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Abstract

In this paper we investigate a mathematical model arising from volcanology describing surface defor-
mation effects generated by a magma chamber embedded into Earth’s interior and exerting on it a uniform 
hydrostatic pressure. The modeling assumptions translate mathematically into a Neumann boundary value 
problem for the classical Lamé system in a half-space with an embedded pressurized cavity. We establish 
well-posedness of the problem in suitable weighted Sobolev spaces and analyse the inverse problem of de-
termining the pressurized cavity from partial measurements of the displacement field proving uniqueness 
and stability estimates.
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1. Introduction

In this paper we investigate a linear elastic model describing surface deformations in a vol-
canic area induced by a magma chamber embedded in Earth’s crust. From the mathematical point 

of view we introduce a simplified version of the model assuming the crust to be a half-space in a 
homogeneous and isotropic medium and the magma chamber to be a cavity subjected to a con-
stant pressure on its boundary (for more details see, for example, [7,8,12,17]). More precisely, 
given C a fourth-order isotropic and homogeneous elastic tensor, with Lamé parameters λ and μ, 
denoting by u the displacement vector and by R3− the half-space, we end up with the following 
linear elastostatic boundary value problem⎧⎪⎨⎪⎩

div(C∇̂u) = 0 inR3− \ C

(C∇̂u)n = pn on ∂C

(C∇̂u)e3 = 0 onR2

(1)

where ∇̂u is the strain tensor, C is the cavity, p > 0 represents the pressure acting on the bound-
ary of the cavity, n is the outer unit normal vector on ∂C and e3 = (0, 0, 1).

The main purpose of this paper is to derive quantitative stability estimates for the inverse prob-
lem of identifying the pressurized cavity C from one measurement of the displacement provided 
on a portion of the boundary of the half-space.

In order to address this issue, we first analyse the well-posedness of (1) under the assumption 
that ∂C is Lipschitz. We highlight that for the well-posedness we can either impose explicitly 
some decay conditions at infinity for u and ∇u (see, for example, [7]) or, more suitably for 
our purposes, set the analysis in some weighted Sobolev spaces where the decay conditions are 
expressed by means of weights. In particular, we will show the well-posedness in this weighted 
Sobolev space

H 1
w(R3− \ C) =

{
u ∈D′(R3− \ C),

u

(1 + |x|2)1/2 ∈ L2(R3− \ C),∇u ∈ L2(R3− \ C)
}
, (2)

where D′(R3− \ C) is the space of distributions in R3− \ C, with the norm given by

‖u‖2
H 1

w(R3−\C)
=
(

‖(1 + |x|2)−1/2u‖2
L2(R3−\C)

+ ‖∇u‖2
L2(R3−\C)

)
. (3)

Even if the analysis of the well-posedness of general elastic problems in the half-space via 
weighted Sobolev spaces is known, see [6], we would like to emphasize that in our framework 
we have two principal difficulties and novelties to treat: the first one concerns the fact that the 
problem is stated in an unbounded domain with unbounded boundary and with non homoge-
neous Neumann boundary conditions on the cavity. The second one is related to the derivation 
of quantitative stability estimates of the solution in H 1

w(R3− \ C). To this end, we need to derive
a quantitative weighted Poincaré inequality and a Korn-type inequality in R3− \ C. As far as we 
know, these inequalities are known in a quantitative way only for bounded domains, see [4], and 
for conical domains, see [11].

Therefore, the first part of this paper is devoted to prove quantitative Poincaré and Korn in-
equalities in R3− \ C using some a priori information on the cavity C. This allows us to derive 
the following estimate for the unique solution u of problem (1)
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‖u‖H 1
w(R3−\C) ≤ cp,

where the constant c depends on the Lamé parameters, on the Lipschitz character of ∂C and 
on the distance of C from the boundary of the half-space. This estimate is fundamental for the 

direct problem and it is also necessary to establish stability estimates for the cavity in terms of 
the measurements.

To prove the stability result for the inverse problem we need stronger regularity on the cavity. 
We follow and adapt when needed the results contained in [15,16]. From the point of view of 
the rate of convergence it is well known that, despite of smoothness assumptions on the cavity, 
only a weak rate of logarithmic type is expected. In our case we are able to prove a log–log type 
estimate and not the optimal logarithmic one proved for the scalar case (see [1]) due to the lack 
of a doubling inequality at the boundary for the solutions of the Lamé system.

The paper is organized as follows. In Section 2 we give the notation used in the rest of the 
paper and definition on the regularity of the domains. In Section 3, we set the analysis of the 
elastic problem in the weighted Sobolev space, proving first the constructive Poincaré and Korn 
inequalities and then giving the result of the well-posedness. Section 4 is devoted to the analysis 
of the inverse problem and the derivation of the uniqueness and stability results.

2. On some notation and useful definitions

In this section we set up notation and some definitions paying specific attention to the regu-
larity of bounded domains.

In the sequel, we denote scalar quantities in italic type, e.g. λ, μ, ν, points and vectors in bold
italic type, e.g. x, y, z and u, v, w, matrices and second-order tensors in bold type, e.g. A, B, C, 
and fourth-order tensors in blackboard bold type, e.g. A, B, C.

The transpose of a second-order tensor A is denoted by AT and its symmetric part by

Â = 1
2

(
A + AT

)
.

To indicate the inner product between two vectors u and v we use u · v =∑i uivi whereas for 
second-order tensors A : B =∑i,j aij bij . The tensor product of two vectors u and v is denoted 
by u ⊗ v = uivj . Similarly, A ⊗ B = AijBhk represents the tensor product between matrices. 
With |A| we mean the norm induced by the inner product between second-order tensors, that is

|A| = √
A : A.

We denote the open half-space

{x = (x1, x2, x3) ∈ R3 : x3 < 0} =R3−

and we represent with R2 its boundary, that is the set {x = (x1, x2, x3) ∈ R3 : x3 = 0}. The set 
B−

r (0) denotes the half ball of center 0 and radius r , that is

B−
r (0) = {x ∈R3 : x2

1 + x2
2 + x2

3 < r2, x3 < 0}.

With B ′
r (0) we mean the circle of center 0 and radius r , namely
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B ′
r (0) = {x ∈ R2 : x2

1 + x2
2 < r2}.

