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Abstract. This work starts from the empirical observation that k near-
est neighbours (KNN) consistently outperforms state-of-the-art tech-
niques for regression, including geometric semantic genetic program-
ming (GSGP). However, KNN is a memorization, and not a learn-
ing, method, i.e. it evaluates unseen data on the basis of training
observations, and not by running a learned model. This paper takes
a first step towards the objective of defining a learning method able to
equal KNN, by defining a new semantic mutation, called random vectors-
based mutation (RVM). GP using RVM, called RVMGP, obtains results
that are comparable to KNN, but still needs training data to evaluate
unseen instances. A comparative analysis sheds some light on the rea-
son why RVMGP outperforms GSGP, revealing that RVMGP is able to
explore the semantic space more uniformly. This finding opens a ques-
tion for the future: is it possible to define a new genetic operator, that
explores the semantic space as uniformly as RVM does, but that still
allows us to evaluate unseen instances without using training data?

1 Introduction

Geometric Semantic Genetic Programming (GSGP) [1,2] is a variant of Genetic
Programming (GP) [3] that uses Geometric Semantic Operators (GSOs) instead
of the standard crossover and mutation. It induces a unimodal fitness landscape
for any supervised learning problem; so it is an extremely powerful optimizer and,
at the same time, it can limit overfitting [4]. The popularity of GSGP has steadily
grown in the last few years, and it is nowadays a well established Machine Learn-
ing (ML) method. Nevertheless, GSGP generates very large predictive models,
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which are extremely hard to read and understand [1,2]. Even though several
implementations have been introduced, that make GSGP usable and efficient [5–
7], the lack of interpretability of the model is still an issue. Aware that in GSGP
the most important GSO is mutation, and that GSGP without crossover can
often outperform GSGP that uses crossover [8,9], in this paper, we introduce a
mutation intending to ease a model’s interpretability.

The mutation traditionally used by GSGP, called Geometric Semantic Muta-
tion (GSM) uses two random trees. The evaluation of those random trees on
training instances is used to obtain a different (random) value for each observa-
tion, which is subsequently used to calculate the modification caused by mutation
to the outputs of the individual. The operator we introduce in this work, called
Random Vectors-based Mutation (RVM), replaces the random trees with a vec-
tor of random numbers of the same length as the number of training instances.
In this way, for each observation, one different random number is used to decide
the modification of the output. GP using RVM as the sole genetic operator
will be called RVMGP. Clearly, at the end of a RVMGP evolution, we do not
have a real “model” (intended as a program that can be executed on unseen
data), and so a different strategy has to be designed for generalizing. In this
paper, we adopt a method that is very similar to the one used by k Near-
est Neighbours (KNN) [10,11]: the output on an unseen instance is calculated
using the similarity between the unseen instance and the training observations.
Given that RVMGP works similarly to KNN on unseen data, it makes sense to
compare RVMGP not only to GSGP, but also to KNN itself. To make the exper-
imental comparison more complete, we also compare these methods to Random
Forest (RF) regression [12], that is currently considered by several researchers
as the state of the art for regression with ML, at least for “non-big data” prob-
lems [13,14]. The outcome of this experimental study, carried on six real-life
regression problems, paves the way to fundamental questions on the relevance
itself of using GP, a discussion that is tackled at the end of this paper.

The manuscript is organized as follows: Sect. 2 introduces GSGP. Section 3
introduces RVM. Section 4 presents our experimental study; after present-
ing the test problems and the employed experimental settings, the com-
parison between RVMGP and GSGP is presented in Sect. 4.2 and the one
between RVMGP, KNN and RF regression in Sect. 4.3. Finally, Sect. 5 concludes
the paper.

2 Geometric Semantic Genetic Programming

Let X = {−→x1,
−→x2, ...,

−→xn} be the set of input data (training instances, observations
or fitness cases) of a symbolic regression problem, and

−→
t = [t1, t2, ..., tn] the

vector of the respective expected output or target values (in other words, for
each i = 1, 2, ..., n, ti is the expected output corresponding to input −→xi). A GP
individual (or program) P can be seen as a function that, for each input vector−→xi returns the scalar value P (−→xi). Following [2], we call semantics of P the
vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This vector can be represented as a point
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in a n-dimensional space, that we call semantic space. Remark that the target
vector

−→
t itself is a point in the semantic space.

