Table S2. Cut off values for Sarcopenic Obesity diagnosis

Parameter	Cut-off	Method	Sample characteristics	Sample size	References
Skeletal muscle function					
HGS	$\begin{aligned} & <27 \mathrm{Kg} \text { for } \mathrm{M} \\ & <16 \mathrm{Kg} \text { for } \mathrm{F} \end{aligned}$	HGS ≤ 2.5 SD below the gender-specific peak mean	Caucasian, M and $\mathrm{F} \geq 5$ y	49964 (data from 12 studies)	[38]
	$\begin{aligned} & <35,5 \mathrm{Kg} \text { for } \mathrm{M} \\ & <20,0 \mathrm{Kg} \text { for } \mathrm{F} \end{aligned}$	CART and ROC/AUC models to identify cut points associated with adverse clinical outcomes such as mortality, falls, self-reported mobility limitation, and hip fracture	Mixed ethnicity, M and $\mathrm{F} \geq$ 65y	12984	[39, 40]
	$\begin{aligned} & <30 \mathrm{Kg} \text { for } \mathrm{M} \\ & <20 \mathrm{Kg} \text { for } \mathrm{F} \end{aligned}$	2 SD below the mean of the healthy young-adults group functional outcomes (walking speed $\leq 0.8 \mathrm{~m} / \mathrm{s}$; self-reported inability to walk for 1 km)	Caucasian, M and F, 20-102y (RG 20-29y)	$\begin{aligned} & 1030 \\ & (R G 47) \end{aligned}$	[41]
	$\begin{aligned} & <26 \mathrm{Kg} \text { for } \mathrm{M} \\ & <16 \mathrm{Kg} \text { for } \mathrm{F} \end{aligned}$	Consensus statement identifying cut-off corresponding to a mobility impairment expressed by physical performance tests such as slow walking (gait speed $\leq 0.8 \mathrm{~m} / \mathrm{s}$)	Mixed ethnicity, M and F , $\geq 65 y$		[42]
	$\begin{aligned} & <28 \mathrm{Kg} \text { for } \mathrm{M} \\ & <18 \mathrm{Kg} \text { for } \mathrm{F} \end{aligned}$	Lowest quintile of the general Asian older population	Asian, M and $\mathrm{F}, \geq 65 \mathrm{y}$	```26344 (data from } cohorts)```	[43, 44]
	Normative values based on gender, age, height, right/left side	$<5^{\text {th }}$ percentile of the general population aged between 39 and 73 years in 2006 to 2010 from across the United Kingdom	Caucasian, M and F, 39-73y	$\begin{aligned} & 224830 \text { (r) } \\ & 224852 \text { (I) } \end{aligned}$	[45]
Knee extension strength test	$\begin{aligned} & <18 \mathrm{Kg} \text { for } \mathrm{M} \\ & <16 \mathrm{Kg} \text { for } \mathrm{F} \end{aligned}$	Predictive value (sensitivity and specificity) and ROC analysis to identify cut points based on percentage of normalized gain of mobility index (MI) derived from a questionnaire about activity of daily living	Asian, M and F $\geq 60 \mathrm{y}$	950	[46]
	$\begin{aligned} & \text { Strength/W }(\mathrm{Kg} / \mathrm{Kg}) \\ & <0.40 \text { for } \mathrm{M} \\ & <0.31 \text { for } \mathrm{F} \end{aligned}$	Predictive value (sensitivity and specificity) and ROC analysis to identify cut points relative to the presence of functional limitation	Caucasian, M and F, $\geq 60 y$	947	[47]
