




Abstract

Many efforts have been devoted to understand the hematite-electrolyte interface due

to its potential application in the photoelectrocatalytic oxidation of water. This interface

usually extends over lengths ranging from tens of nanometers to micrometers under water

splitting conditions, therefore its realistic simulation via ab-initio calculations has been

considered challenging. However, recent experiments measured space charge layers smaller

than ∼10 Å in highly doped nanostructured hematite photoanodes, which also displayed

high photocurrent densities in water splitting experiments.

We used a set of continuous equations based on the Poisson-Boltzmann distribution

and the Stern model to investigate under which experimental conditions the space charge

layer in hematite becomes ultrathin. In this regime, a considerable fraction of the potential

drop across the interface is located in the Helmholtz layer, therefore we reported corrections

to the Mott-Schottky equation that should be taken into account under these conditions.

Using the continuous equations, we also examined the effect of the macroscopic properties

provided by experiments on the microscopic state of the interface: we got access to the

width of the space charge layer and the distribution of the electrostatic potential across the

interface a function of the experimental conditions. We then used density functional theory

(DFT) to get an atomistic insight of the space charge layer in the semiconductor, in systems

ranging from the pristine stoichiometric surface, a surface with adsorbed hydroxyls, to Ti-

doped slabs with doping densities of the order of ∼ 1.0 × 1021cm−3. We disregarded the

presence of the electrolyte on the DFT calculations, since we focused on the development

of the space charge layer in the semiconductor. In our simulations, the hematite slabs are

in contact with vacuum.

According to our analysis, space charge layers around 10 Å must have been present also

in other water splitting experiments with some of highest photocurrents registered. We

observed that at high doping densities the inverse of the square of the capacitance should

have a quadratic behavior close to flat-band conditions and a sub-linear behavior due to

square-root-like corrections far from the flat-band potential. We used density functional

theory to compute the band bending of the proposed atomistic models. The pristine
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stoichiometric and the hydroxylated undoped surfaces displayed band bendings of ∼ 0.14

eV and ∼ 0.49 eV, respectively. In the doped case, we found band bendings of ∼ 0.07 eV

and ∼ 0.01 eV for the pristine and OH-terminated slabs, respectively. The latter band

bendings corresponded to space charge layers extending in the sub-nanometer regime,

according to the continuous equations. In the presence of doping, we found a qualitative

and quantitative correspondence between the results provided by density functional and

the continuous model.

Contrary to the common picture of the electrochemical interface of a semiconductor and

an electrolyte in water splitting experiments, where large space charge layers are present,

the latter results give an insight of an unexpected regime of high photoelectrocatalytic

efficiency in ultrathin space charge layers. Which in principle, are amenable to quantum

mechanical ab-initio simulations. In this work we were able to describe the space charge

layer of thin hematite slabs using DFT at an atomistic level.
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Chapter 1

Introduction

Climate change and the increase of the global energy consumption require the search for

greener sources of energy. Solar energy has attracted attention among renewable energy

sources. This is because the sun represents the largest source of energy on the planet:

the energy it produces is enough to cover the energetic needs of humanity. Photovoltaic

cells are already used to harvest solar energy, however the energy they produce has to be

stored in other devices.1,2 Therefore more efficient ways to harvest and store solar energy

are required. A direct way to store solar power is to save the electromagnetic energy

into chemical bonds, leading to the production of fuels. This can be achieved through

photoelectrochemical reactions in photoelectrochemical cells (PEC).1–6 Figure 1.1 shows a

scheme of a basic photoelectrochemical cell, which is constituted by a photoactive material

acting as anode, a cathode, an electrolyte and an external circuit. In these devices the solar

light is absorbed by the photoelectrode and the solar fuels are produced in both anode and

cathode.

The photoelectrochemical splitting of water into molecular oxygen and molecular hy-

drogen is one of the reactions investigated to store solar energy into chemical bonds. This

reaction is described as follows3–6

2H2O+ 4hν → 2H2 +O2. (1.1)
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Figure 1.1: Scheme of a photoelectrochemical cell for the water splitting reaction. The
photons coming from the sun are absorbed by the photoanode generating electrons and
holes. The holes are used in the anode to oxidize H2O to O2. The photogenerated electrons
are transported to the cathode aided by the external bias and used in the reduction of H+

to H2. Each gas can be stored then separately, as shown in the picture.

The two half redox reactions involved in this process are the oxygen evolution reaction

(OER) or water oxidation and the hydrogen evolution reaction (HER).3–6 The first takes

place at the photoanode and the second occurs at the cathode, see figure 1.1. At alkaline

pH conditions, the OH− dominate over H+. Under these conditions, the OER and HER

are4,6

4OH−(aq) + 4h+ → 2H2O+O2 (OER), (1.2)

2H2O+ 2e− → H2 + 2OH−(aq) (HER). (1.3)

On the other hand, under acidic conditions, due to the higher concentrations of protons

H+, the OER and HER are4,6
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2H2O+ 4h+ → O2 + 4H+(aq) (OER), (1.4)

2H+ + 2e− → H2 (HER). (1.5)

Thermodynamically, reactants and products are in equilibrium at an applied bias of

V = 1.23 V.4,5, 7, 8 Semiconducting materials are needed as photoanodes in order to absorb

the photons required to produce the charge carriers involved in the photoelectrochemical

water splitting reaction, see figure 1.1. Once the photons are absorbed by the photoanode,

in the case of an n-type semiconductor, the produced holes are transported to the surface

and participate in the OER. On the other hand, the photo-excited electrons migrate to the

cathode helped by the external circuit. Since the water splitting reaction and the water

oxidation occur at the photoanode, much effort has been directed towards the search of

the ideal semiconductor capable to perform this task.

Figure 1.2: Relative position of hematite energy bands and the electrochemical potentials
− q E◦ of the (H+/H2) and (O2/H2O) redox couples in the electrolyte, E◦ is the reduction
potential. The energy bands in hematite bend in the vicinity of the surface. CBM is the
conduction band minimum and VBM is the valence band maximum. The dashed arrow
indicate that the electron transfer to the surface of hematite is not spontaneous. E◦ is the
reduction potential for both (H+/H2) and (O2/H2O) redox couples.

Among semiconductors, oxides have been investigated due to their optical and prop-

erties and stability under oxidizing conditions.4 The electronic structures of these kind of
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materials generally display valence bands (VB) consisting on O-2p orbitals, and conduc-

tion bands formed by valence orbitals of metals.4 Some of these oxides are TiO2, WO3,

BiVO4 and Fe2O3. TiO2, for example, has been extensively investigated after Fujishima

and Honda performed water splitting by UV light-induced electrocatalysis.9 However, the

optical activity of TiO2, WO3 and BiVO4 is limited by the large bandgap of Eg ∼3 eV

displayed by these materials.4,5

In this work we focus on hematite (α−Fe2O3), which has been studied during the last

decades due to its advantageous properties: large abundance, non-toxicity, electrochem-

ical stability at pH greater than 3, bandgap of ∼ 2 eV and a favorable position of the

valence band for the oxygen evolution reaction.1,5, 6 Indeed, a suitable photoanode for

water oxidation should also have a valence band positioned favorably with respect to the

redox potential of the oxygen evolution reaction. Figure 1.2 shows the relative positions of

the electrochemical potentials -qE◦ for the (H+/H2) and (O2/H2O) redox couples, and the

conduction and valence bands of hematite.4,6, 10 There it can be seen that hematite cannot

perform the reduction of hydrogen by itself: the conduction band lies below the redox

potential of (H+/H2). This means that the electrons cannot be spontaneously transferred

to perform the hydrogen evolution reaction and therefore an external bias is required to

perform the overall water splitting reaction,6 see Figure 1.1. Hematite presents additional

drawbacks: low conductivity in the bulk, high-electron hole recombination and slow kinet-

ics of the oxygen evolution reaction.1,5, 6 Some authors suggest the two latter drawbacks

occur due to the sluggish transfer of holes at the hematite/electrolyte interface.11 There-

fore a better understanding of the semiconductor-electrolyte interface would be important

to rationalize these problems.

The semiconductor-electrolyte interface consists of a space charge layer in the semi-

conductor and a charge distribution with opposite sign in the electrolyte.4,12,13 Figure

1.3 shows a representation of the hematite-electrolyte interface. The space charge layer

is constituted by fixed ionized donor atoms. The charge distribution in the electrolyte

consists of ions and solvent molecules, which are adsorbed at the semiconductor surface

and also distributed in the solvent. This charge configuration at the interface is due to the

charge redistribution that occurs when both materials are put into contact. In the case of
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Figure 1.3: Hematite-electrolyte interface. This figure shows the charge distribution in
both sides of the interface. According to the Stern model, the interface can be separated
in three main regions: the space charge layer, the Helmholtz layer and the Gouy-Chapman
layer. A potential distribution develops in the vicinity of the surface of the semiconductor,
which is illustrated as a function of the spatial extension of the interface. The potential
drops across the space charge layer, the Helmholtz layer and the Gouy-Chapman layer are
denoted by ϕsc, ϕH and ϕel, respectively.

an n-type semiconductor like hematite, electrons migrate from the solid to the electrolyte

until the Fermi level or electrochemical potential is equal in both sides.4,12,13 The charge

distributions in the solid and the liquid imply the existence of a potential drop across the

interface, as depicted in the y-axis in figure 1.3. The potential drop in the space charge

layer changes ϕsc the potential energy of the electrons in hematite leading to the upward

bending of the energy bands bend in the vicinity of the surface, as depicted on the right
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side of Figure 1.2. This bending is measured as the potential drop in the space charge layer

ϕsc and is commonly known as the band bending BB, see Figure 1.3. It is fundamental

for the water splitting reaction, because it allows the transport of photogenerated holes

in the bulk towards the surface. Once at the surface, these holes may participate in the

water oxidation reaction,6 see Figure 1.2. The band bending amplitude can be tuned using

an external bias or by doping the semiconductor. The bands can even be flattened by

applying a specific voltage, the so-called flatband potential Vfb.

