

Supporting Information

Triptycene-Roofed Quinoxaline Cavitands for the Supramolecular Detection of BTEX in Air

Federico Bertani,^[a, b] Nicolò Riboni,^[a] Federica Bianchi,^[a] Giovanna Brancatelli,^[c] Elizabeth S. Sterner,^[b] Roberta Pinalli,^[a] Silvano Geremia,^[c] Timothy M. Swager,^{*[b]} and Enrico Dalcanale^{*[a]}

chem_201504229_sm_miscellaneous_information.pdf

Table of Contents

¹ H NMR Signals assignments	S2-S3
¹ H NMR Spectra of MonoTriptyQxCav	S4
¹ H NMR Spectra of DiTriptyQxCav	S5
MALDI Spectra	S6
SPME-GC-MS Response Vs Extraction Times	S7
Enrichment Factors	S7
Crystallographic determination of benzene@MonoTriptyQxCav	and
benzene@DiTriptyQxCav complexes	S8-S9
References	S10

¹H NMR Signals assignments

MonoTriptyQxCav

¹**H NMR** (CDCl₃, 400 MHz): $\delta = 8.02$ (s, 2H, Hp), 7.99 (s, 2H, Ho), 7.95 (d, 2H, J=7.8 Hz, Hd), 7.86 (d, 2H, J=7.8 Hz, Ha), 7.75-7.72 (m, 2H, He), 7.65 (s, 2H, Hg), 7.63-7.57 (m, 4H, Hb+Hc), 7.47 (bs, 4H, Hf+Hk), 7.33-7.30 (m, 2H, Hm), 7.15 (s, 2H, Hs), 7.13 (s, 2H, Hq), 7.08-7.05 (s, 2H, HI), 7.03-7.00 (m, 2H, Hn), 5.43 (s, 2H, Hi), 5.34 (t, 3H, J=8.1 Hz, Hu+Hz), 5.25 (t, 1H, J=7.9 Hz, Ht), 2.24-2.19 (m, 8H, CHCH₂CH₂), 1.45-1.26 (m, 32H, -C**H**₂-), 0.93-0.87 (m, 12H, CH₂CH₂C**H**₃) (Assignment by COSY NMR).

DitriptyQxCav

¹**H** NMR (CDCl₃, 400 MHz): $\delta = 7.87$ (s, 4H, Hl), 7.76 (s, 4H, Hc), 7.73-7.70 (m, 4H, Ha), 7.50-7.47 (m, 8H, Hg+He), 7.28-7.26 (m, 4H, Hb), 7.15-7.13 (m, 4H, Hf), 7.09-7.07 (m, 4H, Hi), 7.00 (s, 4H, Hk), 5.62 (s, 4H, Hd), 4.86-4.81 (m, 4H, Hn+Hm), 2.20-2.04 (m, 8H, CHCH₂CH₂), 1.43-1.20 (m, 32H, -CH₂-), 0.89-0.83 (m, 12H, CH₂CH₂CH₃), (Assignment by COSY NMR).

¹H NMR Spectra of MonoTriptyQxCav

Figure S1 ¹H NMR (400 MHz) spectrum of MonoTriptyQxCav in CDCl₃ at 298 K.

Figure S2 ¹H NMR (400 MHz) spectrum of MonoTriptyQxCav in C_6D_6 at 298 K.

¹H NMR Spectra of DiTriptyQxCav

Figure S3 ¹H NMR (400 MHz) spectrum of DiTriptyQxCav in CDCl₃ at 298 K.

Figure S4 ¹H NMR (400 MHz) spectrum of DiTriptyQxCav in C₆D₆ at 298 K.

Figure S5 High-resolution MALDI-TOF spectrum of MonoTriptyQxCav, with experimental (black lines) versus theoretical (red) isotopic distribution pattern in the inset.

Figure S6 High-resolution MALDI-TOF spectrum of **DiTriptyQxCav**, with experimental (black lines) versus theoretical (red) isotopic distribution pattern in the inset.

SPME-GC-MS Analysis

Figure S7 SPME-GC-MS response with different extraction times.

