

SUPPLEMENTARY INFORMATION TO:

Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study.

Marina Bagnoli PhD[§], Silvana Canevari PhD[§], Daniela Califano PhD, Simona Losito MD, Prof. Massimo Di Maio MD, Francesco Raspagliesi MD, Maria Luisa Carcangiu MD, Giuseppe Toffoli MD, Erika Cecchin PhD, Roberto Sorio MD, Vincenzo Canzonieri MD, Daniela Russo PhD, Giosué Scognamiglio PhD, Gennaro Chiappetta PhD, Gustavo Baldassarre MD, Domenica Lorusso MD, Prof. Giovanni Scambia MD, Prof. Gian Franco Zannoni MD, Antonella Savarese MD, Mariantonia Carosi MD, Paolo Scollo MD, Enrico Breda MD, Viviana Murgia MD, Francesco Perrone MD, Sandro Pignata MD[#], Loris De Cecco PhD[#], Delia Mezzanzanica PhD ^{#§}. Multicentre Italian Trials in Ovarian cancer (MITO) translational group.

[§] Equally contributing first authors

[#] Equally contributing senior authors

^{\$} Corresponding author:

Delia Mezzanzanica - Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine -Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42; 20133 Milan Italy. <u>delia.mezzanzanica@istitutotumori.mi.it</u>. Phone: +390223902569

Other collaborators

We are grateful to: Renato Franco, Carmela Pisano, Gaetano Facchini, Giovanni Salvatore Bruni, Lucia Cannella, Davide Leopardo, Stefano Greggi, Francesco Iodice (deceased), Gennaro Casella Maria Carmela Piccirillo, Gennaro Daniele, Jane Bryce, (Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G.Pascale", IRCCS, Napoli). Vanda Salutari, Antonia Testa, Rosa De Vincenzo, Alessia di Legge, Claudia Masi, Valeria Masciullo, Mirella Di Stefano (Policlinico Universitario Gemelli, Università Cattolica del Sacro Cuore, Roma); Francesco Cognetti, Gianluigi Ferretti, Enrico Vizza, Emanuela Mancini (Istituto Nazionale Tumori Regina Elena, Roma); Simona Scalone, Giorgio Giorda, Elio Campagnutta (Centro di Riferimento Oncologico, Aviano [PN]); Elena Cicerone, Antonella Mecozzi, Emanuela Proietti, Loredana Rossi, Angelo Fedele Scinto (Ospedale S. Giovanni Calibita Fatebenefratelli, Roma); Alessandra Vernaglia Lombardi, Carmine Malzoni, Mario Malzoni, Giuseppina Farnetano (Casa di Cura Malzoni Villa dei Platani, Avellino); Antonio Febbraro, Claudia Corbo, Ilaria Spagnoletti (Ospedale Fatebenefratelli, Benevento); Giuseppe Scibilia, Gabriella D'Agate (Ospedale Cannizzaro, Catania); Mattia Barbareschi, Enzo Galligioni, Antonella Ferro, Viviana Murgia, (Ospedale S. Chiara, Trento); Stefano Tamberi, Laura Amaducci, Carmelo Bucolo, (Ospedale Civile, Faenza); Donato Natale, Bruna Fornarini, Dante Orlando (Osp. S. Massimo, Penne [PE]); Fabrizio Artioli, Laura Scaltriti, Lorenzo Aguzzoli (Ospedale Ramazzini, Carpi [MO]); Cesare Gridelli, Filomena Del Gaizo (Ospedale S.Giuseppe Moscati, Avellino); Rossella Lauria, Valeria Forestieri (Università Federico II, Napoli); Ilaria Franceschetti, Rocco De Vivo, (Ospedale S. Bortolo ULSS 6, Vicenza); Giovanni Lo Re (Ospedale S.Maria degli Angeli, Pordenone); Vito Lorusso (Ospedale Vito Fazzi, Lecce).

miRNA expression profiling from formalin-fixed paraffin embedded (FFPE) and fresh frozen samples and quality controls

RNA from the OC179 FFPE case material, derived from MITO2 trial ¹, was extracted from three 20-µm-thick FFPE sections using the miRNeasy FFPE kit (Qiagen, Valencia, CA, USA). RNA concentration was determined using the ND-1000 spectrophotometer (Agilent Technologies, Palo Alto, CA USA). A quality check was carried out using RTqPCR and Agilent 2100 Bioanalyzer Small RNA assay (Agilent Technologies). Briefly, RNA quality was evaluated by RT-qPCR amplification of two amplicons of different length for three housekeeping genes (GAPDH, RPL13a, ACTB) according to Ravo et al.². Samples with short/long amplicon ratio lower than 5 were considered of acceptable quality for microarray analysis. In addition, 3 miRNAs (hsa-miR-16, hsa-miR-21, hsa-miR-451) expected to be highly expressed by literature data, were detected by RT-qPCR and samples with Ct values lower than 28 cycles were considered of acceptable quality for microarray analysis. miRNA expression profiling was performed using custom Agilent Sureprint G3 8×60K microarrays designed on miRBase 17.0 and identifying 1520 miRNAs. 100 ng of total RNA were labelled and hybridised following the recommended Agilent's protocols. Microarray slides were then washed and scanned with a DNA microarray scanner (Agilent Technologies). Raw data were generated using the Feature Extraction Software v10.7.3.1 (Agilent Technologies) and data normalisation and filtering procedures were performed by means of the AgiMicroRna R package³. The robust multiarray average algorithm (RMA) was used to summarise the results. Data were log2-transformed and normalised, using the quantile algorithm; eventually, miRNAs flagged as absent were removed.

