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The rapid increase in telemedicine coupled with recent 
advances in diagnostic artificial intelligence (AI) create the 
imperative to consider the opportunities and risks of insert-
ing AI-based support into new paradigms of care. Here we 
build on recent achievements in the accuracy of image-based 
AI for skin cancer diagnosis to address the effects of varied 
representations of AI-based support across different levels of 
clinical expertise and multiple clinical workflows. We find that 
good quality AI-based support of clinical decision-making 
improves diagnostic accuracy over that of either AI or physi-
cians alone, and that the least experienced clinicians gain the 
most from AI-based support. We further find that AI-based 
multiclass probabilities outperformed content-based image 
retrieval (CBIR) representations of AI in the mobile technol-
ogy environment, and AI-based support had utility in simula-
tions of second opinions and of telemedicine triage. In addition 
to demonstrating the potential benefits associated with good 
quality AI in the hands of non-expert clinicians, we find that 
faulty AI can mislead the entire spectrum of clinicians, includ-
ing experts. Lastly, we show that insights derived from AI 
class-activation maps can inform improvements in human 
diagnosis. Together, our approach and findings offer a frame-
work for future studies across the spectrum of image-based 
diagnostics to improve human–computer collaboration in clin-
ical practice.

Image-based AI has the potential to improve visual diagnostic 
accuracy. Limited physical access to health-care providers dur-
ing the recent COVID-19 pandemic is prompting changes in 
health-care delivery and accelerating the adoption of telemedicine1. 
AI-based triage and decision support could assist readers in man-
aging workloads and expanding their performance. Most research 
to date has been predicated on head-to-head comparisons of the 
diagnostic accuracy of AI-based systems with that of humans2–4. 
Similarly, recent studies in dermatology demonstrate that AI for 
selected lesions is equivalent or even superior to human experts 
in image-based diagnosis under experimental conditions5–9. This  

competitive view of AI is evolving based on studies suggesting that 
a more promising approach is human–AI cooperation10–15. The 
role of human–computer collaboration in health-care delivery, the 
appropriate settings in which it can be applied and its impact on the 
quality of care have yet to be evaluated16. To this end, we studied 
the use case of skin cancer diagnosis to address the effects of varied 
representations of AI-based support across different levels of clini-
cal expertise and multiple clinical workflows.

To explore the impact of different representations of current 
state-of-the-art AI on diagnostic accuracy of clinicians in different 
scenarios, we first trained a 34-layer residual network (ResNet34), a 
particular type of convolutional neural network (CNN), on the train-
ing dataset of a publicly available image benchmark of pigmented 
lesions containing seven diagnostic categories, including malignant 
(melanomas (MELs), basal cell carcinomas (BCCs) and actinic 
keratoses and intraepithelial carcinomas (AKIECs)) and benign 
(melanocytic nevi (NVs), benign keratinocytic lesions (BKLs), der-
matofibromas (DFs) and vascular lesions (VASCs)) proliferations17. 
When tested on the corresponding publicly available benchmark 
test set, the mean recall of our CNN across all disease categories 
was 77.7% (95% confidence interval (CI) 70.3% to 85.1%), and the 
accuracy was 80.3%. When compared with the results of a recently 
published reader study, this CNN outperforms most human rat-
ers and ranks in the top quartile of machine-learning algorithms 
that were developed and tested with the same image dataset18. To 
examine whether human–computer collaboration is influenced by 
the way that the output from the CNN is presented to humans, we 
developed a web-based user interface for comparing three forms of 
output from the CNN as decision support to human raters (Fig. 1).

