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Abstract
We prove that two general ternary forms of degrees c ≤ d are simultaneously identifiable 
only in the classical cases (c, d) = (2, 2) and (c, d) = (2, 3) . We translate the problem into 
the study of a certain linear system on a projective bundle on the plane, and we apply 
techniques from projective and birational geometry to prove that the associated map is not 
birational.
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1  Introduction

Many questions in mathematics are called “Waring problem”, after the name of the eight‑
eenth century English mathematician Edward Waring. He was interested in decomposing a 
natural number as a sum of powers. Since then, Waring problems have to do with additive 
decompositions of different mathematical objects. For instance, given a degree d form, or 
equivalently, a homogeneous polynomial f, we can decompose

as a sum of powers of linear forms. In a similar way, one can decompose a tensor as a sum 
of rank one tensors. Waring decompositions raise a huge interest in many different areas, as 
well illustrated in the textbook [14, Section 1.3].

There are several different questions that we may ask. For instance, what is the small‑
est possible number of summands, called the Waring rank of f, or how to compute all the 
decompositions. When they are infinitely many, one can study the variety parametrizing 
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them. When they are finitely many, one may ask to bound their number. All these ques‑
tions are widely open in their generality. One interesting problem is to understand when 
the decomposition is unique. In this case, we say that f is k-identifiable. Identifiability is 
a desirable property with many applications, as it gives a canonical form for f. Examples 
range from Signal processing to Complexity theory, from Philogenetics to Algebraic 
statistics. A complete list of applications would be far too long, so we refer the reader to 
[14, Section 1.3].

When we work over the complex field, there is a dense open subset of the space 
of polynomials where all elements have the same rank—called the generic rank—and 
the same number of decompositions. In this paper we will use the words “generic” or 
“general” for properties that hold almost everywhere—more precisely, on a dense open 
subset. Classically, the problem was to classify all pairs (n,  d) such that the general 
f ∈ ℂ[x0,… , xn]d is identifiable. General identifiability is expected to be a rare phenom‑
enon. A few classical cases were known to be generically identifiable since the work 
of Hilbert and Sylvester. It took more than a century to get new results in this direction 
[17, 18], and the full classification has been completed in [11]. It turns out that there are 
infinitely many generically identifiable cases for binary forms, while there are only two 
sporadic cases for polynomials in three or more variables.

In this paper we focus on the version of the Waring problem concerning pairs of 
polynomials. It is a classical result that two general quadratic forms f , g ∈ ℂ[x0,… , xn]2 
can be simultaneously diagonalized. More precisely, there exist linear forms �1,… ,�n+1 
and scalars �1,… , �n+1 such that

A canonical form (1) with n + 1 summands is unique if and only if the discriminant of the 
pencil ⟨f , g⟩ does not vanish, hence the general pair of quadratic forms has only one simul‑
taneous diagonalization.

We generalize decomposition (1) to pairs of forms of any degrees. For symmetry 
reasons, it is convenient not to distinguish f from g, so we will allow coefficients in the 
decomposition of f as well.

Definition 1  Let f ∈ ℂ[x0,… , xn]c and g ∈ ℂ[x0,… , xn]d be two homogeneous polynomi‑
als. A Waring decomposition of (f, g) consists of linear forms �1,… ,�k ∈ ℂ[x0,… , xn]1 
and scalars �1,… , �k,�1,… ,�k ∈ ℂ such that

This kind of decompositions are also called simultaneous decompositions. Due to the pres‑
ence of the scalars �1,… , �k and �1,… ,�k , each linear form depends essentially only on n 

conditions, so the we can regard (2) as a polynomial system with 
(
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n

)
+
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n
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equations—given by the data f and g—and k(n + 2) unknowns—namely, the scalars 
�1,… , �k,�1,… ,�k and the linear forms �1,… ,�k . We consider two decompositions of 
(f, g) to be equal if they differ just by the order of the k summands. The Waring rank, or 
simultaneous rank of (f, g) is the minimum number k such that there exists a simultaneous 
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decomposition (2) with k summands. A pair is k-simultaneously identifiable, or simply 
k-identifiable if it admits a unique simultaneous decomposition with k summands.

This problem fascinates mathematicians since a long time ago. In [16], London proved 
that the rank of two general ternary cubics is 6, instead of the expected number 5. Later, 
Scorza described London’s result from a different perspective in [21]—see [5, Theo‑
rem  4.1] for a modern reference. In [23], Terracini computed the simultaneous rank of 
two general ternary forms of the same degree. As described in [2, Section 2.2], we can 
rephrase these results in modern language: if we call SV1,d

1×n
 the Segre-Veronese embed‑

ding of ℙ1 × ℙ
n via the complete linear system of divisors of bidegree (1, d), then London 

proved that SV1,3

1×2
 is 5-defective, while Terracini showed that SV1,d

1×2
 is not defective for 

d ≠ 3 . We had to wait until the work [3] to have a classification of all defective SV1,d

1×n
 , so 

now we know the rank of two general forms of the same degree in any number of variables. 
However, when the two degrees are different, the problem of computing the rank is not yet 
solved.

Papers like [9, 13, 15] use simultaneous diagonalization of symmetric matrices to bound 
the rank of a third-order symmetric tensor. We believe that simultaneous decompositions 
like (2) could be applied in a similar way to study the rank of higher-order symmetric 
tensors.

In this paper we focus on identifiability. The guiding problem is the classification of all 
triples (n, c, d) such that the general pair of forms of degrees c and d in n + 1 variables is 
identifiable. In [7, Section 5], Ciliberto and Russo solve the case n = 1 of binary forms. 
They work in a slightly different language and phrase their statement in terms of geometric 
properties of a rational normal scroll. Their result applies to tuples of binary forms, not just 
pairs—see also [2, Theorem 1.3]. Roughly speaking, the general pair of binary forms is 
identifiable, as long as the polynomial system (2) is square and d is not too large compared 
to c. This reminds us what happens for the Waring problem for one polynomial: while 
generic identifiability is rare, there are infinitely many cases for binary forms.