Much effort has been devoted to understand the semiconductor-electrolyte interface:

starting from analytical models,14–17 its experimental characterization11,18–28 to quantum

mechanical ab-initio simulations.6,29–33 Helmholtz,14 Gouy15 and Chapman16 attempted

to model the solid-liquid interface, however their models were too simple to provide a

realistic description. Helmholtz considered two layers of opposite charge to model the solid

and liquid part, which yielded a parallel plate capacitor.14 Gouy and Chapman considered

that the ions in the solution are distributed according to the Boltzmann distribution in

the potential generated by the Poisson equation.15,16 However, in this model, the sizes of

the ions approaching the semiconductor surface were not taken into account. Therefore

the ions could approach infinitely close to the interface. Stern combined both approaches

to describe the interface in a more realistic way. In the Stern-picture, the semiconductor-

electrolyte interface consists of a space charge layer in the semiconductor; a Helmholtz layer

in the electrolyte which consists of ions and solvent molecules attached to the interface;

the latter is followed by a diffuse Gouy-Chapman layer that extends into the solution, see

Figure 1.3. Pleskov et al.13 developed an analytical solution of the Poisson-Boltzmann

equation for the Stern-picture of the interface. In this way, one can get information on the

width of the space charge layer and the potential drop across the interface (ϕsc, ϕH and

ϕel).

The experimental techniques employed to characterize the interface include electro-

chemical impedance (EIS),18–25 transient absorption spectroscopy (TAS),11 cyclic voltam-

metry19,26 and photoelectrocatalytic measurements.27,28 The experimental measurements

provide information on flatband potentials, doping density, interface capacitance and charge

dynamics at the interface. For example, EIS provides access to the electrostatics of the
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interface by interpreting their impedance measurements through equivalent-circuit models,

however the results depend on the circuit used to analyze the data.18–23 The interface ca-

pacitances can be extracted through these models and analyzed through the Mott-Schottky

analysis. In this way one can get access to the flatband potentials, doping densities and

space charge layer widths.

On the other hand ab-initio simulations based on density functional theory (DFT)

provide an atomistic description of reaction overpotentials,29–31 Helmholtz capacitance,32

charge dynamics31 and proton exchange dynamics between the hematite surface and the

electrolyte.33 Despite providing a description of these processes and properties, density

functional theory is unable to provide information about the macroscopic electrostatics

at the interface.6,30 Besides this, realistic density functional theory simulations of the

interface have been thought unattainable due to its extension. It is believed that the

interface can extend over tens of nanometers to micrometers. However, in recent water

splitting experiments, Zhang et al.34 measured space charge layers smaller than 10 Å in

highly doped nanostroctured hematite photoanodes, which in principle are accessible to

quantum mechanical ab-initio simulations.

The fact that these small space charge layers were observed under water splitting con-

ditions, goes against the common belief that broad space charge layers are essential in

photoelectrochemistry. Indeed, space charge layers play a crucial role, since electron-hole

separation occurs here. They also avoid recombination and promote charge carrier transfer

to the semiconductor surface. Although it is well known that high doping concentrations

lead to ultrathin space charge layers, this condition is rarely identified in experiments and

its consequences have not been analyzed. Using the set of continuous equations developed

by Pleskov et al. for the Stern-picture of the interface,13 in this work we showed that similar

space charge layers must have been present in other water splitting experiments. We also

examined the consequences that high doping has on the interface. And in addition to that,

using the same equations we explored the trends followed by water splitting experiments

under different doping conditions. Given that the space charge layers can reach sizes of less

than one nanometer, we used density functional theory to get an atomistic insight from

the space charge layer in (0001) hematite surfaces. Considering that ultrathin space charge
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layers have proved to display high efficiencies, the atomistic characterization of the space

charge layer in highly doped slabs might be crucial to understand the electronic phenomena

in this limit. We explored the evolution of the space charge layer while we added elements

of reality to the surface: first we started with the (0001) stoichiometric surface, then we

added one OH group to each surface, then we added one additional charge per surface and

finally we doped the slabs at concentrations of the order of 1021cm−3.

This thesis is organized as follows: chapter two is devoted to introduce the electrostatic

model, based on the Poisson-Boltzmann equations and the Stern model, we employed to

study the hematite-electrolyte interface. In this chapter we also give a brief description of

density functional theory and the technical details of the calculations we used to analyze

the space charge layer in hematite. In chapter three we report the trends observed in a

series of experimental data, using the analytical solutions of the electrostatic model used

in chapter one. In this chapter, we also examine the consequences of high doping for the

interface and on the Mott-Schottky analysis. Chapter four and five are devoted to the

analysis of the space charge layer via Density Functional Theory. In the first we report the

results obtained in undoped slabs, in the latter we report the consequence of doping the

slabs. Finally, we summarize the main conclusions of this work.
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Chapter 2

Methods

This chapter is focused on the physical background and ab initio tools we used to study

space charge layers in hematite photoanodes. We review the semiconductor-electrolyte

interface, where the space charge layer is located in the solid part. This interface can

be described by a set of equations based on the Stern model and the Poisson-Boltzmann

distribution. In this chapter we will introduce the solution of these equations, we will

determine some parameters necessary to implement them and we will connect them to the

available water-splitting experimental data. Density functional theory was used to simulate

space charge layers in hematite thin films. We will discuss the fundamentals of this theory

as well as the approximations needed to implement it. We will also review the main idea

of the ”DFT+U” correction to the exchange and correlation energy functional which is

needed due to the localized nature of the 3d orbitals in the iron atoms of hematite.

2.1 The semiconductor-electrolyte interface

The study of the semiconductor-electrolyte interface is crucial to understand the chemical

and physical phenomena involved in the photoelectrochemical water splitting. Many mod-

els have been proposed to describe the potential distribution across this interface, the first

one and the simplest was proposed by Helmholtz.14 According to this model, the interface
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consists of two layers of opposite charge displaying a parallel plate capacitor. Gouy and

Chapman15,16 improved the picture by assuming that the space charge in the liquid is a

diffuse structure that goes from the semiconductor’s surface to the bulk solution and for

which they solved analytically the Poisson-Boltzmann equation. However this model failed

in accounting for the finite size of the ions approaching to the surface.

To fix this situation, Stern17 combined the ideas of Helmholtz, Gouy and Chapman to

model the liquid part of the interface finite compact layer followed by the diffuse or Gouy-

Chapman layer. Despite the simplicity of the Stern model, it contains enough elements of

reality to provide an analytical set of electrostatic equations that can connect microscopic

properties of the electrolyte-semiconductor interface to water splitting experimental data.

Figure 2.1: Diagram of the semiconductor-electrolyte interface. The Helmholtz layer
plane is defined by x = −LH ; the surface of semiconductor by x = 0; and the width of the
space charge layer by x = Lsc.
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2.1.1 Poisson-Boltzmann equations

In the Stern picture, the interface is constituted by a space charge layer in the semiconduc-

tor, compact Helmholtz layer in the electrolyte, followed by diffuse Gouy-Chapman layer,

see Figure 2.1. Here we will review the analytical solutions obtained by Pleskov and Gure-

vich13 for the Poisson Boltzmann-distribution to the electrolyte-semiconductor interface

in the Stern description. Figure 2.1 shows the spatial configuration of the interface used

to describe the system. The Helmholtz layer plane is defined by the ordinate −LH ; the

surface of semiconductor by the ordinate 0; and the width of the space charge layer by the

ordinate Lsc. The potential in the bulk of the semiconductor takes a reference value of 0

and the potential in the bulk of the solution is set to an arbitrary constant ϕ(el).

Description of the space charge layer

In general, the space charge layer in the semiconductor consists of mobile carriers (electrons

n and holes p) and fixed impurities (donors ND or acceptors NA depending on the type of

doping). Assuming that the local concentrations of electrons and holes can be described

by the Boltzmann distribution, and the donors and acceptors are fully ionized, the Poisson

equation12,13 in the space charge layer is commonly expressed as follows:

d2ϕ

dx2
= − e

ϵscϵ0

(
p0 exp

−eϕ(x)
kBT −n0 exp

eϕ(x)
kBT +ND −NA

)
, (2.1)

where p0 and n0 are the equilibrium concentration of holes in the valence band; ND and

NA are the density of donor and acceptor dopants in the semiconductor; ϵsc denotes the

dielectric constant of the semiconductor; e is the charge of the electron; ϕsc is the potential

drop in the space charge layer of the semiconductor; kB is the Boltzmann constant and T

is the temperature. The Boltzmann distribution was used assuming that the system is at

equilibrium and that the semiconductor is non-degenerate,13 i.e. low carrier densities. At

high charge carrier densities, the Fermi-Dirac distribution should be used to account for

quantum effects.
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The potential distribution in the space charge layer can be calculated using the depletion

approximation. Where it is assumed that the charge carriers fully migrated to the solution.

In this approximation, the space charge distribution is assumed to decay at a length Lsc

from the surface, in the simplest case the distribution is assumed to be a step function.12

ρ(x) =

{
eND , 0 < x < Lsc,

0 , x > Lsc .

