | 0.02655                      | 0.26                         | 90.7 | 9.3  | 0.277962          | 2.722             |
| 1800     | 0.02589                      | 0.26                         | 90.9 | 9.1  | 0.271678          | 2.728             |
| 1980     | 0.02954                      | 0.26                         | 89.8 | 10.2 | 0.306072          | 2.694             |
| 2280     | 0.0298                       | 0.25                         | 89.3 | 10.7 | 0.319514          | 2.68              |



Figure S3. Linear fitting of the experimental data according to the initial rate method.

The results of the fitting are reported in Table S6 for both the formation of *E*-5AUP and the consumption of *Z*-5AUP.

| Table S6. Fitting data for the Z-5AUP | P to E-5AUP isomerization. |
|---------------------------------------|----------------------------|
|---------------------------------------|----------------------------|

|                                     | slope (M <sup>-1</sup> s <sup>-1</sup> ) | Standard Error (M <sup>-1</sup> s <sup>-1</sup> ) | Intercept (M)           | Standard Error (M)      |
|-------------------------------------|------------------------------------------|---------------------------------------------------|-------------------------|-------------------------|
| Ζ                                   | -7.03 x 10 <sup>-8</sup>                 | 5.38 x 10 <sup>-9</sup>                           | 0.00284                 | 8.39 x 10 <sup>-6</sup> |
| Ε                                   | 7.03 x 10 <sup>-8</sup>                  | 5.38 x 10 <sup>-9</sup>                           | 1.59 x 10 <sup>-4</sup> | 8.39 x 10 <sup>-6</sup> |
| k <sub>obs</sub> (s <sup>-1</sup> ) | δk (s <sup>-1</sup> )                    |                                                   |                         |                         |
| 2.48 x 10⁻⁵                         | 1.97 x 10 <sup>-6</sup>                  |                                                   |                         |                         |

Considering that at the beginning of the reaction, the mixture contains 2.84 mM Z-5AUP, the observed rate constant for the Z-E isomerization is:  $k_{est} = (2.48 \pm 0.20) \times 10^{-5} \text{ s}^{-1}$ . The calculation of the uncertainty was performed by using the uncertainty propagation method.

#### Thermal $Z \rightarrow E$ isomerization of 5AUP in the presence of DAP

The isomerization of Z-5AUP to its *E* diastereoisomer in the presence of increasing amounts of DAP was monitored by <sup>1</sup>H-NMR analysis of toluene- $d_8$  solutions previously irradiated. The conditions explored were the following: **Z-5AUP:DAP=8:2** ([5AUP] = 2.9 mM and [DAP] = 0.73 mM) and **Z-5AUP:DAP =1:1** ([5AUP] = 2.5 mM and [DAP] = 2.5 mM), where the **nominal [5AUP]** are those of the prepared solutions **before irradiation**, the reactions were monitored for 140 and 45 minutes respectively.

### Conditions: **Z-5AUP:DAP =8:2** ([5AUP] = 2.9 mM and [DAP] = 0.73 mM).

The experimental data are reported in Table S7, the analysis was restricted to the first instants of the reaction according to the initial rate method and represented graphically in Figure S4 while the results of the fitting are reported in Table S8.

| Time (s) | integral N-CH <sub>2</sub> Z | integral N-CH <sub>2</sub> E | % E  | % Z  | [ <i>E</i> ] (mM) | [ <i>Z</i> ] (mM) |
|----------|------------------------------|------------------------------|------|------|-------------------|-------------------|
| 600      | 8.59                         | 0.89                         | 9.4  | 90.6 | 0.272257          | 2.628             |
| 900      | 8.49                         | 0.97                         | 10.3 | 89.7 | 0.297357          | 2.603             |
| 1500     | 8.08                         | 1.1                          | 12.0 | 88.0 | 0.347495          | 2.553             |
| 1860     | 7.96                         | 1.12                         | 12.3 | 87.7 | 0.357709          | 2.542             |
| 2340     | 7.78                         | 1.32                         | 14.5 | 85.5 | 0.420659          | 2.479             |
| 2940     | 6.75                         | 1.21                         | 15.2 | 84.8 | 0.440829          | 2.459             |
| 4560     | 6.37                         | 1.59                         | 20.0 | 80.0 | 0.579271          | 2.321             |
| 5340     | 6.03                         | 1.75                         | 22.5 | 77.5 | 0.652314          | 2.248             |
| 6540     | 5.55                         | 1.72                         | 23.7 | 76.3 | 0.686107          | 2.214             |
| 8340     | 5.39                         | 1.98                         | 26.9 | 73.1 | 0.779104          | 2.121             |
| 12360    | 4.55                         | 2.46                         | 35.1 | 64.9 | 1.017689          | 1.882             |
| 13140    | 4.58                         | 2.51                         | 35.4 | 64.6 | 1.026657          | 1.873             |

**Table S7.** Experimental NMR data for the isomerization of Z-5AUP to E-5AUP in the presence of DAP, Z-5AUP: DAP =8:2



Figure S4. Linear fitting of the experimental data according to the initial rate method.