As explained above, GSGP is a variant of GP where the standard crossover
and mutation are replaced by new operators called Geometric Semantic Opera-
tors (GSOs). The objective of GSOs is to define modifications on the syntax of
GP individuals that have a precise effect on their semantics. More in particular:
geometric semantic crossover generates one offspring, whose semantics stands
in the line joining the semantics of the two parents in the semantic space and
geometric semantic mutation, by mutating an individual i, allows us to obtain
another individual j such that the semantics of j stands inside a ball of a given
predetermined radius, centered in the semantics of i. One of the reasons why
GSOs became popular in the GP community is probably related to the fact that
GSOs induce an unimodal error surface (on training data) for any supervised
learning problem, where fitness is calculated using an error measure between
outputs and targets. In other words, using GSOs the error surface on training
data is guaranteed to not have any locally optimal solution. This property holds,
for instance, for any regression or classification problem, independently on how
big and how complex data are (reference [1] contains a detailed explanation of
the reason why the error surface is unimodal and its importance). The definitions
of the GSOs are, as given in [2], respectively:

Geometric Semantic Crossover (GSC). Given two parent functions T1, T2 :
R

n → R, the geometric semantic crossover returns the real function TXO =
(T1 · TR) + ((1 − TR) · T2), where TR is a random real function whose output
values range in the interval [0, 1].

Geometric Semantic Mutation (GSM). Given a parent function T : Rn →
R, the geometric semantic mutation with mutation step ms returns the real
function TM = T + ms · (TR1 − TR2), where TR1 and TR2 are random real
functions.

The reason why GSM uses two random trees TR1 and TR2 is that the amount
of modification caused by GSM must be centered in zero. In other words, a
random expression is needed that has the same probability of being positive
or negative. Even though this is not in the original definition of GSM, later
contributions [1,4,9] have clearly shown that limiting the codomain of TR1 and
TR2 in a predefined interval (for instance [0, 1], as it is done for TR in GSC) helps
to improve the generalization ability of GSGP. As in several previous works [1,5],
we constrain the outputs of TR, TR1, and TR2 by wrapping them in a logistic
function. Only the definitions of the GSOs for symbolic regression problems are
given here, since they are the only ones used in this work. For the definition of
GSOs for other domains, the reader is referred to [2].

As reported in [1,2], the property of GSOs of inducing a unimodal error sur-
face has a price. The price, in this case, is that GSOs always generate larger
offspring than the parents, and this entails a rapid growth of the size of the
individuals in the population. To counteract this problem, in [5–7] implemen-
tations of GSOs were proposed, that make GSGP not only usable in practice,
but also significantly faster than standard GP. This is possible through a smart
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representation of GP individuals, that allows us to not store their genotypes
during the evolution. The implementation presented in [5] is the one used here.
Even though this implementation is efficient, it does not solve the problem of
the size of the final model: the genotype of the final solution returned by GSGP
can be reconstructed, but it is so large that it is practically impossible to under-
stand it. This turns GSGP into a “black-box” system, as many other popular
ML systems are, including deep neural networks.

Several previous contributions (see for instance [8]) have clearly demonstrated
that, in GSGP, the most important genetic operator is GSM and in many cases
a GSGP system using only GSM, and no GSC, can obtain comparable (or even
better) results to the ones of a system using both these operators. Even though
GSM limits the problem of the rapid growth of code inside the population (this
growth is exponential for GSC, but slower for GSM), the issue remains. In other
words, even using only GSM, the final model is often so large that it is hardly
readable and practically impossible to understand. Trying to solve this issue is
one of the motivations for introducing the novel mutation operator presented in
the next section.