The situation changes when there are more than two variables. As widely expected, for 
n ≥ 2 generic identifiability is very uncommon. In more than a century, mathematicians 
have found only two instances in which the general pair of forms is identifiable. The case 
(1) of two general quadrics goes back at least to Weierstrass and it is generically identifi‑
able in any number of variables. Beside that, there is the case of a general plane conic and 
a cubic, studied by Roberts in [20] and revisited in [19, Theorem 10.2]. The challenge is to 
prove that those are the only cases, or to find new exceptional ones. In this paper we solve 
the problem for ternary forms.

Theorem 2  Let c and d be positive integers such that c ≤ d . The general pair of ternary 
forms of degrees c and d is identifiable if and only if (c, d) ∈ {(2, 2), (2, 3)}.

In the special case d = c + 1 , Theorem 2 has been proven in [2, Theorem 5.1]. Despite 
the algebraic statement, our approach relies on projective and birational geometry. In 
Sect.  3, we underline the tight connection between decompositions and secant varieties 
and we translate the problem into a question about the degree of a certain rational map. 
Namely, the set of decompositions of a pair (f, g) is the fiber of the secant map of the pro‑
jective bundle X = ℙ(O

ℙ2 (c)⊕O
ℙ2 (d)) . In order to disprove identifiability, we show that 

the map is not birational. As in [2, Section 5], the first step is to bound the degree of such a 
map with the degree of a certain linear projection of X. Then we degenerate the associated 
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linear system and we restrict it to a suitable subvariety to prove that such a map cannot be 
birational.

When performing this kind of degenerations, it is common to bump into some artith‑
metic obstructions. We overcome this obstacle by distinguishing two cases and give two 
different arguments, in Sects. 4 and 5 respectively. For this reason the proof of Theorem 2 
is split in two parts, namely Propositions 20 and 25.

2 � Geometric setup

Secant varieties are a classical construction that dates back to the Italian school of alge‑
braic geometry at the end of nineteenth century. In this section we recall the definition of 
the secants of a variety V embedded in some projective space ℙN . We will use such a topic 
in the case in which V is the variety parametrizing pairs of polynomials of simultaneous 
rank 1.

We work over the complex field ℂ . Let �(k − 1,N) be the Grassmannian of (k − 1)-lin‑
ear spaces in ℙN . Let V ⊂ ℙ

N be a nondegenerate irreducible variety of dimension n and let

Observe that Γk(V) is birational to V ×⋯ × V  , therefore it is irreducible of dimension kn. 
Let �2 ∶ Γk(V) → �(k − 1,N) be the projection onto the last factor and set

Thanks to the Trisecant lemma—see for instance [6, Proposition2.6]—the general 
L ∈ Sk(V) meets V in exactly k points, so the general fiber of �2 has dimension zero. Hence

We are ready to define the secant varieties of V.

Definition 3  Let V ⊂ ℙ
N be a nondegenerate irreducible variety. The abstract k-secant 

variety of V is

Let p1 ∶ Seck(V) → ℙ
N and p2 ∶ Seck(V) → Sk(V) be the two projections. The general 

fiber of p2 is a linear space of dimension k − 1 , therefore

The k-secant variety of V is

By construction, dim�eck(V) ≤ min{dim Seck(V),N} = min{kn + k − 1,N} . The variety 
V is called k-defective if

Γk(V) = {(x1,… , xk, L) ∈ V ×⋯ × V × �(k − 1,N) ∣ L = ⟨x1,… , xk⟩}.

Sk(V) = �2(Γk(V)) = {L ∈ �(k − 1,N) ∣ L is spanned by k points of V}.

dim Sk(V) = dim(Γk(V)) = kn.

Seck(V) = {(x,L) ∈ ℙN × 𝔾(k − 1,N) ∣ x ∈ L and L ∈ Sk(V)}.

dim Seck(V) = dim Sk(V) + k − 1 = kn + k − 1.

𝕊eck(V) = p1(Seck(V)) =
�

x1,…,xk∈V

⟨x1,… , xk⟩ ⊂ ℙ
N .

dim�eck(V) < min{kn + k − 1,N}.



Generic identifiability of pairs of ternary forms﻿	

1 3

A classical result about secant varieties is Terracini’s lemma, proven in [22]—see [8, 
Section 2] for a modern reference.

Lemma 4  (Terracini) Let V ⊂ ℙ
N be a nondegenerate irreducible variety. If x1,… , xr ∈ V  

are in general position and z ∈ ⟨x1,… , xr⟩ is a general point, then the embedded tangent 
space to �ecr(V) at z is

Terracini’s lemma allows us to link the study of secant varieties of V to the study of lin‑
ear systems of divisors of V with imposed singularities. Indeed, let L be the linear system 
on V of hyperplane sections. Then

Let us recall some definitions we will use when dealing with linear systems.

Definition 5  Let p be a point on a variety V defined by the ideal Ip and let m ∈ ℕ . The 
point of multiplicity m supported at p is the 0-dimensional subscheme of V defined by Im

p
 . A 

point of multiplicity 2 is also called a double point.