 Table S8. Fitting data for the Z-5AUP to E-5AUP isomerization in the following conditions: (Z-5AUP: DAP =8:2).

|                                     | slope (M <sup>-1</sup> s <sup>-1</sup> ) | Standard Error (M <sup>-1</sup> s <sup>-1</sup> ) | Intercept (M)           | Standard Error (M)      |
|-------------------------------------|------------------------------------------|---------------------------------------------------|-------------------------|-------------------------|
| Ζ                                   | -6.81 x 10 <sup>-8</sup>                 | 3.00 x 10 <sup>-9</sup>                           | 0.00265                 | 1.28 x 10 <sup>-5</sup> |
| Ε                                   | 6.81 x 10 <sup>-8</sup>                  | 3.00 x 10 <sup>-9</sup>                           | 2.46 x 10 <sup>-4</sup> | 1.28 x 10 <sup>-5</sup> |
| k <sub>obs</sub> (s <sup>-1</sup> ) | δk (s⁻¹)                                 |                                                   |                         |                         |
| 2.57 x 10 <sup>-5</sup>             | 1.26 x 10 <sup>-6</sup>                  |                                                   |                         |                         |

Considering that at the beginning of the reaction the concentration of *Z*-**5AUP** is 2.65 mM (see intercept in Table S8), and using the slopes reported in Table S8, the observed rate constant for the *Z* to *E* isomerization results:  $k_{obs} = (2.57 \pm 0.13) \times 10^{-5} \text{ s}^{-1}$ , the uncertainty was calculated as in the preceding cases.

Conditions: **Z-5AUP:DAP =1:1** ([5AUP] = 2.5 mM and [DAP] = 2.5 mM).

In this case the N-CH<sub>2</sub> protons of the Z and E form were not distinguishable, therefore all values reported were calculated taking in consideration the integral of the NH proton.

The experimental data are reported in Table S9, the analysis was restricted to the first instants of the reaction as before and represented graphically in Figure S5 while the results of the fitting are reported in Table S10.

**Table S9.** Experimental NMR data for the isomerization of Z-5AUP to E-5AUP in the presence of DAP, Z-5AUP:DAP =1:1.

| Time (s) | integral N-H Z | integral N-H E | % E  | % Z  | [ <i>E</i> ] (mM) | [ <i>Z</i> ] (mM) |
|----------|----------------|----------------|------|------|-------------------|-------------------|
| 420      | 0.96           | 0.18           | 15.8 | 84.2 | 0.394737          | 2.105263          |
| 840      | 0.95           | 0.25           | 20.8 | 79.2 | 0.520833          | 1.979167          |
| 960      | 0.9            | 0.26           | 22.4 | 77.6 | 0.560345          | 1.939655          |
| 1260     | 0.87           | 0.27           | 23.7 | 76.3 | 0.592105          | 1.907895          |
| 1380     | 0.85           | 0.31           | 26.7 | 73.3 | 0.668103          | 1.831897          |
| 1560     | 0.8            | 0.33           | 29.2 | 70.8 | 0.730088          | 1.769912          |
| 1740     | 0.77           | 0.34           | 30.6 | 69.4 | 0.765766          | 1.734234          |
| 2220     | 0.74           | 0.35           | 32.1 | 67.9 | 0.802752          | 1.697248          |
| 2640     | 0.69           | 0.42           | 37.8 | 62.2 | 0.945946          | 1.554054          |



Figure S5. Linear fitting of the experimental data according to the initial rate method.

Table S10. Fitting data for the Z-5AUP to E-5AUP isomerization in the following conditions: (Z-5AUP:DAP = 1:1).

|                                     | slope (M <sup>-1</sup> s <sup>-1</sup> ) | Standard Error (M <sup>-1</sup> s <sup>-1</sup> ) | Intercept (M)           | Standard Error (M)      |
|-------------------------------------|------------------------------------------|---------------------------------------------------|-------------------------|-------------------------|
| Ζ                                   | -2.38 x 10 <sup>-7</sup>                 | 1.56 x 10 <sup>-8</sup>                           | 0.00218                 | 2.48 x 10 <sup>-5</sup> |
| Ε                                   | 2.38 x 10 <sup>-7</sup>                  | 1.56 x 10 <sup>-8</sup>                           | 3.21 x 10 <sup>-4</sup> | 2.48 x 10 <sup>-5</sup> |
| k <sub>obs</sub> (s <sup>-1</sup> ) | δk (s⁻¹)                                 |                                                   |                         |                         |
| 1.09 x 10 <sup>-4</sup>             | 8.41 x 10⁻ <sup>6</sup>                  |                                                   |                         |                         |

Considering that at the beginning of the reaction, the actual concentration of *Z*-**5AUP** is 2.18 mM and using the slopes reported in Table S10, the observed rate constant results  $k_{obs} = (1.09 \pm 0.08) \times 10^{-4} \text{ s}^{-1}$ .

The experimental results for the thermal isomerization in the absence of **DAP**, and in presence of variable DAP concentration (*Z*-**5**AUP: **DAP** =1:1 and *Z*-**5**AUP:**DAP** =8:2), are plotted together in the graph of Figure S6.