	$\begin{aligned} & <390.9 \mathrm{~N} / \mathrm{dm} \text { for } \mathrm{M} \\ & <266.4 \mathrm{~N} / \mathrm{dm} \text { for } \mathrm{F} \end{aligned}$	2 SD below the mean for the sex-specific RG (healthy young adults)	Caucasian, M and F, 20-102y (RG 20-29y)	$\begin{gathered} 1030 \\ (R G 27) \end{gathered}$	[41]
5 times Sit-to-Stand	≥ 17 s	< 21.3 percentile of well-functioning older persons population	Mixed ethnicity, M and F, 7079y	3024	[48]

Chair test					
30 s Chair Stand Test	60-64y: 15 for $\mathrm{F}, 17$ for M ; 65-69y: 15 for $F, 16$ for M; 70-74y: 14 for F, 15 for M; 75-79y: 13 for $F, 14$ for M; 80-84y: 12 for F, 13 for M; 85-89y: 11 for F and M; 90-94y: 9 for F and M	normative values across 5 years age ranges (outcomes: moderate functional ability as defined by CPF scale questionnaire and \% of decline in physical performance)	Caucasian, M and F, $\geq 60 \mathrm{y}$	2140	[49]
Body composition					
FM\%	20-39y: >39\% for F , >26\% for M (Caucasians); >40\% for F, >28\% for M (Asians); $>38 \%$ for $\mathrm{F},>26 \%$ for M (African-Americans) 40-59 y: $>41 \%$ for $\mathrm{F},>29 \%$ for M (Caucasians); >41\% for F , >29\% for M (Asians); $>39 \%$ for $\mathrm{F},>27 \%$ for M (African-Americans); 60-79y: $>43 \%$ for $\mathrm{F},>31 \%$ for M (Caucasians); >41\% for F, >29\% for M (Asians); >41\% for F, >29\% for M (African-Americans);	Multiple regression model considering FM as outcome variable and BMI, sex, age and ethnicity as predictor variables	Asian, African-American, Caucasian, M and F, Adults	1626	[50]
	$\begin{aligned} & >38 \% \text { for } \mathrm{F} \\ & >27 \% \text { for } \mathrm{M} \end{aligned}$	Percentage of body fat greater than the sex-specific median	Hispanic and non-Hispanic white, M and F , elderly	808	[51]
	>37.2\%for F	Highest sex-specific quintile	Asian, M and F, $\geq 65 \mathrm{y}$	1731	[52]

	>29.7\% for M				
	$\begin{aligned} & >40.7 \% \text { for } \mathrm{F} \\ & >27.3 \% \text { for } \mathrm{M} \end{aligned}$	> 60th percentile of body fat of the study population	Caucasian, M and F, $\geq 60 \mathrm{y}$	992	[53]
	>42.9\% for F	2 highest quintiles of the study population	Caucasian, F, 67-78y	167	[54]
	$\begin{aligned} & \hline>40.9 \% \text { for } \mathrm{F} \\ & >30.33 \% \text { for } \mathrm{M} \end{aligned}$	2 highest quintiles of the study population	Caucasian, M and F, 65-92y	2747	[55]
	$\begin{aligned} & >20.21 \% \text { for } \mathrm{M} \\ & >31.71 \% \text { for } \mathrm{F} \end{aligned}$	2 highest quintiles of the young RG	Asian, M and $\mathrm{F}, 20-88 \mathrm{y}$ (RG 20-40)	$\begin{gathered} 591 \\ (145 \mathrm{RG}) \end{gathered}$	[56]
	$\begin{aligned} & >25.8 \% \text { for } \mathrm{M} \\ & >36.5 \% \text { for } \mathrm{F} \end{aligned}$	2 highest quintiles of the study population	Asian, M and $\mathrm{F}, \geq 40 \mathrm{y}$	309	[57]
	$\begin{aligned} & >25 \% \text { for } \mathrm{M} \\ & >32 \% \text { for } \mathrm{F} \end{aligned}$	Expert opinion of the American Society of Bariatric Surgery	/	/	[58]
