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We analyse the computational efficiency of tissue P systems, a biologically-inspired
computing device modelling the communication between cells. In particular, we focus on
tissue P systems with fission rules (cell division and/or cell separation), where the number
of cells can increase exponentially during the computation. We prove that the complexity
class characterised by these devices in polynomial time is exactly P#P , the class of problems 
solved by polynomial-time Turing machines with oracles for counting problems.

1. Introduction

Membrane computing is a branch of natural computing which defines and investigates parallel computing devices (called 
P systems) inspired by the internal working of biological cells and the way they communicate. The original model of P sys-
tem [9] consists of a hierarchical nesting of membranes delimiting regions; each region contains a multiset of symbols 
describing the chemicals contained therein and their concentrations, and the P system evolves by means of multiset rewrit-
ing and communication rules, which move objects around the membrane structure.

Many further variants of P systems have been defined in the literature [11], and most of these variants have been proved 
to be Turing-equivalent in terms of computability. Furthermore, variants of P systems which are also interesting from a 
computational complexity perspective have been defined by allowing membranes to divide, as in the biological process of 
mitosis. This allows an exponential increase in the number of membranes during the computation; these membranes can 
then evolve independently in parallel, performing tasks such as exploring the whole solution space of an NP-complete 
problem in polynomial time. The variant called P system with active membranes [10] is even able to solve in polynomial time 
exactly the problems in the class PSPACE [15,18].

Another variant of P systems, called tissue P systems [5], consists of an ensemble of single-membrane communicating 
cells. Hence, this variant lacks the hierarchical nesting of cell-like P systems, and while an exponential number of cells may 
be created by using division [12] or separation rules [7] (these two kinds of rules differ only with respect to the behaviour 
of the contents of a cell when it performs binary fission), all the resulting cells are located at the same level, without 
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parent-children distinction. This still allows them to solve NP-complete problems in polynomial time [12,7], although the 
known upper bound PSPACE to the complexity class they characterise [17,16] does not seem to be reachable.

In this paper we improve both the lower bound and the upper bound for the class of problems solvable in polyno-

mial time by tissue P systems with cell fission (division and/or separation) rules, and provide an exact characterisation 
of their computing power. This solves the open problem proposed by Sosík and Cienciala [17] asking whether the above-
mentioned PSPACE upper bound is indeed optimal. This class of problems is proved to be exactly P#P , a class consisting of 
the problems solved in polynomial time by Turing machines with access to an oracle for a #P counting problem [8] and 
conjectured to be properly included in PSPACE. Furthermore, this result holds for deterministic tissue P systems, as well as 
for the more commonly employed confluent tissue P systems, where the evolution of the system can be locally nondeter-
ministic, but the computations are eventually all accepting or all rejecting. The upper bound is proved (Section 3, which is 
an extended version of [3]) by showing that an oracle for #P allows us to simulate in polynomial time the communication 
between exponentially many cells, without the need to explicitly store their individual configurations. The lower bound PPP , 
which coincides with P#P [8], is achieved (Section 4) by designing tissue P systems simulating an arbitrary polynomial-time 
deterministic Turing machine with a #P oracle; in particular, cell fission is exploited in order to simulate in parallel the 
nondeterministic computations of a PP machine.

2. Basic notions

We begin by recalling the definition of tissue P systems with division [12] and separation rules [7]; for a more detailed
introduction on multiset processing and tissue P systems, we refer the reader to the original paper [5].

Definition 1. A tissue P system is a structure � = (�, E, w1, . . . , wd, R), where:

• � is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• E ⊆ � is the alphabet of objects initially located in the external environment, in arbitrarily many copies (i.e., they are

never exhausted during the computation);
• d ≥ 1 is the degree of the system, i.e., the initial number of cells;
• w1, . . . , wd are finite multisets over �, describing the initial contents of the d cells; here 1, . . . , d are labels identifying

the cells of the P systems, and 0 is the label of the external environment;
• R is a finite set of rules.

The rules of R are of the following types:

(a) Communication rules, denoted in this paper by [u]h ↔ [v]k and in the literature by (h, u/v, k), where h and k are 
distinct labels (including the environment), and u and v are multisets over � (at least one of them non-empty): these 
rules are applicable if there exists a region with label h containing u as a submultiset and a region k containing v
as a submultiset; the effect of the application of the rule is to exchange u and v between the two regions. If h = 0
(resp., k = 0) then the rule is denoted by u ↔ [v]k (resp., [u]h ↔ v), and in that case we require multiset u (resp., v) 
to contain at least an object from � − E , i.e., an object with finite multiplicity, if v (resp., u) is empty.1 In this paper 
we consider two rules [u]h ↔ [v]k and [v]k ↔ [u]h to be the same, since they would exhibit the same behaviour in all 
circumstances.

(b) Division rules, of the form [a]h → [b]h [c]h , where h �= 0 is a cell label and a, b, c ∈ �: these rules can be applied to a 
cell with label h containing at least one copy of a; the effect of the application of the rule is to divide the cell into two 
cells, both with label h; the object a is replaced in the two cells by b and c, respectively, while the rest of the original 
multiset contained in h is replicated in both cells.

(c) Separation rules, of the form [a]h → [�1]h [�2]h , where h �= 0 is a cell label, a ∈ �, and {�1, �2} is a partition of �: these 
rules can be applied to a cell with label h containing at least one copy of a; the effect of the application of the rule 
is to separate the cell into two cells, both with label h; the object a is consumed, while the objects from �1 in the 
original multiset contained in h are placed inside one of the cells, and those from �2 in the other. All separation rules 
in R must share the same partition {�1, �2} of �.

A tissue P system with cell division only uses communication and division rules, while a tissue P system with cell separation only 
uses communication and separation rules. We use the name tissue P system with fission when communication rules are used 
together with both cell division and cell separation.

A configuration C of a tissue P system consists of a multiset over � − E describing the objects appearing with finite 
multiplicity in the environment, and a multiset of pairs (h, w), where h is a cell label and w a finite multiset over �, 
describing the cells. A computation step changes the current configuration according to the following set of principles:

1 Since communication rules are applied in a maximally parallel way, this restriction avoids the situation where infinitely many objects from the envi-
ronment simultaneously enter a cell.
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• Each object can be subject to at most one rule, and each cell can be subject to any number of communication rules or,
alternatively, to a single division or separation rule.

• The application of rules is maximally parallel: each region is subject to a maximal multiset of rules (i.e., no further rule

can be applied).

• When several conflicting rules can be applied at the same time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be reached after a computation step.

A halting computation 	C = (C0, . . . , Ck) of the tissue P system � is a finite sequence of configurations, where C0 is the initial 
configuration, every Ci+1 is reachable from Ci via a single computation step, and no rules are applicable in Ck .