Since we are going to work with systems of plane curves, we introduce the notation we 
use. We denote by

the vector space of degree d ternary forms vanishing at r fixed general points with multi‑
plicity at least 2 and vanishing at t further points in general position. Its projectivization

is the linear system of degree d plane curves singular at r fixed general points and contain‑
ing t base points in general position. More generally, given a linear system L = ℙ(L) on a 
variety V, we denote by L(2r, 1t) the linear subsystem of L consisting of divisors singular 
at r fixed general points and vanishing at t further points in general position. When L is the 
linear system embedding V ⊂ ℙ

N , that is, the linear system of hyperplane sections of V, 
Lemma 4 tells us that

It is natural to ask for the dimension of the vector space Ld
2
(2r, 1t) . When the base points 

have arbitrary multiplicity, that can be very hard to compute. However, when the multi‑
plicities are at most 2, the answer is provided by the celebrated Alexander–Hirschowitz’ 
theorem. Such result is a landmark in the fields and holds in a projective space of any 
dimension, but here we only recall the weaker version on the plane, that is known at least 
since [4].

�z �ecr(V) = ⟨�x1V ,… , �xrV⟩.

codim𝕊ecr(V) = codim 𝕋z 𝕊ecr(V)

= dim{H ⊂ ℙ
N ∣ H is a hyperplane and H ⊃ 𝕋z 𝕊ecr(V)}

= dim{H ∩ V ∣ H is a hyperplane and H ⊃ 𝕋z 𝕊ecr(V)}

= dim{H ∩ V ∣ H is a hyperplane and H ⊃ 𝕋xi
V for every i ∈ {1,… , r}}

= dim{D ∈ L ∣ D is singular at xi for every i ∈ {1,… , r}}.

Ld
2
(2r, 1t)

L
d
2
(2r, 1t) = ℙ(Ld

2
(2r, 1t))

(3)codim�ecr(V) = dimL(2r).
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Theorem  6  The dimension of Ld
2
(2r) is max

{
0,

(
d + 2

2

)
− 3r

}
 , unless 

(d, r) ∈ {(2, 2), (4, 5)} . In these exceptional cases we have dimL2
2
(22) = dim L4

2
(25) = 1.

Since simple points in general position always impose independent conditions, Theo‑
rem 6 gives us a formula to compute dimLd

2
(2r, 1t) . When handling such systems, we will 

need some control on their singularities. The following is a slight generalization of a result 
proven in [1].

Lemma 7  Let d, r and t be natural numbers such that (d, r, t) ≠ (6, 9, 0) . If

then the general element of Ld
2
(2r, 1t) is irreducible, has exactly r ordinary double points 

and it is smooth elsewhere.

Proof  By Theorem  6, the hypothesis 
(
d + 2

2

)
− 1 ≥ 3r + t guarantees that Ld

2
(2r, 1t) is 

not empty. We argue by induction on t. For t = 0 , the claim is proven in [1, Theorem3.2]. 
Now assume that t ≥ 1 . The system L6

2
(29, 1t) is empty by Theorem 6, so we assume that 

(d, r) ≠ (6, 9) . By induction hypothesis, Ld
2
(2r, 1t−1) contains a nonempty open subset U 

consisting of irreducible curves with exactly r ordinary double points. Imposing a further 
simple point in the base locus corresponds to taking a hyperplane section of 
L
d
2
(2r, 1t−1) ⊂ ℙ(ℂ[x0, x1, x2]d) ; if the hyperplane is general, the intersection with U is non‑

empty. 	�  ◻

There is one last thing we need to recall before we move to the next section. Let V be a 
projective variety and let Z be a subvariety of V. Consider a linear system L = ℙ(L) on V 
and let LZ = ℙ(LZ) be the complete linear system on Z given by ℙ(H0OZ(D|Z)) for a gen‑
eral element D ∈ L . Then there is an exact sequence of vector spaces

The image of the rightmost map is denoted by L|Z and its projectivization is 
L|Z = {D|Z ∣ D ∈ L} . Sequence (4) is called Castelnuovo exact sequence.

3 � Problem reduction

In this section we formalize the problem and we present some simplifications. Let us start 
by considering the Waring problem for one polynomial. Degree d ternary forms of Waring 
rank 1 are parametrized by the d-Veronese surface

embedded in the space of all forms of degree d. Then the rank of the general ternary form is

(
d − 1

2

)
≥ r and

(
d + 2

2

)
− 1 ≥ 3r + t,

(4)0 → L ∩ IZ → L → LZ .

V
d
2
= {[�d] ∣ � ∈ ℂ[x0, x1, x2]1} ⊂ ℙ

⎛
⎜
⎜⎝

n + 2

2

⎞
⎟
⎟⎠
−1

= ℙ(ℂ[x0, x1, x2]d)
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Thanks to Lemma 4 and Eq. (3), the latter equals

This allows us to use geometric techniques to study Waring decompositions. For instance, 
we can apply Theorem  6 to compute the rank of the general ternary form of degree d. 

Moreover, the set of decompositions with k summands of a polynomial f ∈ ℙ

⎛
⎜
⎜
⎜⎝

d + 2

2

⎞
⎟
⎟
⎟⎠

−1

 is the 

fiber of the secant map p1 ∶ Seck(V
d
2
) → ℙ

⎛
⎜
⎜⎝

d + 2

2

⎞
⎟
⎟⎠
−1

 over f—see Definition 3.
We consider a similar construction for simultaneous decompositions. Let c and d be 

positive integers such that c ≤ d . The variety parametrizing pairs of polynomials of degrees 
c and d and simultaneous rank 1 is

The map

sending [a1�c, a2�
d] to [�] gives X the structure of a projective bundle over the plane, 

where each fiber is isomorphic to ℙ1 . Therefore X is a threefold. For the basic definitions 
and notions concerning projective bundles, we refer the reader to [12, Chapter II.7] or  
[10, Chapter 9]. It turns out that X is the projectivization of the following rank two vector 
bundle on ℙ2:

where N =

(
c + 2

2

)
+

(
d + 2

2

)
− 1 . The immersion X ⊂ ℙ

N is the tautological embed‑

ding. Namely, the very ample divisor TX associated with the immersion—called the tauto-
logical divisor—is the only divisor class on X such that

We recall that TX is unisecant, that is, each fiber of � intersects TX in exactly one point.
The situation is similar to the case of the Veronese variety. According to [2, Section 2.2], 

the set of decompositions with k summands of (f , g) ∈ ℙ
N is the fiber of the secant map 

p1 ∶ Seck(X) → ℙ
N over (f, g). For the generic pair of polynomials, in order to have finitely 

many decompositions, we have to assume that dimSeck(X) = dimℙ
N . This leads to the fol‑

lowing definition.