**Figure S6.** Rates of formation of *E*-**5AUP** in the absence of **DAP**, (squares), in the presence of 0.73 mM **DAP** (circles) corresponding to a *Z*-**5AUP**: **DAP** =8:2 ratio, and 2.5 mM **DAP** corresponding to *Z*-**5AUP**:**DAP** =1:1 (triangles).

From inspection of Figure S6 it is clear how the residual amount of *E*-**5AUP** present since the beginning of the reaction (see intercept of the fitting lines), increases at increasing concentrations of **DAP**. The isomerization rate also increase with the increasing of the concentration of **DAP**; the values of the rate constants for the three conditions are summarized in Table S11.

Table S11. Rate constants for the Z-5AUP to E-5AUP isomerization in the presence of increasing concentrations of DAP.

|                 | [5AUP] (M)             | [DAP] (M)               | k <sub>obs</sub> (s <sup>-1</sup> ) | δk <sub>obs</sub> (s <sup>-1</sup> ) |
|-----------------|------------------------|-------------------------|-------------------------------------|--------------------------------------|
| no <b>DAP</b>   | 3.0 x 10 <sup>-3</sup> | -                       | 2.48 x 10 <sup>-5</sup>             | 1.97 x 10⁻ <sup>6</sup>              |
| 5AUP: DAP = 8:2 | 2.9 x 10⁻³             | 0.73 x 10 <sup>-3</sup> | 2.57 x 10 <sup>-5</sup>             | 1.26 x 10⁻ <sup>6</sup>              |
| 5AUP: DAP = 1:1 | 2.5 x 10⁻³             | 2.5 x 10⁻³              | 1.09 x 10 <sup>-4</sup>             | 0.08 x 10 <sup>-4</sup>              |

#### Thermal $Z \rightarrow E$ isomerization of 5AUP in the presence of DAP excess

The isomerization of Z-5AUP was monitored by <sup>1</sup>H NMR also in the presence of DAP excess, the experiments were run in the conditions summarized in Table S12. At variance with the previous case, the concentration of DAP was maintained constant at about 10 mM while 5AUP was used at the nominal concentrations (before irradiation) [**5AUP**] equal to 1.0 mM, 2.2 mM and 3.2 mM, see entries Ex1, Ex2 and Ex3 in Table S12 respectively.

|     | [5AUP] (mM) | [DAP]₀ (mM) |
|-----|-------------|-------------|
| Ex1 | 1.00        | 9.40        |
| Ex2 | 2.2         | 9.6         |
| Ex3 | 3.2         | 10.2        |

 Table S12. Conditions for the Z-5AUP to E-5AUP isomerization experiments at varying concentrations of Z-5AUP and in the presence of a DAP excess.

The concentration of *E*-5AUP measured in the first 50 minutes of reaction are reported in Table S13 and displayed graphically in Figure S7. These data were used for assessing the initial reaction rate in the different conditions and for the calculation of the pertinent rate constants.

Table S13. Experimental data for the Z-5AUP to E-5AUP isomerization experiments at varying concentrations of Z-5AUP in the presence of a DAP excess.

| <i>Ex1</i> [5AUP] = 1.0 mM |                        | <i>Ex2</i> [5Al | JP] = 2.2 mM           | <i>Ex3</i> [5AUP] = 3.2 mM |                        |
|----------------------------|------------------------|-----------------|------------------------|----------------------------|------------------------|
| Time (s)                   | [ <i>E</i> -5AUP] (mM) | Time (s)        | [ <i>E</i> -5AUP] (mM) | Time (s)                   | [ <i>E</i> -5AUP] (mM) |
| 660                        | 0.277                  | 780             | 0.628571               | 600                        | 1.434978               |
| 1080                       | 0.308                  | 1380            | 0.750853               | 900                        | 1.624365               |
| 1680                       | 0.342                  | 1980            | 0.827068               | 1500                       | 1.797753               |
| 2340                       | 0.392                  | 2580            | 0.90535                | 2100                       | 1.849711               |
| 2880                       | 0.411                  | 3180            | 0.940171               | 2700                       | 2.038217               |



Figure S7. Linear fitting of the experimental data according to the initial rate method.

The observed rate constants are reported in Table S14, together with the actual initial concentration of *Z*-5AUP estimated from the intercept of the straight line describing the consumption of *Z*-5AUP. The uncertainties of the rate constants were calculated according to the uncertainty propagation method.