Fresh frozen tumour specimens from the OC133 case material included in the OC263 series were mechanically disrupted and homogenised in the presence of QIAzol Lysis reagent (Qiagen) using a Retsch MM200 dismembrator (Sigma-Aldrich, St Louis, MO, USA). RNA was extracted using the miRNeasy Mini kit (Qiagen) according to the manufacturer's instructions. RNA concentration and quality were assessed using the NanoDrop ND-100 Spectrophotometer and the Agilent 2100 Bioanalyzer using the RNA 6000 Nano kit (Agilent Technologies), respectively. Samples included in the study had a RIN (RNA Integrity Number) score >6. miRNA expression profiling was performed using the Illumina Human_v2 MicroRNA expression profiling kit, based on the DASL (cDNA-mediated Annealing, Selection, Extension, and Ligation) assay, according to the manufacturer's instructions (Illumina Inc., San Diego, CA, USA). Briefly, 300 ng/sample total RNA was converted to cDNA followed by annealing of a miRNA-specific oligonucleotide pool consisting of: (i) a universal PCR priming site at the 5' end; (ii) an address sequence complementary to a capture sequence on the BeadArray; and (iii) a miRNA-specific sequence at the 3' end. After PCR amplification and fluorescent labelling, probes were hybridised on Illumina miRNA BeadChips, washed, and fluorescent signals were detected by the Illumina BeadArrayTM Reader. Data were collected using BeadStudio V3.0 software and raw data were quantile normalised using GenomeStudio v2011.1 and Illumina Expression module v19.0 (Illumina).

Concerning miRNA profiling, the TCGA used only frozen tissue while we used both frozen as well as FFPE samples. However, as previously reported in Bagnoli et al. ⁴ for the dataset OC130 (included in validation set 1 OC263), data obtained on frozen samples could be highly reproduced in FFPE samples and vice versa.

Our previous work 5^{5} clearly demonstrated the inter-platform reproducibility of Agilent and Illumina platform. Since the microarrays are designed on different miRBase versions, instead of developing multiple signature (one for each dataset) containing different list of miRNAs that cannot be confirmed because of their absence in the validation sets, our strategy was to build a single model that could be validated. The number of miRNAs shared in all platforms that entered the process of model development was 385. The complete list is reported in Supplementary Table 2.

Assessment of miROvaR performance.

MiROvaR performance was evaluated by ROC curves, following the guidelines established by Steyerberget al. ⁶ Prediction accuracy was evaluated at maximum time point of follow-up using time dependent ROC curves, computed using SurvJamda R package ⁷ in training and validation sets. A non-parametric estimator for censored survival data, based on nearest neighbor bivariate distribution developed by Heagerty et al. ⁸ was applied to estimate time-dependent sensitivity and 1-specificity. The accuracy of the prediction was plotted as the mean and standard deviation following a 10-time cross-validation procedure (see Supplementary Figure 3A) We then decided to analyze the performance of our predictor in the sub-set of high-grade serous cases present in the OC263 validation set for a more direct comparison with the second validation set OC452 derived from TCGA data. The analysis of Type II sub-set was done taking into consideration the new proposed classification of ovarian cancer that, besides HGSOC, includes in this sub-set also endometroid high grade, undifferentiated ovarian cancer and Malignant mixed mullerian tumor. The performance of MiROvaR in separating patients included in these two sub-groups of OC263 is reported in Supplementary Figure 3B and is definitely higher that the performance on TCGA data-set.

Definition of clinical end-points and statistical analysis.