Analyte	MonoTriptyQxCav	DiTriptyQxCav
benzene	10700±100	92000±2600
toluene	12000±550	46000±1400
ethylbenzene	8300±70	47000±4100
<i>m</i> -xylene	4800±80	27000±2300
<i>p</i> -xylene	9200±300	71700±200
o-xylene	6900±600	52000±1600

Table S1 EFs of the TriptyQxCav-fibers. HS-SPME conditions: extraction time: 15min, RT (n=3).

Crystallographic determination of benzene@MonoTriptyQxCav and benzene@ DiTriptyQxCav complexes

Crystals of compounds benzene@MonoTriptyQxCav and benzene@ **DiTriptyQxCav** were analyzed by single-crystal X-ray diffraction. Data collections were carried out at the Elettra synchrotron (Trieste, Italy), by using cryo-cooling techniques. In particular data collection for compound **benzene**(a)**MonoTriptyQxCav** was very challenging, because the crystals were very thin platelets and showed high anisotropy in X-ray diffraction. In particular, when the platelets were parallel to the primary beam the diffraction intensities decreased dramatically. Furthermore, the stuck flat crystals did not permit to collect a clear diffraction pattern from a single crystal. Several data sets were collected and by merging two of them by AIMLESS^[1] it was possible to obtain a complete data set at 1 Å of resolution.

Both crystal structures were solved by Direct Methods with the SIR2014^[2] software and refined with SHELX-13^[3]. Crystallographic details are reported in Table S2.

In the asymmetric unit of **benzene@DiTriptyQxCav** three crystallographic independent cavitands were found. Each one hosts a molecule of benzene, except for one where the cavity binding site is shared by a benzene molecule and a CHCl₃ with partial occupancy of 83 and 17%, respectively. Two alkyl chains at the lower rim of two cavitands were found disordered over two orientations refined at 55/45% and 60/40% of partial occupancy, respectively.

	benzene@MonoTriptyQxCav	benzene@DiTriptyQxCav
Empirical formula	C ₉₈ H ₈₈ N ₈ O ₈ , C ₆ H ₆	$2(C_{112}H_{96}N_8O_8, C_6H_6), (C_{112}H_{96}N_8O_8,$
		0.83 C ₆ H ₆ , 0.17 CHCl ₃)
Formula weight	1583.87	5287.16
<i>T</i> (K)	100(2)	100(2)
λ (Å)	0.88	0.850
Crystal system	Monoclinic	Triclinic
Space group	$P2_1/c$	P -1
Unit cell dimensions (Å, °)	$a = 12.394(2), \alpha = 90$	a = 20.75(2), a = 88.39(5)
	$b = 18.561(3), \beta = 96.41(2)$	$b = 25.25(2), \beta = 102.35(5)$
	$c = 37.191(4), \gamma = 90$	$c = 28.81(2), \gamma = 107.28(5)$
$V(\text{\AA}^3)$	8502(2)	14070(19)
Ζ	4	2
$\rho_{(calc)}(g/mm^3)$	1.237	1.248
$\mu (\mathrm{mm}^{-1})$	0.126	0.123
F(000)	3352	5585
Resolution limits (Å)	18.55-1.00	28.12-0.87
Data / restraints / parameters	9681 / 66 / 1077	38534 / 0 / 3657
$R_1, wR_2 [I > 2\sigma(I)]$	0.1612, 0.4233	0.1032, 0.2660
R_1 , wR_2 (all data)	0.2092, 0.4536	0.1186, 0.2784
GooF	1.027	1.099
CCDC code	1428158	1427222

Table S1. Crystallographic data and refinement details for crystals ofbenzene@MonoTriptyQxCav and benzene@DiTriptyQxCav.

References

¹ a) P. R. Evans, *Acta Crystallogr*. **2006**, *D62*, 72-82; b) M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, *Acta. Crystallogr*. **2011**, *D67*, 235-242.

² M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, *J. Appl. Crystallogr.* **2015**, *48*, 306-309.

³ G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.