Tissue P systems can be used as language recognisers by employing two distinguished objects yes and no: we assume 
that all computations are halting, and that one of the objects yes or no (but not both) is released into the environment, 
and only in the last computation step, in order to signal acceptance or rejection, respectively. If all computations starting 
from the same initial configuration are accepting, or all are rejecting, the tissue P system is said to be confluent. A confluent 
P system is said to accept if its computations are accepting, and to reject otherwise. Confluent tissue P systems may be 
locally nondeterministic, as long as all computations agree on the final result. As a special case, tissue P systems whose 
initial configuration generates a single computation are called deterministic.

In order to solve decision problems (i.e., decide languages), we use families of recogniser tissue P systems � = {�x : x ∈
��}. Each input x is associated with a tissue P system �x that decides the membership of x in the language L ⊆ �� by 
accepting or rejecting. The mapping x 
→ �x must be efficiently computable for inputs of any length, as discussed in detail 
in [6].

Definition 2. A family of tissue P systems � = {�x : x ∈ ��} is said to be (polynomial-time) uniform if the mapping x 
→ �x
can be computed by two polynomial-time deterministic Turing machines E and F as follows:

• F (1n) = �n , where n is the length of the input x and �n is a common tissue P system for all inputs of length n, with a
distinguished input cell.

• E(x) = wx , where wx is a multiset encoding the specific input x.
• Finally, �x is simply �n with wx added to its input cell.

On the other hand, the family � is said to be (polynomial-time) semi-uniform if there exists a single deterministic polynomial-
time Turing machine H such that H(x) = �x for each x ∈ �� .

Any explicit encoding of �x is allowed as output of the construction, as long as the number of cells and objects repre-
sented by it does not exceed the length of the whole description, and the rules are listed one by one. This is also called a 
permissible encoding [6].

The class of problems solved in polynomial time by uniform (resp., semi-uniform) families of confluent tissue P systems 
with cell division is denoted by PMCT DC (resp., PMC�

T DC ); the corresponding classes for tissue P systems with separation 
are PMCT SC and PMC�

T SC , and those for tissue P systems with both kinds of fission rules are PMCT FC and PMC�
T FC . The 

inclusions

PMCT DC ⊆ PMC�
T DC PMCT SC ⊆ PMC�

T SC PMCT FC ⊆ PMC�
T FC

hold by definition, since uniformity is a special case of semi-uniformity. Furthermore, we have

PMCT DC ∪ PMCT SC ⊆ PMCT FC PMC�
T DC ∪ PMC�

T SC ⊆ PMC�
T FC

since adding further types of rules does not decrease the computational power. The complexity classes for families of 
deterministic tissue P systems working in polynomial time are DPMCT DC , DPMCT SC , and DPMCT FC , together with their 
semi-uniform variants; these also enjoy inclusions similar to the confluent case.

Finally, we recall the definitions of the complexity classes PP, #P, PPP and P#P [8].

Definition 3. The complexity class PP consists of decision problems solvable in polynomial time by threshold Turing ma-
chines, that is, nondeterministic Turing machines where the accepting condition is that the majority of the computations is 
accepting.

Definition 4. The complexity class #P consists of all the functions f : �� → N, also called counting problems, with the 
following property: there exists a polynomial time nondeterministic Turing machine N such that, for each x ∈ �� , the 
number of accepting computations of N on input x is exactly f (x).

Definition 5. The complexity class P#P consists of all decision problems solvable in polynomial time by deterministic Turing 
machines with oracles for #P functions. These are Turing machines M f , with f ∈ #P, having a distinguished oracle tape and 
a query state such that, when M f enters the query state, the string x on the oracle tape is replaced in one step with the 
binary encoding of f (x).
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The class P#P coincides with PPP , the class of decision problems solved in polynomial time with PP oracles [19]; we 
shall take advantage of this equivalence in the rest of this paper.
3. Upper bound

We want to find an upper bound to the class of problems solved in polynomial time by semi-uniform families of conflu-
ent tissue P systems with fission rules. The most straightforward way to do so is to simulate tissue P systems by means of 
suitably limited Turing machines.

The trivial simulation, where the whole configuration of the tissue P system is stored explicitly, requires exponential 
space in the general case, due to the possible exponential increase in the number of cells generated by cell fission. A 
more sophisticated simulation, requiring only polynomial space (although exponential time), has been described for tissue 
P systems with cell separation [16] and those with cell division [17] by Sosík and Cienciala.

By definition, deciding whether a recogniser tissue P system accepts can ultimately be reduced to the question “Is the 
object yes (resp., no) ever sent out to the environment during the computation?”. This question can be reformulated as 
the (supposedly simpler) question “Does there exist a time step t such that the object yes (resp., no) is sent out to the 
environment at time t?”; assuming that we can answer that question for each individual time step t , the general question 
can then be answered by iterating across a polynomial number of time steps.

The question “Is an instance of object a sent out to the environment at time t?” can, in principle, be answered by using 
an oracle for a problem defined in terms of nondeterministic Turing machines: indeed, the nondeterminism can be viewed 
as a form of parallelism, whereby we can simulate exponentially many cells by making a nondeterministic choice between 
the two resulting cells whenever a cell fission rule is applied. However, the cells simulated in parallel are not independent, 
i.e., in order to simulate one of them it is not sufficient to store its configuration; indeed, communication rules can change
the contents of a cell according to the configuration of another cell. Thus, answering the above question requires, in general, 
simulating exponentially many cells per computation of the nondeterministic Turing machine.

This can be avoided by providing further input data. A suitable query is “Given information about the communication 
rules applied at each computation step, is an instance of object a sent out to the environment at time t?”. The extra 
information allows us to simulate the variation of the configuration of a cell due to communication rules by simple table 
lookups. It is then, of course, necessary to compute the contents of such “communication table”. First of all, when asking 
the query for time step t , the table must only contain the data related to communication rules applied up to time t . By 
reformulating once again the query, we can not only obtain information about the objects sent to the environment, but also 
the information we need in order to fill the entries of the communication table related to the next computation step. Except 
for a few technical details to be explored later, the final form of the query will thus be

Query Q (informal). Given information about the communication rules applied before computation step t, how many times is com-
munication rule r = [u]h ↔ [v]k applied at time t?

Notice how the original Boolean query has been replaced by a counting query, to which the former can be reduced. Our 
goal is to show that this query actually belongs to #P, i.e., that the answer can be computed as the number of accepting 
computations of a suitable nondeterministic Turing machine working in polynomial time.