Definition 8  Let c and d be positive integers such that c ≤ d . We say that (c, d) is a perfect 
case if there exists k ∈ ℕ such that dimSeck(X) = dimℙ

N . This is equivalent to 

min

⎧
⎪
⎨
⎪⎩

r ∈ ℕ ∣ 𝕊ec
r
(V

d

2
) = ℙ

⎛
⎜
⎜⎝

d + 2

2

⎞
⎟
⎟⎠
−1
⎫
⎪
⎬
⎪⎭

.

min{r ∈ ℕ ∣ dimLd
2
(2r) = 0}.

X = {[a1�
c, a2�

d] ∣ � ∈ ℂ[x0, x1, x2]1 and a1, a2 ∈ ℂ} ⊂ ℙ(ℂ[x0, x1, x2]c ⊕ ℂ[x0, x1, x2]d).

� ∶ X → ℙ
2 = ℙ(ℂ[x0, x1, x2]1)

X = ℙ(O
ℙ2 (c)⊕O

ℙ2 (d)) ⊂ ℙ
N = ℙ(ℂ[x0, x1, x2]c ⊕ ℂ[x0, x1, x2]d),

𝜋∗OX(TX) = O
ℙ2 (c)⊕O

ℙ2 (d).
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3k + k − 1 =

(
c + 2

2

)
+

(
d + 2

2

)
− 1 , so (c,  d) is perfect if and only if 

(
c + 2

2

)
+

(
d + 2

2

)
 is a multiple of 4. In this case

In order to have an idea of how frequent they are, we list here all perfect cases for 
1 ≤ c ≤ d ≤ 10.

If (c, d) is not a perfect case, then dimSecr(X) ≠ dimℙ
N for every r ∈ ℕ . In this case 

the generic fiber of the map p1 ∶ Secr(X) → ℙ
N cannot be zero-dimensional and therefore 

the general pair of polynomials is not identifiable. Even if (c, d) is a perfect case, the gen‑
eral fiber of p1 may have positive dimension. If this happens, then the general point of ℙN 
has no preimages under p1 , therefore the general pair of ternary forms has no simultaneous 
decompositions with r summands.

There is another family for which we can easily disprove identifiability by looking at 
the Waring rank of the higher-degree polynomial of the pair.

Proposition 9  Let (c,  d) be a perfect case and let k be the number defined in (5). If ⌈
1

3

(
d + 2

2

)⌉
> k , then X is k-defective. In particular, the general pair of ternary forms of 

degrees c and d is not identifiable.

Proof  Let (f , g) ∈ ℙ
N be a general pair of ternary forms of degrees c and d. Without loss of 

generality we assume that d ≠ 2 and d ≠ 4 . Indeed, there are no perfect cases satisfying our 
hypothesis for these values of d. Since the values d = 2 and d = 4 are the only exceptions 

of Theorem 6, the number 
⌈
1

3

(
d + 2

2

)⌉
 is the Waring rank of g. As every simultaneous 

decomposition of (f, g) gives a decomposition of g, the simultaneous rank of (f, g) is at 
least the rank of g. By hypothesis, the latter is strictly greater than k. This means that the 
general pair has no decomposition with k summands. The image of the secant map 
p1 ∶ Seck(X) → ℙ

N has dimension smaller than N, hence X is k-defective. 	�  ◻

Remark 10  In light of our observations, from now on we always suppose that (
c + 2

2

)
+

(
d + 2

2

)
 is a multiple of 4 and that k is the natural number defined in (5). 

Without loss of generality, we also assume that p1 ∶ Seck(X) → ℙ
N is dominant—namely, 

that its image has dimension N. Under these assumptions, the domain and the image of p1 
have the same dimension, hence the general fiber of p1 has dimension 0—we say that p1 is 
generically finite. In other words, X is not k-defective and 𝕊eck(X) = ℙ

N . Thanks to Propo‑

sition 9, this tells us we can work under the assumption that 
⌈
1

3

(
d + 2

2

)⌉
≤ k . This 

implies that 
(
d + 2

2

)
≤ 3k , that is

(5)
k =

(
c + 2

2

)
+

(
d + 2

2

)

4
∈ ℕ.

(1, 5) (1, 8) (2, 2) (2, 3) (2, 10)

(3, 3) (3, 10) (4, 5) (4, 8) (5, 9)

(6, 6) (6, 7) (7, 7) (8, 9) (10, 10).
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Under this hypothesis, the only perfect cases with c ≤ 2 are (2, 2) and (2, 3), the special 
cases appearing in the statement of Theorem  2. As we have already observed, they are 
known to be identifiable since the late nineteenth century. For this reason, from now on we 
suppose that c ≥ 3 . Thanks to [2, Theorem 5.1], we further suppose that d ≠ c + 1 . Under 
these assumptions, the only cases left in the range 1 ≤ c ≤ d ≤ 10 are

Notice that we excluded the perfect case (3,  3). The case of two plane cubics has been 
classically studied in [16, 21]. If c = d = 3 , then k = 5 , N = 19 and X is 5-defec‑
tive—see also [5, Remark 4.2]. In other words, dim�ec5(X) < 19 , thus the secant map 
p1 ∶ Sec5(X) → ℙ

19 cannot be birational.