In the case of n-type semiconductor, where electrons are donated by the impurities, in

the depletion approximation equation 2.1 is reduced to:

d2ϕ

dx2
= −eND

ϵscϵ0
. (2.2)

According to the depletion approximation, the ionized donors in the space charge layer

are located in a region of width Lsc. Beyond x = Lsc, this region is neutral. As a

consequence, the electric field vanishes far from the surface. In the depletion approximation

it is considered that for x > Lsc the electric field is small. Hence the boundary conditions

for this equation are:

ϕ(0) = −|ϕsc|,

ϕ(Lsc) = 0,

dϕ

dx
= 0 , when x = Lsc,

where ϕsc is the potential drop in the space charge layer. Here the potential in the bulk

of the semiconductor is set to zero as a reference. In the depletion approximation, ϕsc < 0

for an n-type semiconductor. Since the reference in the bulk is taken at a potential of 0 V,
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the value of ϕ(x) at the interface can be expressed as −|ϕsc|. We can find an expression

for (dϕ/dx) in equation 2.2 as follows:

d

dx

(
dϕ

dx

)
= −eND

ϵscϵ0
,

∫
d

(
dϕ

dx

)
= −

∫
qND

ϵscϵ0
dx,

dϕ

dx
= −qND

ϵscϵ0
x+ c1, (2.3)

where we found the integration constant c1. Evaluating (dϕ/dx) at x = Lsc

dϕ

dx
|x=Lsc = −qND

ϵscϵ0
(Lsc) + c1 = 0,

c1 =
qNDLsc

ϵscϵ0
. (2.4)

We substituted c1 (Eq.2.4) in equation 2.3 and solved it for ϕ(x) as follows

dϕ

dx
= −qND

ϵscϵ0
x+

qNDLsc

ϵscϵ0
,

(2.5)
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∫
dϕ =

∫ (
−qND

ϵscϵ0
x+

qNDLsc

ϵscϵ0

)
dx,

ϕ(x) =

(
− qND

2ϵscϵ0
x2 +

qNDLsc

ϵscϵ0
x+ c2

)
, (2.6)

where we calculated c2. Evaluating ϕ(0) = −|ϕsc|. From 2.6 it can be seen that c2 =

−|ϕsc|. Rearranging equation 2.6 and substituting c2 = −|ϕsc| we obtained

ϕ(x) = − qND

2ϵscϵ0

(
x2 − 2Lscx+

2ϵscϵ0|ϕsc|
eND

)
. (2.7)

The value of Lsc can be found evaluating equation 2.7 in x = Lsc considering that

ϕ(Lsc) = 0

ϕ(Lsc) = − qND

2ϵscϵ0

(
L2
sc − 2L2

sc +
2ϵscϵ0|ϕsc|
eND

)
,

0 =

(
−L2

sc +
2ϵscϵ0|ϕsc|
eND

)
,

Lsc =

√
2ϵscϵ0|ϕsc|
eND

. (2.8)

Substituting the expression of Lsc into equation 2.7, the potential distribution in the

space charge layer of the semiconductor is given by:

ϕ(x) = − eND

2ϵscϵ0
(x− Lsc)

2 , 0 ≤ x ≤ Lsc. (2.9)
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The potential profile in the space charge layer displays a parabolic behavior that decays

from the surface to the bulk of the semiconductor, as indicated by the negative sign of the

potential in Equation 2.9.12,13 A thermal correction for the width space charge layer can be

found if equation 2.1 is integrated from x = 0 to ∞ to find (dϕ/dx). From here, expressions

for the charge per unit surface area σsc and the capacitance in the space charge layer Csc can

be found. The square of the inverse of the latter is known as the Mott-Schottky equation

and it is given by

1

C2
sc

=
2

eϵscϵ0ND

[
| ϕsc | −

kBT

e

]
. (2.10)

The thickness of the space charge layer, Lsc can be determined in the general case from

the condition Csc = ϵscϵ0/Lsc

Lsc =

(
2ϵscϵ0
eND

)1/2(
| ϕsc | −

kBT

e

)1/2

. (2.11)

Description of the electrolyte

In the Stern picture, the liquid part of the semiconductor-electrolyte interface can be

modeled as a compact layer with a finite size followed by a diffuse layer that decays into the

bulk solution. The Helmholtz layer consists of adsorbed ions, adsorbed solvent molecules

from the electrolyte and solvated ions close to the semiconductor surface. In the case of

a 1 : 1 electrolyte solution, the diffuse layer consists of monovalent co-ions solvated by

water molecules. As mentioned before, Stern considered the finite size of ions and water

molecules, therefore he assumed the Helmholtz layer extends over a finite region of atomic

dimensions, which is defined from x = 0 to x = −LH in Figure 2.1. The ions in the

Gouy-Chapman layer are distributed according to the Poisson-Boltzmann equation, which

accounts for the competition between the thermal processes and the Coulomb interaction

at regions away from the surface. Taking into account the boundary conditions in every

region and the continuity of the electric displacement field, Pleskov and Gurevich found

that the potential drops for the Helmholtz ϕH and the diffuse layers ϕel.
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ϕH =
LH

√
2

ϵHϵ0

√
eϵscϵ0ND | ϕsc | , (2.12)

ϕel =
2kBT

e
arcsinh

[(
eϵscND | ϕsc |
4c0ϵelkBT

)1/2
]
, (2.13)

where LH represents the width of the Helmholtz layer and ϵH is its effective dielectric

constant; c0 is the concentration of the electrolyte and ϵel its dielectric constant. We will

show the derivation of these equations starting from the Poisson-Boltzmann equation for

the diffuse layer. In the case of a 1:1 electrolytes the Poisson equation can be expressed as

follows

d2ϕ

dx2
= − e

ϵelϵ0

(
c0 exp

−e[ϕ(x)−ϕ(el)]
kBT −c0 exp

+e[ϕ(x)−ϕ(el)]
kBT

)
, (2.14)

where ϕ(el) is the value of the electric potential in the bulk of the solution, see Figure

2.1. Taking into account that sinhx = (ex − e−x)/2, equation 2.14 can be rewritten as

d2ϕ

dx2
=

2ec0
ϵelϵ0

sinh

[
e(ϕ(x)− ϕ(el))

kBT

]
. (2.15)

We can solve equation 2.15 for (dϕ/dx), noting first that

d2ϕ

dx2
dϕ

dx
=

d

dx

[
1

2

(
dϕ

dx

)2
]
. (2.16)

Multiplying Equation 2.15 by (dϕ/dx) and substituting the left hand side by the ex-

pression in equation 2.16, we obtained

d

dx

[
1

2

(
dϕ

dx

)2
]
=

2ec0
ϵelϵ0

sinh

[
e(ϕ(x)− ϕ(el))

kBT

]
dϕ

dx
. (2.17)
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Rearranging the differentials, and integrating in both sides we found an integral ex-

pression for (dϕ/dx)

∫
d

[
1

2

(
dϕ

dx

)2
]
=

∫
2ec0
ϵelϵ0

sinh

[
e(ϕ(x)− ϕ(el))

kBT

]
dϕ

dx
dx,

1

2

(
dϕ

dx

)2

=

∫
2ec0
ϵelϵ0

sinh

[
e(ϕ(x)− ϕ(el))

kBT

]
dϕ

dx
dx. (2.18)

We solved the integral in equation 2.18 by substituting

ψ =
e(ϕ(x)− ϕ(el))

kBT
,

and noting that the differential of ψ takes the following form:

dψ =
e

kBT

dϕ

dx
dx.

Therefore we rewrote the integral in equation 2.18 as

1

2

(
dϕ

dx

)2

=

∫
2ec0
ϵelϵ0

kBT

e
sinhψ dψ, (2.19)

which yields

(
dϕ

dx

)2

=
4ec0
ϵelϵ0

kBT

e
coshψ + 2β,

=
4c0kBT

ϵelϵ0
cosh

[
e(ϕ(x)− ϕ(el))

kBT

]
+ 2β, (2.20)

where β is an integration constant. The boundary conditions in this problem are given

by
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dϕ

dx
= 0 , when x→ −∞ (2.21)

ϕ(x)|x=Lsc − ϕ(el) = ϕel, (2.22)

where ϕ(el) is the potential at the bulk of the solution ( x → −∞) and ϕel is the

potential drop in the Gouy-Chapman layer, see Figure 2.1. The first boundary condition

means that in average the electric potential is constant in the bulk of the solution and can

be used to find the integration constant β in equation 2.20. Evaluating 2.20 in the limit

of ( x→ −∞)

lim
x→∞

(
dϕ

dx

)2

= lim
x→∞

4c0kBT

ϵelϵ0
cosh

[
e(ϕ(x)− ϕ(el))

kBT

]
+ 2β,

0 =
4c0kBT

ϵelϵ0
cosh

[
e(ϕ(xx→∞)− ϕ(el))

kBT

]
+ 2β,

0 =
4c0kBT

ϵelϵ0
cosh

[
e(ϕ(el)− ϕ(el))

kBT

]
+ 2β,

β = −2cokBT

ϵelϵ0
, (2.23)

where we took into account the fact that cosh 0 = 1. Inserting β in equation 2.20, we

get an expression for (dϕ/dx)

(
dϕ

dx

)2

=
8ec0kT

ϵelϵ0

(
cosh

[
e(ϕ(x)− ϕ(el))

kBT

]
− 1

)
, (2.24)
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where latter expression can be rewritten considering cosh t− 1 = 2 sinh2(t/2)

(
dϕ

dx

)
= −

√
8ec0kBT

ϵelϵ0
sinh

[
e(ϕ(x)− ϕ(el))

2kBT

]
. (2.25)