The first technical question to tackle is how to describe succinctly the communication table to be given as input. This 
table maps pairs (r, t) to the set of cells where rule r is applied at time t; hence, we must be able to distinguish multiple 
cells sharing the same label (obtained via fission rules). Since at most 2t cells per label can exist at time t , we can attach 
to each of them an integer from the half-open range [0, 2t), with the obvious restriction that two distinct cells sharing 
the same label have distinct identifiers at each time step. Concretely, we employ an identifier schema analogous to that 
proposed by Sosík and Cienciala [17], whereby

• the identifier of the unique cell with label h is 0 in the initial configuration (time t = 0), for each label h;
• if the identifier of a given cell at time t is id, then its identifier at time t + 1 is 2 × id; if the cell is subject to a fission

rule, the two resulting cells have identifiers 2 × id and 2 × id + 1, respectively, at time t + 1.

The cell identifiers can be exploited when simulating a confluent tissue P system in order to solve nondeterministic conflicts. 
A confluent tissue P system can always be simulated deterministically by arbitrarily selecting any computation (which, by 
definition, will ultimately give the same result as any other computation). In the rest of the paper we shall make the 
following assumptions, without loss of generality:

• There is a linear priority ≺ over the set of rules: in the simulated computation, each rule is assigned as many times as
possible to the relevant cells before assigning any other rule with lower priority.

• Furthermore, there is also a linear priority over the sets of cells sharing the same label: in the simulated computation,
whenever a communication rule r = [u]h ↔ [v]k is assigned to a pair of cells having labels h and k and identifiers i
and j, respectively, there is no other pair of instances of h and k with identifiers i′ and j′ such that i′ < i or j′ < j
where rule r is applicable. In other words, each rule is assigned to cells in increasing order of identifier.
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These two assumptions uniquely identify the computation to be simulated. Furthermore, this particular computation has 
the following useful property:
Lemma 6. For each computation step t and each communication rule r = [u]h ↔ [v]k there exists a 4-tuple T (r, t) =
(Mh, �h, Mk, �k) of non-negative integers such that:

(i) All cells with label h (resp., k) having identifier in the range [0, Mh) (resp., [0, Mk)) apply rule r in a maximally parallel way at 
time t (taking into account the objects that have already been assigned to rules with higher priority), unless a fission rule with 
higher priority blocks the cell. Notice that “maximally parallel way” might mean that rule r is applied zero times, if the objects 
occurring in r are not available.

(ii) The cell with label h and identifier Mh (resp., label k and identifier Mk) applies rule r exactly �h (resp., �k) times at time t.
(iii) Cells having label h (resp., k) and identifier greater than Mh (resp., Mk) do not apply rule r at time t.

This property is illustrated by the following example.

Example 7. Suppose that the tissue P system � has the rules

r1 = [d]k → [e]k [ f ]k r2 = [b]h ↔ [a]k r3 = [b c]h ↔ [e]k

in priority order, and the following configuration2 at time t = 3:

[b c]h0 [b b b c]h4 [b c]h6

[a a]k0 [a d]k1 [b e]k4

where the cell identifiers are represented as subscripts of labels h and k.
According to the principles described above, we must first assign rule r1 in a maximally parallel way. This rule can be 

applied to cell k1; communication rules will then be inhibited in this cell at time t = 3. The next rule in priority order is r2, 
which will be applied once between h0 and k0, once between h4 and k0, and once between h4 and k4. Hence, rule r2 is 
maximally applied to h0 but only twice (rather than 3 times) to h4; it is also maximally applied to k0, k1 (where it can be 
applied 0 times, since the cell is blocked by r1) and k4. This is represented by Tr2,3 = (4, 2, 5, 0), that is, rule r2 is maximally 
applied to cells with label h and identifier less than 4, only twice to the cell h with identifier 4, maximally to cells with 
label k and identifier less than 5, and 0 times to the cell with identifier 5 (notice that this cell does not actually exist, and 
this identifier is only used as a placeholder). The next rule in priority order is r3, which is applied once between h4 and k4. 
This is represented by Tr3,3 = (5, 0, 5, 0), i.e., rule r3 is applied maximally in all cells with identifier at most 4.

This example can be generalised in order to obtain a complete proof.

Proof of Lemma 6. Let t be any computation step of the tissue P system. We proceed by induction on the set of rules r1 ≺
r2 ≺ · · · ≺ rm . Assume that rules r1, . . . , ri have already been assigned to cells and objects according to the semantics of 
tissue P systems and the priorities over the set of rules and over the cells sharing the same label. Then, by induction 
hypothesis, there exists a 4-uple T (r, t) satisfying (i)–(iii) for all communication rules r � ri . These values T (r, t) directly 
represent the assignment of communication rules, and indirectly the assignment of fission rules with priority lower than or 
equal to r at time t (a fission rule is assigned whenever the object on the right-hand side is present and no communication 
rule has been previously assigned).

Let us now consider rule ri+1. If this is a division rule [a]h → [b]h [c]h or a separation rule [a]h → [�1]h [�2]h , then it is 
assigned to all cells with label h containing at least one instance of a where no other rule among r1, . . . , ri has already been 
assigned at time t; any assignment of rule ri+1 will block further rule assignments (for rules ri+2, . . . , rm) to these cells for 
this computation step.

If instead ri+1 is a communication rule [u]h ↔ [v]k , then consider the set of cells with label h and the set of cells with 
label k, respectively. Define Nh (resp., Nk) as

Nh =
∑{|wid|u : id ∈ [0,2t) and cell h with identifier id has no fission rule assigned at time t

}

Nk =
∑{|wid|v : id ∈ [0,2t) and cell k with identifier id has no fission rule assigned at time t

}

i.e., as the sum across all identifiers id of the number of times |wid|u (resp., |wid|v ) that multiset u (resp., v) is contained
in the multiset wid , where wid is the multiset of objects in the cell with label h (resp., k) and identifier id which are still 
unassigned at time t . A maximally parallel application of rule ri+1 thus consists of exactly N = min{Nh, Nk} applications, 

2 Technically, rules r1, r2 and r3 do not suffice to obtain the configuration described here; however, we may suppose that this configuration has been 
reached by using rules with lower priority that are never enabled in the rest of the computation.
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since the multiset u might have a different number of occurrences among the unassigned objects in cells with label h
than v does in cells with label k in the current configuration of the P system. Since rules are always assigned to cells with 
smaller identifiers first, there exists a maximum identifier Mh ≤ 2t (resp., Mk) of cells with label h (resp., k) where rule ri+1

is assigned to all previously unassigned instances of u (resp., v) in all cells with identifier strictly smaller than Mh (resp., Mk).