PFS was chosen as primary end-point. The identification of molecular classifiers like MiROvaR is based on an a priori choice of the outcome of interest. In our case, since the main goal of our predictor was to identify early relapsing patients, we reasoned that PFS would be the more appropriated end point. PFS is widely accepted as a reasonable end-point in ovarian cancer ⁹, both clinically and in terms of new drug development, particularly in the first-line of treatment

due to the fact that post-progression survival may be quite long and affected also by different and heterogeneous second-line treatments diluting the differences eventually seen in PFS. Since the training set OC179 derived from the MITO2 clinical trial (see supplementary Figure 1), we necessary used in this analysis the same definitions of PFS used in the MITO2 clinical trial¹. Therefore, PFS is defined starting from the date of randomization and this is an out-of-discussion rule in randomized trials and within the intention-to-treat analysis. Date of surgery in OC179, could not be used as a starting point for several reasons: for many patients there would be a window time between surgery and informed consent; for some patients surgery might have been diagnostic only and certainty and quality of data might not be warranted because pertaining to procedures out of the study. As regard with median follow-up and data maturity, they are very high in the MITO2 trial, from which OC179 training set has been derived, and this is typical of prospective clinical trials. Therefore, we don't believe that further updates are possible within this data set, also because increasing the follow-up there will be a growing effect of competitive non-cancer-related death. The same applies for the two validations sets (OC263 and OC452). Since no other public datasets with fully annotated clinical data are available, to further validate MiROvaR we are already working on subsequent MITO trials where tumor collection has become mandatory to possibly avoid attrition bias (MITO 16 program NCT01706120 and NCT01802749).

We used multivariable analysis by Cox regression model to evaluate the independent prognostic impact of MiROvaR. Among the variables with known prognostic value we selected those considered as the stronger ones in terms of PFS prediction, i.e. FIGO stage and residual disease after primary surgery and the impact of the latter was independent of the categories use: SOD vs. OD (see Table 3) or NED vs. mRD vs. GRD (Supplementary Table 3).

MiROvaR confirmed its ability in classifying high vs. low risk patients both in training and in the two validation sets also when overall survival was considered as an alternative endpoint (see Supplementary Figure 4 and Supplementary Table 4)

Distribution of MiROvaR high- and low-risk patients according to clinical and pathological characteristics is reported in Supplementary Table 5.

Supplementary Table 1 Characteristics of the 179 MITO2 patients evaluable for miRNA expression compared with the whole MITO2 population

	OC	179	Overall p	opulation	
	N° (179)	%	N° (820)	%	
Age					
Median (range)	59	(28-78)	57	(21-77)	
Histology		I			
Serous	124	69	530	65	
Endometrioid	24	13	98	12	
Clear cell	6	3	27	3	
Mucinous	0	0	25	3	
Undifferentiated	10	6	60	7	
Mixed or other	13	7	44	5	
Missing information	2	1	36	4	
Stage (FIGO)		I			
Ic	17	10	74	9	
Π	15	8	79	10	
III	123	69	493	60	
IV	24	13	174	21	
Grade		I			
G1	5	3	32	4	
G2	27	15	137	17	
G3	126	70	453	55	
Undifferentiated	10	6	60	7	
Missing information	11	6	138	17	
Amount of residual disease		I			
None	73	41	298	36	
< 1 cm	42	23	149	18	
> 1 cm	53	30	227	28	
Not operated	11	6	146	18	
Treatment assigned		I			
Carboplatin – paclitaxel	78	44	410	50	
Carboplatin – Caelyx	101	56	410	50	