	RFM (derived from the ratio of h to $W C$) $\geq 40 \%$ for F $\geq 30 \%$ for M	Multiple regression model considering FM as outcome variable and BMI, education level, smoking status, sex and ethnicity as predictor variables	Mixed ethnicity, M and F , $\geq 20 y$	31008	[59]
	Highest two quintiles: $36.2 \pm 3.8 \%$ for F $20.5 \pm 3.3 \%$ for M	Highest two quintiles of $\mathrm{FM} \%$ estimated using predictive equation including WC, hip circumference, triceps skinfold and gender [51]	Mixed ethnicity (non- Hispanic whites, non- Hispanic blacks, Mexican Americans), M and $\mathrm{F}, \geq 70 \mathrm{y}$	2917	[60]
SMM/W (BIA or DXA)	CLASS I of Sarcopenia (1-2 SD): 31.5-37\% for M 22.1-27.6\% for F; CLASS II of Sarcopenia (<2 SD): <31.5\% for M <22.1\% for F	Class I: SMM/W within -1 to -2 SD of young adult values Class II: SMM/W -2 SD of young adult values	Mixed ethnicity, M and F, 18- $39 y$	6414	[61]
	CLASS I of Sarcopenia (1-2 SD): 42.9-38.2\% for M 35.6-32.2\% for F; CLASS II of Sarcopenia (<2	Class I: SMM/W within -1 to -2 SD of young adult values Class II: SMM/W -2 SD of young adult values.	Asian, M and F, $\geq 40 \mathrm{y}$ (RG 1840y)	$\begin{gathered} 309 \\ (273 \mathrm{RG}) \end{gathered}$	[57]


	```SD): <38.2% for M <32.2% for F```				
	CLASS I of Sarcopenia (1-2 SD): 27-23\% for F CLASS II of Sarcopenia (<2 SD): <23\% for F	Class I: SMM/W within -1 to -2 SD of young adult values Class II: SMM/W -2 SD of young adult values	Caucasian, F, 20-50y (RG)	120 (RG)	[54]
ALM/W (DXA)	$\begin{aligned} & <29.9 \% \text { for } \mathrm{M} \\ & <25.1 \% \text { for } \mathrm{F} \end{aligned}$	1 SD below the sex specific mean for young adults	Asian, M and F , mean age $28.4 \pm 3.1$ and $26.3 \pm 2.6$	70 (RG)	[62]
	$\begin{aligned} & <30.1 \% \mathrm{M} \\ & <21.2 \% \mathrm{~F} \end{aligned}$	1 SD below the mean of a young population RG	Asian, M and $\mathrm{F}, \geq 40 \mathrm{y}$ (RG 2039y)	$\begin{gathered} 10118 \\ (5944 \mathrm{RG}) \end{gathered}$	[63]
	$\begin{aligned} & <30.65 \% \text { for } \mathrm{M} \\ & <23.9 \% \text { for } \mathrm{F} \end{aligned}$	1 SD below the mean of a healthy young RG	Asian, M and F, $\geq 65$ y (RG 2039y)	$\begin{gathered} 3483 \\ (4192 \mathrm{RG}) \end{gathered}$	[64]
	$\begin{aligned} & <25.7 \% \text { for } M \\ & <19.4 \% \text { for } F \end{aligned}$	2 SD below the mean of a healthy young RG	Mixed ethnicity (nonHispanic white, non-Hispanic black, Hispanic, "other"), M and $F, \geq 60 y$ (RG 18-59y)	$\begin{gathered} 4984 \\ (10877 \mathrm{RG}) \end{gathered}$	[65]
	$\begin{aligned} & <30.3 \% \text { for } \mathrm{M} \\ & <23.8 \% \text { for } \mathrm{F} \end{aligned}$	1 SD below the mean of a healthy young RG	Asian, M and $\mathrm{F}, \geq 20 \mathrm{y}$ (RG 20-39y)	$\begin{gathered} 11521 \\ (4987 \mathrm{RG}) \\ \hline \end{gathered}$	[66]