We deal with the map p1 ∶ Seck(X) → ℙ
N , dominant and generically finite. Our goal 

is to prove that p1 is not birational, that is, deg(p1) ≥ 2 . The following result, proven in 
[2, Theorem 5.2], allows us to reduce the problem.

Theorem  11  Let V ⊂ ℙ
N be a nondegenerate irreducible variety of dimension n and let 

r ∈ ℕ . Assume that the secant map p1 ∶ Secr(V) → ℙ
N is dominant and generically finite. 

Let z ∈ �ecr−1(V) be a general point. Consider the projection � ∶ ℙ
N
⤏ ℙ

n from the 
embedded tangent space �z �ecr−1(V) . Then �|V ∶ V ⤏ ℙ

n is dominant and generically 
finite, and deg(�|V ) ≤ deg(p1).

We will apply Theorem 11 in the case when V is the projective bundle X and r is the 
number k defined in (5). In order to prove that deg(p1) ≥ 2 it is enough to prove that 
deg(�|X) ≥ 2 . We want to understand the linear system associated with �|X . The map 
� described by Theorem 11 is the projection from the linear space �z �eck−1(X) . Once 
again we apply Lemma 4 to deduce that the linear system associated with �|X is

 Keeping in mind that H ⊃ �xi
(X) if and only if H ∩ X is singular at xi , we are ready to 

define the linear system we are interested in.

Definition 12  Let X = ℙ(O
ℙ2 (c)⊕O

ℙ2 (d)) ⊂ ℙ
N . Let Σ be a 0-dimensional subscheme of 

X consisting of k − 1 points of multiplicity 2 in general position. We denote by

the linear system of tautological divisors containing the subscheme Σ.

The linear system L on X induces the rational map �|X . As we stressed in Remark 10, we 
work under the assumption that X is not k-defective, hence the map p1 ∶ Seck(X) → ℙ

N is 
dominant and generically finite. Thanks to Theorem 11, the map �|X ∶ X ⤏ ℙ

3 is also domi‑
nant and generically finite, so the dimension of L is 3. Our task is to bound the degree of �|X.

A standard approach to work with linear systems is to degenerate them. In our case, 
we will pick some of the points of Σ in special position, rather than working with 

d2 + 3d ≤ 3c2 + 9c + 4.

(4, 8) (5, 9) (6, 6) (7, 7) (10, 10).

{H ∩ X ∣ H ⊂ ℙ
N is a hyperplane and H ⊃ 𝕋z 𝕊eck−1(X)}

= {H ∩ X ∣ H ⊂ ℙ
N is a hyperplane and H ⊃ 𝕋xi

(X) for every i ∈ {1,… , k − 1}}.

L ∶= ℙ(H0
OX(TX) ∩ IΣ)
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general points. When we perform this kind of degenerations, we have to make sure that 
we can control the degree of the associated map.

Lemma 13  Let X = ℙ(O
ℙ2 (c)⊕O

ℙ2 (d)) ⊂ ℙ
N and fix x1,… , xk−1 ∈ X . Let Σ̃ be the 

0-dimensional subscheme of X consisting of k − 1 points of multiplicity 2 supported at 
x1,… , xk−1 . Let L̃ = ℙ(H0OX(TX) ∩ IΣ̃) and call 𝜑̃|X the associated rational map. If 
dim L̃ = dimL = dimX , then deg(𝜑̃|X) ≤ deg(𝜑|X).

This follows from the more general [2, Lemma 5.4] and guarantees that we are allowed 
to degenerate some of the points of Σ in special position, as long as our degeneration 
does not change the dimension of the linear system. In our case, some of the points of Σ 
will belong to a given surface Z ⊂ X . In order to pick a suitable Z, consider the bundle 
morphism

and recall that the Picard group of X has rank 2. We choose as generators the tautological 
divisor TX and the divisor 𝜋⋆(h) , where h ⊂ ℙ

2 is a line. We set

It is the section of � corresponding to the quotient

see [12, Exercise II.7.8]. In particular, Z is smooth and irreducible and the restriction 
�|Z ∶ Z → ℙ

2 is an isomorphism. The tautological linear system on X embeds Z as a 
d-Veronese surface. The class of Z is

see for instance [10, Proposition 9.13].1
In order to bound deg(�|X) , we want to restrict the map to a suitable subvariety. We will 

show that this restriction does not increase the degree, provided that such a subvariety is 
not contained in the contracted locus of �|X.

Definition 14  The contracted locus of a rational map is the union of all positive-dimen‑
sional fibers. We denote by Δ ⊂ X the contracted locus of �|X.

Lemma 15  Let f ∶ V ⤏ W be a rational map between smooth irreducible varieties. 
Assume that f is dominant and generically finite. Let S be a subvariety of V. If S is not con-
tained in the contracted nor in the indeterminacy locus of f, then deg(f|S) ≤ deg(f ).

Proof  Let A = {p ∈ W ∣ f −1(p) is finite } . By hypothesis A is a nonempty open sub‑
set of W. Let B ⊂ V  be the indeterminacy locus of f and let U = f −1(A) ⧵ B . Then U is 
a nonempty open subset of V. By construction, the restriction fU ∶ U → f (U) is a finite 
surjective morphism and deg(fU) = deg(f ) . By [12, Exercise III.9.3(a)], fU is flat. By 

� ∶ X → ℙ
2

Z = {[0,�d] ∣ � ∈ ℂ[x0, x1, x2]1} ⊂ X.