Mature miRNA	Accession	Mature miRNA	Accession	Mature miRNA	Accession	Mature miRNA	Accession	Mature miRNA	Accession
name		name		name		name		name	
hsa-let-7a-3p	MIMAT0004481	hsa-miR-151a-3p	MIMAT0000757	hsa-miR-223-5p	MIMAT0004570	hsa-miR-365a-3p	MIMAT0000710	hsa-miR-542-3p	MIMAT0003389
hsa-let-7a-5p		hsa-miR-151a-5p	NIIVIA 10004697	hsa-miR-22-3p	MINIA T0000077	hsa-miR-369-3p	MINA 10000721	hsa-miR-542-5p	
hsa-let-70-5p	MIMAT0000063	hsa-miR-152-5p	MIMAT0000458	hsa-miR-224-5p	MINA T0000281	hsa-miR-370-3p	MINAT0001621	hsa-miR-545	MIMAT0004954
hsa-let-7d-3n	MIMAT0000004	hsa-miR-154-5p	MIMAT0000453	hsa-miR-23a-3n	MIMAT00004433	hsa-miR-370-3p	MIMAT0000722	hsa-miR-548d-5p	MIMAT0004800
hsa-let-7d-5p	MIMAT000065	hsa-miR-155-5p	MIMAT0000646	hsa-miR-23a-5p	MIMAT0004496	hsa-miR-374a-5p	MIMAT0000727	hsa-miR-550a-3p	MIMAT0003257
hsa-let-7e-5p	MIMAT000066	hsa-miR-15a-5p	MIMAT000068	hsa-miR-23b-3p	MIMAT0000418	hsa-miR-374b-5p	MIMAT0004955	hsa-miR-564	MIMAT0003228
hsa-let-7f-1-3p	MIMAT0004486	hsa-miR-15b-3p	MIMAT0004586	hsa-miR-23b-5p	MIMAT0004587	hsa-miR-375	MIMAT0000728	hsa-miR-566	MIMAT0003230
hsa-let-7f-5p	MIMAT000067	hsa-miR-15b-5p	MIMAT0000417	hsa-miR-24-1-5p	MIMAT0000079	hsa-miR-376a-3p	MIMAT0000729	hsa-miR-570-3p	MIMAT0003235
hsa-let-7g-5p	MIMAT0000414	hsa-miR-16-2-3p	MIMAT0004518	hsa-miR-24-2-5p	MIMAT0004497	hsa-miR-376a-5p	MIMAT0003386	hsa-miR-571	MIMAT0003236
hsa-let-7i-3p	MIMAT0004585	hsa-miR-16-5p	MIMAT000069	hsa-miR-24-3p	MIMAT000080	hsa-miR-376b-3p	MIMAT0002172	hsa-miR-574-3p	MIMAT0003239
hsa-let-7i-5p	MIMAT0000415	hsa-miR-17-3p	MIMAT0000071	hsa-miR-25-3p	MIMAT000081	hsa-miR-376c-3p	MIMAT0000720	hsa-miR-574-5p	MIMAT0004795
hsa-miR-100-3p	MIMAT0004512	hsa-miR-181a-2-3p	MIMAT0004558	hsa-miR-26a-5p	MIMAT000082	hsa-miR-377-3p	MIMAT0000730	hsa-miR-582-5p	MIMAT0003247
hsa-miR-100-5p	MIMAT0000098	hsa-miR-181a-3p	MIMAT0000270	hsa-miR-26b-3p	MIMAT0004500	hsa-miR-378a-5p	MIMAT0000731	hsa-miR-583	MIMAT0003248
hsa-miR-101-3p	MIMA10000099	hsa-miR-181a-5p	MIMA10000256	hsa-miR-26b-5p	MIMA1000083	hsa-miR-379-5p	MIMA10000733	hsa-miR-584-5p	MIMA 10003249
hsa-miR-103a-3p	MINA T0000101	hsa-miR-181c-3p	NIIVIA 10004559	nsa-miR-27a-3p	NIIVIA 10000084	hsa-miR-381-3p		hsa-miR-585-3p	NIINA 10003250
hsa-miR-106-3p	MIMAT0000102	hsa-miR-181d-5p	MINAT000238	hsa-miR-27b-5p	MINAT000419	hsa-miR-409-3p	MIMAT0000737	hsa-miR-592	MIMAT0003260
hsa-miR-106b-5p	MIMAT0004072	hsa-miR-182-3n	MIMAT0002821	hsa-miR-28-3n	MIMAT0004588	hsa-miR-409-5p	MIMAT0001639	hsa-miR-598-3n	MIMAT0003266
hsa-miR-107	MIMAT0000104	hsa-miR-183-3p	MIMAT0004560	hsa-miR-28-5p	MIMAT000085	hsa-miR-410-3p	MIMAT0002171	hsa-miR-610	MIMAT0003278
hsa-miR-10a-3p	MIMAT0004555	hsa-miR-183-5p	MIMAT0000261	hsa-miR-296-3p	MIMAT0004679	hsa-miR-411-3p	MIMAT0004813	hsa-miR-614	MIMAT0003282
hsa-miR-10a-5p	MIMAT0000253	hsa-miR-185-5p	MIMAT0000455	hsa-miR-296-5p	MIMAT0000690	hsa-miR-411-5p	MIMAT0003329	hsa-miR-615-3p	MIMAT0003283
hsa-miR-10b-3p	MIMAT0004556	hsa-miR-186-3p	MIMAT0004612	hsa-miR-298	MIMAT0004901	hsa-miR-421	MIMAT0003339	hsa-miR-622	MIMAT0003291
hsa-miR-10b-5p	MIMAT0000254	hsa-miR-186-5p	MIMAT0000456	hsa-miR-299-3p	MIMAT0000687	hsa-miR-423-3p	MIMAT0001340	hsa-miR-624-5p	MIMAT0003293
hsa-miR-1225-3p	MIMAT0005573	hsa-miR-188-5p	MIMAT0000457	hsa-miR-299-5p	MIMAT0002890	hsa-miR-423-5p	MIMAT0004748	hsa-miR-625-3p	MIMAT0004808
hsa-miR-1225-5p	MIMAT0005572	hsa-miR-18a-3p	MIMAT0002891	hsa-miR-29a-3p	MIMAT000086	hsa-miR-424-3p	MIMAT0004749	hsa-miR-625-5p	MIMAT0003294
hsa-miR-122-5p	MIMAT0000421	hsa-miR-18a-5p	MIMAT0000072	hsa-miR-29a-5p	MIMAT0004503	hsa-miR-424-5p	MIMAT0001341	hsa-miR-627-5p	MIMAT0003296
hsa-miR-1226-5p	MIMAT0005576	hsa-miR-18b-5p	MIMAT0001412	hsa-miR-29b-1-5p	MIMAT0004514	hsa-miR-425-3p	MIMAT0001343	hsa-miR-628-3p	MIMAT0003297
hsa-miR-1228-3p	MIMAT0005583	hsa-miR-190a-5p	MIMAT0000458	hsa-miR-29b-3p	MIMAT0000100	hsa-miR-429	MIMAT0001536	hsa-miR-628-5p	MIMAT0004809
hsa-miR-1228-5p	MIMAT0005582	hsa-miR-191-3p	MIMAT0001618	hsa-miR-29c-3p	MIMAT0000681	hsa-miR-431-5p	MIMAT0001625	hsa-miR-629-3p	MIMAT0003298
hsa-miR-1229-3p	MIMAT0005584	hsa-miR-192-5p	MIMAT0000222	hsa-miR-29c-5p	MIMAT0004673	hsa-miR-432-5p	MIMAT0002814	hsa-miR-632	MIMAT0003302
hsa-miR-1234-3p	MIMAT0005589	hsa-miR-193a-3p	MIMAT0000459	hsa-miR-301a-3p	MIMAT0000688	hsa-miR-449a	MIMAT0001541	hsa-miR-645	MIMAT0003315
hsa-miR-1237-3p	MIMA10005592	hsa-miR-193a-5p	MIMA10004614	hsa-miR-302c-5p	MIMA10000716	hsa-miR-449b-5p	MIMA10003327	hsa-miR-651-5p	MIMA 10003321
hsa-miR-125a-3p	MIMA 10004602	hsa-miR-193b-3p	MIMA 10002819	haa miR-302d-3p	MIMA 10000718	hsa-miR-450a-5p	MIMA 10001545	hsa-miR-652-3p	MINA 10003322
hsa-miR-125a-5p	MINA T000443	hsa-miR-1930-5p	MINA 10004767	hsa-miR-30a-3p	NIIVIA 10000088	hsa-miR-451a	MINA 10001631	hsa-miR-654-3p	NIINA 10004814
hsa-miR 1250-1-5p	MINA T0004592	hsa miR 194-5p	MINA T0004671	hsa miR 20h 2n	MINAT000087	hsa miR 454 2n	MINA T0002005	hsa-miR 656 2p	
hsa-miR-125b-2-5p	MIMAT0004003	hsa-miR-194-3p	MIMAT0004615	hsa-miR-30h-5p	MIMAT0004389	hsa-miR-455-3n	MIMAT0003883	hsa-miR-660-5p	MIMAT0003332