We denote with d(A, B) the distance between the two sets A and B , that is
d(A,B) := inf{|x − y| : x ∈ A,y ∈ B}

and with dH(A, B) their Hausdorff distance, namely

dH(A,B) := max{sup
x∈A

inf
y∈B

|x − y|, sup
y∈B

inf
x∈A

|x − y|}.

The unit outer normal vector at the boundary of a regular domain is represented by n.

2.1. Domain regularity

In the following sections, the constants appearing in the inequalities will depend on some a 
priori information of the constitutive parameters of the linear elastic model and on the a priori 
geometric and regularity assumptions on the cavity. For this reason it is important to recall the 
definition of Ck,α regularity for a bounded domain.

Definition 2.1 (Ck,α regularity). Let � be a bounded domain in R3. Given k, α, with k ∈ N and 
0 < α ≤ 1, we say that a portion S of ∂� is of class Ck,α with constant r0, E0, if for any P ∈ S, 
there exists a rigid transformation of coordinates under which we have P = 0 and

� ∩ Br0(0) = {x ∈ Br0(0) : x3 > ψ(x′)},

where ψ is a Ck,α function on B ′
r0

(0) ⊂R2 such that

ψ(0) = 0,

∇ψ(0) = 0, fork ≥ 1

‖ψ‖Ck,α(Br0 (0)) ≤ E0.

When k = 0, α = 1, we also say that S is of Lipschitz class with constants r0, E0.

3. The direct problem

In this section, we will analyse the well-posedness of the following linear elastostatic bound-
ary value problem ⎧⎪⎨⎪⎩

div(C∇̂u) = 0 inR3− \ C

(C∇̂u)n = pn on ∂C

(C∇̂u)e3 = 0 onR2

(4)

where p > 0 represents the pressure, C is the cavity, n is the outer unit normal vector on ∂C and 
e3 = (0, 0, 1). C is the fourth-order isotropic and homogeneous elastic tensor given by
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C := λI ⊗ I + 2μI,

where λ and μ are the two constants Lamé parameters, I is the identity matrix in R3 and I is the 
fourth-order identity tensor such that IA = Â, for any second-order tensor A.
We first provide some physical information on the cavity C and the elastic tensor C.

3.1. Main assumptions and a priori information

For the study of the direct problem (4), we assume that the constant Lamé parameters satisfy 
the inequalities

3λ + 2μ > 0 and μ > 0, (5)

that is the tensor C is strongly convex:

CÂ : Â ≥ ξ0|Â|2, (6)

with ξ0 = min{2μ, 2μ + 3λ}, see [9].
The cavity C is supposed to be a bounded domain with Lipschitz regularity, that is

∂C is Lipschitz with constants r0 andE0. (7)

Additionally, we impose some a priori information on the size of the cavity and its distance from 
the boundary of the half-space. In particular, denoting with diam(A) the diameter of a set A, we 
require

B−
2D0

(0) ⊃ C, (8)

d(C,R2) ≥ D0, (9)

diam(C) < D0, (10)

where, without loss of generality, we can assume that the constant D0 > 1.

Remark 3.1. From here on, for simplicity of reading, we omit the dependence of some constants 
on the Lamé coefficients λ and μ, on the parameters r0, E0, D0 related to the a priori information 
on the cavity C and on s0 which represents the radius of the circle where the measurements are 
collected. For its definition see Section 4.

We highlight that, since we are in the half-space, namely an unbounded domain with un-
bounded boundary, the study of the well-posedness of the direct problem (4) can be done either 
imposing some decay conditions at infinity for the function u and ∇u (see for example [7]) or 
setting the analysis in a suitable weighted Sobolev space. We choose this second strategy. So we 
recall the definition of the weighted Sobolev space for domains of type R3− \ C. To do that, we 
denote the space of the indefinitely differentiable functions with compact support in R3− \ C by 
D(R3− \ C) and with D′(R3− \ C) its dual space, that is the space of distributions.
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Definition 3.1 (Weighted Sobolev space). Given the function

ρ = (1 + |x|2)1/2, (11)
we define

H 1
w(R3− \ C) =

{
u ∈D′(R3− \ C),

u

ρ
∈ L2(R3− \ C),∇u ∈ L2(R3− \ C)

}
. (12)

This weighted Sobolev space is a reflexive Banach space, see for example [5] and references 
therein, equipped with its natural norm

‖u‖2
H 1

w(R3−\C)
=
(

‖ρ−1u‖2
L2(R3−\C)

+ ‖∇u‖2
L2(R3−\C)

)
. (13)

We recall that the weight is chosen so that the space D(R
3
− \ C) is dense in H 1

w(R3− \ C), see
[5,10]. When we deal with bounded domains D ⊂ (R3− \ C) we emphasize that H 1

w(D) reduces
to H 1(D) regularity, hence the usual trace theorems hold. For generalizations and more details 
on weighted Sobolev spaces see, for example, [5,6,10] and references therein.

The study of the well-posedness of (4) is therefore accomplished using Lax–Milgram theorem 
in H 1

w(R3−\C) space. We stress that the use of the weighted Sobolev space is the natural approach
to obtain a quantitative H 1

w(R3− \ C) estimate in terms of the boundary data. To this end we need 
first to have constructive Poincaré and Korn-type inequalities.

3.2. Weighted Poincaré inequality and Korn-type inequality

In this section we want to prove a weighted Poincaré inequality and a Korn-type inequality in 
R3− \ C using a suitable partition of unity.

Let us consider two half balls B−
r (0) and B−

R (0), with r < R, such that

C ⊂ B−
r (0) ⊂ B−

R (0).

Using the a priori information (9) and (10) on the cavity C, we fix

r = 3D0 and R = 4D0.