The representations of AI that we selected derive from the litera-
ture and differ in key characteristics, including simplicity, granular-
ity and concreteness. Because our task was a multiclass classification 
problem, one obvious approach was to provide AI-based multiclass 
probabilities. The second approach was motivated by solutions 
already implemented in currently available AI-based support for 
skin cancer diagnosis6; we dichotomized the disease categories into 

Human–computer collaboration for skin cancer 
recognition
Philipp Tschandl   1,17, Christoph Rinner   2,17, Zoe Apalla3, Giuseppe Argenziano   4, Noel Codella5, 
Allan Halpern6, Monika Janda7, Aimilios Lallas3, Caterina Longo8,9, Josep Malvehy10,11, John Paoli12,13, 
Susana Puig10,11, Cliff Rosendahl14, H. Peter Soyer   15, Iris Zalaudek16 and Harald Kittler   1 ✉

1

mailto:harald.kittler@meduniwien.ac.at
http://orcid.org/0000-0003-0391-7810
http://orcid.org/0000-0002-3847-5664
http://orcid.org/0000-0003-1413-8214
http://orcid.org/0000-0002-4770-561X
http://orcid.org/0000-0002-0051-8016
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-020-0942-0&domain=pdf
http://www.nature.com/naturemedicine


a benign and a malignant class and displayed the AI-predicted prob-
ability of malignancy. For the third and fundamentally different 
approach, we used the same CNN to implement a form of AI-based 
CBIR that supports physicians in the interpretation of images by 
searching databases to retrieve similar images with known diag-
noses11,19,20. As an alternative to AI-based decision support, we also 
provided previously collected9 rating frequencies of 511 human rat-
ers for each disease category (crowd-based multiclass probabilities).

Next, we invited human raters to participate in a reader study. 
A total of 302 raters from 41 countries participated, including 169 
(56.0%) board-certified dermatologists, 77 (25.5%) dermatology 
residents and 38 (12.6%) general practitioners. The raters’ task was 
to diagnose batches of images, first without and then with one type 
of decision support. We recorded the time needed to reach a diag-
nosis, normalized this time over all individual ratings for each user 
and interaction modality, and used this as a surrogate marker for 
confidence.

We collected 512 tests and 13,428 ratings. Our results show that 
decision support with AI-based multiclass probabilities improves 
the accuracy of human raters from 63.6% to 77.0% (increase of 
13.3%, 95% CI 11.5% to 15.2%; P = 4.9 × 10−35, two-sided paired 
t-test, t = 14.5, d.f. = 301; n = 302 raters), but no improvement was 
observed for decision support with AI-based prediction of malig-
nancy or with our representation of AI-based CBIR (Fig. 2a–d and 
Supplementary Tables 1 and 2).

This suggests that the form of decision support should be in 
accordance with the given task. The probability of malignancy may 
be useful for simple binary management decisions, such as whether 

to perform a biopsy or not, but not for a multiclass diagnostic 
problem. The studied form of AI-based CBIR is neither simple nor 
concrete; it needs more extensive cognitive engagement in terms of 
time and decision-making, because the rater needs to extrapolate 
the diagnosis from similarities between the test image and images 
with known diagnoses. The raters needed significantly more time to 
interact with AI-based CBIR decision support than with other types 
of support (Fig. 1b). Over time, human raters also tended to ignore 
the AI-based CBIR decision support (Fig. 1c). However, given that 
a large spectrum of CBIR approaches are described in the literature, 
another form of CBIR may still provide benefit. It has been shown 
that human-centered refinement tools improve the end user experi-
ence of CBIR in pathology and increase trust and utility21. Future 
work should, therefore, study a broader variety of layouts and com-
binations of collaborations between AI and humans.