**Table S14.** Observed rate constants for the *Z*-5AUP to *E*-5AUP isomerization experiments at varying initial concentrations of *Z*-5AUP in the presence of a **DAP excess**.

|     | [ <i>Z</i> -5AUP] (M)  | [DAP] (M)               | k <sub>obs</sub> (s⁻¹) | δk <sub>obs</sub> (s <sup>-1</sup> ) |
|-----|------------------------|-------------------------|------------------------|--------------------------------------|
| Ex1 | 7.6 x 10 <sup>-4</sup> | 9.4 x 10 <sup>-3</sup>  | 8.1 x 10 <sup>-5</sup> | 1 x 10 <sup>-6</sup>                 |
| Ex2 | 1.6 x 10 <sup>-3</sup> | 9.6 x 10 <sup>-3</sup>  | 7.9 x 10⁻⁵             | 1 x 10 <sup>-5</sup>                 |
| Ex3 | 1.8 x 10 <sup>-3</sup> | 10.2 x 10 <sup>-3</sup> | 1.4 x 10 <sup>-4</sup> | 3 x 10 <sup>-5</sup>                 |

The observed rate constants determined in the three cases are the same within the experimental uncertainty with an average  $k_{iso} \approx (1.0 \pm 0.3) \times 10^{-4} \text{ s}^{-1}$ . By comparing this value with the rate constant for the thermal isomerization of *Z*-5AUP in the absence of DAP obtained by NMR,  $k_{est} = 2.5 \times 10^{-5} \text{ s}^{-1}$ , the acceleration of the *Z*-*E* isomerization within the complex can be calculated as  $k_{iso}/k_{est} = 4$ .

### <sup>1</sup>H-NMR complexation studies

### Determination of complex stoichiometry.

The 1:1 binding stoichiometry of the *E*-5AUP·DAP and Upr·DAP complexes was confirmed by Job's plot analysis.

**Table S15.** Experimental data for the *E*-5AUP·DAP Job's plot, obtained with non irradiated stock solutions of 5AUP (3.0 mM in toluene- $d_8$ ) and of DAP (3.0 mM in toluene- $d_8$ ).

| V <i>E-</i> 5AUP (mL) | [ <i>E</i> -5AUP]₀(mM) | V DAP<br>(mL) | [DAP]₀<br>(mM) | <b>X</b> E-5AUP | δ (ppm) | [E-5AUP·DAP] (mM) |
|-----------------------|------------------------|---------------|----------------|-----------------|---------|-------------------|
| 0.05                  | 0.30                   | 0.45          | 2.7            | 0.10            | 11.776  | 0.30217           |
| 0.10                  | 0.60                   | 0.40          | 2.4            | 0.20            | 11.649  | 0.58537           |
| 0.15                  | 0.91                   | 0.35          | 2.1            | 0.30            | 11.469  | 0.8377            |
| 0.25                  | 1.5                    | 0.25          | 1.5            | 0.50            | 10.636  | 1.08495           |
| 0.30                  | 1.8                    | 0.20          | 1.2            | 0.60            | 9.968   | 1.00246           |
| 0.35                  | 2.1                    | 0.15          | 0.91           | 0.71            | 9.239   | 0.78823           |
| 0.40                  | 2.4                    | 0.10          | 0.61           | 0.81            | 8.629   | 0.5362            |
| 0.45                  | 2.7                    | 0.05          | 0.30           | 0.91            | 8.127   | 0.26563           |
| 0.50                  | 3.0                    | 0             | 0              | 1.0             | 7.732   | 0                 |



Figure S8. Job's plot for the *E*-5AUP·DAP complex.

**Table S16.** Experimental data for the Upr·DAP Job's plot, obtained with stock solutions of Upr (3.0 mM in toluene- $d_{\delta}$ ) and of DAP (3.0 mM in toluene- $d_{\delta}$ ).

| V Upr (mL) | [Upr] <sub>0</sub> (mM) | V DAP (mL) | [DAP] <sub>0</sub> (mM) | $x_{\rm Upr}$ | δ (ppm) | [Upr·DAP] (mM) |
|------------|-------------------------|------------|-------------------------|---------------|---------|----------------|
| 0.05       | 0.30                    | 0.45       | 2.7                     | 0.10          | 11.830  | 0.30           |
| 0.10       | 0.61                    | 0.40       | 2.4                     | 0.20          | 11.733  | 0.59           |
| 0.15       | 0.91                    | 0.35       | 2.1                     | 0.30          | 11.599  | 0.86           |
| 0.25       | 1.5                     | 0.25       | 1.5                     | 0.51          | 10.749  | 1.1            |
| 0.30       | 1.8                     | 0.20       | 1.2                     | 0.61          | 9.799   | 0.90           |
| 0.35       | 2.1                     | 0.15       | 0.91                    | 0.71          | 9.171   | 0.71           |
| 0.40       | 2.4                     | 0.10       | 0.61                    | 0.81          | 8.590   | 0.46           |
| 0.45       | 2.7                     | 0.05       | 0.30                    | 0.91          | 8.153   | 0.21           |
| 0.50       | 3.0                     | 0          | 0                       | 1.0           | 7.849   | 0              |



Figure S9. Job's plot for the Upr·DAP complex.

### Dimerization of *E*-5AUP.

The dimerization equilibrium of *E*-5AUP was investigated in toluene- $d_8$  at 25 °C with a dilution experiment in which the concentration of 5AUP was varied in the interval 0.00076 – 0.0075 M. The dependence of the chemical shift of the imide proton from the concentration of 5AUP is shown in Figure S10 together with the fitting curves obtained with Dynafit.