We consider a specific partition of unity of R3−. In particular, we take ϕ1, ϕ2 ∈ C∞(R3−) such 
that

0 ≤ ϕ1, ϕ2 ≤ 1 and ϕ1 + ϕ2 = 1 inR3−, (14)

with

ϕ2 = 0, ϕ1 = 1, inB−
r (0), (15)

ϕ1 = 0, ϕ2 = 1, in {|x| ≥ R} ∩R3−, (16)

|∇ϕ1| ≤ c

ρ
, |∇ϕ2| ≤ c

ρ
, inB−

R (0) \ B−
r (0), (17)
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where c is an absolute positive constant thanks to the choice made for r and R.
In the following it is useful to split ∂B−

R (0) = ∂Bh
R(0) ∪ ∂Bb

R(0), where ∂Bh
R(0) is the circle 

B ′
R(0) whereas ∂Bb

R(0) is the spherical cap. We first prove Poincaré inequality
Theorem 3.2 (Weighted Poincaré inequality). For any function u ∈ H 1
w(R3− \ C) there exists a 

positive constant c, with c = c(r0, E0, D0), such that

∫
R

3−\C

∣∣∣∣uρ
∣∣∣∣2 dx ≤ c

∫
R

3−\C
|∇u|2 dx, (18)

where ρ is defined in (11).

Proof. From (14) we find that∥∥∥∥u

ρ

∥∥∥∥2

L2(R3−\C)

≤ 2

(∥∥∥∥ϕ1
u

ρ

∥∥∥∥2

L2(R3−\C)

+
∥∥∥∥ϕ2

u

ρ

∥∥∥∥2

L2(R3−\C)

)
:= 2(N1 +N2).

We study N1 and N2.
From the property (16) and since ρ−1 ≤ 1, we get

N1 =
∥∥∥∥ϕ1

u

ρ

∥∥∥∥2

L2(B−
R (0)\C)

≤ ‖ϕ1u‖2
L2(B−

R (0)\C)
. (19)

Therefore, since ϕ1 = 0 on ∂Bb
R(0), we use the quantitative Poincaré inequality for functions 

vanishing on a portion of the boundary of a bounded domain, see for instance [4] (Theorem 3.3, 
in particular Example 3.6), finding

‖ϕ1u‖2
L2(B−

R (0)\C)
≤ c ‖∇(ϕ1u)‖2

L2(B−
R (0)\C)

, (20)

where c is a positive constant such that c = c(r0, E0, D0). In this way, we obtain

‖∇(ϕ1u)‖2
L2(B−

R (0)\C)
≤ 2
(
‖u ⊗ ∇ϕ1‖2

L2(B−
R (0)\C)

+ ‖ϕ1∇u‖2
L2(B−

R (0)\C)

)
. (21)

Now, from the property (17), we have

‖u ⊗ ∇ϕ1‖2
L2(B−

R (0)\C)
=

∫
B−

R (0)\C
|u|2|∇ϕ1|2 dx ≤ c

∫
B−

R (0)\B−
r (0)

|u|2
ρ2 dx. (22)

By (20), (21), (22) and recalling (14), we have

‖ϕ1u‖2
L2(B−

R (0)\C)
≤ c

(∥∥∥∥u

ρ

∥∥∥∥2

L2({|x|>r} ∩R
3−)

+ ‖∇u‖2
L2(B−

R (0)\C)

)
. (23)
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Applying Hardy’s inequality for the exterior of a half ball in the half-space (see [11], Lemma 3, 
p. 83) to the first term in the right-hand side of the inequality (23), we find∥∥u

∥∥2
∥∥ρ
∥∥

L2({|x|>r} ∩R
3−)

≤ c ‖∇u‖2
L2({|x|>r} ∩R

3−)
. (24)

Inserting (24) in (23) and then going back to (19), we have

N1 =
∥∥∥∥ϕ1

u

ρ

∥∥∥∥2

L2(B−
R (0)\C)

≤ c
(
‖∇u‖2

L2(B−
R (0)\C)

+ ‖∇u‖2
L2({|x|>r} ∩R

3−)

)
≤ c ‖∇u‖2

L2(R3−\C)
.

(25)

Analogously, using the properties (14) and (15) and applying again Hardy’s inequality (see [11], 
Lemma 3, p. 83), we find

N2 =
∥∥∥∥ϕ2

u

ρ

∥∥∥∥2

L2(R3−\C)

≤
∥∥∥∥u

ρ

∥∥∥∥2

L2({|x|>r} ∩R
3−)

≤ c‖∇u‖2
L2({|x|>r} ∩R

3−)

≤ c ‖∇u‖2
L2(R3−\C)

.

(26)

Putting together the inequalities (25) and (26) we have the assertion. �
Before proving a Korn-type inequality in the exterior domain of a half-space, we state, for the 

reader’s convenience, a slight modification of a lemma proved by Kondrat’ev and Oleinik in [11]
(see Lemma 5. p. 85) for the case of a function u ∈ H 1

w(R3− \ C). This lemma will be useful in 
the proof of the Korn inequality.

Lemma 3.3. Let u ∈ H 1
w(R3− \ C). For every r ′ < r there exists a positive constant c such that

‖∇u‖L2({|x|>r} ∩R
3−) ≤ c‖∇̂u‖L2({|x|>r ′} ∩R

3−),

where c = c(r, r ′).

Now, we are ready to prove the following quantitative Korn inequality.

Theorem 3.4 (Korn-type inequality). For any function u ∈ H 1
w(R3− \ C) there exists a positive 

constant c, with c = c(r0, E0, D0), such that∫
R

3−\C
|∇u|2 dx ≤ c

∫
R

3−\C
|∇̂u|2 dx. (27)

Proof. From the definition of the functions ϕ1, ϕ2, see (14), we have

‖∇u‖2
L2(R3−\C)

≤ 2

(
‖∇(ϕ1u)‖2

L2(R3−\C)
+ ‖∇(ϕ2u)‖2

L2(R3−\C)

)
:= 2(N ′

1 +N ′
2).

8
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We study, separately, the two terms N ′
1 and N ′

2.
By (16) we find

N ′ = ‖∇(ϕ u)‖2 = ‖∇(ϕ u)‖2 ,
1 1 L2(R3−\C) 1 L2(B−
R (0)\C) (28)

hence, since ϕ1 = 0 on ∂Bb
R(0), we apply the quantitative Korn inequality for functions vanishing 

on a portion of the boundary of a bounded domain, see for instance [4] (Theorem 5.7), getting 
for c = c(r0, E0, D0)

‖∇(ϕ1u)‖2
L2(B−

R (0)\C)
≤ c ‖∇̂(ϕ1u)‖2

L2(B−
R (0)\C)

≤ c

(
‖u ⊗ ∇ϕ1‖2

L2(B−
R (0)\C)

+ ‖ϕ1∇̂u‖2
L2(B−

R (0)\C)

)
,

where in the right side of the previous inequality we have used

‖û ⊗ ∇ϕ1‖2
L2(B−

R (0)\C)
≤ ‖u ⊗ ∇ϕ1‖2

L2(B−
R (0)\C)

.