After we established that multiclass probabilities were the best 
form of CNN output for the given task, we focused on this form to 
explore the impact of AI-based support on human performance in 
more detail. We show an inverse relationship between the net gain 
from AI-based support and rater experience (Pearson’s r = −0.18, 
95% CI −0.28 to −0.07, P = 1.5 × 10−2; n = 302 raters). Raters in the 
least experienced group changed their initial diagnosis more often 
than experts (mean 26.0%, 95% CI 21.3% to 30.7% versus mean 
14.7%, 95% CI 9.9% to 19.6%). Expert raters benefited only margin-
ally (net gain 13.4%, 95% CI 6.3% to 20.6%) and only if they were not 
confident with their initial diagnosis, but not if they were confident 
(−0.7%, 95% CI −6.8% to 5.4%; Fig. 2e,f). If experts were confident, 
they were usually correct and did not need support. This finding 
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Fig. 1 | Human interactions with four different types of support. a, Schematic overview of the interaction modalities offered: (I) AI-based multiclass 
probabilities, (II) AI-based probability of malignancy, (III) AI-based CBIR and (IV) crowd-based multiclass probabilities. b, Raters needed significantly 
more time to engage with CBIR support (n = 302 ratings; mean 16.5 s, 95% CI 14.5 to 18.6 s) than with multiclass probabilities (n = 302 ratings; mean 
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P = 4.5 × 10−22). All P values were derived from two-sided paired t-tests with Holm–Bonferroni correction for multiple comparisons. In the CBIR group, 
one outlier of >200 s is not shown on the plot. The bars denote means, and error bars represent 95% CIs. c, The number of interactions with CBIR-based 
support, as measured by enlarged thumbnails, is low and decreases further with the number of interactions, indicating that this type of support is not 
appreciated over time.
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suggests that, if experts have high confidence in their initial diagno-
sis, they should ignore AI-based support or not use it at all. This sim-
ple heuristic corresponds to what we observed in our experiments;  

if their initial diagnosis was not in agreement with the top class 
predicted by the CNN, the experts changed their initial diagnosis 
less often if they were confident (29.8%, 95% CI 14.1% to 45.4%) 
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Fig. 2 | Gain from different types of decision support. a–d, AI-based multiclass probabilities (a), AI-based probability of malignancy (b), AI-based 
CBIR (c) and crowd-based multiclass probabilities (d). In a multiclass classification problem, humans show a net gain from support by AI-based and 
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by whether the rater changed their initial diagnosis. While changes occurred almost exclusively for the top class (class 1; left), a substantial number 
of decisions remained unchanged in cases where the AI evaluated them as second or third ranked (right). h, When in disagreement with the top AI 
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and error bars represent 95% CIs. i, Raters were susceptible to faulty AI-based support. The significant gain in accuracy (left, n = 155 raters; median 9.5%; 
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and more often if they were not confident (53.9%, 95% CI 33.2 % 
to 74.7%). The least experienced raters tended to accept AI-based 
support that contradicted their initial diagnosis even if they were 
confident. In general, raters changed their initial diagnosis less often 
if they were confident than if they were not confident in their deci-
sion (14.7%, 95% CI 12.6% to 16.8% versus 37.5%, 95% CI 34.0% to 
41.0%; P = 1.9 × 10−25, two-sided paired t-test; n = 302 raters).

Having established a positive impact of good quality AI-based 
support on diagnostic accuracy, we tested the impact of ‘faulty’  
AI on diagnostic accuracy. Faulty AI could result from the applica-
tion of AI algorithms on examples beyond the domain of images 
on which the AI was trained7,9,22 or the more remote possibility 
of adversarial attacks23–25. To represent faulty AI, we intention-
ally generated misleading AI-based multiclass probabilities. If the 
top class probability of the CNN favored the correct diagnosis, 
we switched the probabilities in such a way that the CNN output 
favored a random incorrect diagnosis. We demonstrate that any 
previously observed gains in accuracy with AI-based support turn 
into a loss when that AI support is faulty. Figure 2i shows that all 
groups of raters are susceptible to underperforming in this sce-
nario. Our results suggest that, if raters build up the trust that is 
necessary to benefit from AI-based support, they are also vulner-
able to perform below their expected ability if there is a fault with 
the AI. Whether techniques to facilitate interpretability or explain-
ability mitigate the risk of this negative impact remains an open 
topic of research21,26.

Another finding of importance is that the benefit of human–
computer collaboration is asymmetrically distributed across disease 
categories. Our data showed that the net gain was higher for the 
class of pigmented actinic keratoses and intraepithelial carcinoma 
(increase of 31.5%, 95% CI 22.9% to 40.1%; n = 43 images) than for 
other categories (Supplementary Table 3). This suggests that the 
benefit of AI-based support needs to be adapted to the given task 
and the expected prevalence of target conditions.