Notice that the cells with identifier less than Mh (resp., Mk) do not necessarily apply ri+1 a total of N times: indeed, 
the rule might be applicable a few extra times in another unique cell, without however exhausting the occurrences of u
(resp., v) inside that cell. In that case, that unique cell h (resp., k) with larger identifier id applies ri+1 the remaining 
number of times �h > 0 (resp., �k > 0). We can always choose Mh (resp., Mk) to be precisely the identifier of that unique 
cell. If, instead, the cells with identifier less than Mh (resp., Mk) do apply ri+1 exactly a total of N times, then we set �h = 0
(resp., �k = 0) and the actual value of Mh (resp., Mk) does not necessarily correspond to an actually existing identifier; for 
instance, the value of Mh (resp., Mk) can be chosen to be 2t (which does not correspond to any cell actually existing at 
time t) when all instances of h (resp., k) apply ri+1 as many times as possible.3

By letting T (ri+1, t) = (Mh, �h, Mk, �k), the statement of the lemma follows. �
The advantage of storing the values T (r, t) = (Mh, �h, Mk, �k) across all rules r and time steps t instead of storing the 

whole configuration of the tissue P system is that this communication table only has a polynomial number of entries, and 
each entry is an integer of polynomial size. Indeed, the identifiers Mh, Mk and the number of objects �h, �k are exponen-
tially bounded (thus, representable in polynomial space) with respect to the size of the initial configuration of the tissue 
P system. Even if it is exponentially smaller than the configuration of the tissue P system, the communication table allows 
us to decide whether the simulated computation is accepting or rejecting simply by checking whether a communication 
rule sending yes or no into the environment is applied.

Having defined the communication table T , we are now finally able to rewrite query Q in a formal way.

Query Q . Given a tissue P system � with fission rules, a time step t in unary notation, a communication rule r = [u]h ↔ [v]k, and a 
communication table T for �, with entries T (ρ, τ ) filled for all τ < t and for τ = t if ρ ≺ r, how many times is rule r applied at time t
by cells with label h, assuming the availability of arbitrarily many copies of v in cells with label k?

The reason why the two cells h and k are treated asymmetrically in the query is that this simplifies the analysis of its 
complexity. The actual number of times that rule r is applicable can be obtained by asking the query a second time with 
the reversed rule [v]k ↔ [u]h (which only considers the availability of copies of v in cells with label k) and taking the 
minimum of the two answers, as with Nh and Nk in the proof of Lemma 6.

An oracle for query Q allows us to simulate tissue P systems with cell fission rules with a polynomial slowdown.

Lemma 8. PMC�
T FC ⊆ PQ , hence PMC�

T DC ∪ PMC�
T SC ⊆ PQ .

Proof. Consider a language L ∈ PMC�
T FC and let � = {�x : x ∈ ��} be a semi-uniform family of tissue P systems with 

fission rules deciding L in polynomial time. Algorithm 1 describes how each �x can be constructed and simulated, given 
the input string x, by a deterministic Turing machine with an oracle for Q .

In line 1 we obtain the description of �x by simulating the machine providing the semi-uniformity condition for � on 
input x. This, by definition, can be carried out in polynomial time with respect to the length of x.

The loop of lines 2–14 is executed for each simulated time step t , hence, by hypothesis, a polynomial number of times. 
Inside this loop, the algorithm iterates across all communication rules r = [u]h ↔ [v]k of � in priority order (lines 3–9) 
while filling the corresponding entry T (r, t) of the communication table.

We begin (line 4) by assuming that all existing copies of h, i.e., the full range of identifiers [0, 2t), are allowed to apply 
rule r, as if there were enough copies of multiset v among the copies of k; we make the same assumption for the cells with 
label k. We then ask the oracle for Q how many times rule r is applied to cells with label h (line 6) and k (line 7) under 
those assumptions; call Nh and Nk the two numbers of applications thus obtained. If Nh �= Nk , then the number of copies 
of u in cells with label h differs from the number of copies of v in cells with label k. For the simulation to be consistent 
with the semantics of tissue P systems, we need to update one of the ranges of identifiers [0, Mh) or [0, Mk) and one of 
the values �h , �k in order to ensure that the updated values of Nh and Nk are identical; when this happens, it means that 
rule r is correctly assigned to cells with label h the same number of times as to cells with label k.

Suppose, for the sake of example, that Nh < Nk (the argument is symmetric if Nh > Nk). Then, we reduce the range 
of cells with label k involved in the application of rule r by repeatedly adjusting the corresponding value Mk and re-
evaluating Nk with further queries. By performing a binary search (line 8), we can find in polynomial time (O (log 2t) = O (t)
iterations) the largest range [0, Mk) of identifiers among those maximising the value of Nk , with the constraint Nk ≤ Nh . 
Indeed, there might exist several ranges [0, Mk) maximising the value of Nk under the constraint Nk ≤ Nh; this can happen 

3 Notice that, since either N = Nh or N = Nk hold, we always have either �h = 0 or �k = 0, respectively. Another consequence is that rule ri+1 is 
applied in a maximally parallel way in all cells with label h (resp., k), and thus we can always assume Mh = 2t (resp., Mk = 2t ), although this is not strictly 
necessary for proving Lemma 6.
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1 construct �x = (�, E, w1, . . . , wd, R) from x
2 for each time step t do
3 for each rule r = [u]h ↔ [v]k ∈ R in priority order do

4 T (r, t) := (2t ,0,2t ,0)

5 repeat
6 Nh := number of applications of [u]h ↔ [v]k in h at time t according to T
7 Nk := number of applications of [u]h ↔ [v]k in k at time t according to T
8 update T (r, t) by binary search
9 until Nh = Nk

10 for each rule r = [u]h ↔ v do
11 N0 := number of applications of r in h at time t according to T
12 remove N0 instances of v and add N0 instances of u to the environment
13 if yes or no appear in the environment then
14 accept or reject accordingly

Algorithm 1: Simulation of semi-uniform families of tissue P systems with cell fission rules.

when not all identifiers in the range [0, 2t) correspond to actual cells with label k, and when there exist cells with that 
label where rule r cannot be applied, either because they do not contain v , or they are blocked by a fission rule. When 
these kinds of cells are close to the right endpoint of the interval [0, Mk), there exist several values of Mk corresponding to 
the same Nk . If the maximisation of Nk by means of binary search does not lead to Nk = Nh , then the difference Nh − Nk is 
finally recorded as �k > 0; this is the number of times r must be applied by the cell having label k and identifier Mk . This 
querying procedure is performed even if h = 0 or k = 0, i.e., one of them is the label of the environment.

The loop of lines 10–12 updates the configuration of the environment, which is the only region whose configuration 
we explicitly store, by asking the oracle the final number of applications of rules involving the environment, and adjusting 
the environment multiset accordingly. Notice that the rules not involving the environment are not directly simulated by 
Algorithm 1, but only indirectly via the querying procedure, since the configurations of the cells are not stored. In particular, 
the type of fission rules (division and/or separation) employed by � is irrelevant.