Therefore we have an expression for the first derivative of the potential distribution

from the bulk solution to the Helmholtz layer plane x = −LH . The expression for the

potential drop in the Helmholtz layer ϕH and the potential drop in the Gouy-Chapman

layer ϕel can be found considering the conditions for electric induction continuity across

the different boundaries and the difference in the directions of the potential axes of the

different contributions

− ϵel

(
dϕ

dx

)
x=−LH

= ϵHξH = ϵsc

(
dϕ

dx

)
x=0

, (2.26)

where ξH denotes the electric field in the Helmholtz layer and ϵH is its dielectric con-

stant. The expression for the potential drop in the Helmholtz layer can be found considering

the condition

ϵHξH = ϵsc

(
dϕ

dx

)
x=0

. (2.27)

The first derivative of the potential at x = 0 can be evaluated using the expression for

the potential in the semiconductor, which is given by equation 2.9

dϕ

dx
=

d

dx

(
− eND

2ϵscϵ0
(x− Lsc)

2

)
= −eND

ϵscϵ0
(x− Lsc). (2.28)

Evaluating equation 2.28 in x = 0 and inserting it in 2.27, we obtained

ϵHξH = −ϵsc
eND

ϵscϵ0
(0− Lsc). (2.29)

Substituting the expression for the width of the space charge layer Lsc as expressed in

equation 2.8 in the latter equation, we obtained
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ϵHξH = ϵsc
eND

ϵscϵ0

√
2ϵscϵ0|ϕsc|
eND

,

=

√
2eϵscND|ϕsc|

ϵ0
. (2.30)

Since the charge density at any point from the semiconductor surface to Helmholtz layer

plane −LH is zero, the field ξH is constant and can be estimated as ξH = ϕH/LH . Therefore

equation 2.30 can be rearranged to find ϕH

ϕH =
LH

ϵH

√
2eϵscND|ϕsc|

ϵ0
,

=
LH

ϵH

√
2eϵscND|ϕsc|

ϵ0
∗
√
ϵ0√
ϵ0
,

=
LH

√
2

ϵHϵ0

√
eϵscϵ0ND|ϕsc|. (2.31)

We can find ϕel, if we consider the continuity of the electric induction in the Gouy-Chapman

layer and the Helmholtz layer as expressed in equation 2.22 and substituting the expression

for (dϕ/dx) in equation 2.25, we have

ϵHξH = −ϵel
(
dϕ

dx

)
x=−LH

,

=

√
8ec0kT

ϵelϵ0
sinh

[
e(ϕ(−LH)− ϕ(el))

2kBT

]
. (2.32)

Considering the boundary condition ϕ(−LH)− ϕ(el) = ϕel. We can express equation 2.32
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as follows

ϵHξH =

√
8ec0kBT

ϵelϵ0
sinh

[
eϕel

2kBT

]
. (2.33)

Substituting the expression for ϵHξH found in equation 2.30 in the the left hand side of

equation 2.33

√
2eϵscND|ϕsc|

ϵ0
=

√
8ec0kBT

ϵelϵ0
sinh

[
eϕel

2kBT

]
. (2.34)

Finally, inverting the sinhx function and solving for ϕel, we obtain

ϕel =
2kBT

e
arcsinh

[(
eϵscND | ϕsc |
4c0ϵelkBT

)1/2
]
.

The Galvani potential or the total potential drop at the interface is given by

ϕtotal = |ϕsc|+ ϕH + ϕel. (2.35)

It is important to mention that LH and ϵH were introduced in the definition of the

system and the boundary conditions. And at the same time they cannot be measured

directly in electrochemical experiments. Therefore they have to be estimated by other

means. Other observation is that the expressions for Lsc, ϕH and ϕel depend on the

value of ϕsc, thus the latter should be related to an experimental quantity. We also find

important to point out that the depletion approximation is a necessary condition for the

Mott-Schottky equation to hold. Specially at moderately high doping densities because

under these conditions the majority of the potential drop in the interface is located in the

space charge layer.
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2.1.2 Determination of the parameters from the Helmholtz layer

We determined the values of the width of the Helmholtz layer LH and its dielectric constant

ϵH from ab-initio molecular-dynamics simulations (AIMD) of the hematite-electrolyte in-

terface found in Ref.32 We used the results on capacitances and water density profiles they

provided for the stoichiometric FeO3Fe and the hydroxylated terminations to determine

the Helmholtz layer parameters.

We extracted LH from the analysis of the water densities profiles for both terminations

reported in Ref.32 First we determined the distance between the surface of hematite and

the Outer Helmholtz Plane (OHP) to estimate the extension of the Helmholtz layer. The

OHP corresponds to the plane that passes through the centers of the ions that are not

specifically adsorbed to hematite. We assumed that the first hydration layer in the water

density profiles accounts for the adsorbed solvent molecules on the surface and the water

molecules solvating the ions in the OHP. Therefore we set the OHP at the peaks of the

ion distributions that are immediately after the first hydration layer, which is determined

by the first peak in the water density profile reported by Ulman et al. The surface was

defined as the Fe plane in the case of the FeO3Fe-termination and the OH plane in the

case of the OH-termination, see Ref.32 We set the OH plane as the plane that passes

through the Oxygen atom. The simulations were done for different monovalent ions for

every termination, therefore we averaged the resulting LH in all the cases. This yielded

values of LH = 4.4 Å and LH = 6.4 Å respectively. We then estimated the value of the

dielectric constants by assuming the Helmholtz layer behaves like a parallel-plate capacitor

which obeys

CH =
ϵHϵ0
LH

, (2.36)

from which we obtained a value of ϵH = 25.3 for the stoichiometric termination and a

value of ϵH ∼ 29.1 for the OH termination. It is important to point out that the values

estimated for LH and ϵH behave qualitatively as expected. It is always assumed that the

Helmholtz layer extends over distances of the order of radii of solvated ions. Magnussen
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and Gross observed the flattening of the average electrostatic potential after the first water

layer on Pt(111) via AIMD.35 They claim this bulk-like behaviour implies that the width

of the compact part of the electric double layer should be lower than 10 Å.

It is well known from experiments that the local dielectric constant in electrolytic

solutions decreases as it moves from the solution bulk to a charged surface.36 The latter

behavior was used to explain recent experimental measurements of the kinetics of charge

transfer which mapped the behavior of the local dielectric constant from the diffuse layer to

the Helmholtz layer.36 Though, the values of the dielectric constants at the Helmholtz layer

were not reported in this study. We reported values of ϵH much lower than the dielectric

constant of bulk water ϵwater ∼ 78 and bulk electrolytic solutions.37–40 Values with similar

magnitudes were estimated in literature for other systems. For example, Conway et al.

estimated ϵH for a silver electrode in aqueous acid solution to be around ∼ 15.41

We also estimated the Helmholtz layer parameters in an alternative way from exper-

imental data to check whether we were able to get compatible values with the ones we

extracted via ab-initio simulations. There is no way to determine the values of LH and ϵH

directly from the available electrochemical data. However we fixed one of these two quan-

tities, and checked which values of LH and ϵH are compatible with the measured values of

Helmholtz layer capacitances CH reported in literature.21–23,42 We selected the values of

capacitances reported for samples with (12̄02) surface orientation because it is structurally

closer to the stoichiometric termination FeO3Fe termination, which is the one we used to

model the surface. We also filtered the available data, by considering experiments held

in solutions with pH> 3 because hematite is unstable at strong acidic conditions. We

calculated the width of the Helmholtz layer LH using the planar capacitor equation 2.36,

using three different orders of magnitude of the dielectric constant ϵH =1, 10 and 100 and

for three intermediate values of ϵH =5, 25, 30, 40 and 50. The resultant values of LH can

be seen in Table 2.1.

To estimate the value of the dielectric constant, we kept the columns for which the

calculated values of LH fell in a physically reasonable range, i.e. between the Bohr radius

and ∼10 Å,35 and discarded the rest. Then we kept the values of ϵH smaller than the

bulk dielectric constant of the NaOH solutions used in these experiments. Among the ϵH
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CH(µF/cm
2) | ϵH(Å) : 1 5 10 25 30 40 50 100

3521 0.25 1.26 2.53 6.32 7.59 10.12 12.65 25.30
5322 0.17 0.84 1.67 4.18 5.01 6.68 8.35 16.71
75.122 0.12 0.59 1.18 2.95 3.54 4.72 5.90 11.81
8842 0.1 0.5 1.01 2.52 3.02 4.02 5.03 10.06
18022 0.05 0.25 0.49 1.23 1.48 1.97 2.46 4.92
227.523 0.04 0.19 0.39 0.97 1.17 1.56 1.95 3.89
237.723 0.04 0.19 0.37 0.93 1.12 1.49 1.86 3.72
33123 0.03 0.13 0.27 0.67 0.80 1.07 1.34 2.67

Table 2.1: Values of LH (Å) calculated from experimental capacitances, assuming the
Helmholtz layer behaves like a planar capacitor. The value of ϵH vary in the direction of
the columns and the value of the capacitance in the Helmholtz layer CH changes across
the rows.

values considered, ϵH = 25 showed to be the best estimation of the dielectric constant given

that it yielded the highest amount of acceptable LH within a broad range of experimental

capacitances. The values of 30 and 40 for the dielectric constant also yielded acceptable

values of LH . However, it can be observed in table 2.1 that the dependence of LH on the

dielectric constant is weak. Therefore, the results should change quantitatively, but not

qualitatively.

To estimate the value of LH , we decided to set LH to values of 1.25 Å, 2.5 Å, 5 Å and

10 Å and to test the behavior of the total potential drop using the continuous equations

at the experimental conditions. We noticed that in general the potential drops through

the different layers behaved as expected at doping densities of ND ∼ 1018cm−3, i.e. the

drop in the space charge layer of the semiconductor dominates over the other two. We

decided to choose an intermediate value of 5 Å given that no drastic differences were found

while varying the value of LH . This value also falls in the range of the Lsc estimated for

ϵH = 25 using the capacitances measured in experiments, see Tab. 2.1. Therefore we can

see that Helmholtz layer parameters obtained through the analysis of the experimental

data is compatible with the values found via ab-initio results.
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2.1.3 Connection of equations with experiment

As we mentioned previously, the potential drop in the space charge layer ϕsc is the param-

eter needed to define the drops in the other two layers. Therefore we should identify a

connection between this quantity and the experimentally applied potential.