We further demonstrate that AI-based multiclass ranking and 
probabilities have an impact on the raters’ tendency to change their 
initial diagnosis. Most changes occurred in favor of the AI-predicted 
top category. Raters typically maintained their decisions that 
were in disagreement with the AI prediction only if that decision 
was ranked by AI prediction as at least the second or third option  
(Fig. 2g). Furthermore, raters tended to change their assessments 
more frequently when the difference in the AI-predicted probabil-
ity between the initially selected category and the AI top category 
was high (Fig. 2h). This suggests that the distribution of class prob-
abilities affects the behavior of raters. Big winners and top-ranked 
classes are preferred to small winners, and categories with low prob-
abilities will barely affect the decision of raters.

Additionally, we demonstrate that aggregated AI-based multi-
class probabilities and crowd wisdom significantly increased the 
number of correct diagnoses in comparison to individual raters or 
AI in isolation (Fig. 3a). The disadvantage of crowd wisdom is that 
it is not readily and instantly available; in contrast to software, raters 
cannot be cloned.

Next, we analyzed the impact of AI-based support in clinically 
relevant scenarios. To examine the potential of AI-based sup-
port in telemedicine, we reused prospectively collected images of 
a randomized controlled trial on self-examinations in high-risk 
patients27. Ninety-three participants submitted 1,521 self-made 
photographs of 596 suspicious lesions for telediagnosis. While the 
CNN was trained only on curated images of pigmented lesions, 
this sample also included non-pigmented variants of keratinocyte 
cancer, mucosal lesions and low-quality images. Although the pro-
portion of correct specific diagnoses was significantly lower for 
these images (53.9% versus 76.2%; P = 8.9 × 10−14, chi-squared test; 
n = 1,430 images), the CNN was able to recognize 95.2% of patients 
with skin cancer at a specificity of 59.2% (Fig. 3b). Similarly to 

recent findings in AI-based breast cancer screening3, our results 
indicate that AI-based skin cancer screening could triage high-risk 
cases and extend the intervals between face-to-face visits in low-risk 
cases. The optimal operating points to balance the potential benefits 
of AI-based triage with the risk of filtering out patients with skin 
cancer remain to be determined.

A possible explanation for the reasonably accurate perfor-
mance of the CNN as a tool for triage in telemedicine, despite the 
inclusion of non-pigmented skin lesions, is that pigmented and 
non-pigmented variants of keratinocyte cancer share common 
criteria. However, this cannot be guaranteed in other settings; the 
results of the International Skin Imaging Collaboration (ISIC) 2019 
challenge, for example, demonstrated that AI does not work reliably 
on out-of-distribution images28. Furthermore, we show that, within 
the domain of pigmented skin lesions, AI-based support helps less 
experienced raters to improve to the expert level in telemedicine 
(Fig. 3c). Limitations of the telemedicine setting are that the sample 
did not include melanomas and the number of malignant cases was 
relatively small.

In another scenario, we asked dermatologists to rethink their 
face-to-face decisions in suspicious cases after providing them with 
AI-based multiclass probabilities, but without making them aware 
that they had previously managed the patient. As shown in Fig. 3d, 
with AI-based support, dermatologists switched from ‘excision’ to 
‘monitor’ in 15.5% (7 of 45) of decisions for benign lesions, without 
increasing the number of malignant lesions that switched contrari-
wise. This result illustrates how human–computer collaboration 
could decrease the number of unwarranted interventions and costs. 
AI-based support in this setting increased the frequency of correct 
specific diagnoses from 55.6% to 75.0% (P = 0.029, two-sided paired 
Wilcoxon signed-rank test; n = 11 raters).