Finally, in lines 13 and 14 the computation is halted when one of the result-objects yes or no finally appears in the 
environment.

Since the number of queries needed, as well as the number of bookkeeping operations, is polynomially bounded, the 
simulation can be performed in PQ . �

In order to give a more precise upper bound for the complexity of simulating tissue P systems, we can now analyse 
query Q in detail, proving that it can be answered in polynomial time by a counting machine.

Lemma 9. Query Q is in #P.

Proof. Given a query Q with parameters �, t , r, and T , Algorithm 2 describes a nondeterministic procedure for the parallel 
simulation of all cells of � having label h, where each computation (i.e., a parallel process) actually simulates a single 
cell. Without loss of generality, the simulation gives higher priority to communication rules, followed by division rules and 
finally by separation rules (the order within each group of rules is immaterial).

This algorithm manages the identifiers of the cells as described above: the identifier of the unique copy of cell h in the 
initial configuration is 0 (line 1); if the identifier of a copy of h at time τ is id, then in the next time step (line 23) the 
identifier is 2 × id (line 3); if, furthermore, the cell divides or separates, then the new copy, simulated by the computation 
where i = 1, has identifier 2 × id + 1 (lines 15 and 20).

The algorithm simulates one by one all steps up to t (line 2). In line 4 it initialises an empty multiset newmultiset to 
collect the objects entering the cell via communication rules, or rewritten via division rules; since the rules applied at each 
step are simulated sequentially by Algorithm 2, we employ this auxiliary multiset (in addition to the actual contents of the 
cell, named multiset in the pseudocode) in order to avoid applying more than one rule to each object.

The loop of lines 5–12 iterates across all communication rules ρ involving h (on either side of the rule). In line 6 we 
read the values corresponding to the ranges of identifiers for cell labels h and k where rule ρ is applied in the current 
time step. If the identifier of the cell being simulated belongs to the range [0, Mh), then we apply rule ρ as many times as 
possible (lines 7–9). On the other hand, if the identifier is exactly Mh , we only apply the rule �h times (lines 10–12). The 
rule is not applied if the identifier is strictly greater than Mh .

If a division rule is applicable in the cell (this, in particular, requires that no communication rule was applied previously), 
then we apply the first one in priority order (line 13). This consists in nondeterministically choosing which of the two 
resulting cells the current computation will continue to simulate (line 14) and updating the identifier and contents of the 
selected cell (lines 15–17). Notice that this establishes a bijection between computations of the algorithm and instances of 
cell h.
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1 id := 0
2 for each time step τ ∈ {1, . . . , t} do
3 newid := 2 × id

4 newmultiset := ∅

5 for each communication rule ρ = [u]h ↔ [v]k involving label h, in priority order, do
6 (Mh,�h, Mk,�k) := T (ρ, τ )

7 if id < Mh then
8 remove as many copies of u as possible from multiset
9 add the same number of copies of v to newmultiset

10 else if id = Mh then
11 remove �h copies of u from multiset
12 add the same number of copies of v to newmultiset
13 if a division rule [a]h → [b0]h [b1]h is applicable then
14 nondeterministically guess a bit i
15 newid := newid + i
16 remove a from multiset
17 add bi to newmultiset
18 else if a separation rule [a]h → [�0]h [�1]h is applicable then
19 nondeterministically guess a bit i
20 newid := newid + i
21 remove a from multiset
22 remove all objects in �1−i from multiset
23 id := newid
24 multiset := multiset ∪ newmultiset
25 accept as many times as the number of applications of r in step t

Algorithm 2: Nondeterministic simulation of the cells having label h, with computation of the number of applications of 
communication rule r at time t .

Finally, if a separation rule is applicable (this requires that no communication or division rule was applied), then we 
apply the first one in priority order (line 18). The procedure is analogous to the simulation of division rules, except that the 
contents of the cell being simulated must be updated according to the semantics of cell separation rules (lines 20–22).

We can then update the values of id and add to multiset the objects that entered or were rewritten inside the current 
copy of cell h during the computation step just simulated, if any (lines 23 and 24).

After having simulated t steps, we can check the number of times m that input rule r was applied to the cell during 
the last step. The algorithm can now “fork” m accepting computations by making at most �log m� nondeterministic choices 
(line 25). This value contributes to the total number of accepting computations of the algorithm, which will then correspond 
to the number of applications of rule r at time t , as required. �

By combining Lemmata 8 and 9, we finally obtain an upper bound to the computational power of semi-uniform families 
of tissue P systems with fission rules working in polynomial time.

Theorem 10. PMC�
T FC ⊆ P#P , hence PMC�

T DC ∪ PMC�
T SC ⊆ P#P . �

4. Lower bound

In order to prove that P#P is actually a characterisation of the power of tissue P systems with fission rules, we exploit
the equivalence of that class with PPP [19]. Furthermore, we define a normal form for threshold Turing machines that 
guarantees some useful properties of their set of computations.

Lemma 11. If L ∈ PP, then L is accepted by a polynomial-time threshold Turing machine M such that

(i) M has an odd number of computations;
(ii) at least one computation of M is accepting;

(iii) at least one computation of M is rejecting;
(iv) all computations of M have the same length.

Proof. Let L ∈ PP and let N be a polynomial-time threshold Turing machine such that L(N) = L and having c(x) computa-
tions on input x ∈ �� , where a(x) of them are accepting. Define M to behave as follows: on input x, nondeterministically 
choose an integer i ∈ {1, . . . , 5} (this can be performed by using binary nondeterministic choices) then proceed according 
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to the value of i. If i ∈ {1, 2}, then simulate N on input x; if i ∈ {3, 4}, then reject immediately; finally, accept immediately 
if i = 5. The Turing machine M then has c′(x) = 2 × c(x) + 3 computations (twice the computations of N , corresponding 
to i ∈ {1, 2}, and three “dummy” ones), with a′(x) = 2 × a(x) + 1 accepting ones (twice those of N and a “dummy” one, 

corresponding to i = 5). The Turing machine M accepts x if and only if more than half of its computations are accepting, 
that is

a(x) >
c(x)

2
⇐⇒ 2 × a(x) > c(x) ⇐⇒ 2 × a(x) + 1 > c(x) + 1 ⇐⇒ 2 × a(x) + 1 >

2 × c(x) + 2

2
Since natural numbers are spaced by 1, we can add 1/2 to the right-hand side of the last inequality and obtain a logically 
equivalent one:

2 × a(x) + 1 >
2 × c(x) + 3

2
⇐⇒ a′(x) >

c′(x)

2
Therefore, M accepts the same language as N but (i) has an odd number of computations on each input x, with (ii) at least 
an accepting one and (iii) a rejecting one. All computations of M can then be easily padded to the same length with no 
asymptotic loss of efficiency [8, Proposition 7.1], ensuring (iv). �
4.1. Simulating Turing machines with PP oracles

Let M be a single-tape deterministic polynomial-time Turing machine deciding the language L(M) by exploiting a PP or-
acle for the language L(N) decided by the polynomial-time threshold Turing machine N; we assume that N satisfies the 
properties of Lemma 11. We also establish the following oracle query conventions: the oracle string is written by M be-
tween two delimiters on its tape; machine M then enters its query state q?, and in the next computation step it finds itself 
in state qyes (resp., qno) if the answer to the query is positive (resp., negative); furthermore, after each oracle query the tape 
head of M is relocated to its initial position. These conventions are easily proved to be equivalent to the standard definition, 
that uses a distinct oracle tape.