From (22), the properties (14) and Hardy’s inequality (24), we have

‖u ⊗ ∇ϕ1‖2
L2(B−

R (0)\C)
+‖ϕ1∇̂u‖2

L2(B−
R (0)\C)

≤ c

(∥∥∥∥u

ρ

∥∥∥∥2

L2({|x|>r} ∩R
3−)

+ ‖∇̂u‖2
L2(B−

R (0)\C)

)

≤ c
(
‖∇u‖2

L2({|x|>r} ∩R
3−)

+ ‖∇̂u‖2
L2(B−

R (0)\C)

)
.

Applying Lemma 3.3 to the first term in the right side of the previous formula, we find

‖∇u‖2
L2({|x|>r} ∩R

3−)
≤ c‖∇̂u‖2

L2({|x|>r ′} ∩R
3−)

,

where we choose r ′ = 2D0 < r so that C ⊂ B−
r ′ (0) (see the a priori information (8)). Putting 

together all these results and going back to (28), we have

N ′
1 ≤ c

(
‖∇̂u‖2

L2(B−
R (0)\C)

+ ‖∇̂u‖2
L2({|x|>r ′} ∩R

3−)

)
≤ c ‖∇̂u‖2

L2(R3−\C)
. (29)

In a similar way, using the properties (14) and (15), we find

N ′
2 = ‖∇(ϕ2u)‖2

L2(R3−\C)
= ‖∇(ϕ2u)‖2

L2({|x|>r} ∩R
3−)

≤ c

(
‖u ⊗ ∇ϕ2‖2

L2({|x|>r} ∩R
3−)

+ ‖ϕ2∇u‖2
L2({|x|>r} ∩R

3−)

)
.

From the properties (14) and (17) of ϕ2, we get

9
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‖u ⊗ ∇ϕ2‖2
L2({|x|>r} ∩R

3−)
+‖ϕ2∇u‖2

L2({|x|>r} ∩R
3−)

≤ c

(∥∥∥∥u

ρ

∥∥∥∥2

2 3
+ ‖∇u‖2

L2({|x|>r} ∩R
3−)

)
.

L ({|x|>r} ∩R−)

Using again Hardy’s inequality (24) and the result in Lemma 3.3 in the last two terms of the 
previous formula, we find

N ′
2 ≤ c ‖∇̂u‖2

L2({|x|>r ′} ∩R
3−)

≤ c ‖∇̂u‖2
L2(R3−\C)

. (30)

Finally, collecting the results in (29) and (30), we have the assertion. �
3.3. Well-posedness

To study the well-posedness of problem (4) we use a variational approach. We suppose, for 

the moment, u regular and the test functions v in D(R
3
− \ C). Multiplying the equations in (4)

for the functions v and integrating in R3− \ C, we obtain∫
R

3−\C
C∇̂u : ∇̂v dx = −p

∫
∂C

n · v dσ(x), ∀v ∈ D(R
3
− \ C).

Now, from the density property of the functional space D(R
3
− \ C) into the weighted Sobolev 

space defined in (12), problem (4) becomes:
find u ∈ H 1

w(R3− \ C) such that

a(u,v) = f (v), ∀v ∈ H 1
w(R3− \ C), (31)

where a : H 1
w(R3− \ C) × H 1

w(R3− \ C) → R is the bilinear form given by

a(u,v) =
∫

R
3−\C

C∇̂u : ∇̂v dx, (32)

and f : H 1
w(R3− \ C) → R is the linear functional given by

f (v) = −p

∫
∂C

n · v dσ(x). (33)

Now, we can prove

Theorem 3.5. Problem (4) admits a unique solution u ∈ H 1
w(R3− \ C) satisfying

‖u‖H 1
w(R3−\C) ≤ cp, (34)

where the constant c = c(λ, μ, r0, E0, D0).

10
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Proof. To prove the well-posedness of problem (4) we apply Lax–Milgram theorem to (31). 
Therefore, we need to prove the coercivity and the continuity property of the bilinear form (32)
and the boundedness of the linear functional (33).

Continuity of (32).

From the Cauchy–Schwarz inequality we have

|a(u,v)| =
∣∣∣∣∣
∫

R
3−\C

C∇̂u : ∇̂v dx

∣∣∣∣∣≤ c ‖∇̂u‖L2(R3−\C)‖∇̂v‖L2(R3−\C)

≤ c ‖u‖H 1
w(R3−\C)‖v‖H 1

w(R3−\C),

where c = c(λ, μ).
Coercivity of (32).
We apply the constructive Poincaré and Korn inequalities proved in Theorem 3.2, Theorem 3.4

and the strong convexity condition of C, see (6). In detail, we have

a(u,u) =
∫

R
3−\C

C∇̂u : ∇̂udx ≥ c‖∇̂u‖2
L2(R3−\C)

≥ c‖∇u‖2
L2(R3−\C)

≥ c‖u‖2
H 1

w(R3−\C)
,

where the constant c = c(λ, μ, r0, E0, D0).
Boundedness of (33).
Let us take B−

2D0
(0). Then applying the trace theorem for bounded domains, we find∣∣∣∣∣−p

∫
∂C

n · v dσ(x)

∣∣∣∣∣≤ c p‖v‖L2(∂C) ≤ c p

(∥∥∥∥ v

ρ

∥∥∥∥
L2((B−

2D0
(0))\C)

+ ‖∇v‖L2((B−
2D0

(0))\C)

)
≤ c p‖v‖H 1

w(R3−\C).