Finally, we demonstrate that explanations for AI-based pre-
dictions can be translated into a human-understandable visual 
concept. In a previous study, we showed that misclassification of 
pigmented actinic keratoses by humans is one reason for the supe-
riority of AI over human experts9. By analyzing gradient-weighted 
class activation mapping (Grad-CAM29), we show that atten-
tion of the CNN outside the object is higher for the prediction 
of actinic keratoses than for other categories (Extended Data 
Fig. 1). Background attention30,31 is not necessarily a Clever Hans  
predictor32,33 but can be part of a valid general concept. Chronic 
ultraviolet light damage causes actinic keratoses and is always 
present in the surrounding skin of actinic keratoses but not nec-
essarily in other disease categories. We hypothesize that, due to 
visual entrenchment, humans focus on the lesion and not on the 
background and frequently miss this clue. Here we show that 
teaching medical students to pay attention to chronic sun damage 
in the background improved the frequency of correct diagnoses of 
pigmented actinic keratoses from 32.5% (95% CI 30.0% to 35.0%) 
to 47.3% (95% CI 43.9% to 50.8%; P = 3.6 × 10−13, two-sided paired 
t-test; n = 189 raters). The overall frequency of correct diagnoses 
in all categories combined increased from 55.2% to 59.1% (mean 
difference of 3.7%, 95% CI 2.4% to 5.3%; P = 3.4 × 10−6, two-sided 
paired t-test, t = 5.2, d.f. = 188; n = 189 raters; Fig. 3e).

This study examines human–computer collaboration from 
multiple angles and under varying conditions. We used the domain 
of skin cancer recognition for simplicity, but our study could serve 
as a framework for similar research in image-based diagnostic 
medicine. In contrast to the current narrative, our findings sug-
gest that the primary focus should shift from human–computer 
competition to human–computer collaboration. From a regula-
tory perspective, the performance of AI-based systems should be 
tested under real-world conditions in the hands of the intended 
users and not as stand-alone devices. Only then can we expect to 
rationally adopt and improve AI-based decision support and to 
accelerate its evolution.
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answers after explainable AI-guided teaching about chronic sun damage in the background of pigmented actinic keratoses. The overall percentage 
of correct answers increased with teaching (left), mostly as a result of improved recognition of actinic keratoses (right). P values were derived from 
two-sided paired t-tests with Holm–Bonferroni correction for multiple comparisons. Colored dots and whiskers denote means and 95% CIs, and gray dots 
represent correct answers of raters.
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Methods
Network training. We fine-tuned a CNN for classification of seven different 
categories of the HAM10000 dataset17. We performed training on NVIDIA 
graphics processing units (GPUs) using the Pytorch34 framework and chose a 
ResNet34 (ref. 35) architecture, with weights initiated by pretraining on ImageNet36 
data. Cross-entropy served as the loss function, with weighting dependent on the 
frequency of classes within the dataset. The learning rate was initialized at 0.0001, 
with a tenfold reduction in case of no validation loss improvement for more than 
three epochs, but a minimum of 1 × 10−9. We used adaptive moment estimation 
(Adam37) as the optimizer and performed a maximum of 100 training epochs 
with early stopping. Images were presented in batches of 32, randomly cropped 
and resized to 224 × 224 pixels without normalization of a mean pixel, randomly 
rotated by 90 degrees and flipped with minor jitter in color, contrast, saturation 
and hue.

The publicly available HAM10000 dataset, which corresponds to the training 
set of the ISIC 2018 challenge18, was the source of images used for training and 
fivefold cross-validation. We selected the single best performing network on 
the hold-out validation set for further interaction with raters. For inference, 
images were cropped to 80% and resized to 224 × 224 pixels, with minor test-time 
augmentation consisting of horizontal flipping and rotation by 0 or 90 degrees. For 
the telemedicine dataset, we also applied color normalization via Shades of Gray38 
with a Minkowski norm of 6. The multiclass probabilities presented to the raters 
were obtained by applying a softmax function to contain all class probabilities 
between 0–100%. To find similar images, we used the same CNN to extract the 
feature vector of the target image and compared it to feature vectors of images in 
the HAM10000 dataset via cosine similarity20. We stored the four closest images of 
each class and presented them in the AI-based CBIR decision support.

Interaction platform and raters. Online interaction platform. The web-based 
platform DermaChallenge, which was developed at the Medical University of 
Vienna, served as the interface through which the performance of human raters 
and AI for the diagnostic task was evaluated and quantified. The platform is split 
into a back end and a front end, and both are deployed on a stack of well-known 
web technologies (Linux, Apache, MySQL and PHP). Please refer to the Nature 
Research Reporting Summary for details of the specific software versions used. The 
back end offers a representational state transfer interface to load and persist data, 
as well as JavaScript Object Notation web tokens to authenticate participants. The 
transport layer security and secure sockets layer protocol are used to encrypt all 
communications. The front end is optimized for mobile devices (mobile phones 
and tablets) but can also be used on any other platform via a JavaScript-enabled 
web browser. Before public deployment, five users tested the platform.