(6)O
ℙ2 (c)⊕O

ℙ2 (d) → O
ℙ2 (d) → 0,

(7)Z ∼ TX − c𝜋⋆(h),

1  The statement of [10, Proposition 9.13] is about a subbundle, instead of a quotient bundle. The reason is 
that [8, 12] use different conventions, as explained on [10, p. 324].
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hypothesis S ∩ U ≠ ∅ , so S ∩ U is a dense open subset of S. The flatness of fU implies that 
deg(fU|S) ≤ deg(fU) , so

	�  ◻

Now we know that we can bound the degree by specializing some of the base points 
to Z and then restricting the map. Before we proceed, we have to understand a bit better 
the base points of our linear system L . Although Σ is zero-dimensional, the base locus 
of L contains many curves.

Lemma 16  Let x ∈ X and let D ⊂ X be a divisor. If D ∼ TX and D is singular at x, then 
D ⊃ 𝜋⋆(𝜋(x)).

Proof  Since the class TX is unisecant, D ⋅ 𝜋⋆(𝜋(x)) = 1 , so the only possibility for multx D 
to be greater than 1 is that D contains 𝜋⋆(𝜋(x)) . 	�  ◻

Concerning our degeneration approach, in order to work, we need to choose carefully 
the number of points we are going to degenerate. For this reason, we need to check a 
simple arithmetic property .

Lemma 17  Let c, d ∈ ℕ . If 
(
c + 2

2

)
+

(
d + 2

2

)
 is a multiple of 4, then

Proof  By hypothesis there exists t ∈ ℕ such that 
(
c + 2

2

)
+

(
d + 2

2

)
= 4t . This means 

that

hence 3d2 + 9d − c2 − 3c − 12 = 8(3t − 3) − 4c(c + 3) ≡ 0 mod 8 . 	�  ◻

We are actually interested in the class of 3d2 + 9d − c2 − 3c − 12 modulo 16. By 
Lemma 17, there are two possibilities: either 3d2 + 9d − c2 − 3c − 12 ≡ 0 mod 16 or 
3d2 + 9d − c2 − 3c − 12 ≡ 8 mod 16 . We use two different strategies to deal with these 
two cases.

4 � The first case

The goal of this section is to prove Theorem 2 when

This is accomplished in Proposition 20. We start by setting up the degeneration we need. 
Under hypothesis (8) we define the integer

deg(f|S) ≤ deg(fU|S) ≤ deg(fU) = deg(f ).

3d2 + 9d − c2 − 3c − 12 ≡ 0 mod 8.

c2 + 3c + d2 + 3d + 4 = 8t ⇒ 3d2 + 9d + 3c2 + 9c + 12 = 24t,

(8)3d2 + 9d − c2 − 3c − 12 ≡ 0 mod 16.
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We want to make sure that s1 ∈ {0,… , k − 1} . Thanks to Remark 10 we work under the 
assumption d ≥ c ≥ 3 , so

Remark 10 also allows us to assume that d2 + 3d ≤ 3c2 + 9c + 4 , hence

Consider the linear system L on X introduced in Definition 12. Since s1 ∈ {0,… , k − 1} , 
we can degenerate s1 of the k − 1 base points of L in special position.

Definition 18  Let X = ℙ(O
ℙ2 (c)⊕O

ℙ2 (d)) ⊂ ℙ
N and let Z ⊂ X be the section defined by 

(6). Let z1,… , zs1 be general points of Z and let xs1+1,… , xk−1 be general points of X; in 
particular, xs1+1,… , xk−1 ∉ Z . Let Σ1 be the 0-dimensional subscheme of X consisting of 
k − 1 points of multiplicity 2 supported at z1,… , zs1 , xs1+1,… , xk−1 . Similarly to Definition 
12, we define L1 ∶= H0OX(TX) ∩ IΣ1

 and L1 ∶= ℙ(L1) . We call �1 the associated rational 
map.

In order to be able to perform the computations on L1 , we need to prove that this spe‑
cialization does not increase the dimension of the linear system. In our case, the Castel‑
nuovo exact sequence (4) becomes

Now we are in position to describe both the right and the left hand sides of sequence (9) 
and to find their dimensions, thereby computing dim(L1).

Lemma 19  In the specialization of Definition 18, we have 

(1)	 L1 ∩ IZ ≅ Lc
2
(2k−1−s1 , 1s1 ) and it has dimension 1,

(2)	 (L1)Z ≅ Ld
2
(2s1 , 1k−1−s1 ) and it has dimension 3,

(3)	 dim(L1) = 4,
(4)	 (L1)Z = L1|Z.

Proof  We will use the bundle morphism � ∶ X → ℙ
2 to translate the question on our linear 

systems in terms of linear systems on the plane. Recall that � restricts to an isomorphism 
between Z and ℙ2 . Let us start by showing that L1 ∩ IZ is isomorphic to a vector subspace 
of Lc

2
(2k−1−s1 , 1s1 ) of dimension at most 1. Take D ∈ L1 containing Z. Then there exists a 

divisor D′ such that D = Z + D� . From (7) we obtain D� ∼ c𝜋⋆(h) , so it projects to a plane 
curve of degree c. Notice that the general D has multiplicity 2 at z1,… , zs1 , xs1+1,… , xk−1 , 
while Z has multiplicity 1 at z1,… , zs1 and does not contain xs1+1,… , xk−1 . It follows that 

s1 =
3d2 + 9d − c2 − 3c − 12

16
.

s1 ≥
2c2 + 6c − 12

16
≥ 0.

k − 1 − s1 =
c2 + 3c + d2 + 3d − 4

8
−

3d2 + 9d − c2 − 3c − 12

16

=
3c2 + 9c − d2 − 3d + 4

16
≥ 0.