Applying the Lax–Milgram theorem we obtain the well-posedness of problem (4). Moreover, by 
means of the strong convexity condition of C, see (6), and from the application of the Korn and 
Poincaré inequalities, see Theorem 3.2 and Theorem 3.4, we find that

‖u‖2
H 1

w(R3−\C)
≤
∣∣∣∣∣
∫

R
3−\C

C∇̂u : ∇̂udx

∣∣∣∣∣≤
∣∣∣∣∣p
∫
∂C

n · udσ(x)

∣∣∣∣∣≤ cp‖u‖H 1
w(R3−\C),

where the constant c = c(λ, μ, r0, E0, D0), hence the assertion of the theorem follows. �
4. The inverse problem: uniqueness and stability estimate

In this section we will investigate the following inverse problem: given the displacement vec-
tor u on a portion of the boundary of the half-space can we detect uniquely and in a stable way 
the cavity C?

11
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We suppose to have the measurements on B ′
s0

(0) = {x ∈ R2 : x2
1 + x2

2 < s2
0 } contained in 

{x3 = 0}, with s0 < D0. To prove a stability estimate for the inverse problem we need to require 
more regularity on C than (7). In particular, we suppose that:
∂C is of classC3 with constant r0 andE0. (35)

In addition, we recall that C satisfy the a priori information (8), (9) and (10). We also assume 
that

R3− \ C is connected.

Before proceeding, we highlight that the proof of the uniqueness and the stability result is based 
on the possibility to build the displacement field

u = p

3λ + 2μ
x (36)

so to reduce problem (4) to a problem with homogeneous Neumann boundary conditions on the 
boundary of the cavity. A straightforward calculation shows that u satisfies the Lamé system and 
the boundary condition on C satisfied by u.

In this way, the function

w := u − u, (37)

satisfies the following boundary value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
div(C∇̂w) = 0 inR3− \ C

(C∇̂w)n = 0 on∂C

(C∇̂w)e3 = −pe3 onR2

w + u ∈ H 1
w(R3− \ C),

(38)

where e3 = (0, 0, 1). The inverse problem reduces therefore to determine the cavity C from a 
single pair of Cauchy data on B ′

s0
(0) of the solution to problem (38).

In the sequel, we denote wi = ui − u, for i = 1, 2, where wi and ui are respectively the 
solutions to (38) and (4) with C = Ci , for i = 1, 2. It immediately follows that

w1 − w2 = u1 − u2, in R3− \ (C1 ∪ C2). (39)

Moreover, we indicate with

G the unbounded connected component of R3− \ (C1 ∪ C2). (40)

Notice that B ′
s0

(0) ⊂ ∂G.

12
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Fig. 1. The two domains C1 and C2 and the domain D.

4.1. Uniqueness

Although the procedure to get the uniqueness result for the inverse problem is known in the 
literature, for the reader’s convenience, we give a sketch of the proof.

Theorem 4.1. Given the single pair of Cauchy data {w, −pe3} on B ′
s0

(0) there exists at most
one pair (C,w) satisfying problem (38).

Remark 4.2. Theorem 4.1 is true under weaker regularity assumptions on the cavity C. In fact, 
it is sufficient to have ∂C of Lipschitz class.

Proof of Theorem 4.1. Suppose by contradiction that there exist two cavities C1 and C2, with 
C1 �= C2, and the corresponding vector displacements w1, w2 such that

w1

∣∣∣
B ′

s0
(0)

= w2

∣∣∣
B ′

s0
(0)

= w, (C∇̂w1)e3

∣∣∣
B ′

s0
(0)

= (C∇̂w2)e3

∣∣∣
B ′

s0
(0)

= −pe3.

From the unique continuation theorem for solution to the Lamé system, see [19], we have

w1 = w2, in G,

where G is defined in (40). Next, we consider two different cases of intersection of the domains 
C1 and C2. In fact, all the other possibilities can be reduced to these two configurations. For 
example, we take the domain D as in Fig. 1, where the function w2 is well-defined and satisfies 
the elastostatic equations, finding∫

D

(
C∇̂w2

) : ∇̂w2 dx =
∫

∂D

(
C∇̂w2n

) · w2 dσ(x).

Since C∇̂w2n = 0 on ∂D ∩ ∂C2 and by the unique continuation property C∇̂w2n =C∇̂w1n on
�1 = (∂D ∩ ∂C1) ⊂ ∂G, we get∫

D

(
C∇̂w2

) : ∇̂w2 dx =
∫
�1

(
C∇̂w1n

) · w2 dσ(x) = 0,

hence w2 = Ax + a in D, where A ∈ R3×3 is a skew-symmetric matrix and a ∈ R3. From the 
unique continuation principle applied to w2 − Ax − a we obtain that w2 = Ax + a in R3− \ C2,
hence 

(
C∇̂w2

)
n = 0 on B ′

s0
(0), that is a contradiction.

13
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Fig. 2. The two domains C1 and C2 and the domain D = D1 ∪ D2.

The second case we analyse is related to the setting in Fig. 2. To prove the contradiction, in this 
case we can consider, for example, the domain D = D1 ∪ D2, where D1 and D2 are represented 
in Fig. 2. We emphasize that in this setting if we only consider the domain D1 we will not be able 
to find a contradiction. In fact, from the unique continuation and the Green’s formula we would 
not be able to prove that the energy of the system related to the function w2 is equal to zero in 
D1. Instead, considering the region D and taking w2, which satisfies div(C∇̂w2) = 0 in D, from 
the Green’s formula we find, as before,∫

D

(
C∇̂w2

) : ∇̂w2 dx = 0,

hence w2 = Ax + a in D, with A ∈ R3×3 a skew-symmetric matrix and a ∈ R3. Applying the 
unique continuation principle to w2 − Ax − a we have that w2 = Ax + a in R3− \ C2, hence (
C∇̂w2

)
n = 0 on B ′

s0
(0), that is a contradiction. �

4.2. Stability estimate

In this section we state and prove the stability estimates for our inverse problem by adapting 
the arguments contained in [15] and [16] to the case of a pressurized cavity in an unbounded 
domain. In order to keep the proof of the main result as readable as possible and since the strategy 
to get the stability theorem is similar of the one obtained in [15] we will not repeat all the 
details of the proofs of the auxiliary results we need. The main idea behind the stability result 
(Theorem 4.8) is to give a quantitative version of the uniqueness argument. More precisely, we 
combine two steps:

1. the propagation of the smallness of the Cauchy data up to the boundary of the cavities, 
leading to an integral estimate of the solutions (see Propositions 4.6 and 4.7);

2. an estimate of continuation from the interior (Proposition 4.4).