hsa-miR-126-3p	MIMAT0000425	hsa-miR-195-5p	MIMAT0004013	hsa-miR-30c-1-3n	MIMAT000420	hsa-miR-455-5p	MIMAT0004784	hsa-miR-663a	MIMAT0003336
hsa-miR-126-5p	MIMAT0000444	hsa-miR-196a-5p	MIMAT0000226	hsa-miR-30c-2-3p	MIMAT0004550	hsa-miR-483-3p	MIMAT0002173	hsa-miR-665	MIMAT0004952
hsa-miR-127-3p	MIMAT0000446	hsa-miR-196b-5p	MIMAT0001080	hsa-miR-30c-5p	MIMAT0000244	hsa-miR-483-5p	MIMAT0004761	hsa-miR-675-5p	MIMAT0004284
hsa-miR-128-3p	MIMAT0000424	hsa-miR-197-3p	MIMAT0000227	hsa-miR-30d-3p	MIMAT0004551	hsa-miR-484	MIMAT0002174	hsa-miR-708-3p	MIMAT0004927
hsa-miR-129-1-3p	MIMAT0004548	hsa-miR-198	MIMAT0000228	hsa-miR-30d-5p	MIMAT0000245	hsa-miR-485-3p	MIMAT0002176	hsa-miR-708-5p	MIMAT0004926
hsa-miR-129-2-3p	MIMAT0004605	hsa-miR-199a-5p	MIMAT0000231	hsa-miR-30e-3p	MIMAT0000693	hsa-miR-485-5p	MIMAT0002175	hsa-miR-7-1-3p	MIMAT0004553
hsa-miR-129-5p	MIMAT0000242	hsa-miR-199b-5p	MIMAT0000263	hsa-miR-30e-5p	MIMAT0000692	hsa-miR-486-3p	MIMAT0004762	hsa-miR-744-3p	MIMAT0004946
hsa-miR-130a-3p	MIMAT0000425	hsa-miR-19a-3p	MIMAT0000073	hsa-miR-31-3p	MIMAT0004504	hsa-miR-486-5p	MIMAT0002177	hsa-miR-744-5p	MIMAT0004945
hsa-miR-130b-3p	MIMAT0000691	hsa-miR-19b-3p	MIMAT0000074	hsa-miR-31-5p	MIMAT000089	hsa-miR-487a-3p	MIMAT0002178	hsa-miR-7-5p	MIMAT0000252
hsa-miR-132-3p	MIMAT0000426	hsa-miR-200a-3p	MIMAT0000682	hsa-miR-323a-3p	MIMAT0000755	hsa-miR-487b-3p	MIMAT0003180	hsa-miR-760	MIMAT0004957
hsa-miR-132-5p	MIMAT0004594	hsa-miR-200a-5p	MIMAT0001620	hsa-miR-32-3p	MIMAT0004505	hsa-miR-493-5p	MIMAT0002813	hsa-miR-766-3p	MIMAT0003888
hsa-miR-133a-3p	MIMAT0000427	hsa-miR-200b-3p	MIMAT0000318	hsa-miR-324-3p	MIMAT0000762	hsa-miR-494-3p	MIMAT0002816	hsa-miR-769-3p	MIMAT0003887
hsa-miR-134-5p	MIMA10000447	hsa-miR-200b-5p	MIMA10004571	hsa-miR-324-5p	MIMA10000761	hsa-miR-495-3p	MIMA 10002817	hsa-miR-769-5p	MIMA 10003886
hsa-miR-135a-3p	MIMA 10004595	hsa-miR-200c-3p	MIMA 10000617	nsa-miR-32-5p	MIMA 1000090	hsa-miR-497-5p	MIMA 10002820	hsa-miR-874-3p	MIMA 10004911
hsa-miR 1256-5p	MINA T0000428	hsa miR 202 En	MINA T0004657	hsa miR 228 2n	MINAT0000750	hsa miR 500a 2p	MINA 10002870	hsa-miR 876 2p	MINA T0004922
hsa-miR-136-2n	MIMATOOMAGA	hsa-miR-202-3p	MIMAT0002610	hsa-miR-270-2n	MIMAT0001620	hsa-miR-500a-3p	MIMAT0002871	hsa-miR-877-2n	MIMAT0004925
hsa-miR-136-5n	MIMAT00004000	hsa-miR-204-5n	MIMAT0000265	hsa-miR-330-3n	MIMAT0000751	hsa-miR-501-5p	MIMAT0002872	hsa-miR-877-5n	MIMAT0004949
hsa-miR-137	MIMAT0000429	hsa-miR-205-5p	MIMAT0000266	hsa-miR-331-3p	MIMAT0000760	hsa-miR-502-5p	MIMAT0002873	hsa-miR-885-5p	MIMAT0004947
hsa-miR-139-3p	MIMAT0004552	hsa-miR-206	MIMAT0000462	hsa-miR-335-3p	MIMAT0004703	hsa-miR-503-5p	MIMAT0002874	hsa-miR-887-3p	MIMAT0004951
hsa-miR-139-5p	MIMAT0000250	hsa-miR-20a-3p	MIMAT0004493	hsa-miR-335-5p	MIMAT0000765	hsa-miR-505-3p	MIMAT0002876	hsa-miR-889-3p	MIMAT0004921
hsa-miR-1-3p	MIMAT0000416	hsa-miR-20a-5p	MIMAT000075	hsa-miR-337-3p	MIMAT0000754	hsa-miR-505-5p	MIMAT0004776	hsa-miR-890	MIMAT0004912
hsa-miR-140-3p	MIMAT0004597	hsa-miR-20b-5p	MIMAT0001413	hsa-miR-338-3p	MIMAT0000763	hsa-miR-506-3p	MIMAT0002878	hsa-miR-92a-1-5p	MIMAT0004507
hsa-miR-140-5p	MIMAT0000431	hsa-miR-210-3p	MIMAT0000267	hsa-miR-339-3p	MIMAT0004702	hsa-miR-507	MIMAT0002879	hsa-miR-92a-3p	MIMAT0000092
hsa-miR-141-3p	MIMAT0000432	hsa-miR-211-5p	MIMAT0000268	hsa-miR-33a-5p	MIMAT0000091	hsa-miR-508-3p	MIMAT0002880	hsa-miR-92b-3p	MIMAT0003218
hsa-miR-142-3p	MIMAT0000434	hsa-miR-212-3p	MIMAT0000269	hsa-miR-340-3p	MIMAT0000750	hsa-miR-509-3p	MIMAT0002881	hsa-miR-92b-5p	MIMAT0004792
hsa-miR-142-5p	MIMAT0000433	hsa-miR-21-3p	MIMAT0004494	hsa-miR-342-3p	MIMAT0000753	hsa-miR-509-5p	MIMAT0004779	hsa-miR-93-3p	MIMAT0004509
hsa-miR-143-3p	MIMAT0000435	hsa-miR-214-3p	MIMAT0000271	hsa-miR-342-5p	MIMAT0004694	hsa-miR-513a-5p	MIMAT0002877	hsa-miR-93-5p	MIMAT0000093
hsa-miR-143-5p	MIMAT0004599	hsa-miR-214-5p	MIMAT0004564	hsa-miR-345-5p	MIMAT0000772	hsa-miR-513b-5p	MIMAT0005788	hsa-miR-939-5p	MIMAT0004982
hsa-miR-144-5p	MIMAT0004600	hsa-miR-215-5p	MIMAT0000272	hsa-miR-34a-3p	MIMAT0004557	hsa-miR-514a-3p	MIMAT0002883	hsa-miR-9-3p	MIMAT0000442
hsa-miR-145-3p	MIMAT0004601	hsa-miR-21-5p	MIMAT000076	hsa-miR-34a-5p	MIMAT0000255	hsa-miR-516a-5p	MIMAT0004770	hsa-miR-940	MIMAT0004983
nsa-miR-145-5p	IVIIMA 10000437	nsa-miR-216a-5p	IVIIMA 10000273	nsa-miR-34b-5p	IVIIMA 10000685	nsa-miR-517a-3p	IVITMA 10002852	nsa-miR-95-3p	IVIIMA 10000094
hsa miR 146a-5p	IVIIIVIA I UUUU449	hsa miR 216b-5p	IVIIIVIA I 0004959	nsa-mik-34c-3p		hsa-miR-51/c-3p		nsa-mik-9-5p	MINA 10000441
hsa-miP 1490-50	MINAT0000242	hsa-miP 2100 50		hsa-miP 261 25		hsa-miP 522 2~		115d-1111K-90-50	
hsa-miR-1488-30	MIMAT0000750	hsa-miR-2198-5p	MIMAT0000270	hsa-miR-261-5p	MIMAT000702	hsa-miR-522-3p	MIMAT0002808	hsa-miR-90-5p	MIMAT0004511
hsa-miR-149-5p	MIMAT0000450	hsa-miR-221-5p	MIMAT0004568	hsa-miR-362-3p	MIMAT0004683	hsa-miR-523-3p	MIMAT0004780	hsa-miR-99a-5p	MIMAT000097
hsa-miR-150-3p	MIMAT0004610	hsa-miR-222-3p	MIMAT0000279	hsa-miR-362-5p	MIMAT0000705	hsa-miR-532-5p	MIMAT0002888	hsa-miR-99h-3n	MIMAT0004678
hsa-miR-150-5p	MIMAT0000451	hsa-miR-222-3p	MIMAT0000279	hsa-miR-362-3p	MIMAT0000707	hsa-miR-530-5p	MIMAT0003162	hsa-miR-00h-5p	MIMAT0000690