(9)0 → L1 ∩ IZ → L1 → (L1)Z .
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D′ has multiplicity 1 at z1,… , zs1 and multiplicity 2 at xs1+1,… xk−1 . The correspondence 
D ↦ D′ is an isomorphism, therefore, after the projection on ℙ2 , we can regard elements of 
ℙ(L1 ∩ IZ) as plane curves of degree c singular at �(xs1+1),…�(xk−1) and passing through 
�(z1),… ,�(zs1 ) . Hence L1 ∩ IZ is a vector subspace of Lc

2
(2s1 , 1k−1−s1 ) . The latter has 

dimension 1 by Theorem 6, hence dim(L1 ∩ IZ) ≤ 1.
In a similar way, now we prove that (L1)Z is a vector subspace of Ld

2
(2s1 , 1k−1−s1 ) of 

dimension at most 3. Elements of (L1)Z have class TX|Z , are singular at s1 general points and 
pass through k − 1 − s1 simple base points in general position. Indeed, by Lemma 16 the 
base locus Bs(L1) contains not only Σ1 , but also k − 1 general fibers. Since Z is a section of 
� , each of these fibers intersects Z in one point. Therefore curves in (L1)Z ∶= ℙ((L1)Z) are 
not only singular at z1,… , zs1 , but they also contain k − 1 − s1 simple base points in general 
position, namely the intersections of Z with the fibers �−1(�(xs1+1)),… ,�−1(�(xk−1)).

Now we show that the linear system |TX|Z| corresponds isomorphically to |dh| via the 
morphism � . Denote by c1(Oℙ2 (c)⊕O

ℙ2 (d)) and c2(Oℙ2 (c)⊕O
ℙ2 (d)) the first and the 

second Chern classes of the line bundle O
ℙ2 (c)⊕O

ℙ2 (d) —a good reference on Chern 
classes is [10, Chapter 5]. Recall that by the Whitney formula we have

where pt indicates the class of a point of ℙ2 . The fundamental relation

discussed for instance in [12, Section A.3], implies that

It follows that (𝜋|Z)⋆TX ⋅ Z ∼ dh , therefore (L1)Z is isomorphic to a vector subspace of 
Ld
2
(2s1 , 1k−1−s1 ) . Again by Theorem 6, the latter has dimension 3, so dim((L1)Z) ≤ 3 . Since 

dim(L1 ∩ IZ) ≤ 1 and dim((L1)Z) ≤ 3 , exact sequence (9) gives

On the other hand, L1 is a degeneration of L = ℙ(L) , so dimL1 ≥ dimL ≥ 4 by semiconti‑
nuity. This proves the third claim.

As a consequence, L1 ∩ IZ and (L1)Z have indeed dimension 1 and 3, respectively, other‑
wise dim(L1) would be smaller than 4. This proves the first two claims.

We are left to prove the fourth part. Since dim(L1) − dim(L1 ∩ IZ) = dim(L1)Z , the right‑
most arrow in the sequence (9) is surjective, hence (L1)Z = L1|Z.� ◻

Now we know that the specialization we introduced in Definition 18 preserves the 
dimension of the linear system. In other words, dimL1 = dimL , so the codomain of �1 is 
ℙ
3 and we can take advantage of Lemma 13. The following result proves Theorem 2 under 

hypothesis (8).

Proposition 20  The map �1 ∶ X ⤏ ℙ
3 associated with L1 is not birational.

Proof  We want to apply Lemma 15 and show that �1|Z ∶ Z ⤏ ℙ
2 is not birational. For 

this purpose, the first thing we need is to show that Z ⊄ Δ . Assume by contradiction that 

c1(Oℙ2 (c)⊕O
ℙ2 (d)) = (c + d)h and c2(Oℙ2 (c)⊕O

ℙ2 (d)) = cd( pt),

T2
X
≡ TX ⋅ 𝜋⋆(c1(Oℙ2 (c)⊕O

ℙ2 (d))) − 𝜋⋆(c2(Oℙ2 (c)⊕O
ℙ2 (d)))

= (c + d)TX ⋅ 𝜋⋆(h) − cd𝜋⋆( pt),

TX ⋅ Z = T2
X
− c𝜋⋆(h) ⋅ TX = d𝜋⋆(h) ⋅ TX − cd𝜋⋆( pt).

dimL1 ≤ dim(L1 ∩ IZ) + dim((L1)Z) ≤ 1 + 3 = 4.



	 V. Beorchia, F. Galuppi 

1 3

Z ⊂ Δ . By Lemma 19(2), the image of Z is a nondegenerate plane curve Y ⊂ ℙ
2 , and 

images of divisors in L1|Z are line sections of Y. This implies that the general element of 
L1|Z is reducible. It follows by Lemma 19(4) that the general element of Ld

2
(2s1 , 1k−1−s1 ) is 

reducible, and this contradicts Lemma 7. The case (6, 9, 0) cannot happen because (2, 6) is 
not perfect. Moreover, since dimL1 = 4 by Lemma 19(3), we see that Z is not in the base 
locus of L1 by Lemma 19(1), hence it is not contained in the indeterminacy locus of �1.

Now we only have to prove that �1|Z ∶ Z ⤏ ℙ
2 is not birational. It suffices to show that 

the general element of Ld
2
(2s1 , 1k−1−s1 ) is not a rational curve. Thanks to Lemma 7, the gen‑

eral element of Ld
2
(2s1 , 1k−1−s1 ) is irreducible and is singular at exactly s1 ordinary double 

points, so it has genus

Under the assumptions we made in Remarks 10, together with hypothesis (8), it is not 
restrictive to suppose that c ≥ 4 and d ≥ 6 . Then we can bound the genus as

	�  ◻

5 � The second case

The goal of this section is to prove Theorem 2 when

This is accomplished in Proposition 25. Under the assumptions we made in Remark 10, the 
only case satisfying (10) with c ≤ 7 is (3, 3) which, as we have already observed, cannot be 
identifiable. Therefore in this section we assume that c ≥ 8 . As in Sect. 4, we start by set‑
ting up the degeneration we need. Under hypothesis (10) we can define the integer

Just as we did in Sect. 4 for s1 , it is easy to check that s2 ∈ {0,… , k − 1} . Consider the lin‑
ear system L introduced in Definition 12. We degenerate s2 of the k − 1 base points of L in 
special position.