3 Random Vector Based Mutation

The rapid code growth caused by GSM can be explained by the fact that the
offspring (TM in the definition of GSM given in Sect. 2) contains the genotype
of the parent (T ), plus the genotype of two random trees (TR1 and TR2) and
4 further nodes. Replacing the two random trees with a random number (i.e. a
scalar constant) would vastly limit the code growth. Nevertheless, as explained
in [1], this would not allow us to implement ball mutation on the semantic space,
which is the objective. Such a mutation would, in fact, modify the semantics of
parent T of the same constant amount for all its coordinates. On the other hand,
the optimization power of GSM is given by the fact that GSM can modify the
semantics of T by a different amount for each one of its coordinates, since TR1

and TR2 typically return different values when evaluated on the different training
observations. To understand the importance of this, one may consider the case
in which one coordinate of T is extremely “close” to the corresponding target,
while another coordinate is extremely “far”. Modifying both these coordinates of
the same quantity would never allow us to transform T into the global optimum.

In this work, we propose to use a vector of random numbers −→v , of the same
length as the number of training observations, to modify the semantics of the
individuals by different quantities for each one of its coordinates. Each element−→v [i] of vector −→v stores the particular modification that mutation apports to
the ith coordinate of the semantics of T . In GSM, if the codomain of TR1 and
TR2 is constrained in [0, 1] (as it is customary [1,4,9]), then, for each coordinate
of the semantic vector, the modification is given by a random number included
in [−ms,ms]. To simulate as closely as possible this behaviour of GSM, in this
work each coordinate −→v [i] of vector −→v will contain a random number extracted
with uniform distribution from [−ms,ms].
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The functioning should be clarified by the following example. Let us assume
that we have the following training set D, composed by 3 observations (lines)
and 2 features (columns), and the following corresponding target vector

−→
t :

D =

⎡
⎣

1 2
3 4
40 20

⎤
⎦ −→

t =

⎡
⎣

4
10
100

⎤
⎦

Let us also assume that we have a GP individual P = x1 + x2. The semantics
of P is equal to: −→sP = [3, 7, 60]. Let us also assume, for simplicity, that ms = 1.
All we have to do to mutate P is to generate a vector −→v of random numbers
in [−1, 1], of the same length as the number of training observations; for instance:−→v = [0.75,−0.25, 0.4]. In this way, the offspring PM of the mutation of P will
be an individual whose semantics is:

−−→sPM
= −→sP + −→v (1)

or, in other words: −−→sPM
= [3.75, 6.75, 60.4]. As we can see, each coordinate of −→v

has been used to update the corresponding coordinate of −→sP . We call this type
of mutation Random Vector based Mutation (RVM), and GP that uses RVM as
the unique genetic operator RVMGP. Both GSM and RVM can be defined as
follows:

TM = T + ΔT (2)

where the only difference between GSM and RVM is given by a different ΔT :
ΔT is equal to ms · (TR1 −TR2) for GSM (as in the definition of Sect. 2) and it is
equal to a different random number in [−ms,ms] for each training observation
for RVM.

At this point, a question comes natural: how can RVMGP be used to calculate
the output on unseen observations? The idea proposed in this work is inspired
by the KNN algorithm. In particular, given that only regression applications will
be used as test problems, the inspiration is taken from KNN regression [10]. It
consists in calculating the average of the outputs of the model on the k nearest
training observations. Considering the previous example again, let us consider
an unseen observation like, for instance: −→u = [2, 3]. What is the output of
individual PM on observation −→u ? If we assume, for instance, that k = 2, all we
have to do is to calculate the two closest instances to −→u in the training set D
and calculate the average of the outputs of PM on those instances. Considering,
for instance, Euclidean distance as the metric used to calculate the k nearest
training observations, the two observations that are closer to −→u in D are the
first and the second observations, i.e. [1, 2] and [3, 4]. Considering the output
values of PM on those two observations, i.e. the first two coordinates of sPM

, the
output of PM on unseen instance −→u is equal to:

PM (−→u ) =
3.75 + 6.75

2
= 5.25 (3)

Let us now take a moment to ponder what is the final model (i.e. the minimum
amount of information to calculate the output on unseen instances) for RVMGP.
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Actually, the model can be seen from two different viewpoints: the first one is to
consider the initial tree, plus the vector of random numbers used to translate its
semantics, plus the training set. For instance, for the previous example, if PM

was the final individual returned by RVMGP, one may say that the model is
given by:

P = x1 + x2,
−→v = [0.75 − 0.25 0.4], D =

⎡
⎣

1 2
3 4
40 20

⎤
⎦ (4)