**Figure S10.** Fitting of the dimerization data with all the parameters free to be optimized (fit\_1) and fixing the  $\delta$  of the dimer at 12 ppm (fit\_2).

The fitting of the dimerization experiment is problematic because in the range of concentration explored the dependence of the chemical shift from the concentration of 5-AUP is almost linear. Fitting of the data optimizing all the three parameters of the dimerization equation ( $K_{dim}$ ,  $\delta_0$ , and  $\delta_{max}$  which are the dimerization constant and the chemical shift of the imide proton of monomer and dimer, respectively) gives an apparently good fit with a low value of dimerization constant ( $K_{dim} = 6 \pm 5.9 \text{ M}^{-1}$ ) but an unacceptable estimation of the chemical shift of the dimer ( $\delta_{max} = 30 \pm 20 \text{ ppm}$ ) and a very large uncertainty on both parameters (blue curve in Figure S10). More reliable results are obtained by keeping fixed the  $\delta_{max}$  at a value of 12 ppm, which is about the maximum chemical shift value of the imide proton in the complex with DAP, and optimizing the remaining two parameters (red curve in Figure S10). With this assumption the fitting gives  $K_{dim} = 55 \pm 5 \text{ M}^{-1}$  and  $\delta_0 = 7.38 \pm 0.5 \text{ ppm}$ . These data are clearly affected by some uncertainty and the  $K_{dim}$  is probably overestimated, but due to the linear trend of the experimental points and to the fitting results we can safely assume that in any case the  $K_{dim}$  is lower than 100 M<sup>-1</sup>. Based on this low value we consider that the dimerization equilibrium does not influence the formation of the complex.

#### Dimerization of Upr.

The dimerization equilibrium of Upr was investigated in toluene- $d_8$  at 25 °C with a dilution experiment in which the concentration of Upr was varied in the interval 0.0005 – 0.005 M. The problems for the fitting are the same as above (Fig. S11). Forcing the final chemical shift of the imide proton in the dimer ( $\delta_{max}$ ) to 12 ppm a K<sub>dim</sub> = 65 M<sup>-1</sup> (sd = 5.8) and a  $\delta_0$  = 7.25 ppm (sd = 0.043) are obtained.



**Figure S11.** Fitting of the dilution experiment fixing the  $\delta$  of the dimer at 12 ppm.

#### Titration of E-5AUP.

Three independent titration experiments have been made in toluene- $d_8$  at 25 °C, without sample irradiation. (Table S17)

Table S17. Conditions employed in three different titration experiments of E-5AUP complexation upon DAP addition.

|    | [5AUP] (mM) | [DAP] range (mM) |
|----|-------------|------------------|
| E1 | 3.022       | 0 - 8.8          |
| E2 | 3.002       | 0 - 8.4          |
| E3 | 2.9         | 0 - 8.5          |

The first titration (E3) shows some random broad peaks. This problem is resolved in the following titrations (E1 and E2) simply by waiting few minutes before to record the spectra after the addition of the guest. This is probably due to some aggregation of the guest.

The chemical shift data of the N-H imide proton of 5AUP were fitted against the guest concentration with Dynafit software packages using a 1:1 binding model. The solutions were prepared at the nominal concentration reported in Table S17 and during the fitting the concentration was optimized as a parameter. In this way, better fitting were obtained. The difference between the nominal and the calculated concentration of 5AUP vary in the three experiments and in any case is below 14%. The fitting of the three titrations are reported in Figure S12.



Figure S12. Fitting of the experimental data obtained from the titrations of *E*-5AUP with DAP.

The results of the fittings are reported in Table S18.

|    | K (M <sup>-1</sup> ) | sd  | $\delta_{\text{max}}$ | sd    | [5AUP] (M) | sd       | K <sub>mean</sub> (M) | Sd  |
|----|----------------------|-----|-----------------------|-------|------------|----------|-----------------------|-----|
| E1 | 7540                 | 840 | 12.165                | 0.024 | 0.003363   | 3.60E-05 |                       |     |
| E2 | 5630                 | 540 | 12.184                | 0.026 | 0.003528   | 3.20E-05 |                       |     |
| E3 | 6960                 | 480 | 12.2                  | 0.016 | 0.002955   | 2.70E-05 | 6710                  | 800 |

Table S18. Fitting data for the three titration experiments.

The mean value of the association constant is  $K_E = 6710 \pm 800 \text{ M}^{-1}$ .