The basic tool for both steps is the three spheres inequality stated in Lemma 4.5.
In the sequel, for any  > 0, we denote by

� = {x ∈ � : dist(x, ∂�) > }.

We first prove a regularity result on the solution of problem (4). To this end, we consider a 
bounded domain Q ⊂R3− such that

14
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∂Q ∈ C3 with constants r0,E0, (41)

B−
αD0

(0) ⊂⊂ Q ⊂⊂ B−
βD0

(0), (42)
where α > 2 and β ≥ 3, with α < β . Now, we have the following regularity estimate.

Proposition 4.3. Under the assumptions (35) for C and (41), (42) for Q, the solution of problem 
(4), satisfies

‖u‖C1,1/2(Q\C) ≤ cp, (43)

where the constant c = c(λ, μ, α, β, r0, E0, D0).

Before proving this theorem, we briefly recall the integral representation formula for the so-
lution to problem (4) derived in [7]. In particular, we define first the Neumann function, solution 
to ⎧⎪⎨⎪⎩

div(C∇̂N(·,y)) = δyI in R3−
(C∇̂N(·,y))n = 0 on R2

N = O(|x|−1), |∇N| = O(|x|−2) |x| → ∞,

(44)

where δy is the delta function centered at y ∈ R3− and I is the identity matrix (see Theorem 4.9

in Appendix for its explicit expression). Then, for any y ∈ R
3
− \ C we have

u(y) = p

∫
∂C

N(x,y)n(x) dσ (x) −
∫
∂C

[(
C∇̂xN(x,y)

)
n(x)

]T
f (x) dσ (x), (45)

where f is the trace of u on ∂C and n is the outer unit normal vector on ∂C (for more details 
see [7]).

Proof of Theorem 4.3. Since the kernels of the integral operators in (45) are regular for y ∈
∂Q \ ∂C, we can estimate Dku(y), for k = 0, 1, 2, 3, getting easily

|Dku(y)| ≤ p|∂C| sup
x∈∂C

y∈∂Q\∂C

|Dk
yN(x,y)| + |∂C|1/2‖f ‖L2(∂C) sup

x∈∂C
y∈∂Q\∂C

|Dk
y(C∇̂xN(x,y))|.

From the regularity properties of N and Theorem 4.9 in Appendix, we have

sup
x∈∂C

y∈∂Q\∂C

|Dk
yN(x,y)| ≤ c

Dk+1
0

, sup
x∈∂C

y∈∂Q\∂C

|Dk
y(C∇̂xN(x,y))|≤ c

Dk+2
0

,
(46)

where the constant c = c(λ, μ, α). From the trace estimate applied in Q, we have

‖f ‖L2(∂C) ≤ c‖u‖H 1
w(R3−\C) ≤ cp, (47)

15
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hence, from (46) and (47), we get

|Dku(y)| ≤ cp,
where the constant c = c(λ, μ, α, r0, E0, D0). Therefore

‖Dku‖L∞(∂Q\∂C) ≤ cp, k = 0,1,2,3. (48)

Next, we apply the following global regularity estimate for the elastostatic system with Neumann 
boundary conditions (see [18], Theorem 6.6, p. 79) for u in Q \ C, that is

‖u‖H 3(Q\C) ≤ c

(
‖u‖L2(Q\C) + ‖(C∇̂u)n‖W 3/2,2(∂(Q\C))

)
, (49)

with c = c(λ, μ, α, β, r0, E0, D0). Now, observe that by (34)

‖u‖L2(Q\C) ≤ c

∥∥∥∥u

ρ

∥∥∥∥
L2(R3−\C)

≤ cp, (50)

where c = c(λ, μ, α, β, r0, E0, D0), while, for the term ‖(C∇̂u)n‖W 3/2,2(∂(Q\C)) we have

(C∇̂u)n = 0, on ∂Q ∩ {x3 = 0}, (C∇̂u)n = pn, on ∂C,

and since ∂C is of class C3 (see (35)) it follows (C∇̂u)n ∈ C2(∂C), hence

‖(C∇̂u)n‖W 3/2,2(∂C) ≤ cp. (51)

Analogously, from the estimate (48) and the regularity of the boundary of Q, we find

‖(C∇̂u)n‖W 3/2,2(∂Q\∂C) ≤ cp. (52)

Therefore, collecting (50), (51) and (52), the estimate (49) gives

‖u‖H 3(Q\C) ≤ cp.

Finally, applying the Sobolev embedding theorem (43) follows. �
Proposition 4.4 (Lipschitz propagation of smallness). Under the assumptions (5), (8), (9), (10)
and (35), let w be the solution to (38). There exist R ≥ 3D0, R = R(λ, μ, r0, E0, D0), and s > 1, 
s = s(λ, μ, E0), such that for every  > 0 and every x ∈ (B−

R (0) \ C)s , we have∫
B(x)

|∇̂w|2 dx ≥ c

ea−b

∫
B−

R (0)\C
|∇̂w|2 dx, (53)

where a, b, c > 0 depend on λ, μ, r0, E0 and D0.

16
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The proof of this proposition is based on the application of the three-spheres inequality. For 
the reader’s convenience we recall here only the statement of the theorem in the case of the linear 
elasticity in a homogeneous and isotropic medium; for a more general case and its proof one can 
refer to [2,3].
Lemma 4.5 (Three spheres inequality). Let � be a bounded domain in R3. Let w ∈ H 1(�) be a 
solution to the Lamé system. There exists ϑ∗, 0 < ϑ∗ ≤ 1, only depending on λ and μ such that 
for every r1, r2, r3, r , 0 < r1 < r2 < r3 ≤ ϑ∗r , and for every x ∈ �r we have

∫
Br2 (x)

|∇̂w|2 ≤ c

⎛⎜⎝ ∫
Br1 (x)

|∇̂w|2
⎞⎟⎠

δ⎛⎜⎝ ∫
Br3 (x)

|∇̂w|2
⎞⎟⎠

1−δ

, (54)

where c > 0 and δ, 0 < δ < 1, only depend on λ, μ, r2
r3

and are monotone increasing functions of 
r1
r3

.

Now, the Lipschitz propagation of smallness inequality can be proved.