We describe a uniform family � = {�x : x ∈ ��} of tissue P systems with cell division simulating M in polynomial time. 
The algorithm is inspired by the simulation of Turing machines with PP oracles by means of P systems with elementary 
active membranes described in [2].

In the initial configuration, all P systems �x ∈ � have two cells labelled by C and R , and the environment contains 
infinitely many instances of each object mentioned later (except, of course, for the objects yes and no). Suppose both M
and N work within polynomial space m = p(n) on inputs of length n, including the length of the query strings; such a 
polynomial p can always be found as an upper bound on the space complexity of both M and N . At the beginning of the 
simulation of each step of machine M , cell C contains a multiset encoding the current configuration of M . Suppose M is 
in state q, its tape head is located on the i-th cell (counting from 1) and the tape contains the string x1x2 · · · xm; then, 
cell C contains the multiset qi, x1,1, x2,2, · · · , xm,m , i.e., there is an object representing the current state and tape position 
(the state-object), and one object (a symbol-object) for each tape cell, consisting of the tape symbol in the j-th cell, further 
indexed by its position j.

Suppose the next computation step of M is described by its transition function δ(q, a) = (r, b, d), where a is the symbol 
under the tape head and d ∈ {−1, 0, +1} denotes the movement of the head. This computation step is simulated by the 
following communication rules:

[qi ai]C ↔ (qi,ai) for 1 ≤ i ≤ m (1)

[(qi,ai)]C ↔ (ri,b,d) for 1 ≤ i ≤ m (2)

[(ri,b,d)]C ↔ ri+d bi for 1 ≤ i ≤ m (3)

Rule (1) “packs” the state-object qi and the symbol-object ai into a single object (qi, ai) by exchanging the objects with 
the environment. The object (qi, ai) is then exchanged with the right-hand side of the transition (ri, b, d) by rule (2), and 
the latter object is finally “unpacked” into the two objects ri+d,bi by rule (3). The latter operation updates the position of 
the simulated tape head and the contents of the overwritten tape cell; after its execution, the cell contains the multiset 
encoding the next configuration of M .

Let qacc and qrej denote the accepting and rejecting state of M , respectively. When M reaches one of these states, the 
corresponding state-object is swapped with an instance of yes or no, respectively, which is initially located inside cell R:

[qacc,i]C ↔ [yes]R [qrej,i]C ↔ [no]R for 1 ≤ i ≤ m (4)

The object yes or no is then immediately sent out to the environment, thus establishing the result of the computation of �x:

[yes]C ↔ ε [no]C ↔ ε (5)

Here ε denotes the empty multiset.
Rules (1)–(5) simulate the behaviour of M as a deterministic Turing machine without oracles. We now need to simulate 

the oracle querying procedure, as well as the oracle itself. Let q? be the query state of M , and let qyes and qno be the 
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states corresponding to a positive and negative oracle answer, respectively. Suppose M enters the query state with the 
transition δ(q, a) = (q?, b, d). After having applied rule (1), instead of using rule (2), we apply cell division as follows:

[(q ,a )] → [(q ,b,d)] [(p ,b,d)] for 1 ≤ i ≤ m (6)
i i C ?,i C i C

Here p denotes the initial state of the threshold Turing machine N deciding the oracle language. Now rule (3) is applied to 
both resulting cells, and then the simulation of M in the leftmost cell is paused (i.e., there are no applicable rules), and the 
simulation of N begins in the rightmost cell.

The simulated Turing machine N can identify its input string by searching for the query string delimiters, and use the rest 
of the tape as a work tape. The simulation of a computation step of N is identical to the simulation of M described above, 
using rules (1)–(3), as long as N behaves deterministically. When N performs a nondeterministic choice, such as δ(q, a) =
{(r, b, d), (s, c, e)}, the current cell C is divided, and the two resulting cells continue to evolve in parallel, each simulating 
one of the two computations arising from the nondeterministic choice:

[(qi,ai)]C → [(ri,b,d)]C [(si, c, e)]C for 1 ≤ i ≤ m (7)

Eventually, all cells involved in the simulation of N reach a final state; this happens in all cells simultaneously, since 
all simulated steps proceed in parallel, each requiring exactly three steps of the tissue P system, and we can assume 
by Lemma 11 that all simulated computations have the same length. The final state-object of N , either qyes,i or qno,i , is 
swapped with a “primed” version (q′

yes,i or q′
no,i) and an auxiliary object †3, to be used later for cleaning up:

[qyes,i]C ↔ q′
yes,i †3 [qno,i]C ↔ q′

no,i †3 for 1 ≤ i ≤ m (8)

All result-objects q′
yes,i and q′

no,i from all instances of cell C are then simultaneously sent to cell R:

[q′
yes,i]C ↔ [ε]R [q′

no,i]C ↔ [ε]R for 1 ≤ i ≤ m (9)

Inside cell R we combine the result-objects according to the majority rule. This is performed by first pairing the objects q′
yes,i

and q′
no, j and eliminating each pair by replacing it with pairs of α objects:

[q′
yes,i q′

no, j]R ↔ α α for 1 ≤ i ≤ m,1 ≤ j ≤ m (10)

After having maximally applied rule (10), either only objects of the form q′
yes,i for some i remain inside R , or only objects

of the form q′
no, j for some j. By Lemma 11, the total number of result-objects is odd, hence at least one such result-object

remains. Furthermore, since N has at least one accepting and one rejecting computation, rule (10) is applied at least once, 
leading to the presence of at least one α object. Hence, exactly one between the following two rules is applicable (one or 
more times) in the next computation step:

[q′
yes,i α]R ↔ qyes,1 β [q′

no,i α]R ↔ qno,1 β for 1 ≤ i ≤ m (11)

The objects β are used to preserve the size of the multiset contained inside R , in order to allow restoring the initial 
configuration of this cell at the end of the simulation of the oracle query.