Recruitment and characteristics of raters. We used mailing lists and social media 
posts of the International Society of Dermoscopy to recruit online raters. To 
participate in the study, raters had to register with a username, valid email 
address and password. In addition, we asked raters for details on their age (age 
groups spanning 10 years), gender, country, profession and years of experience 
in dermatoscopy ((1) less than 1 year, (2) opportunistic use for more than 1 year, 
(3) regular use for 1 to 5 years, (4) regular use for more than 5 years or (5) more 
than 10 years of experience). Each rater had to perform multiple screening tests 
to ensure that the self-reported experience matched actual skills. Screening tests 
consisted of simple domain-specific tasks, for example, to assign one of the seven 
possible diagnoses to ten cases, to separate melanomas from non-melanomas and 
to separate seborrheic keratoses from other lesions. We recruited 302 raters for 
the first interaction study that screened different forms of AI-based support, and 
155 raters were recruited for the extended interaction study (inclusion of images 
with faulty AI-based support) and the telemedicine study (Supplementary Table 4). 
The distribution of raters according to task is presented in Supplementary Table 4. 
Second-opinion raters consisted of eight board-certified dermatologists and three 
dermatology residents, who were recruited because they diagnosed and managed 
more than two suspicious skin lesions on a face-to-face basis between April 
and September 2019. For the knowledge transfer study, we invited fourth-year 
medical students to participate; of the 650 medical students invited, 200 agreed to 
participate and 189 answered more than 50% of the test questions.

Characteristics of images and patients. The benchmark test set of the ISIC 
2018 challenge served as the sample for the interaction studies9. Of the 1,511 
dermoscopic images in this set, 928 images were collected in the Department 
of Dermatology at the Medical University of Vienna, 267 images were collected 
in the skin cancer practice of Cliff Rosendahl in Queensland and the remaining 
316 images were collected in other centers in Turkey (n = 117), New Zealand 
(n = 87), Sweden (n = 92) and Argentina (n = 20), to ensure diversity of skin types. 
The mean age of patients was 50.8 years (s.d. 17.4 years), and 46.2% of patients 
were female. The Austrian image set consists of lesions from patients referred 
to a tertiary European center specializing in the early detection of melanoma in 
high-risk groups. This group of patients is mainly of European ancestry and have 
a large number of nevi and skin types I–III. The Australian image set includes 
lesions from patients of a primary-care facility in an area with a high incidence of 
skin cancer. Patients are typified by Celtic complexion, skin type I or II and chronic 

sun damage. Routine pathology evaluation (n = 786), biology (that is, >1.5 years 
of sequential dermoscopic imaging without changes; n = 458), expert consensus in 
common, straightforward, non-melanocytic cases that were not excised (n = 260) 
and in vivo confocal images (n = 7) served as the ground truth. Controversial cases 
with ambiguous histopathologic reports were excluded. Due to random sampling, 
only 1,412 of 1,511 images were finally used and evaluated by the raters. The 1,412 
used cases consisted of 43 AKIECs, 93 BCCs, 217 BKLs, 44 DFs, 171 MELs,  
809 NVs and 35 VASCs.