We found this connection through the flat band potential Vfb, whose measurements are

reported in the considered experiments. At an applied potential equal to the flat band

potential ϕsc = 0, as a consequence ϕel, ϕH and ϕtot are also zero, as clearly shown by Eq.

2.12 and 2.13. These conditions can be used to connect the macroscopic quantities provided

by experiments and the microscopic quantities described in the equations describing the

semiconductor-electrolyte interface. The next crucial assumption is that the main changes

in voltage occur at the hematite-electrolyte interface when the applied bias is moved away

from flat-band conditions. The applied voltage Vapp reported in experiments can thus be

associated to the total potential drop across the interface:

Vapp − Vfb = ϕtotal = |ϕsc|+ ϕH + ϕel. (2.37)

With this equation and the ones for the potential drops in ϕel and ϕH , we can fully

describe the potential drop across the interface as a function of the experimental conditions.

In every case, the value of ϕsc has to be found by solving numerically a system of these

equations. To ensure uniformity in the selected data, we chose the experiments held at 1

Sun of illumination and using 1M NaOH solutions as the electrolyte, except Ref.24 and

Ref.25 which used 0.1M NaOH. We set the values of ϵel to the dielectric constants reported

by Buchner et al. for NaOH solutions.38

We used a dielectric constant of ϵsc = 57 for hematite. This value was measured by Ref.

43, where they used pure-undoped hematite and reported dielectric constants ranging from

32 to 57. We also found values between 12-120 for ϵsc in literature,43–46 including some

with strong temperature dependence.46 Though the problem of choosing an appropriate

dielectric constant for hematite remains open, we chose the constant from Ref. 43 because

they measured it with the c-axis of the hexagonal structure perpendicular to the substrate.
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We disregarded any dependence of ϵsc on doping, given that any variation of the dielectric

constant produces a change of the order of a square root in the equation for Lsc (Eq.

2.11). We report calculations with ϵsc in the Appendix A to show the robustness of our

calculations. The calculations in Appendix A are consistent with calculations performed

using ϵsc = 57.

We would like to remark that in literature the width of the space charge layer is often

calculated using Vapp−Vfb instead of ϕsc.
47,48 As we will show, this is justified at low

doping, where the contribution of the space charge layer dominates in the total potential

drop. But this is not true at high doping concentrations, where the drop in the Helmholtz

layer is not negligible compare to the one in the space charge layer of the semiconductor.

2.2 Density functional Theory

Density functional theory (DFT) allow us to have access to the ground state properties

of real materials via the ground state electronic density. Using the electronic density is

practical because this quantity depends on the positions of the atoms instead of compli-

cated wavefunctions that depend on 3N degrees of freedom. Since matter is composed

of electrons and nuclei, it constitutes an interacting many-body system. Based on the

Born-Oppenheimer approximation, DFT is able to treat an interacting-electron system in

a simpler one body formalism. Though this is an exact theory, some approximations in

the modeling of the many body effects should be done in order to use it in practice. In

the following chapter we will introduce the concepts in which Density functional theory is

based on as well as the approximations required to implement it.

2.2.1 Born-Oppenheimer approximation

Density functional theory relies on the Born-Oppenheimer approximation, which allows

to treat the electronic and nuclear problem separately. Due to the big difference in the

masses of the electrons and nuclei, the electrons move faster than the nuclei degrees of
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freedom and therefore the electrons see the nuclei as if they were fixed. Therefore an

ansatz for the wavefunction can be proposed, where it can be expressed as the product of

a nuclear wavefunction and an electronic wave function, where the nuclear coordinates act

as a parameter in the latter.

Ψ(r,R) = ΦR(r) · χ(R), (2.38)

where R represents the coordinates of the nuclei, r the electronic coordinates, χ(R)

is the nuclear wavefunction and ΦR(r) correspond to the electronic wavefunction. The

Hamiltonian for a set of Nn nuclei and Ne is given by

H = −
Ne∑
i=1

ℏ2

2me

∇2
i−

Nn∑
I=1

ℏ2

2MI

∇2
I+

1

2

∑
I,J

ZIZJe
2

|RI −RJ |
+
1

2

∑
ij

e2

ri − rj
−
∑
Ii

ZIe
2

|RI −RJ |
, (2.39)

where the first term corresponds to the kinetic energy of the electrons; the second term

to the kinetic energy of nuclei; the third term accounts for the interactions between the

nuclei; the fourth term describes the electron-electron Coulomb interaction; and the fifth

term represents the interaction between nuclei and electrons, this term is fundamental

because is attractive contribution to the Hamiltonian that holds all the particles together.

We can apply the nuclear kinetic energy operator to the total wavefunction proposed

in the ansatz given by eq. 2.38 and using the fact that me ≪ MI , we can neglect the

so-called non adiabatic terms.
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TIΨ(r,R) = −
Nn∑
I=1

ℏ2

2MI

∇2
IΨ(r,R) = −

Nn∑
I=1

ℏ2

2MI

∇2
I [ΦR(r) · χ(R)] , (2.40)

TIΨ(r,R) = −
Nn∑
I=1

ℏ2

2MI

[
χ(R)∇2

IΦR(r) + ΦR(r)∇2
Iχ(R) + 2∇2

IΦR(r) · ∇2
Iχ(R

]
, (2.41)

TIΨ(r,R) = −
Nn∑
I=1

ℏ2

2MI

[
ΦR(r)∇2

Iχ(R)
]
. (2.42)

Applying the approximation obtained for the nuclear kinetic energy in the eq. 2.42 to

the Hamiltonian in eq. 2.39 and integrating out the electronic degrees of freedom. The

nuclear and electronic problem can be separated. The nuclear problem is reduced to solve

this Schrödinger equation:

−
Nn∑
I=1

ℏ2

2MI

∇2
Iχ(R) + U(R)χ(R) = Eχ(R). (2.43)

The nuclear degrees of freedom are treated quantum mechanically. Due to the lo-

calized nature of solutions, they display a classical behavior. Where U(R) is the Born-

Oppenheimer potential energy surface, it represents the ground state potential energy of

the electronic problem when the nuclei are determined by the vector R. U(R) can be found

by solving the Schrödinger problems for the electronic degrees of freedom.

(
−

Ne∑
i=1

ℏ2

2me

∇2
i +

1

2

∑
ij

e2

ri − rj
−
∑
Ii

ZIe
2

|RI −RJ |
+

1

2

∑
IJ

ZIZJe
2

|RI −RJ |

)
Φα

R(r) = Uα(R)Φα
R(r).

(2.44)

The electronic problem is thus an interacting electron system since it cannot be de-

coupled in a one-body problem. Fortunately DFT provides the framework to tackle this

problem.
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2.2.2 Hohenberg-Kohn Theorem

Density functional is based the Hohenberg-Kohn theorem which states that the total energy

of an interacting electron system is a functional of the electronic density. They showed that

there is a one to one relation between the electronic density and the external potential.

Which means that a determined ground state electronic density is caused by one and only

one external potential. Therefore, given an external potential, we can write the ground

state total energy as functional of the electronic density.

Hohenberg and Kohn did not give a hint on how to build this functional. But a

functional based on the interacting electrons problem can be proposed

E[ρ] = T [ρ] + Eext[ρ] + EHartree[ρ] + EXC [ρ], (2.45)

where T [ρ] corresponds to the kinetic energy term; Eext[ρ] to the contribution from the

external potential which is produced by nuclei; EHartree[ρ] is the Hartree term represent-

ing the electron-electron pairwise Coulomb interaction; and the EXC [ρ] is the exchange

and correlation energy functional, which encloses the many-body effects and includes the

corrections to the kinetic energy and the Coulomb interactions. The real ground state elec-

tronic density is the one that minimizes the total energy functional. Therefore a variational

method has to be applied to the total energy functional with respect to the electronic den-

sity conserving the number of electrons. It is important to mention that certain electronic

densities cannot be represented by any external potential, which is a signature that they

do not correspond to ground state electronic densities.

2.2.3 Kohn-Sham equations

Kohn and Sham proposed an ansatz in which they assumed that the ground state density of

the original interacting system is equal to that a non-interacting system. Which translates

in a mapping of an interacting electron problem to one-body formalism. This allow us
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to introduce a set of auxiliary Kohn-Sham orbitals ϕi(r). We can express the electronic

density in terms of these orbitals

ρ(r) =
Ne∑
i

fi |ϕi(r)|2 , (2.46)

where fi is occupation of the orbital state ϕi. Since there is no direct expression of the

kinetic energy in terms of the electronic density, this change of variables allow us to have

an approximate expression of the kinetic energy

T0[ρ(r)] = −
∑
i

fi

∫
ϕ∗
i (r)

ℏ2∇2

2m
ϕi(r)dr, (2.47)

and therefore we can re-express the total energy functional as follows:

E0[ρ] = T0[ρ(r)] +

∫
d3rρ(r)V ext +

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
+ Exc[ρ].

In this case the exchange and Exc[ρ] correlation functional will include the corrections

generated by expressing the kinetic energy in terms of the Kohn-Sham auxiliary orbitals.

We can find the shape of the effective potential VKS acting on the fictitious non-interacting

system by minimizing the ground energy functionals of both interacting and non-interacting

systems with respect to the same electronic density. The constraint given by the conser-

vation of the total number particles should be preserved during the variational procedure.