The object qyes,1 (resp., qno,1) that now appears inside R represents the state and position of the tape head of M after 
having asked the query. Indeed, either q′

yes,i or q′
no, j are in the majority (since the number of computations is odd), and all

those in the minority have been replaced by α by rules of type (10). Exactly one of the objects qyes,1 (resp., qno,1) is then 
sent to the original cell C , replacing the q?,i object:

[q?,i]C ↔ [qyes,1]R [q?,i]C ↔ [qno,1]R for 1 ≤ i ≤ m (12)

In the mean time, the objects †3 count down inside all cells C simulating N:

[†3]C ↔ †2 [†2]C ↔ †1 [†1]C ↔ † (13)

and are finally sent to R while rule (12) is applied:

[†]C ↔ [ε]R (14)

When the objects † reach cell R , they trigger the deletion of all remaining objects qyes,i, qno,i, q′
yes,i, q

′
no,i, α, β , and q?,i :

[qyes,i †]R ↔ ε

[qno,i †]R ↔ ε

[q′
yes,i †]R ↔ ε

[q′
no,i †]R ↔ ε

[α †]R ↔ ε

[β †]R ↔ ε
[q?,i †]R ↔ ε for 1 ≤ i ≤ m (15)

By construction, the number of † equals the number of qyes,i, qno,i, q′
yes,i, q

′
no,i, α, β, q?,i . Therefore, cell R now only contains

the objects yes and no, and is thus again available for the simulation of another oracle query. The simulation of M can thus 
resume.

The algorithm described above can thus perform the simulation of M and its oracle (implemented by machine N). By 
analysing the rules of each �x ∈ �, we can observe that the P systems are not only confluent, but actually deterministic. 
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First of all, it is easy to check by enumeration that there does not exist a pair of distinct rules [u1]h ↔ [v1]k1 , [u2]h ↔ [v2]k2

having the same label and multisets u1 ⊆ u2 on one side; similarly, there does not exist a pair [u]h ↔ [v]k , [a]h → [b]h [c]h
with a ∈ u or a pair [a]h → [b1]h [c1]h , [a]h → [b2]h [c2]h where the nondeterminism is explicit.
The second possible source of nondeterminism is given by two distinct communication rules [u1]h ↔ [v1]k1 , [u2]h ↔
[v2]k2 with u1 ∩ u2 �= ∅ to which objects contained in a cell with label h can be assigned in several possible ways; this does 
never happen in the P systems described above. Indeed, the rules of type (1) have non-disjoint left-hand sides; however, at 
most one pair qi, ai exists at each time step, since the simulated Turing machine has only one state, one tape position, and 
one symbol in each tape cell i. Several pairs of rules of type (10), (11) and (15) have intersecting left-hand sides; however, 
the rules of type (11) are enabled only after applying those of type (10), and the rules of type (15) are only enabled at a 
later time step; hence, during the simulation no multiset enabling nondeterminism ever appears in a cell with label R . The 
rules involving intersecting multisets of objects in the environment, those of types (8), (10) and (11), are never in conflict, 
since the environment contains infinitely many instances of those objects. Furthermore, there is never a conflict in cells 
with label C between a division rule of type (6) or (7) and any other rule, since each cell C contains at most one instance 
of an object of the form (qi, ai) at any given time, and when that object appears, there is exactly one applicable rule, i.e., 
the division rule involving it.

The third, and last, possible source of nondeterminism is given by multiple cells with label C (the only dividing cell) 
simultaneously communicating with another region. As mentioned above, communicating with the environment never poses 
a problem, given the infinite amount of objects it contains. The only potentially nondeterministic rules are thus those of 
type (12). However, recall that the tissue P system always contains at most one copy of object q?,i , the one contained in the 
cell with label C which started the querying simulation process, and which is waiting for its result.

Since the tissue P systems of the family � do not possess any of these three sources of nondeterministic behaviour, each 
one of them is globally deterministic. This allows us to prove the following result:

Theorem 12. PPP ⊆ DPMCT DC .

Proof. Let L ∈ PPP , and let M be a polynomial-time deterministic Turing machine with an oracle for a PP problem deciding 
it. Let us consider the tissue P system �x with cell division described above, simulating M on input x for each x ∈ �� . 
It is easy to check that the resulting family � = {�x : x ∈ ��} is uniform, since there is a constant number of rule 
schemata (1)–(15), and each schema only depends on a constant number of variables ranging over the (polynomial-sized) 
set of tape cell positions of M and the machine N deciding the oracle language, namely 1, . . . , m = p(n). Furthermore, the 
input multiset, to be placed inside the initial cell C , simply consists of the symbols of the input string x = x1 · · · xn with 
a further index denoting their position. The remaining objects of the initial configuration of �x are blank symbols for the 
tape cells n + 1, . . . , m, and the result-objects yes and no, initially located in cell R; furthermore, the environment con-
tains all objects with infinite multiplicity, except of course for the yes and no objects, which do not initially appear in the 
environment.

The simulation of each computation step of M requires a constant number of steps (three) of �x , with the exception of 
oracle query steps, which require the simulation (with a similar algorithm) of the threshold Turing machine N on a query 
string. Since N works in polynomial time, the family � simulates M with a polynomial slowdown, and L ∈ DPMCT DC
follows. �
4.2. Lower bound for separation

The PPP lower bound we proved above also holds for tissue P systems with cell separation. We can prove this result by 
showing how cell division can, under suitable hypotheses, be simulated by means of cell separation. This requires replicating 
the cell contents before actually applying the separation rules. The main assumptions we make are that the simulated 
P systems are deterministic and that the number of objects appearing when cell division occurs is always known in advance.

Lemma 13. In the absence of further conflicting rules, a cell division rule r = [a]h → [b]h [c]h can be simulated in constant time by 
cell separation and communication rules if r is always applied to cells containing exactly m objects, for some m ∈ N, including exactly 
one instance of object a.

Proof. Let � be the original alphabet of the P system. The object a appearing on the left-hand side of r is exchanged with a 
“tilded” version ã, together with a timer object σ2 (which will ultimately trigger the separation rule) and m instances of η, 
one per original object in h:

[a]h ↔ ã σ2 η, · · · , η︸ ︷︷
m times

(16)

The replication of the contents of h is triggered by the objects η, which exchange each object d ∈ � with four “copies” of it:

[d η]h ↔ d1 d2 d′ d′ for d ∈ � (17)
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A similar exchange is made with ã, but bringing in two “copies” each of the objects b and c appearing on the right-hand 
side of r rather than replicating a itself:

′ ′
[ã η]h ↔ b1 c2 b c (18)

The simulation will now use a new, auxiliary cell k. All “primed” objects are immediately sent to this cell by the following 
rules:

[d′]h ↔ [ε]k for d ∈ � (19)

In the mean time, the timer object σ2 is decremented:

[σ2]h ↔ σ1 [σ1]h ↔ σ (20)

Upon reaching σ , the following separation rule is triggered:

[σ ]h → [�1]h [�2]h (21)

where �1 contains all objects in � with the extra subscript 1, and �2 the same with the extra subscript 2; the remaining 
objects can be distributed arbitrarily between �1 and �2, since they never appear inside h when the cell divides, except 
for σ , which is consumed by rule (21).