### Titration of Z-5AUP.

Three independent titration experiments have been made in toluene- $d_8$  at 25 °C, in the conditions reported in Table S19, where the **nominal [5AUP]** are those of the prepared solutions **before irradiation**.

| Table S19. Conditions employed in three different | nt titration experiments of Z-5AUP | complexation upon DAP addition |
|---------------------------------------------------|------------------------------------|--------------------------------|
|---------------------------------------------------|------------------------------------|--------------------------------|

|    | [5AUP] (M) | [DAP] range (M) |
|----|------------|-----------------|
| Z1 | 0.00305    | 0-0.0084        |
| Z2 | 0.00378    | 0 - 0.0069      |
| Z3 | 0.00407    | 0 - 0.00696     |

The analysis of these titrations is more complex because during the experiment *Z*-5AUP isomerizes to *E*-5AUP which competes for DAP. However, from the integration of the NMR peaks the concentration of *Z*- and *E*-5AUP at any moment of the titration experiment are known. The titration data were therefore fitted with Dynafit, that accepts more than one independent variable, using the following model:

- $Z + DAP \iff Z \cdot DAP$  : Kc association
- $E + DAP \iff E DAP : Kt$  association

The model takes in account the two equilibria Z/E + DAP and uses as independent variables the concentration of DAP, and the concentrations of Z and E-5AUP obtained from the integration of the NMR spectra. The model fits the chemical shift data of the imide proton of the *Z*-5AUP and has 4 parameters: the two association constants and the initial and final chemical shift of the imide proton in the *Z*-5AUP·DAP complex. The  $K_E$  is kept constant at the value of 6710 M<sup>-1</sup>, determined in the titration of *E*-5AUP with DAP (see above), as well as the initial value of the chemical shift at the experimental observed one. Therefore, the output is the K<sub>Z</sub> and the value of the chemical shift in the *Z*-5AUP·DAP complex. The fittings are reported in Figure S13 and the data in Table S20.



Figure S13. Fitting of the experimental data obtained from the titrations of Z-5AUP with DAP.

The fitting results are well consistent and the mean value of the association constant is  $K_Z$ = 4040 ± 355 M<sup>-1</sup>. (Table S20)

|    | K (M <sup>-1</sup> ) | Sd  | $\delta_{\text{max}}$ | sd    | K <sub>mean</sub> (M <sup>-1</sup> ) | sd  |
|----|----------------------|-----|-----------------------|-------|--------------------------------------|-----|
| Z1 | 3960                 | 330 | 11.914                | 0.043 |                                      |     |
| Z2 | 3650                 | 350 | 11.986                | 0.063 |                                      |     |
| Z3 | 4510                 | 280 | 11.895                | 0.066 | 4040                                 | 355 |

Table S20. Fitting data for the three titration experiments.

### Titration of Upr.

Two independent titration experiments have been made in toluene- $d_8$  at 25 °C. (Table S21)

Table S21. Conditions employed in two different titration experiments of Upr complexation upon DAP addition.

|      | [Upr] (M) | [DAP] range (M) |
|------|-----------|-----------------|
| UPR1 | 0.00334   | 0 - 0.009       |
| UPR2 | 0.00308   | 0 - 0.009       |

Also in this case better fitting are obtained optimizing the concentration of Upr as a parameter, (Figure S14) with differences between the nominal and the calculated concentration below 15%.



Figure S14. Fitting of the titration experiments UPR1 and UPR2.

The data obtained from the fittings are summarized in Table S22.

Table S22: Fitting data for the two titration experiments.

|      | K (M <sup>-1</sup> ) | sd   | $\delta_{max}$ | sd    | [Upr] (M) | Sd       |
|------|----------------------|------|----------------|-------|-----------|----------|
| UPR1 | 15200                | 2700 | 11.993         | 0.025 | 0.003997  | 3.20E-05 |
| UPR2 | 12730                | 850  | 12.036         | 0.011 | 0.002716  | 1.60E-05 |

The mean value of the association constant is  $K_E = 13965 \pm 1235 \text{ M}^{-1}$ .

### DFT calculation of gas-phase models.

Our theoretical calculations are based on DFT using PWSCF code of the Quantum ESPRESSO distribution.<sup>[3]</sup> The Van der Waals density functional (VdW-DF)<sup>[6][7][8]</sup> was used in conjunction with a GGA-PBE functional<sup>[5]</sup> to describe the system. The optimization of the gas-phase models for the isolated DAP, *cis*-5AUP, *trans*-5AUP molecules and for the *cis*- and *trans*-5AUP·DAP molecular complexes confirms the higher stability of the *trans* isomers relative to their *cis* counterparts (by 0.65 eV for isolated 5AUP, and 0.61 eV for 5AUP·DAP). The fully relaxed optimized structures for *Z*-5UAP·DAP is shown in Fig 15, the relaxed coordinates for the *Z*-5AUP and *Z*-5UAP·DAP structures are also provided below in xyz format in the tables below.



Figure 15. Fully relaxed computed structure for Z-5UAP·DAP, shown from two different angles.

| с | 10.195227 | 11.845826 | 11.268832 |
|---|-----------|-----------|-----------|
| с | 10.547063 | 13.264862 | 11.224607 |
| С | 8.126406  | 13.779071 | 10.974013 |
| С | 8.875200  | 11.493177 | 11.158136 |
| Н | 8.546007  | 10.459404 | 11.195879 |
| с | 6.460382  | 11.948614 | 10.797672 |
| н | 6.517720  | 10.949809 | 10.344920 |
| н | 5.999752  | 12.628442 | 10.068101 |
| С | 5.635331  | 11.915107 | 12.094325 |
| н | 5.607506  | 12.927651 | 12.526072 |
| н | 6.139242  | 11.260294 | 12.824842 |
| С | 4.205553  | 11.410225 | 11.831030 |
| н | 3.674828  | 12.070628 | 11.128767 |
| н | 3.626061  | 11.376792 | 12.763010 |
| Н | 4.211288  | 10.395887 | 11.402361 |
| С | 10.467832 | 9.299510  | 10.143195 |