Datasets	Variables	HR	95% CI	P value
	Stage			
	III–IV vs I–II	2.60	1.23-5.49	0.012
	Surgical debulking			
OC179 (n=179_events=124)	mRD vs NED	2.35	1.43-3.87	<0.0001
00173 (n=173, events=124)	GRD vs NED	2.19	1.37-3.49	0.0011
	miRNA predictor			
	High vs Low risk	1.85	1.29–2.64	<0.0001
	Stage			
	III–IV vs I–II	1.76	0.95-3.28	0.072
	Surgical debulking			
OC263 (n=262, events=194)	mRD vs NED	1.57	1.03 - 2.40	0.035
	GRD vs NED	2.06	1.35-3.13	0.00079
	miRNA predictor			
	High vs Low risk	2.96	2.14-4.10	<0.0001
	Stage			
	III–IV vs I–II	1.50	0.86-2.61	0.14
OC452	Surgical debulking			
	mRD vs NED	1.70	1.23-2.35	0.0012
(n=409, events=300)	GRD vs NED	1.87	1.31-2.67	<0.00051
	miRNA predictor			
	High vs Low risk	1.32	1.04–1.69	0.022

Supplementary Table 3. Multivariable analysis (Cox regression) of progression-free survival for clinical and biological variables in the test set (OC179) and validation sets (OC263 and OC452): three categorizations for residual disease.