It should be noticed that, if a new generation is executed by RVMGP, PM will
probably be mutated, generating a new individual P ′

M , where the semantic of P ′
M

can be obtained by summing the semantics of PM to a vector of random trees:

−−→sP ′
M

= −−→sPM
+ −→v1 (5)

But, replacing Eq. (1) into Eq. (5), we obtain: −−→sP ′
M

= −→sP + −→v + −→v1, and if we
define −→w = −→v + −→v1, we obtain: −−→sP ′

M
= −→sP + −→w . In other words, also sP ′

M
can be

defined using the semantics of the initial individual P and a vector of random
numbers. This reasoning can be generalized to any number of generations. So,
independently from the number of generations performed by RVMGP, it will
always be possible to interpret the final model as an individual from the initial
population, plus a vector of random numbers, plus the training set (as in Eq. (4)).

A second possible way of interpreting the model returned by RVMGP is to
consider the semantics of the final individual, plus the training set. Considering
the previous example, and assuming that PM is the final solution returned by
RVMGP, the model would be:

−−→sPM
= [3.75 6.75 60.4], D =

⎡
⎣

1 2
3 4
40 20

⎤
⎦ (6)

It should be noticed that this second way of interpreting the RVMGP
model (reported in Eq. (6)) is completely equivalent to the first one (reported
in Eq. (4)), since sPM

can be obtained directly by evaluating P on each line of D,
and summing −→v . It is only a different way of presenting the same information:
while the first interpretation (Eq. (4)) still contains a GP tree, and so vaguely
reminds a traditional GP model, the second interpretation (Eq. (6)) allows us to
save memory space and to calculate the output on unseen instances faster. If the
model is stored as in Eq. (4), to calculate the output on an unseen instance −→u
we have to evaluate o = P (−→u ), calculate the k nearest instances to −→u in D, and
sum to o the average of the corresponding coordinates in −→v . On the other hand,
if the model is stored as in Eq. (6), all we have to do is to calculate the k nearest
instances to −→u in D and return the average of the corresponding coordinates
in −−→sPM

. It is not hard to convince oneself that these two processes lead exactly
to the same result, but the second one is faster because it does not involve the
evaluation of a program on the unseen instance. We are aware that, in the pres-
ence of vast training sets, this could be a large amount of information to store
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250 L. Vanneschi et al.

(as vastly discussed in the literature as a drawback of KNN [10]). However, this
is still convenient, in terms of memory occupation, compared to storing the huge
models generated by GSGP, when GSM is employed.

Finally, it is worth pointing out that the only difference between RVMGP
and KNN regression is that KNN regression uses the target values corresponding
to the k nearest training observations, instead of the corresponding output of an
individual. In other words, considering the previous example, the output of KNN

regression for observation −→u would have been equal to: KNN(−→u ) =
4 + 10

2
= 14.

4 Experimental Study

This section is organized as follows: Sect. 4.1 presents the test problems used
for our experimental study and the employed parameter settings. Section 4.2
contains an experimental comparison between GSGP using GSM and RVMGP
using RVM (no crossover is considered in this study). Finally, Sect. 4.3 extends
the experimental comparison, by including also KNN regression and RF regres-
sion. From now on, for simplicity, GP using only GSM will be indicated as GSGP.
The notation GSGP-log will be used to indicate the variant of GSGP in which
the codomain of random trees TR1 and TR2 used by GSM are constrained in [0, 1]
by wrapping them with a logistic function, as in [1,4,9]. The notation GSGP-
nolog will be used to indicate the variant in which the codomains of TR1 and
TR2 are not constrained at all. Finally, to indicate the variant of RVMGP using
a particular value k = x, we will use the notation RVM-kx.

4.1 Test Problems and Experimental Settings

The six real-life datasets used as test problems are described in Table 1. The table
shows, for each dataset, the number of features, the number of observations, and
a reference where more information about the data and the application can be
found. The six datasets have already been used as test problems for GP before.

Table 1. Description of the test prob-
lems. For each dataset, the number of
features (independent variables) and the
number of instances (observations) are
reported.

Dataset # Features # Instances

Bioavailability [15] 241 359

Concrete [16] 8 1029

Energy [17] 8 768

Park Motor [18] 18 5875

Park Total [18] 18 5875

PPB [15] 628 131

Table 2. Parameter setting used in our
experiments for the studied GP variants.