VKS = Vext + e2
∫

ρ(r′)

|r− r′|
dr′ + vxc,

where vxc is given by
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vxc =
∂Exc[ρ]

∂ρ(r)
.

The so-called Kohn-Sham equations can be obtained by minimizing the total energy

functional E0[ρ] with respect to the Kohn-Sham orbitals Φi and keeping fixed the total

number of electrons:

HKSΦi(r) =

[
−ℏ2∇2

2m
+ VKS

]
Φi(r) = ϵiΦi(r).

Therefore, the many body problem is reduced to the solution of a non-linear set of

Schrödinger-like equations, in which the electronic density should be obtained but also is

required to build the Kohn-Sham potential. Therefore these equations should be solved

self-consistently with an initial guess for the electronic density and therefore VKS until the

convergence of both is reached.

Solving the Kohn-Sham equations translates to find the ground state electronic function

of the interacting electron system and therefore the ground state energy. The electronic

density provides the framework to work in a mean field approach, here the real electronic

system was treated as a non-interacting system of electrons feeling a potential VKS which

accounts for the many-body effects.

2.2.4 Exchange and correlation energy functional

We can say that the goal of the Kohn-Sham equations is to determine the ground state

electronic density and therefore the ground state energy given the exchange and correlation

functional Exc[ρ]. However no definite shape has been given to this functional. Indeed,

no expression for Exc[ρ] is known for systems having more than one electron. In order to

model the many-body effects and to put in practice DFT, the Exc[ρ] functional should be

approximated. One of these approximations is the Local (Spin) Density approximation

L(S)DA. In this approach, the real system is assumed to have locally the same density of

an homogeneous electron gas. In this case the Exc[ρ] functional can be expressed as
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ELDA
xc [ρ] =

∫
εhom(ρ(r))ρ(r))dr,

where εhom(ρ(r)) is the local energy density of an homogeneous electron gas. To treat

magnetic systems one can express the Exc[ρ] functional in terms of both populations of

spins and solving the Kohn-Sham populations for each spin population independently. Here

the spins interact via the Hartree interaction and the exchange and correlation potential.

The unbalance in the populations of spin is caused by the effect of the Exc[ρ] functional,

therefore generating a finite magnetization.

The LDA approximation can describe the electronic, structural and magnetic properties

of the ground state for materials like nearly-free-electron metals, ionic solids and intrinsic

semiconductors. Though this approximation is made for systems with smooth electronic

densities, it also works for systems with which are not perfectly homogeneous like covalent

compounds. However it fails in reproducing binding energies and equilibrium bond lengths.

The Generalized Gradient Approximation (GGA) was created as an effort to account

for the possible density inhomogeneities found in real systems. In this case, the exchange

and correlation functional is also a functional from the local density variations:

EGGA
xc [n] =

∫
ϵGGA
xc (n(r), |∇n(r))n(r)dr. (2.48)

Though improvements in binding energies and structural properties could be achieved

with this approximation, still DFT as implemented in the LDA and GGA approximation

is a mean field approach. In order to add the correlations caused by localized charge

distributions, corrections should be done to the Exc[ρ] energy functional. In this work we

used the Perdew-Burke-Ernzerhof (PBE) exchange and correlation functional, which is in

the GGA approximation, to approximate the functional Exc[n].
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2.2.5 DFT + U

DFT is unable to describe correctly strongly-correlated materials. This drawback has its

origin in the original assumption that the real system behaves like an electron gas. This

framework makes either GGA and LDA unable to make correct calculations for materials

with localized charge distributions and therefore strong correlations, as evidenced in the

incorrect description of transition-metal oxides as metals or small-gap semiconductors.

Correlations are present in systems with highly localized charge distributions, like atoms

with partially filled d or f orbitals. For example in the case of hematite, it is well known

that the 3d orbitals from the iron atoms are localized in space. It is well known that there is

a competition between the kinetic energy (which can be obtained from the bandwidth) and

the potential energy that an electron should pay when approaching a region with localized

charge. When the kinetic energy dominates, electrons can overcome the Coulomb potential

energy originated by charge distributions and delocalize, as it happens in metallic systems.

On the other extreme case, when there is a extremely localized state, the price in potential

energy an electron has to pay to approach to it is higher than the kinetic energy. Making

it difficult for electrons to hop to different sites, which is visible in the narrow bands in the

electronic structure, which translates to an insulating behavior.

The natural framework to model correlations can be found in many-body Hamiltonians

like the Hubbard Model which in in its simplest form is expressed as:

H = −t
∑
<ij>σ

c†iσcjσ + U
∑
i

ni↑nj↓, (2.49)

where c†iσcjσ is the spin density operator niσ for spin σ on the i-th site and U is the

magnitude of the Coulomb repulsion between two electrons with opposite spins located in

the same site. In the Hamiltonian the hopping term (which is related to the bandwidth)

and the U Coulomb potential energy are the interaction parameters and can be modulated.

Therefore corrections to the exchange and correlation functional can be done based on a

Hubbard-like mean-field approximation, however the results strongly depend on the values

given to the interaction parameters. The main drawback is that there is not a fixed proce-
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dure to determine the U parameter, in many cases it is chosen to provide calculations that

reproduce experimentally observed band gaps. And another drawback is that Hamiltoni-

ans are too simple, that no details in the nature of the electronic structure of the material

can be modeled.

2.3 DFT calculation details

We investigated the bending of the energy bands of the hematite (0001) surface using

density functional theory (DFT). We performed the calculations in the spin-polarized

planewave-pseudopotential formalism using the PBE exchange-correlation functional,49 as

implemented in Quantum ESPRESSO.50 We also considered the DFT+U correction in

our calculations to take into account the effects of the localized nature of the 3d iron or-

bitals in hematite.51,52 We chose the U parameter to be 4.2 eV, which yields a band gap

of ∼ 2 eV, in agreement with Ref. 53.

We performed the bulk calculations using a 30-atom hexagonal unit cell composed by six

formula units of Fe2O3. We determined the values of the energy cutoffs and k-point grid we

used in our calculations by testing the convergence of the energy differences in spin-paired

and spin-polarized bulk hematite. We chose the input values for the calculation until the

latter difference in energy converged with a variation of around 10 meV. We selected energy

cutoffs of 40 Ry and 480 Ry for the wavefunctions and the charge density, respectively.

And we considered a k-point grid of 6 × 6 × 2 for the special-point integration in the

Brillouin-zone. We performed a variable-cell relaxation to optimize the lattice constants

of the crystals structure, obtaining values of a=5.11 Å and c=13.94 Å . These parameters

differ in less than 2% with the experimental values (a = 5.0356 Å and c = 13.7489 Å).53,54

This structure yielded a band gap of ∼ 2 eV and a magnetic moment per iron atom of 4.29

µB (experimental value.:53,55 4.6 µB).

We performed calculations for the stoichiometric FeO3Fe termination of the (0001)

surface of hematite, which has shown to be the most stable in a wide range of oxygen

chemical potentials according to ab-initio thermodynamics.53,56–58 We modeled the sur-

34



face using slabs with an odd-number of bilayers of hematite (one bilayer corresponds to

one formula unit of Fe2O3) because it allowed to preserve the mirror symmetry of the an-

tiferromagnetic (AFM) ordering. We used a vacuum of 20 Å between the slabs in the cell

to decouple the surfaces and we chose a 6× 6 × 1 to sample the Brillouin zone, following

the grid convergence for the bulk calculations. We computed the surface energy for the

5-bilayered Fe3O2 surface to check the consistency of our calculations compared to simi-

lar DFT calculations performed in literature. We obtained a value of 62 meV/Å2 for the

surface energy, which agrees with the result reported by Nguyen et al.53
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Chapter 3

Continuous equations

In this chapter we use the continuous model based on the Stern model and the Poisson-

Boltzmann introduced in the previous chapter to show the trends followed by the width

of the space charge layer Lsc and the potential drop across the interface in dependence

of the experimental conditions found in literature. We also show the existence of more

experiments displaying ultrathin space charge layers and explore the effects of high doping

on the interface. Before discussing this, in the first part of the chapter, we discuss the

validity the continuous model under alkaline conditions.

3.1 Validity of continuous equations in alkaline envi-

ronments

The water splitting experiments reported in literature usually take place at alkaline pH.

Therefore it is important to know, whether or not the equations proposed in the last

chapter are valid under these conditions. For this purpose, we connected the continuous

equations to experimental measurements in Ref. 59. Boily et al.59 claimed they measured

the interfacial potential ψ0 for the (001) hematite surface as a function of pH and ionic

strength (the concentration of each ionic species in the solutions) in NaNO3 solutions.
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They measured the spontaneous electromotive force E of a single hematite crystal with

respect to a standard reference electrode using a high impedance potentiometer. According

to them, the changes of the electromotive force E — as a function of pH, ionic strength,

adsorbate concentration, and electrolyte composition — arise from the semiconductor-

electrolyte interface. They considered the latter was true if the reference electrode used in

the measurements showed a constant potential that does not depend on the composition

of the solution. They used the Basic Stern Model (BSM) to describe the electric double

layer, which is constituted by the Helmholtz layer or Stern layer and the Gouy-Chapman

layer, see Figure 3.1. The plane 0 corresponds to the inner Helmholtz plane and the plane

Figure 3.1: Diagram of the Basic Stern Model. The plane x0 corresponds to the inner
Helmholtz plane and the plane xb marks the end of the Helmholtz layer and the beginning
of the diffuse layer. Ψ0 is the interfacial potential, Ψb is the value that the potential takes
at the outer Helmholtz plane and Ψd is the potential in the diffuse layer. σ0, σb and σd are
the charges at the inner Helmholtz plane, the outer Helmholtz plane and the diffuse layer.
The capacitance in the Stern layer is given by CStern.
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b marks the end of the Helmholtz layer and the beginning of the diffuse layer. Boily et

al., related their measured E to the potential Ψ0 developed in the inner-Helmholtz plane

of the hematite-electrolyte interface. At the same time, they also proposed a connection

between Ψ0 and the capacitance of the Stern layer Cstern or Helmholtz layer, the surface

charge σ0 and the potential measured at the plane b with respect to the bulk solution, Ψb.