Z-5AUP (45 atoms, A units):

| с | 9.694864  | 8.182258  | 10.475169 |
|---|-----------|-----------|-----------|
| н | 9.851420  | 7.692018  | 11.436947 |
| с | 8.683113  | 7.755710  | 9.611144  |
| н | 8.066026  | 6.917227  | 9.927867  |
| с | 8.449074  | 8.387302  | 8.374378  |
| с | 9.324891  | 9.433977  | 8.015814  |
| н | 9.225376  | 9.927824  | 7.050557  |
| с | 10.318712 | 9.892655  | 8.881795  |
| н | 10.954827 | 10.732315 | 8.595625  |
| С | 7.234036  | 8.009340  | 7.492432  |
| С | 6.829550  | 6.521229  | 7.674577  |
| н | 6.469928  | 6.307629  | 8.690238  |
| н | 7.673639  | 5.850109  | 7.458936  |
| н | 6.010897  | 6.274069  | 6.984094  |
| с | 6.034991  | 8.910320  | 7.926234  |
| н | 6.273572  | 9.976233  | 7.789219  |
| н | 5.785260  | 8.745698  | 8.985740  |
| н | 5.141900  | 8.679622  | 7.325742  |
| с | 7.517518  | 8.246933  | 5.984413  |
| н | 7.667744  | 9.309435  | 5.750118  |
| н | 6.659732  | 7.902993  | 5.389230  |
| н | 8.407425  | 7.691053  | 5.655018  |
| Ν | 11.391446 | 9.793226  | 11.132188 |
| Ν | 11.280582 | 10.964625 | 11.593946 |
| N | 9.452437  | 14.130361 | 11.092548 |
| н | 9.653254  | 15.155994 | 11.053740 |
| N | 7.861599  | 12.405525 | 10.997447 |
| 0 | 11.698163 | 13.721257 | 11.269647 |
| 0 | 7.223972  | 14.617963 | 10.845340 |

### Z-5UAP·DAP (84 atoms, A units):

| С | 10.195227 | 11.845826 | 11.268832 |
|---|-----------|-----------|-----------|
| С | 10.547063 | 13.264862 | 11.224607 |

| С | 8.126406  | 13.779071 | 10.974013 |
|---|-----------|-----------|-----------|
| С | 8.875200  | 11.493177 | 11.158136 |
| Н | 8.546007  | 10.459404 | 11.195879 |
| С | 6.460382  | 11.948614 | 10.797672 |
| н | 6.517720  | 10.949809 | 10.344920 |
| н | 5.999752  | 12.628442 | 10.068101 |
| с | 5.635331  | 11.915107 | 12.094325 |
| н | 5.607506  | 12.927651 | 12.526072 |
| н | 6.139242  | 11.260294 | 12.824842 |
| с | 4.205553  | 11.410225 | 11.831030 |
| н | 3.674828  | 12.070628 | 11.128767 |
| н | 3.626061  | 11.376792 | 12.763010 |
| н | 4.211288  | 10.395887 | 11.402361 |
| С | 10.467832 | 9.299510  | 10.143195 |
| с | 9.694864  | 8.182258  | 10.475169 |
| н | 9.851420  | 7.692018  | 11.436947 |
| С | 8.683113  | 7.755710  | 9.611144  |
| н | 8.066026  | 6.917227  | 9.927867  |
| С | 8.449074  | 8.387302  | 8.374378  |
| С | 9.324891  | 9.433977  | 8.015814  |
| н | 9.225376  | 9.927824  | 7.050557  |

| С | 10.318712 | 9.892655  | 8.881795  |
|---|-----------|-----------|-----------|
| н | 10.954827 | 10.732315 | 8.595625  |
| С | 7.234036  | 8.009340  | 7.492432  |
| С | 6.829550  | 6.521229  | 7.674577  |
| н | 6.469928  | 6.307629  | 8.690238  |
| н | 7.673639  | 5.850109  | 7.458936  |
| н | 6.010897  | 6.274069  | 6.984094  |
| С | 6.034991  | 8.910320  | 7.926234  |
| н | 6.273572  | 9.976233  | 7.789219  |
| н | 5.785260  | 8.745698  | 8.985740  |
| н | 5.141900  | 8.679622  | 7.325742  |
| С | 7.517518  | 8.246933  | 5.984413  |
| н | 7.667744  | 9.309435  | 5.750118  |
| н | 6.659732  | 7.902993  | 5.389230  |
| н | 8.407425  | 7.691053  | 5.655018  |
| Ν | 11.391446 | 9.793226  | 11.132188 |
| Ν | 11.280582 | 10.964625 | 11.593946 |
| Ν | 9.452437  | 14.130361 | 11.092548 |
| Н | 9.653254  | 15.155994 | 11.053740 |
| Ν | 7.861599  | 12.405525 | 10.997447 |
| 0 | 11.698163 | 13.721257 | 11.269647 |