Proof of Proposition 4.4. Let us denote � = B−
R (0) \C, with R ≥ 3D0 to be chosen later. Since 

the hemisphere B−
1 (0) has Lipschitz boundary with absolute constants r∗, E∗, B−

R (0) has Lips-
chitz boundary with constants r∗R, E∗. Possibly worsening the regularity parameters of C, see 
(35), we can assume E0 ≥ E∗ and r0 ≤ r∗R, so that the boundary of � is of Lipschitz class with 
constants r0 and E0.

Following similar arguments as those in [15] with the simplification of maintaining as inte-
grand function |∇̂w|2, we find that there exist 0 = 0(λ, μ, r0, E0, R), with 0 < 0 < 1, and
s = s(λ, μ, E0), s > 1, such that for all 0 <  ≤ 0 and for all x ∈ �s , it holds

∫
B(x)

|∇̂w|2 dx ≥ c1

∫
�

|∇̂w|2 dx

⎛⎜⎜⎜⎜⎜⎝
c3

∫
�(s+1)

|∇̂w|2 dx

∫
�

|∇̂w|2 dx

⎞⎟⎟⎟⎟⎟⎠

σ−A1−B1 log(1/)

, (55)

where c1 > 0 only depend on λ, μ; σ ∈ (0, 1), s > 1 depend on λ, μ, E0 and c, A1, B1 > 0
depend on λ, μ, E0, r0, R. The main goal is to give a lower estimate of the ratio

∫
�(s+1)

|∇̂w|2 dx

∫
�

|∇̂w|2 dx

to get the assertion of the theorem. To this end, we first notice that

17
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Fig. 3. The region S.∫
�(s+1)

|∇̂w|2 dx

∫
�

|∇̂w|2 dx

= 1 −

∫
�\�(s+1)

|∇̂w|2 dx

∫
�

|∇̂w|2 dx

:= 1 − I1

I2
. (56)

Let us consider the integral I2. Since w = u − u, see (37), we use the integral representation 
formula (45) for the function u and the explicit expression of u in (36). In detail, we consider

S =
{
x ∈ B−

R (0) : x3 ≤ −3

4
R

}
. (57)

see Fig. 3. By a simple calculation we have |S| = (7/128)πR3.
If x ∈ ∂C, y ∈ S, then by (45) and Theorem 4.9, it is easy to see that

|∇̂u(y)| ≤ |∇u(y)| ≤ cp

R2 , ∀y ∈ S,

where c = c(λ, μ, r0, E0, D0), hence

|∇̂w(y)| ≥ |∇̂u(y)| − |∇̂u(y)| ≥ p

3λ + 2μ
− cp

R2 ≥ p

2(3λ + 2μ)
,

where the last inequality holds choosing R = max{3D0, (2c−1(3λ + 2μ))1/2}. In this way, we 
have that

I2 =
∫
�

|∇̂w|2 dx ≥
∫
S

|∇̂w|2 dx ≥ cp2R3, (58)

where c = c(λ, μ).
Now, we estimate the integral I1 using the regularity result of the Proposition 4.3. First, we 

split the integral domain as

� \ �(s+1)p = F1 ∪ F2,

where

F1 = {x ∈ � : d(x,C)) ≤ (s + 1)}, F2 = {x ∈ � : d(x, ∂B−
R (0)) ≤ (s + 1)},

18
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Fig. 4. The region � \ �(s+1) .

see Fig. 4.
From (35), we notice that

|F1 ∪ F2| ≤ c(r0,E0,D0)R2. (59)

Choosing in (42) α = R/D0, where R = max{3D0, (2c−1(3λ + 2μ))1/2}, and β = 2α, then

B−
R (0) ⊂⊂ Q ⊂⊂ B−

2R(0),

hence we apply the regularity estimate (43) for the two regions F1 and F2. Now, we have that

‖∇̂w‖L∞(�\�(s+1)) ≤ (‖∇̂u‖L∞(�\�(s+1)) + ‖∇̂u‖L∞(�\�(s+1))) ≤ cp,

where c = c(λ, μ, r0, E0, D0). Therefore, from (59), we find

I1 =
∫

�\�(s+1)

|∇̂w|2 dx ≤ cp2 |� \ �(s+1)| ≤ cp2R2. (60)

Putting together inequalities (58) and (60), there exists ∗ = ∗(λ, μ, r0, E0, D0) > 0, such that 
for any  ≤ ∗, we have

I1

I2
=

∫
�\�(s+1)

|∇̂w|2 dx

∫
�

|∇̂w|2 dx

≤ 1

2
.

Going back to (55) and (56) we have

∫
B(x)

|∇̂w|2 dx ≥
(

c3
)σ−A1−B1 log(1/) ∫

�

|∇̂w|2 dx,

where c, A1, B1 depend on λ, μ, E0, r0, D0, for all  ≤ ∗. To conclude, we take  ≤ c, hence, 
for every  ≤ min(c, ∗) and noticing that log ≥ −1/ for 0 <  < 1, we get the assertion 
choosing
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a = 6eA1| log σ | and b = B1| logσ | + 1. �
We omit the proof of the following two propositions, since they can be obtained using the 

same strategy adopted in proving Propositions 3.5 and 3.6 in [15].
Proposition 4.6 (Stability estimates of continuation from Cauchy data). Under the assumption 
(5) let C1 and C2 be two domains satisfying (8), (9), (10) and (35). Moreover, let wi , for i = 1, 2, 
be the solution to (38) with C = Ci . Then, for ε < e−1p, we have∫

C2\C1

|∇̂w1|2 dx ≤ cp2
(

log
∣∣∣ log

ε

p

∣∣∣)−1/6

,

∫
C1\C2

|∇̂w2|2 dx ≤ cp2
(

log
∣∣∣ log

ε

p

∣∣∣)−1/6

,

(61)

where the constant c = c(λ, μ, r0, E0, D0, s0).

The stability estimates in (61) can be improved when ∂G is of Lipschitz class, where G is 
defined by (40), as stated in the proposition below.