E = Ψ0 = σ0/CStern +Ψb. (3.1)

From figure 3.1, we can see that the potential drop in the Stern (Helmholtz) ϕH layer

corresponds to:

ϕH = Ψ0 −Ψb. (3.2)

Thus, Ψ0 can be estimated from the parameters ϕH and Ψb. Given that Ψb is measured

with respect to the bulk solution, it corresponds to ϕel (Equation 2.13). Hence,

Ψ0 = ϕH + ϕel, (3.3)

where ϕH is the potential drop in the Helmholtz layer and ϕel is the potential drop in

the diffuse layer, defined respectively in equations 2.12 and 2.13.

We considered the measurements performed in two solutions of NaNO3 with concen-

trations of 10mM and 500mM. The measured surface potentials E as a function of the pH

for the two different solutions are represented by the curves represented by small circles

and triangles in Figs. 3.2 and 3.3. The pH in the experiments was modified with the

addition of HNO3 and NaOH, to get more acidic or alkaline conditions respectively. The

different geometric figures in the plots represent different titrations or volumetric analysis

performed in the same hematite sample to achieve the acidic or alkaline pH conditions. In

both cases the solutions had concentrations of 10mM and 500mM at pH 7. The addition

of the acid and the base also modified the ionic strength of the solutions, in this case the
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Figure 3.2: Surface potential Ψ0 as a function of the pH for a solution with initial concen-
tration of 10mM NaNO3 at a pH 7 (neutral conditions). The geometric shapes represent
different titrations performed using the same hematite sample. The colored lines show the
output of the continuous model proposed in Eq. 3.3 at different potential drops in the
space charge layer.

particular concentration of the cations in the solution. In the experiment they used natural

hematite crystals exhibiting large smooth faces of (001) orientation.

To recreate the experimental conditions performed by Boily et al.,59 we set the pa-

rameters in the equations describing the potential drop at hematite-electrolyte interface as

follows:

• Donor density. We set the donor density to be of the order of 1018cm−3, which
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Figure 3.3: Surface potential Ψ0 as a function of the pH for a solution with initial concen-
tration of 500mM NaNO3 at a pH 7 (neutral conditions). The geometric shapes represent
different titrations performed using the same hematite sample. The colored lines show the
output of the continuous model proposed in Eq. 3.3 at different potential drops in the
space charge layer.

is a value that has been observed experimentally in pure hematite60.45 However we

also studied the behavior of the equations when the donor density is of the order of

1017cm−3 and 1019cm−3.

• Ionic strength (concentrations). We used the pH to estimate the ionic strength

of the NO−1
3 anion in the acidic region, which goes from 0.01/0.5M at pH 7 to

1.01/1.50M at pH 0 (for 10mM NaNO3 and 500mM NaNO3 respectively). We used

the same reasoning to calculate the concentration of the ion Na+ in the alkaline
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region. Given that NaNO3 is a strong electrolyte, HNO3 is a strong acid and NaOH

is a strong base i.e. they are completely dissociated at any pH; the ionic strengths of

the ions were calculated as the sum of the concentrations of the original 0.01M/0.5M

solutions plus the concentration of H+/OH− donated by the strong acid and strong

base.

• Dielectric constants from the solutions. Around the neutral-pH region, the

concentrations of the electrolyte solutions are dominated by NaNO3 (pH 2-12). We

chose the values we used for ϵel from experimental dielectric constants corresponding

to NaNO3 solutions61.62 Away from the neutral region, the concentration is domi-

nated either by the HNO3 or NaOH, in the acidic and alkaline regions respectively.

Therefore we considered the experimental values of the dielectric constants of NaOH

solutions38 for the alkaline region. We used the data available for NaNO3 solutions
61

for the acidic region, given that we do not have data for the dielectric constants

of HNO3 solutions. When the concentration of the electrolyte is comparable to the

added base or acid, we calculated the dielectric constant of the solution as a weighted

average of the components. In most of the cases the dielectric constants at specific

concentrations are not found in literature, therefore we estimated them by fitting the

existing data to linear equations.

• Helmholtz layer parameters. Given that the OH termination is shown to be the

dominant termination of hematite in contact with water63,10 we used ϵH = 29.1 and

LH = 6.4 Å that we calculated from the theoretical result for the OH termination

obtained by K. Ulman (see section 2.1.2 )

The results we obtained for the surface potential Ψ0 (see equation 3.3) for the 10mM

NaNO3 and 500mM NaNO3 solutions, can be seen in Figures 3.2 and 3.3, respectively. The

lines in colors represent the results obtained using the equations. The geometric figures

represent the experimental data we wanted to reproduce. Since ϕH and ϕel depend both

in ND and |ϕsc|, we checked the behavior of the system under different conditions dictated

by these parameters.
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We recovered the plateau in the experimental curves in Figs. 3.2 and 3.3 at intermediate

and alkaline pH values. The ideal (001) hematite surface is expected to remain charge-

neutral around the 2 − 10 pH range and therefore the flat region should be located at an

average zero potential.59 Using the equations we have for ϕel and ϕH , the plateau is not

always close to Ψ0 ∼ 0 V. However it is important to point out that the experimental

results were shifted by a constant value in order to yield a neutral Ψ0 in the flat region.59

According to Figures 3.2 and 3.3, the neutral plateau is reached at low values of ϕsc at

doping densities around [1017cm−3, 1018cm−3], which correspond to pure hematite according

to experimental literature.?, 45, 60 The latter might imply that the model is reasonable at

alkaline conditions.

To check the validity of the latter results, it is important to analyze whether the pa-

rameters introduced in Equation 3.3 are reasonable. Some of these parameters are fixed

since they are part of the set up from the experiment and the nature of the sample, like the

doping density ND and the concentration of the solutions c. The remaining parameter to

analyze is the potential drop in the space charge layer ϕsc. Since here we dealt with pure

hematite, we should analyze the data at doping densities around [1017cm−3, 1018cm−3]. We

can see in Figures 3.2 and 3.3 that the best fits to the experimental data are obtained

at low values of ϕsc. Since the measurements in this experiment were performed without

the presence of any external field, there is no way to increase the potential drop in the

semiconductor. Therefore, small values of ϕsc are physically reasonable. It is important to

mention that |ϕsc| is constrained to take values greater than kBT/e, therefore the lowest

value we tested is 0.05V.

At acidic pH conditions we expect to have positively charged (001) surfaces due to

the protonation of the predominant µ − OH terminations, according to the experiment.

Therefore Ψ0 should take higher values than the ones found in the plateau. In the ex-

periment the surface potential Ψ0 is steepest for 500mM NaNO3 than for 10mM NaNO3.

Experimentalists attribute this change to the emergence of additional proton-active sites

caused by the HNO3-promoted dissolution of the (001) hematite surface,59 i.e. the surface

becomes more positive. The continuous equations are not able to describe the acidic region

given that lack from the description of the adsorption of the protons on the surface. The
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model is also unable to capture the effect of the dissolution of the (001) on the creation of

new proton-active sites. In this analysis we just took into consideration those experimental

results in which the surface was not dissolved by addition of the titrant, i.e. fast titrations.

According to Boily et al.,59 the (001) surface showed to be stable during fast titrations due

to the slow rate of acidic dissolution of hematite (001). The latter fact was reflected in the

reversibility of the protonation of the surface by successive alkalimetric and acidimetric

titrations.

Although we were not able to reproduce the data from Boily et al. at acidic conditions,

people have been able to reproduce this experimental results using surface complexation

models. These models help to take into account the adsorption of potential determining

ions by applying a thermodynamic approach to describe the formation of surface complexes.

For example, Boily et al.59 developed a thermodynamic surface complexation model based

on the basic stern model to describe their experimental results. In general surface com-

plexation models are used together with models for the electric double layer (Helmholtz

and Gouy-Chapman layer).64 However their implementation generally imply the fitting

of equilibrium K constants, capacitances and the surface site density to the experimental

data. And in addition, the parameter sets obtained for each fitting have shown to be non-

unique. In recent years, people have been working to find a way to develop approaches

to estimate the parameters in an internally consistent manner.64 In order to improve the

description we have of the interface, we have to take into account the adsorption of ions

(including al the phenomena involved like coordination, bonding, solvation). As well as

the atomic structure of the surface given that different surface orientations have different

charging behavior.