| 0 | 7.223972  | 14.617963 | 10.845340 |
|---|-----------|-----------|-----------|
| С | 11.253690 | 17.608170 | 11.312216 |
| С | 11.536444 | 18.966494 | 11.513745 |
| н | 12.543138 | 19.293780 | 11.737787 |
| С | 10.478107 | 19.883535 | 11.420309 |
| с | 9.186008  | 19.430986 | 11.108628 |
| н | 8.356554  | 20.119917 | 11.016590 |
| с | 9.001632  | 18.054336 | 10.919269 |
| С | 6.583785  | 18.163570 | 10.260512 |
| С | 5.377688  | 17.281218 | 9.946116  |
| н | 4.617923  | 17.450448 | 10.724224 |
| н | 5.601175  | 16.209544 | 9.890537  |
| н | 4.949367  | 17.624553 | 8.994345  |
| С | 13.608766 | 16.773843 | 11.579729 |
| С | 14.397791 | 15.471515 | 11.666815 |
| н | 15.446344 | 15.692038 | 11.438601 |
| н | 14.015063 | 14.689468 | 10.998968 |
| Н | 14.337917 | 15.082735 | 12.696499 |
| С | 10.727161 | 21.266449 | 11.656306 |
| С | 10.974552 | 22.443532 | 11.885602 |
| С | 12.906689 | 24.649653 | 11.191346 |

| н  | 13.762087 | 23.985129  | 11.385159 |
|----|-----------|------------|-----------|
| н  | 13.229522 | 25.685168  | 11.381776 |
| н  | 12.650606 | 24.563756  | 10.124839 |
| С  | 9.950921  | 25.297733  | 11.934186 |
| н  | 9.658880  | 25.247963  | 10.874595 |
| н  | 10.179222 | 26.347797  | 12.175116 |
| н  | 9.081644  | 24.992624  | 12.535820 |
| С  | 11.911028 | 24.242557  | 14.109826 |
| н  | 11.060912 | 23.959541  | 14.748374 |
| н  | 12.234709 | 25.253712  | 14.402473 |
| н  | 12.736384 | 23.546399  | 14.321516 |
| Ν  | 7.750002  | 17.493611  | 10.601554 |
| н  | 7.697453  | 16.471780  | 10.627735 |
| Ν  | 10.006819 | 17.148809  | 11.031478 |
| Ν  | 12.239781 | 16.611481  | 11.389000 |
| н  | 11.917760 | 15.643448  | 11.284543 |
| 0  | 6.499777  | 19.393784  | 10.209704 |
| 0  | 14.152171 | 17.876746  | 11.694938 |
| Si | 11.43554  | 1 24.18338 | 12.28128  |

### References

- [1] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 64, 112–122.
- [2] P. Kuzmic, Anal. Biochem. 1996, 237, 260–273.
- [3] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter 2009, 21, 395502.
- [4] D. Vanderbilt, *Phys. Rev. B* **1990**, *41*, 7892–7895.
- [5] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.
- [6] T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D. C. Langreth, *Phys. Rev. B* 2007, *76*, 125112.
- [7] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, *Phys. Rev. Lett.* 2004, *92*, 246401.
- [8] D. C. Langreth, B. I. Lundqvist, S. D. Chakarova-Käck, V. R. Cooper, M. Dion, P. Hyldgaard, a Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schroeder, T. Thonhauser, *J. Phys. Condens. Matter* 2009, *21*, 84203.
- [9] G. Román-Pérez, J. M. Soler, *Phys. Rev. Lett.* 2009, 103, 96102.
- [10] A. Kokalj, Comput. Mater. Sci. 2003, 28, 155–168.
- [11] A. Llanes-Pallas, C. Palma, L. Piot, A. Belbakra, A. Listorti, M. Prato, P. Samori, N. Armaroli, D. Bonifazi, *J. Am. Chem. Soc.* **2009**, *131*, 509–520.
- [12] J. M. Wilson, G. Henderson, F. Black, A. Sutherland, R. L. Ludwig, K. H. Vousden, D. J. Robins, *Bioorg. Med. Chem.* 2007, 15, 77–86.
- [13] M. P. Doyle, W. J. Bryker, J. Org. Chem. 1979, 44, 1572–1574.
- [14] P. N. Juri, R. A. Bartsch, J. Org. Chem. 1980, 45, 2028–2030.
- [15] C. G. Swain, R. J. Rogers, J. Am. Chem. Soc. 1975, 97, 799-800.
- [16] F. Kopp, P. Knochel, Org. Lett. 2007, 9, 1639–1641.
- [17] J. P. Horwitz, A. J. Tomson, J. Org. Chem. 1961, 26, 3392–3395.
- [18] D. N. Abrams, Y. W. Lee, E. E. Knaus, L. I. Wiebe, Int. J. Appl. Radiat. Isot. 1984, 35, 531–535.
- [19] D. T. Browne, J. Eisinger, N. J. Leonard, J. Am. Chem. Soc. 1968, 90, 7302-7323.