HR=hazard ratio; CI=confidence interval; mRD=minimal residual disease; NED= no evident residual disease; GRD= gross residual disease.

Supplementary Table 4 Univariate analysis (Cox regression) of overall survival for MiROvaR in the three dataset

		Univariate analysis					
		HR	95% CI	P value			
0C179	miRNA predictor						
(n=179, events= 77)	High vs Low risk	1.79	1.12-2.79	0.015			
00263	miRNA predictor						
(n=263, events= 105)	High vs Low risk	3.24	2.13-4.93	<0.0001			
TCCA	miRNA predictor						
(n=452, events= 223)	High vs Low risk	1.33	1.01–1.76	0.046			

HR=hazard ratio; CI=confidence interval;

Supplementary Table 5 Test for interaction miRNA-predictor-treatment in OC179 cohort

		HR	95% CI	P value
<i>OC179</i> (n=179, events=124)	miRNA predictor			
	High vs Low risk	1.66	0.97-2.86	0.06
	treatment			
	Platinum-Caelyx vs Platinum-Taxane	0.91	0.52-1.58	0.73
	miRNA H : Platinum- Caelyx	1.2	0.58-2.48	0.62

Supplementary Table 6 Distribution of MiROvaR high- and low-risk patients in relation to clinical and pathological variables