For the telemedicine study, we included 93 of 98 participants (mean age 
41.1 years (s.d. 12.2 years); 71% female) from the intervention arm of a recently 
conducted prospective randomized study27 on mobile teledermoscopy for skin 
self-examinations. All 93 patients permitted reuse of their images. The participants 
had at least two skin cancer risk factors (light skin complexion and fair hair; skin 
that never or rarely tans and always or mostly burns; a family history of melanoma 
or a personal history of skin cancer, or many nevi; and residing in Queensland) as 
self-reported in the eligibility survey. A teledermoscopic evaluation was performed 
for all lesions. Face-to-face examination by an experienced board-certified 
dermatologist (H.P.S.) or the histopathologic report, in cases where the lesion was 
removed, served as the ground truth. The set of lesions consisted of 1,521 images 
of 596 lesions, including 29 AKIECs, 6 BCCs, 102 BKLs, 410 NVs, 2 squamous 
cell carcinomas (SCCs) and 9 VASCs. For calculation of diagnostic values, 
ground-truth data were mapped to classes of the HAM10000 dataset, if possible. 
We excluded nonspecific categories (n = 38 lesions) such as ‘other’, ‘no lesion’ or 
‘previously removed’, because they could be mapped to neither the ‘benign’ nor 
‘malignant’ category. The sample also included images that were not represented in 
the training data (non-pigmented variants of keratinocyte cancers, mucosal lesions 
and low-quality images), which were excluded from the telemedicine support study 
but not from the triage study, to better simulate a realistic scenario.

For the second-opinion study, we searched the database of the Department of 
Dermatology at the Medical University of Vienna for dermoscopy images taken 
between April and September 2019. We included images if the lesion was excised 
and had a definite histopathologic diagnosis and if lesions were examined by a 
physician who was responsible for the face-to-face diagnosis of at least two other 
cases in this time period. The final sample set (n = 79) included 3 AKIECs, 23 
BCCs, 13 BKLs, 2 DFs, 15 MELs, 21 NVs, 1 ‘other’ (scar) and 1 SCC. The mean 
age of patients was 64.6 years (s.d. 19.8 years), and 34.5% of patients were female. 
Patients were mainly of European ancestry and had skin type II (41.7%), III (57.1%) 
or IV (1.2%). As in the telemedicine scenario, we did not exclude images of 
categories that were not present in the training data or images of low quality.

For the knowledge transfer study, the sample cases (n = 25) were randomly 
selected from the ISIC 2018 test set and stratified by diagnosis (6 AKIECs, 3 BCCs, 
3 BKLs, 3 DFs, 3 MELs, 4 NVs and 3 VASCs).

Design of diagnostic studies. To test the interaction of raters with different forms 
of AI-based decision support, we generated batches of 28 images. Each batch 
contained four randomly selected examples of every class. The raters’ task was 
to diagnose the 28 unknown test images, first without and then with one type 
of decision support. We created a stratified randomization procedure to ensure 
a balanced distribution of the four types of decision support over all disease 
categories. The interaction study was online from 29 May 2019 to 15 January 2020. 
We excluded tests if the number of correct answers was lower than expected by 
chance to avoid noisy random data. We included only the first five tests for each 
rater to avoid biasing the results toward raters with high repetitions.

The extended interaction study was open for participation between 15 
January 2020 and 18 February 2020, presenting only multiclass probabilities as 
decision support. It included one image for every diagnosis from the ISIC 2018 
test set with unaltered AI-based multiclass probabilities, two images with shuffled 
(resulting as incorrect) AI-based multiclass probabilities and eight images from the 
telemedicine study (see ‘Characteristics of images and patients’). The image sources 
were not disclosed to the raters.

The second-opinion study was performed on a local web interface. Physicians 
who examined the patient face to face in real life were asked to reconsider their 
diagnosis and decisions with AI-based support. The case presentations included 
metadata (age, gender and localization), overview and close-up images (if 
available) and dermoscopic images. Physicians were not made aware that they had 
treated the patient before or of their previous decision on the case. Physicians were 
asked to provide their best diagnosis out of the seven predefined disease categories, 
as well as an extra category termed ‘other’, followed by their management decision 
(‘no intervention’, ‘monitor’ or ‘excise’). No time constraints were set for this task.