Parameter Setting

Population size 100

Max. # of generations 2000

Initialization Ramped H-H

Crossover rate 0

Mutation rate 1

Max. depth for initialization 6

Tournament selection, size 4
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Previous contributions, including the ones referenced in Table 2, clearly show
that GSGP outperforms standard GP (i.e. GP using the standard Koza’s genetic
operators [3]) on all these test problems. For this reason, standard GP is not
studied here. For each one of these datasets, 30 independent runs of each one of
the studied methods where performed. For each run, a different partition of the
dataset into training and test set was used, where 70% of the instances, randomly
selected with uniform distribution, form the training set and the remaining 30%
were used as a test set.

Table 2 reports the values of the parameters that were used in our GP exper-
iments. Besides, elitism was applied by copying the best individual in the next
population at each generation. The mutation step, for all the studied meth-
ods, was a random number, extracted with uniform distribution from [0, 1],
as proposed in [9]. Concerning RVMGP, different values of k were studied
(k = 1, 5, 10, 20, 50) and experimentally compared. Concerning KNN, the same
values of k as for RVMGP were studied. For both algorithms, the measure used
to calculate the similarity between instances was the Euclidean distance, calcu-
lated using all the features in the dataset. Concerning RF, least-squares boosting
was used, with a maximum of 10 splits per tree and 100 trees.

4.2 Experimental Results: RVMGP vs GSGP

Figure 1 reports the results on the training set obtained by RVMGP,
GSGP-log and GSGP-nolog. On training data, RVMGP clearly outperforms
both GSGP-log and GSGP-nolog for all the studied test problems. Figure 2
reports the results on the test set. Concerning RVMGP, to avoid cluttering the
plots, only the best and worse values of k for each test problem are reported.
Concerning GSGP, only the curve of GSGP-log is reported, because, for each
studied problem, GSGP-nolog returns results on the test set that are so much
worse than the other studied methods that reporting the curve of GSGP-nolog
would not allow us to appreciate the mutual differences between the other meth-
ods. The fact that GSGP-nolog has a poor generalization ability, hence the need
of constraining the output of the random trees generated by GSM, was already
known in the literature [1,4], and our study is a further confirmation of this
finding.

Concerning Fig. 2, let us not consider, for the moment, the horizontal straight
lines, that represent the results returned by KNN regression. Those results will
be discussed in Sect. 4.3. Figure 2 clearly shows that RVMGP with the best-
studied k consistently outperforms GSGP on all the studied test problems, while
RVMGP with the worst studied k outperforms GSGP in 4 cases over 6. To assess
the statistical significance of these results, a set of tests has been performed.
The Lilliefors test has shown that the data are not normally distributed and
hence a rank-based statistic has been used. The Wilcoxon rank-sum test for
pairwise data comparison with Bonferroni correction has been used, under the
alternative hypothesis that the samples do not have equal medians at the end of
the run, with a significance level α = 0.05. The p-values are reported in Table 3,
where statistically significant differences are highlighted with p-values in bold.
As we can observe, all the differences are statistically significant, except the
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Fig. 1. Median best RMSE on the training set obtained by GSGP-log, GSGP-
nolog and RVM. (a) = Bioavailability; (b) = Concrete; (c) = Energy; (d) = ParkMotor;
(e) = ParkTotal; (f) = PPB.

difference between GSGP and RVMGP with the worst k for the Concrete and
PPB datasets. The fact that, for different problems, the best value of k changes is
an issue that has been already discussed in the literature for KNN regression [19].
The experimental results reported here seem to confirm that this issue also
exists for RVMGP.
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Fig. 2. Median RMSE on the test set obtained by GSGP-log and RVMGP. For RVMGP,
only the values of k that have allowed us to obtain the best and the worse results are
reported. The best is represented with a black-continuous line, the worst with a black
line annotated with points. For KNN, the same k values as for RVMGP are reported.
The results of KNN are shown as horizontal straight lines. (a) = Bioavailability;
(b) = Concrete; (c) = Energy; (d) = Park Motor; (e) = Park Total; (f) = PPB.
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Table 3. p-values of the Wilcoxon rank-sum test on unseen data for the experiments
of Fig. 2, under the alternative hypothesis that the samples do not have equal medians.
Bold denotes statistically significant values.