	OC179 (N 179)					00	C 263 (1	V 263)		TCGA (N 452)					
	Low	risk	High risk P value		Low	risk	High	risk	P value	Low risk High risk		risk	Р		
	Ν	%	N	%	1 value	Ν	%	Ν	%	i value	Ν	%	N	%	value
Stage (FIGO)															
I/II	23	72	9	28		15	60	10	40		12	44	15	56	0.54
III/IV	67	46	80	54	0.013	107	45	131	55	0.19	157	37	267	63	0.24
Missing information											0	0	1	100	
Amount of residual disease															
OD	64	56	51	44		90	56	71	44		122	39	188	61	0.22
SOD	26	41	38	59	0.055	32	32	69	68	0.0005	34	34	66	66	0.32
Missing information						0	0	1	100		13	31	29	69	
Histology															
Serous	63	51	61	49		82	43	108	57	0.28	169	37	283	63	
Undifferentiated	5	50	5	50		10	43	13	57						
Clear cells	2	33	4	67	0.20	4	58	3	42						
Endometroid	15	62	9	38	0.39	15	58	11	42						па
Mucinous						0	0	1	100						
Others + Mixed	4	31	9	69		10	62	5	38						
Missing information	1	50	1	50		1	100	0	0						
Grade															
Borderline						2	67	1	33		1	100	0	0	
1: well differentiated	3	60	2	40		4	57	3	43		2	40	3	60	
2: moderately differentiated	15	56	12	44	0.02	30	59	21	41	0.25	25	46	30	54	0.46
3: poorly differentiated	62	49	64	51	0.93	75	42	102	58		138	36	244	64	
Undifferentiated	5	50	5	50		10	43	13	57						
GX											3	37	5	63	
Missing information	5	45	6	55							0	0	1	100	

N= number; na=not applicable; OD= optimal debulking; SOD =sub-optimal debulking.

REFERENCES to supplementary information

- 1. Pignata S, Scambia G, Ferrandina G *et al.* Carboplatin Plus Paclitaxel Versus Carboplatin Plus Pegylated Liposomal Doxorubicin As First-Line Treatment for Patients With Ovarian Cancer: The MITO-2 Randomized Phase III Trial. *J Clin Oncol* 2011; **29**: 3628-35.
- Ravo M, Mutarelli M, Ferraro L *et al.* Quantitative expression profiling of highly degraded RNA from formalin-fixed, paraffin-embedded breast tumor biopsies by oligonucleotide microarrays. *Lab Invest* 2008; 88: 430-40.
- 3. Lopez-Romero P. Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library. *BMC Genomics* 2011; **12**: 64.
- 4. Bagnoli M, De Cecco L, Granata A *et al.* Identification of a chrXq27.3 microRNA cluster associated with early relapse in advanced stage ovarian cancer patients. *Oncotarget* 2011; **2**: 1265-78.
- 5. Callari M, Dugo M, Musella V *et al.* Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues. *PLoS One* 2012; 7: e45105.
- 6. Steyerberg EW, Vickers AJ, Cook NR *et al*. Assessing the performance of prediction models: a framework for traditional and novel measures. *Epidemiology* 2010; **21**: 128-38.
- 7. Yasrebi H. SurvJamda: an R package to predict patients' survival and risk assessment using joint analysis of microarray gene expression data. *Bioinformatics* 2011; 27: 1168-9.
- 8. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. *Biometrics* 2000; **56**: 337-44.
- 9. Stuart GC, Kitchener H, Bacon M *et al.* 2010 Gynecologic Cancer InterGroup (GCIG) consensus statement on clinical trials in ovarian cancer: report from the Fourth Ovarian Cancer Consensus Conference. *Int J Gynecol Cancer* 2011; **21**: 750-5.

Supplementary Figure 1. Consort diagram for inclusion criteria of OC179 case material used as a training set and derived from samples collected for translational research purposes from the MITO2 clinical trial ¹.

Supplementary Figure 2. Progression Free Survival (upper panels) and overall survival (lower panels) curves for the three case materials included in the study: OC179, training set (left panels); OC263, validation set 1 (middle panels); OC452, validation set 2 (right panels). Solid lines=survival curves; dotted lines=95% CI.

Supplementary Figure 3. A: Performance of miROvaR to detect high risk patients in all populations. ROC curves from training set (OC179), validation set1 (OC263) and validation set2 (TCGA) are reported. **B:** Performance of miROvaR in Type II and High Grade Serous (HGSOC) subgroup of OC263 validation set1 population. Accuracy of prediction was tested in 230 Type II and 185 HGSOC cases from OC263 validation set. The accuracy of the prediction (AUC) was plotted as the mean and standard deviation (SD) following a 10-time cross validation procedure.

Supplementary Figure 4. Overall survival curves of patients stratified according to the miRNA predictor in the three dataset included in the study: OC179, training set (left panels); OC263, validation set 1 (middle panels); OC452, validation set 2 (right panels). High-risk (red line) and low-risk (blue line) curves were compared using a log-rank test. Nyr = not yet reached