While rule (21) is applied, the objects in cell k are exchanged with an “unprimed” version of themselves:

[d′]k ↔ d for d ∈ � (22)

In the next computation steps, these copies of d are each exchanged with a copy of d1 or d2:

[d1]h ↔ [d]k [d2]h ↔ [d]k for d ∈ � (23)

This produces, inside the two cells resulting from the separation, the same contents that would have been produced by the 
cell division rule r. �

A single auxiliary cell k can be used even when multiple division rules are associated to cell h (as long as the tissue 
P system is deterministic) and when multiple instances of h divide simultaneously. The role of the objects d′ is to wait out-
side cell h; indeed, the objects d1, d2 cannot wait themselves inside cell h, otherwise the communication rule implementing 
the waiting would conflict with the separation rule (21).

Notice that the hypotheses of Lemma 13 hold for the simulation of Turing machines with counting oracles by means 
of tissue P systems with cell division described in Section 4. Indeed, rules (6) and rule (7) are applied deterministically to 
instances of cell C , which always contain the same number p(n) of objects when division is triggered. Simulating rule (6)
with the procedure described in Lemma 13 is straightforward, since only one instance of cell C is active (i.e., has applicable 
rules).

On the other hand, when rule (7) is applicable there are, in general, several instances of cell C operating in parallel 
(simulating different computations of the threshold Turing machine N). Since the algorithm requires all cells simulating 
computations of N to halt the simulation at the same time step, we need to slow down the simulation of steps where 
no nondeterministic choice is made by N to account for the multiple-step implementation of rule (7) by means of cell 
separation and communication. This can be straightforwardly achieved by replacing rule (2), which is applied only when 
simulating deterministic steps of N , by the following rules, applied sequentially:

[(qi,ai)]C ↔ (ri,b,d)4

[(ri,b,d)3]C ↔ (ri,b,d)2

[(ri,b,d)1]C ↔ (ri,b,d)

[(ri,b,d)4]C ↔ (ri,b,d)3

[(ri,b,d)2]C ↔ (ri,b,d)1 for 1 ≤ i ≤ m (24)

This slowdown allows us to synchronise the simulation when using cell separation rules. By noticing that the simulation 
of division by means of separation of Lemma 13 preserves the determinism of the simulation of Section 4, we obtain the 
corresponding lower bound for tissue P systems with cell separation:

Theorem 14. PPP ⊆ DPMCT SC . �
5. Conclusions

The results of Theorems 10, 12, and 14 can be summarised as the main result of this paper, namely that uniform or 
semi-uniform families of confluent or deterministic tissue P systems with fission rules all characterise P#P in polynomial 
time:
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Theorem 15. The following complexity classes coincide:

[D]PMC[�]
T FC = [D]PMC[�]

T DC = [D]PMC[�]
T SC = P#P
where [D] denotes optional determinism, and [�] optional semi-uniformity. �
This result shows that these computing models do not reach (under the usual complexity-theoretical assumptions) the 

power of polynomial-space Turing machines when working in polynomial time; rather, they can be deterministically sim-
ulated in polynomial time with an oracle for a #P problem. Thus, they are weaker (assuming P#P �= PSPACE) than other 
variants of membrane systems with a hierarchical membrane structure, such as P systems with active membranes [18]. Fur-
thermore, we have proved that the P#P upper bound is actually tight, and thus an exact characterisation of the computing 
power of these devices. This shows a remarkable similarity (except, as is currently known, for the deterministic case) to cell-
like P systems with active membranes using membrane division rules only for elementary membranes (i.e., membranes not 
containing further membranes), which characterise the same complexity class in polynomial time [1]. Actually, the charac-
terisation already holds for P systems with active membranes of depth 1, consisting of an outermost membrane containing 
only one level of children membranes. Indeed, both computing modes lack the ability to generate the complex hierarchical 
membrane structure that seems to be needed in order to solve PSPACE-complete problems, such as full binary trees of 
exponential size [15]; however, P systems with active membranes with membrane structures of constant depth d > 1, which 
are impossible in standard tissue P systems, are able to solve intermediate problems [2], namely those in the complexity 
class PCdP , where CdP is the d-th level of the counting hierarchy [20]. We can identify this as the main limiting factor, rather 
than the form of the rules (which are more sophisticated in P systems with active membranes) since a variant of P systems 
with symport/antiport rules (similar to those of tissue P systems) and membrane division, but with a hierarchical cell-like 
structure, is actually able to reach PSPACE [14].

6. Discussion

We can identify several open problems that we feel deserve further investigation. First of all, we conjecture that PSPACE
can be reached by tissue P systems with division or separation rules if the systems are allowed to be non-confluent, that 
is, if the same tissue P system can have both accepting and rejecting computations, and the final result is determined by 
the existence of at least one accepting computation, as for nondeterministic Turing machines. The reason why we believe 
this to be the case is that non-confluent P systems with active membranes of depth 1, using only elementary membrane 
division, do indeed have the ability to solve all PSPACE problems [4].

Another related question is whether confluence and determinism in other variants of P systems, in particular P systems 
with active membranes, characterise the same complexity classes. It seems plausible that, in the majority of cases, conflu-
ence can be reduced to strict determinism by sequentialising the application of conflicting rules by means of techniques 
such as timer subscripts for the objects. An alternative is to exhibit a deterministic normal form for a class of P systems, as 
it is done in this paper for tissue P systems with fission rules working in polynomial time. However, an actual proof of this 
result is still missing.

A further question involves the comparison of cell division and cell separation rules. The two kinds of rules seem to 
provide the same main ability, that is, generating exponentially many cells in polynomial time. Is there a resource bound 
that identifies distinct complexity classes for tissue P systems with cell division and cell separation?

Finally, it might be interesting to minimise the length of communication rules [u]h ↔ [v]k , that is, the value |u| + |v|. 
It is known that a maximum length of 2 across all communication rules suffices in order to solve NP-complete problems 
in polynomial time with cell division; furthermore, a length of 3 suffices for tissue P systems with cell separation (both 
values are actually necessary, assuming P �= NP) [13]. It is, however, unknown whether these values are enough to solve P#P

problems; the algorithms described in Section 4 use length 4 for tissue P systems with cell division, and even polynomial 
length with respect to the input size for cell separation.
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