	$\begin{aligned} & <32.5 \% \text { for } \mathrm{M} \\ & <25.7 \% \text { for } \mathrm{F} \end{aligned}$	1 SD below the mean of a healthy young RG	$\begin{aligned} & \text { Asian, } M \text { and } F, \geq 60 y \\ & \text { (RG 20-39y) } \end{aligned}$	$\begin{gathered} 2943 \\ (2781 \mathrm{RG}) \end{gathered}$	[67]
	$\begin{aligned} & <29.53 \% \text { for } \mathrm{M} \\ & \text { < 23.2\% for } \mathrm{F} \end{aligned}$	2 SD below the mean of a healthy young RG	Asian, M and $\mathrm{F}, \geq 60 \mathrm{y}$ (RG 20-39y)	$\begin{gathered} 2221 \\ (2269 \mathrm{RG}) \end{gathered}$	[68]
	$\begin{aligned} & <31.3 \% \text { for } \mathrm{M} \\ & <24.76 \% \text { for } \mathrm{F} \end{aligned}$	1 SD below the mean of a healthy young RG	Asian, M and $\mathrm{F}, \geq 40 \mathrm{y}$ (RG 20-39y)	3320	[69]
	$\begin{aligned} & <32.2 \% \text { for } \mathrm{M} \\ & <25.6 \% \text { for } \mathrm{F} \end{aligned}$	Class I: within -1 to -2 SD of the healthy young adult values Class II: 2 SD below the mean of the healthy young adult values	Asian, M and $\mathrm{F}, \geq 20 \mathrm{y}$ (RG 20-39y)	$\begin{gathered} 10485 \\ (2513 \mathrm{RG}) \end{gathered}$	[70]
	$\begin{aligned} & <29.5 \% \text { for } \mathrm{M} \\ & <23.2 \% \text { for } \mathrm{F} \end{aligned}$	2 SD below the mean of a healthy young RG	Asian, M and $\mathrm{F}, \geq 50 \mathrm{y}$ (RG 20-40y)	$\begin{gathered} 3169 \\ (2392 \mathrm{RG}) \end{gathered}$	[71]
	$\begin{aligned} & <26.8 \% \text { for } \mathrm{M} \\ & <21 \% \text { for } \mathrm{F} \end{aligned}$	2 SD below the mean of the young RG	Asian, M and F, $\geq 50 \mathrm{y}$ (20-40y RG)	$\begin{gathered} 2893 \\ (2113 \mathrm{RG}) \end{gathered}$	[72]
	< 32.2 for M	2 SD below the mean of the young RG	Asian, M and F, $\geq 20 \mathrm{y}$	15132	[73]


< 25.5\% for F		(RG 20-30y)	(2200 RG)	
$\begin{aligned} & <44 \% \text { for } \mathrm{M} \\ & <52 \% \text { for } \mathrm{F} \end{aligned}$	2 SD below the mean of the young RG	Asian, M and $\mathrm{F}, \geq 60 \mathrm{y}$ (RG 20-39y)	$\begin{gathered} 1433 \\ (1746 \mathrm{RG}) \end{gathered}$	[74]
$\begin{aligned} & <28.27 \% \text { for } \mathrm{M} \\ & <23.47 \% \text { for } \mathrm{F} \end{aligned}$	2 SD below the mean of the young RG	Caucasian, M and F, 18-65y (RG 20-39y)	$\begin{gathered} 727 \\ (222 \mathrm{RG}) \\ \hline \end{gathered}$	[75]

Legend: 6MWT 6 minutes walking test, ALM appendicular lean mass, AUC area under the curve, BIA, bioelectrical impedance analyses, BMI body mass index, CART Classification and Regression Tree model, CPF Composite Physical Function, DXA, dual-energy X-ray absorptiometry, FM fat mass, HGS hand grip strength, mPPT modified physical performance test, RFM relative fat mass, RG reference group, ROC Receiver operating characteristic, SD standard deviation, SMM skeletal muscle mass, TMSE Thai mental state examination, W weight, WC waist circumference,