GSGP-log vs best RVM GSGP-log vs worst RVM best RVM vs worst RVM

Bioavailability 7.70× 10−8 1.46× 10−10 3.02× 10−11

Concrete 3.82× 10−9 0.0933 3.34× 10−11

Energy 3.02× 10−11 4.08× 10−5 3.02× 10−11

Park Motor 7.39× 10−11 6.12× 10−10 4.62× 10−10

Park Total 3.02× 10−11 2.19× 10−8 3.02× 10−11

PPB 1.33× 10−10 0.1154 3.16× 10−10

All this considered, we can state that RVMGP, once the best value of k is
discovered, is preferable to GSGP for the quality of the returned solutions. An
attempt to motivate this result is given in Fig. 3. In this figure, the amounts of
modification of the different studied mutation operators (i.e. the quantities ΔT
in Eq. (2)) are reported. More in particular, for each individual in the popula-
tion to which mutation was applied, the used value of ΔT for each fitness case
was stored. Given that there is no reason why the values of ΔT should change
along the evolution, only the values at the first generation are reported. The
scatterplots of Fig. 3 have the fitness cases (i.e. the training instances) on the
horizontal axis, ordered randomly. In other words, the values on the horizontal
axis are discrete and they consist in the integer values 1, 2, ..., N , where N is the
number of training instances. For each one of the values on the horizontal axis
(i.e. for each fitness case) a “column” of points is reported, one for each individ-
ual in the population. For each one of those points, the value on the vertical axis
corresponds to the ΔT value that mutation applied to that individual. To save
space, only the results concerning one of the studied test problems are reported
here (specifically, Fig. 3 reports the results on the Concrete dataset), but on the
other five test problems, the situation is qualitatively the same, leading to the
same conclusions.

Figure 3 offers a clear picture of the differences between the mutation opera-
tors used by RVMGP (plot (a)), GSGP-log (plot (b)) and GSGP-nolog (plot (c)).
Let us begin by discussing the case of GSGP-nolog (plot (c)). Since the codomain
of the random trees is not limited, ΔT often assumes very large (positive and
negative) values (up to 1016). As a consequence, GSGP-nolog can cause huge
modifications in the semantics of the individuals. This may be the cause for an
unstable search process, and thus the poor generalization ability of GSGP-nolog.

Let us now focus on the ΔT values of RVMGP (Fig. 3(a)) and GSGP-
log (Fig. 3(b)). First of all, it is worth pointing out that, observing the scat-
terplots, one should not be surprised by the concentration of points around
ΔT = 0. In fact, the mutation step ms is a different random number in [0, 1] at
each mutation event, and not a constant value. Given that ΔT ∈ [−ms,ms], the
interval of variation of ΔT changes at each mutation event, and it is expected
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Fig. 3. The modifications ΔT (see Eq. (2)) made by the studied mutations on each
training case for each one of the individuals in the population at the first generation
for the Concrete dataset. (a) = RVMGP, (b) = GSGP-log, (c) = GSGP-nolog.

that more points are concentrated around zero, while a smaller number of points
appear close to the values ΔT = 1 and ΔT = −1. Secondly, one important differ-
ence between the scatterplot of RVMGP and the one of GSGP-log is visible: the
scatterplot of RVMGP is clearly more “dense” and “uniform”. In other words,
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practically all possible values of ΔT have been achieved for each fitness case.
On the other hand, observing the scatterplot of GSGP-log, we can see that it is
less uniform, which makes us hypothesize that some values of ΔT are harder to
obtain than others. This depends on the data and on the particular random trees
that were generated. From this observation, it is straightforward to infer that
there are some points (or even “regions”) in the semantic space that are harder
than others to reach by GSM, while this is not the case for RVM. We could say
that RVM induces a dense and regular semantic space, while GSM induces a
sparse and irregular semantic space. Also, more diverse semantic values appear
in a RVMGP population than in a GSGP-log population. In other words, more
semantic diversity is offered by RVMGP than by GSGP-log. Given that semantic
diversity has been demonstrated as one of the factors promoting generalization
ability [20], we hypothesize that the better results achieved by RVMGP in Fig. 2
can be motivated by the different behaviour highlighted in Fig. 3.