Proposition 4.7 (Improved stability estimates of continuation from Cauchy data). Under the as-
sumption (5) let C1 and C2 be two domains satisfying (8), (9), (10) and (35). In addition, let us 
assume that there exist L > 0 and ̃r0, with 0 < r̃0 ≤ r0, such that ∂G is of Lipschitz class with 
constants ̃r0, L. Then, we have ∫

C2\C1

|∇̂w1|2 dx ≤ cp2
∣∣∣ log

ε

p

∣∣∣−γ

,

∫
C1\C2

|∇̂w2|2 dx ≤ cp2
∣∣∣ log

ε

p

∣∣∣−γ

,

(62)

where c, γ > 0 depend on λ, μ, r0, E0, D0, s0, L, ̃r0.

Now, we have all the preliminary results to prove the stability theorem.

Theorem 4.8 (Stability estimate). Under the assumption (5) let C1 and C2 be two domains sat-
isfying (8), (9), (10) and (35). Moreover, let ui , for i = 1, 2, be the solution to (4) with C = Ci . 
If, given ε > 0, we have

‖u1 − u2‖L2(B ′
s0

(0)) ≤ ε, (63)

then it holds

dH(∂C1, ∂C2) ≤ c

(
log
∣∣∣ log

ε

p

∣∣∣)−η

, (64)
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for every ε < e−1p, where the constants c and η, with 0 < η ≤ 1, depend on λ, μ, r0, E0, D0 and 
s0.

Proof. Since (39) holds, we prove the assertion using the function w , for i = 1, 2. In this way 
i

we can apply the same proof strategy contained in [16]. In the sequel we simply denote with dH
the Hausdorff distance dH(∂C1, ∂C2).

Let us prove that if η > 0 is such that∫
C2\C1

|∇̂w1|2 dx ≤ η,

∫
C1\C2

|∇̂w2|2 dx ≤ η, (65)

then we have

dH ≤ c

(
log

cp2

η

)−1/b

, (66)

where b, c depend on λ, μ, r0, E0, D0.
We may assume, with no loss of generality, that there exists x0 ∈ ∂C1 such that

dist(x0, ∂C2) = dH.

In this setting, we have to distinguish two cases:

1. BdH(x0) ⊂ C2;
2. BdH(x0) ∩ C2 = ∅.

Let us consider case (1). By the regularity assumption made on ∂C1, see (35), there exists x1 ∈
C2 \ C1 such that

BtdH(x1) ⊂ (C2 \ C1), with t = 1

1 +
√

1 + E2
0

.

By the first inequality in (65), taking  = tdH/s in Proposition 4.4, we have

η ≥
∫

C2\C1

|∇̂w1|2 dx ≥
∫

B(x1)

|∇̂w1|2 dx ≥ c

ea−b

∫
B−

R \C1

|∇̂w1|2 dx, (67)

where we recall that R = R(λ, μ, r0, E0, D0). By (58), we find that∫
B−

R \C1

|∇̂w1|2 dx ≥ cp2,

so that, going back to (67), we have
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η ≥ cp2

ea−b
= cp2

ea(tdH/s)−b
. (68)

From this inequality it is straightforward to find (66).

Case (2) can be proved in a similar way by substituting w1 with w2 in the previous calculations 

and employing the second inequality in (65).
Now, applying (61), that is taking

η = cp2
(

log
∣∣∣ log

ε

p

∣∣∣)−1/6

,

we obtain from (66) that

dH ≤ c

(
log log

∣∣∣ log
ε

p

∣∣∣)−1/b

, (69)

where we require ε < e−ep to have a positive quantity in right side of the previous inequality; 
the positive constants b, c depend on λ, μ, r0, E0, s0 and D0.

Next, to improve the modulus of continuity of this estimate we recall a geometrical result, 
first introduced and proved in [1], ensuring that there exists d0 > 0, d0 = d0(r0, E0) such that 
if dH(∂C1, ∂C2) ≤ d0, then the boundary of G is of Lipschitz class with constants ̃r0, L, only 
depending on r0 and E0. By (69), there exists ε0 > 0 only depending on λ, μ, r0, E0, s0 and D0
such that if ε ≤ ε0 then dH ≤ d0. In this way G satisfies the hypotheses of Proposition 4.7 hence 
the assertion follows. �
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Appendix A. Neumann function for the Lamé operator in the half-space

This appendix is devoted to the explicit expression of the Neumann function for the Lamé 
operator in the half-space presented in [13,14]. Before doing that we recall the fundamental 
solution � of the Lamé operator, that is the so called Kelvin–Somigliana matrix. � is the solution 
to the equation

div(C∇̂�) = δ0I, x ∈ R3 \ {0},
where δ0 is the Dirac function centered at 0 and I is the identity matrix. Setting Cμ,ν :=
1/{16πμ(1 − ν)}, where ν is the Poisson ratio ν = λ/(2(λ + μ)), the explicit expression of 
� = (�ij ) is
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�ij (x) = −Cμ,ν

{
(3 − 4ν)δij

|x| + xixj

|x|3
}
, i, j = 1,2,3, (A.1)

where δij is the Kronecker symbol.

Given y = (y1, y2, y3), we set ̃y = (y1, y2, −y3). Now, we have

Theorem 4.9 ([7]). The Neumann function N of problem (44) can be decomposed as

N(x,y) = �(x − y) + R1(x − ỹ) + y3R2(x − ỹ) + y2
3 R3(x − ỹ),

where � is the Kelvin matrix, see (A.1), and Rk , k = 1, 2, 3, have components Rk
ij given by

R1
ij (η) := Cμ,ν

{−(f̃ + cνg̃)δij − (3 − 4ν)ηiηj f̃
3

+ cν

[
δi3ηj − δj3(1 − δi3)ηi

]
f̃ g̃ + cν(1 − δi3)(1 − δj3)ηiηj f̃ g̃2}

R2
ij (η) := 2Cμ,ν

{
(3 − 4ν)

[
δi3(1 − δj3)ηj + δj3(1 − δi3)ηi

]
f̃ 3 − (1 − 2δ3j )δij η3f̃

3

+ 3(1 − 2δ3j )ηiηjη3f̃
5}

R3
ij (η) := 2Cμ,ν(1 − 2δj3)

{
δij f̃

3 − 3ηiηj f̃
5}.

for i, j = 1, 2, 3, where cν := 4(1 − ν)(1 − 2ν) and

f̃ (η) := 1

|η| , g̃(η) := 1

|η| − η3
.
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