Definition 21  Let X = ℙ(O
ℙ2 (c)⊕O

ℙ2 (d)) ⊂ ℙ
N and let Z ⊂ X be the section given by 

(6). Let z1,… , zs2 be general points of Z and let xs2+1,… , xk−1 be general points of X. Let Σ2 
be the 0-dimensional subscheme of X consisting of k − 1 points of multiplicity 2 supported 
at z1,… , zs2 , xs2+1,… , xk−1 . We define L2 ∶= H0OX(TX) ∩ IΣ2

 and L2 = ℙ(L2) . We call �2 
the associated rational map.

(d − 1)(d − 2)

2
− s1 =

5d2 − 33d + c2 + 3c + 28

16
.

5d2 − 33d + c2 + 3c + 28

16
≥

5d2 − 33d + 56

16
> 0.

(10)3d2 + 9d − c2 − 3c − 12 ≡ 8 mod 16.

s2 =
3d2 + 9d − c2 − 3c − 4

16
.
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Again, our first concern is to check that the degeneration presented in Definition 21 
does not increase the dimension of the linear system. In other words, we want to prove that 
dim(L2) = 4.

Lemma 22  In the specialization of Definition 21, we have 

(1)	 (L2)Z ≅ Ld
2
(2s2 , 1k−1−s2 ) and it has dimension 2,

(2)	 L2 ∩ IZ ≅ Lc
2
(2k−1−s2 , 1s2 ) and it has dimension 2,

(3)	 dim(L2) = 4,
(4)	 (L2)Z = L2|Z.

Proof  The proof goes exactly as in Lemma 19. We only have to check that both 
Ld
2
(2s2 , 1k−1−s2 ) and Lc

2
(2k−1−s2 , 1s2 ) have  dimension 2.� ◻

Remark 23  As a byproduct of Lemmas 19 and 22, we obtain that dimL = 3 , even without 
the assumption that p1 is dominant and generically finite. This means that, whenever (c, d) 
is a perfect case, k − 1 general double points impose independent conditions on OX(TX) . By 
Lemma 4 and equation (3), X is not (k − 1)-defective.

The main difference between situation (8) and situation (10) is that in this second case 
(L2)Z induces a map to ℙ1 , instead of ℙ2 . Therefore Z ⊂ Δ , in this setting. This means 
that we cannot apply Lemma 15 to Z, but rather we will find another suitable subvariety. 
Observe that if T ∈ ℙ(L2 ∩ IZ) , then T ∼ Z + V  for some element V ∼ c�∗(h) . By Lemma 
22(2), there is a pencil of such V’s.

Lemma 24  Let B be a general element of Lc
2
(2k−1−s2 , 1s2 ) and V = 𝜋⋆B ⊂ X . Let T be a 

general element of L2 . Then 

(1)	 V is irreducible, it is not contained in the contracted locus Δ and �2(V) = ℙ
2.

(2)	 T ⊅ V  and T ∩ V ⊄ Δ . Moreover �2(T ∩ V) = ℙ
1.

Proof  Since V corresponds to a general element of Lc
2
(2k−1−s2 , 1s2 ) , it is irreducible 

by Lemma 7. By construction we have Z ⊂ Δ . As codimΔ ≥ 1 , we can choose V so 
that V ⊄ Δ . Moreover, we can also assume that V is not contained in the indeterminacy 
locus of �2 . Hence dim(�2(V)) = 2 . Observe that V + Z ∈ L2 , so �2(V ∪ Z) = ℙ

2 . Since 
dim(�1(Z)) = 1 , the image of V is ℙ2 . This completes the proof of the first claim.

Now assume by contradiction that the general element T of L2 contains V. Then L2 ∩ IZ 
would have only one element, up to scalar. Namely, L2 ∩ IZ = ⟨V + Z⟩ . This contradicts 
Lemma 22(2). Since T does not contain V, the intersection is a curve on V. If such a curve 
was contained in Δ for a general T ∈ L2 , then V ⊂ Δ , in contradiction to part (1). Finally, 
T ∩ V  is an element of L2|V . AS �2(V) = ℙ

2 , we have �2(T ∩ V) = ℙ
1 . 	�  ◻
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We are interested in T ∩ V  . This is not an irreducible curve, because both T and V con‑
tain the k − 1 fibers of the base locus of Lc

2
(2k−1−s2 , 1s2 ) via � . However, T ∼ TX is a unise‑

cant divisor, that is T either contains a fiber of � or T intersects a fiber precisely in one 
point, hence there exists a unique horizontal component of T ∩ V  . We define C to be such 
an irreducible component. As T is general, C ⊄ Δ and C is not contained in the indetermi‑
nacy locus of �2 . Our strategy to bound deg(�2) is to restrict the map to C.

Proposition 25  The map �2 ∶ X ⤏ ℙ
3 associated with L2 is not birational.

Proof  As in Lemma 24, we define B as a general element of Lc
2
(2k−1−s2 , 1s2 ) and T a general 

element of L2 . We want to apply Lemma 15 sand show that �2|C ∶ C ⤏ ℙ
1 is not birational. 

We only need to prove that C is not a rational curve. Since �|T is birational, it restricts to a 
birational map between C and B, hence they have the same genus. By Lemma 7, the curve 
B has only ordinary double points, so its genus is

for every c ≥ 8 . 	�  ◻
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