4.3 Experimental Results: RVMGP vs KNN Regression vs RF
Regression

It is now time to look back at Fig. 2, and consider the horizontal lines, that
correspond to the median value of the RMSE achieved by KNN regression on
the test set (the same values of k as for RVMGP are reported). Of course, this
value is a constant (there is no evolution in KNN), but reporting that value
as a horizontal line in the plots helps visibility. Two facts can be observed:
first of all, KNN consistently outperforms GSGP on all studied problems; as a
consequence, KNN also outperforms standard GP, given that GSGP was able
to obtain better results than standard GP on all these problems, as discussed
above. Secondly, the evolution of RVMGP approximates KNN, until a point in
which it obtains practically identical results, without being able to significantly
improve them. That point arrives within generation 2000 for all the studied test
problems, except Park Motor and Park Total (Fig. 2(d) and (e), respectively).
To see the same behaviour, for those two problems we have extended the runs
until generation 20000. Table 4 reports, for each studied problem, the numeric
values of the median errors for the worst and best KNN and the worst and
best RVMGP. To have a more complete vision of how these results compare with
other ML algorithms, also the results obtained by RF regression [12] are reported,
since RF regression is often considered the ML state of the art for regression.
The interested reader is referred to [13,14] to support the use of RF. To assess
the statistical significance of these results, once again the Wilcoxon rank-sum
test for pairwise data comparison with Bonferroni correction has been used,
under the alternative hypothesis that the samples do not have equal medians,
with a significance level α = 0.05. The p-values are reported in Table 5, where
statistically significant differences are highlighted with p-values in bold.

As we can observe, RF regression outperforms the other studied methods
only on two of the six studied problems. Discussing the results of RF is beyond
the scope of this paper, nevertheless it is worth pointing out the RF outperforms
the other methods for the two problems that have the smaller dimensionality of

13



Is KNN Regression Better than GP? 257

Table 4. Median error over 30 independent runs returned by the worst and best KNN,
the worst and best RVM and RF regression. The best result for each test problem is
highlighted in bold.

worst KNN best KNN worst RVM best RVM RF Regr.

Bioavailability 40.64 30.01 40.61 29.99 36.45

Concrete 12.13 9.86 11.76 9.48 5.84

Energy 3.31 2.33 3.08 2.31 0.40

Park Motor 3.75 3.29 4.20 3.34 3.80

Park Total 4.69 4.23 5.10 4.28 4.62

PPB 43.85 32.29 43.88 32.29 42.0

Table 5. p-values of the Wilcoxon rank-sum test on unseen data for the experiments of
Table 4, under the alternative hypothesis that the samples do not have equal medians.
Bold denotes statistically significant values.

best RVM vs best KNN best RVM vs RF Regr. best KNN vs RF Regr.

Bioavailability 0.95 5.49× 10−11 6.70× 10−11

Concrete 0.92 3.02× 10−11 3.02× 10−11

Energy 0.34 3.02× 10−11 3.02× 10−11

Park Motor 0.02 4.50× 10−11 3.02× 10−11

Park Total 0.23 4.20× 10−10 1.33× 10−10

PPB 0.92 8.99× 10−11 8.99× 10−11

the feature space. For the other problems, that are characterized by a larger
dimensionality of the feature space, RFs are consistently outperformed both
by KNN and by RVMGP. All the differences are statistically significant, with
the only exception of the differences between RVMGP and KNN, that are not
statistically significant for any of the studied problems.

These observations lead to questions that may look dramatic for the GP
community: is KNN better than GP? Are we missing the boat by using GP,
while KNN, that is a simpler algorithm, can achieve better results?