For the knowledge transfer study, we first examined the gradient-weighted 
class-activation maps29, which were created for all images of the training set. We 
observed that the background attention of the CNN was significantly higher for 
predictions of the ‘pigmented actinic keratosis’ class than for other classes  
(P = 4.6 × 10−12, two-sided unpaired t-test; Extended Data Fig. 2). We interpreted 
this finding as a diagnostic clue that points to the severely sun-damaged skin in 
the background of actinic keratoses, which is usually absent or not as severe in 
other disease categories. To test the hypothesis that teaching this clue to humans 
will improve their diagnostic skills, fourth-year medical students without previous 
knowledge of skin cancer detection received a 30-min introductory lecture 
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about dermoscopy, and immediately thereafter students had to diagnose 25 test 
images (single best diagnosis). Answers were collected with a wireless audience 
response and voting system. Next, the lecturer presented an additional clue of 
‘sun-damaged skin in the surrounding skin of actinic keratoses’ and the students 
repeated the test.

Statistics. To simulate collective ratings of realistically small human groups 
(Fig. 3a), we confined the dataset to images with at least three distinct ratings 
(resulting range of ratings per image: 3–69). For each image, we created 30 
bootstraps of three to five randomly selected ratings, whichever was the 
maximum available without replacement, and determined the most common 
rating as the prediction of the collective (first past the post). Ties were 
broken randomly. Next, we calculated the proportion of correct bootstrapped 
predictions to obtain the mean accuracy for each image as published 
previously39. To combine human collectives with CNN-based predictions, we 
took the arithmetic mean of the sum of the human multiclass probabilities, 
which were derived from the frequencies of bootstrapped human ratings, and the 
corresponding CNN-based multiclass probabilities. For analyses of diagnoses, 
we averaged the results for each image before comparisons; for analyses of 
raters with and without decision support, we calculated the arithmetic mean for 
each user before comparisons. The mean answering time for each user in every 
interaction modality served as a surrogate marker for confidence; answers that 
were faster or slower than the individual mean were regarded as ‘confident’ or 
‘non-confident’, respectively.

For the filtering procedure in the telemedicine study, we used a predefined 
cutoff of ≥0.17 to indicate malignancy, because this cutoff was selected by human 
raters in the interaction study (Extended Data Fig. 2). If patients photographed 
a lesion more than once, a single image above the cutoff was sufficient to 
label the lesion as ‘probably malignant’ and likewise on the patient level. We 
used a one-sample t-test to distinguish whether continuous data with normal 
distributions deviated from zero. Comparisons of continuous data between groups 
were performed with paired or unpaired t-tests or Wilcoxon signed-rank test, as 
appropriate. A chi-squared test was used to compare proportions. All reported P 
values were corrected for multiple testing (Holm–Bonferroni40), and a two-sided P 
value < 0.05 was regarded as statistically significant. All analyses were performed 
using R v3.6.2 (ref. 41), and plots were created with ggplot v3.2.1 (ref. 42) and 
ggalluvial v0.11.1.

Code availability
Code for the CNN is available upon request from the corresponding author for 
academic use.
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Extended Data Fig. 1 | The neural network puts more relative attention to the non-lesion background in actinic keratoses. Gradient-weighted Class 
Activation Maps (Grad-CAM, right column) for the top-1 prediction class of the CNN were created for all HAM10000 images, a sample for every 
ground-truth class is shown in the left column. The mean activation value per pixel of background- and lesion-area were estimated using manual 
segmentation masks (middle column). The quotient of background over lesion activation showed higher background activation for the predictions of the 
class AKIEC class versus all other classes (mean .48 vs. .32, p = 4.6 × 10−12, two-sided unpaired t-test). Thick central lines denote the median, lower and 
upper box limits the first and third quartiles, whiskers extend from the box to the most extreme value not further than 1.5 times the IQR.
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Extended Data Fig. 2 | Raters choose an asymmetric decision cutoff for malignancy. a, When changing answers from benign to malignant (dark blue) or 
malignant to benign (light blue) diagnoses, the average cutoff for the AI-provided malignancy-probability was not 50% but <25% (yellow dotted line).  
b, On the ROC-curve for detecting malignant cases of the underlying AI (black line), this cutoff chosen inherently by the users (yellow dot), that is without 
instructions or prior knowledge about the AI accuracy, had a higher sensitivity and was closer to the ideal cutoff (blue dot), as measured by Youden’s 
index, than the ‘symmetric’ 50% cutoff (black dot).
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