Answering these questions is not straightforward, and possibly a single answer
does not even exist. It is worth pointing out that the excellent generalization
ability of KNN, when compared to other ML algorithms, was already known [21],
and has recently been discussed in [22]. In the latter contribution, Cohen and
colleagues offer an interesting discussion about the difference between learning
and memorizing. It is clear that KNN is memorizing, and not learning. KNN,
in fact, does not even have a learning phase, and does not have a real model,
intended as a program that can be executed on observations. The model is
replaced by the training set and generalization is achieved only by comparing
an unseen instance to the training observations. However, as pointed out by
Cohen et al., memorization and generalization, which are traditionally considered
to be contradicting to each other, are compatible and complementary in ML, and
this explains the excellent generalization ability of KNN.
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On the other hand, having a model of the data can be convenient in many
cases. First of all, because a model, if readable, can be interpreted by a domain
expert. If a model can be understood and “makes sense” to a domain expert,
she will also more likely trust the predictions. Secondly, KNN bases its function-
ing on the similarity between training and unseen data, which implies that the
functioning of KNN is strongly dependent on the distance metric used to quan-
tify this similarity. This dependence can be avoided, in principle, if we have a
model, that can potentially make predictions based on concepts that go beyond
the immediate similarity between data.

All this considered, instead of answering the previous questions, one may
ask another question: is it possible to obtain the same results as KNN, but by
means of learning instead of memorization? Our answer is that, in some senses,
this is exactly what RVMGP is doing. Furthermore, although only on two test
problems, RF regression was able to outperform KNN, and RF regression is
learning and not memorizing.

RVMGP is obtaining the same results as KNN, but after a learning process.
However, what leaves us unsatisfied with RVMGP is that, as for KNN, also
with RVMGP we need the training data to be able to generalize. But why does
RVMGP need the training data? Simply because RVM uses a vector of random
numbers, one for each training observation, and there is no other available ele-
ment, unless data similarity, that can let us have the appropriate corresponding
number to use on unseen data.

From these considerations, a new and final question comes to our mind:
is it possible to simulate the behaviour of RVM using random trees, so that
generalization can be obtained simply evaluating the final expression? In the
end, as explained in Sect. 4.2, our interpretation of what makes RVMGP able
to outperform GSGP comes from the difference in the scatterplots of the ΔT s
reported in Fig. 3. So, what if we were able to obtain a “dense” and “regular”
scatterplot as the one of Fig. 3(a), but using random trees, instead of vectors
of random numbers? We hypothesize that this would allow us to obtain results
that are comparable to the ones of KNN, but with the big advantage of having
a final, executable, expression, that can be evaluated on unseen data.

These ideas open to new and exciting research questions: why is the scatter-
plot of the ΔT s of GSM different from the one in Fig. 3(a)? Does it depend on the
way we are normalizing data? Does it depend on the primitive operators we are
using to build the random trees? Does it depend on their size and shape? Is there
any way to obtain a behaviour like the one of Fig. 3(a) using random trees, or is
it impossible after all? And even further: can we use trained expressions, instead
of random expressions, to obtain a scenario like the one in Fig. 3(a)? Can novelty
search [23] help learn such expressions? In the end, from Fig. 3(b) it is clear that
GSM is sampling similar values of ΔT several times, while disregarding others.
Can we simply reward diversity in the creation of the random expressions used
by GSM? Is it enough to obtain an algorithm that works like KNN, but learns
instead of memorizing? All these questions deserve future work and answering
those questions is one of the main interests of our current research.
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5 Conclusions and Future Work

A new geometric semantic mutation, called Random Vector-based Mutation
(RVM) was presented in this paper. It has the advantage of reducing the size of
the model compared to traditional geometric semantic mutation, and it clearly
outperforms it on six real-life regression problems. On the other hand, as for the
k Nearest Neighbors (KNN), the only way to evaluate unseen instances is by
using the similarity with the training observations, which forces us to include
the training set in the model. Furthermore, RVM can approximate KNN, until
a point in which it is able to return practically identical results, but it is not
able to outperform it significantly. The presented results highlighted an excel-
lent generalization ability of KNN, often better than a state-of-the-art method
like Random Forest regression. Furthermore, KNN is a much simpler algorithm
than GP. These considerations force GPers to a basic reflection on the reason why
we are using GP, questioning whether it even makes sense at all. We conclude
that learning, as GP does, can be more important than memorizing, as KNN.
This puts our future research in front of a clear and ambitious challenge: obtain-
ing the same results as KNN through a GP-based learning process. The first
attempt will come from a deeper analysis of the density of the semantic space,
induced by different mutation operators.
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