Summarizing, the model we chose to describe the hematite-electrolyte interface seems to

work reasonably well at alkaline conditions. These are the pH conditions we are interested

in, given that water splitting experiments are held under these conditions due to the

instability of hematite at pH < 3.
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3.2 Space charge layer width

The width of the space charge layer is decisive for the efficiency of the photocalalyst in

the electrochemical splitting of water: it promotes electron-hole separation and helps to

avoid recombination.60,65 This is possible due the existence of an electric field caused by the

depletion of conduction electrons from this region. Figure 3.4 depicts the width of the space

charge layer Lsc as a function of the doping density for different experiments. The white and

the black dots illustrate the values of Lsc at which the Oxygen evolution reaction (OER)

occurs under illuminated and dark conditions, respectively. The straight lines represent

the values that Lsc takes in the whole range of applied bias in every experiment. And

the inset in Figure 3.4 zooms the data at high doping densities, which is around ∼ 1021

donors/cm3.
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Figure 3.4: Calculated drop of the space charge layer Lsc versus the doping density. The
inset shows a zoom in on the data at high doping densities ∼ 1021cm−3. The white and
black dots represent the data of the onset of the OER under illuminated (1 sun) and dark
conditions.
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We observed that the width of the space charge layer can be as small as 1 nanometer in

some experiments, see Figure 3.4. As we mentioned before, Tachikawa et al. recently mea-

sured such small space charge layers in highly doped and nanostructured hematite films.28

We did not report the experiment in Ref. 28 in our work because of the lack of reported

parameters needed as an input in the model we are using. We noticed that the hematite

samples from the two experiments with the smallest Lsc have different microstructures. Le

Formal et al.27 used silicon-doped hematite thin-films with cauliflower-like nanostructures

of around 5 nm and Rothschild et al.66 used Ti-doped thin-films hematite photoanodes

with a thickness of 50 nm. In the experiment by Le Formal et al.27 the space charge layer

represents a substantial volume-fraction of the photoanode, which is not true for the other.

This difference is evidenced in the remarkably high photocurrent densities and lower onset

potential reported in Ref. 27 in contrast to Ref. 66. Though the onset potential in the

latter is shifted anodically (is higher) by just 300 mV compared to the onset reported by

Le Formal et. al (see Figure 3.11), it still falls in the trends followed by experiments with

much larger space charge layers. Rothschild et al.66 attributed the low photocurrents they

observed to bulk effects, based on the effect of H2O2 as hole scavenger
67 in the photocurrent

densities; and due to surface effects based on the low values obtained for the charge-transfer

efficiency coefficient in this sample.

The calculations in this work suggest that the small width of the space charge layer

might also play a role in the photocurrent efficiencies. Figure 3.8 shows mean electric fields

at the space charge layer as a function of the doping density. The highly-doped samples

displayed electric fields in the space charge region, that might be partially compensating

the small width of the space charge layer, see Figure 3.8. The volume-fraction occupied by

the space charge layer in the photoanode, seems to play a role in the efficiency, as shown

by the experiment by Le Formal et al.27

The trends observed in the width of the space charge layer Lsc under both illuminated

and dark conditions occur despite the samples displayed differences in doping densities,

doping agents nature, thickness and morphology,24,25,27,60,66,68–70 see Figure 3.4 and Table

3.1. For example, the films prepared by Shinde et al.70 were annealed at high and low

temperatures and doped with Sn at the surface or by diffusion from the substrate. Clearer
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Reference Dopant type
ND

(cm−3)
Film Thickness

(Å)
Lsc

(Å)
Iandolo et al.24 Oxygen vacancies 2.28× 1018 250± 20 242-520

2.52× 1018 316-541

Klahr et al.25
Unknown

(Possibly Oxygen vacancies)
4.80× 1018 600 71-357

Steier et al.68 Oxygen vacancies 1.31× 1019 190-300 100-224
3.00× 1019 48-138
4.50× 1019 74-129

Cowan et al.69 Oxygen vacancies 6.40×1019 Not reported 54-103
Shinde et al.70 Sn 4.72× 1019 2000± 200 53-130

6.48× 1019 32-105
6.97× 1019 31-101
7.87× 1019 50-104
8.18× 1019 40-98
9.79× 1019 20-80
1.16× 1020 14-70

Lopes et al.60 Impurities induced 2.00× 1020 247 27-55
by pre-treatment 2.21× 1020 286 25-52

Rothschild et al.66 Ti 9.00× 1019 500 59-86
4.10× 1020 23-35
6.20× 1020 18-28
1.20× 1021 7-15

Le Formal et al.27 Si 7.00× 1020 Not reported 6-22

Table 3.1: Film thicknesses of the samples used in the experiments (reported in the
literature) and their corresponding calculated width of the space charge layer Lsc. We
calculated Lsc for the range of applied voltages reported in literature. Every row in Lsc

correspond to the samples reported by the authors of the experiments. Note that in most
of the cases the widths of the space charge layer are smaller than the film thicknesses.

trends were observed in the data obtained from measurements in the dark, where just the

electrochemical processes at the interface play a role, see Figure 3.6 (c) and Figure 3.7 (c).

The irregularities we observed in the data from measurements under illumination might

be linked to bulk phenomena such as exciton formation and photoabsorption.
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Thin films with thicknesses of the order of the size of the depletion layer might help to

reduce electron-hole recombination according to some authors.60,71 Lopes et al.60 observed

increased photocurrents at given applied potentials by increasing the film thickness until

a critical value, which might be comparable to the size of the space charge layer in the

hematite films at the reported doping density. They attributed the lower photocurrents

measured in ultra-thin films with moderated doping levels to spatial limitations imposed

to the development of the depletion region. They also observed negligible photocurrents

in thicker films, presumably because the increase of the electrical resistance in the semi-

conductor bulk.60 The calculated widths of the space charge layer are smaller than the

reported film thicknesses in most of the cases we examined, except by the films used by

Iandolo et al.,24 see the fourth and and fifth columns in Table 3.1. We would like to point

out that frequently the photoelectrodes have non-planar structures, which should lead to

a more complicated analysis. In these cases, the local electric field should depend on the

curvature of the surface.72

We want to point out that the model we used in this thesis for Lsc, corresponds to

the one extensively used in literature. Experimentalists use it to extract the space charge

layer thicknesses in their studies. The validation of the model regarding the prediction of

the thicknesses in the nanometric regime is still an open question. However, as part of

the motivation of this research, we give the first steps towards understanding this limit.

It is not clear how or when this description breaks down. However, the validation could

be performed either by experimental or theoretical techniques. Higher resolution experi-

ments are required for the investigation of this interface. On the other and, more robust

simulations are required to understand this limit at atomic scales.
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3.3 Potential drop at the interface

Figures 3.5, 3.6 and 3.7 show the potential drops across the three regions of the hematite-

electrolyte interface and the ratios between them as a function of the doping density. The

potential drop in the Helmholtz layer ϕH and the potential drop in the semiconductor ϕsc

take comparable values at high doping densities ∼ 1021 cm−3, see Figure 3.5 (e). This

particular condition occurs at the same high-doping regime where the width of the space

charge layer reaches ultra-thin dimensions: it is a signature of unexpected working condi-

tions of the photoanode in water splitting experiments. The potential drop in the space

charge layer contributes the most to the total potential drop under depletion conditions

(ϕH/ϕsc ≪ 1),73 which favor charge separation and hole transport to the surface.47,48 Many

authors claim that this is the regime where charges are separated more efficiently and there-

fore where the overall efficiency is the highest. The high concentration of experiments with

ratios ϕH/ϕsc < 1 reflect this situation, see Figure 3.5 (a).

We plotted ϕsc, ϕH and ϕel as a function of the applied voltage for samples at different

doping regimes to get an insight of the potential distribution across the interface, see Figure

3.5 (c), (d) and (e). The samples with moderated doping levels show potential distributions

commonly associated to depletion conditions, Figure 3.5 (c) and (d). In contrast, the highly

doped sample in Figure 3.5 (e) displayed comparable magnitudes of ϕsc and ϕH in the entire

range of applied potentials. This regime of high doping concentration has not been explored

much in experiments. Figure 3.5 (e) shows that changes in the applied potential might

cause substantial ionic and molecular rearrangements in the Helmholtz layer. Comparable

values of ϕsc and ϕH imply capacitances Csc and CH with the same order of magnitude.73

Le Formal et. al27 reported capacitances with this behavior in the experiment in Figure

3.5 (e). The potential drop in the diffuse layer contributes the least in the entire range

of doping conditions, see Figure 3.5 (b), (c), (d) and (e). It vanishes at high solution

concentrations c0 >∼ 0.1 M, as it can be seen analyzing Eq. 2.13 in the limit of large

c0.
12,13 Most of the experiments we selected use 1M NaOH electrolytes, except by Iandolo

et al.24 and Klahr et al.25 who used 0.1M NaOH solutions.
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Figure 3.5: Behaviour of the potential drops across the interface of hematite. Figures (a)

and (b) show plots of the ratios ϕH/ϕsc and ϕel/ϕsc versus the doping density. Figures (c),

(d) and (e) show ϕsc, ϕH and ϕel versus the applied voltage with respect to the flatband

potential for three different samples located in different regions of (a). The doping densities

of the samples in these experiments were 2.28 × 1018cm−3, 1.1594 × 1020cm−3 and 7 ×
1020cm−3 respectively. The vertical lines in (c), (d) and (e) represent the potential values

for the onset of the oxygen evolution reaction on both dark and illuminated conditions.

The zero of the applied voltage is referenced to the flat band potential Vfb. Voltages higher

than zero mean applied voltages more positive than Vfb.
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Figure 3.7: Potential drop in the Gouy-Chapman layer versus the doping density, (a).
Figures (b) and (c) show linear fits performed for the data of onset potential under illu-
minated and dark conditions respectively. Here, ϵ = 57 has been used for bulk hematite,
together with the LH extracted from the simulations of the stoichiometric termination.

Figures 3.6 and 3.7 show plots of the potential drop in the Helmholtz layer ϕH and the

Gouy-Chapman layer ϕel, both as a function of the doping densities, for all the experiments.
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Both potential drops show more dispersed behavior for experiments under illuminated

conditions in comparison to the experiments under dark conditions. To get a quantitative

insight into these trends, we performed linear fits of the trends followed by the potential

drops under illuminated and dark conditions, see (b) and (c) from both Figs. 3.6 and 3.7.

The fits were performed in two different regimes: Low (green line) and high (light blue

line) doping conditions. We found high correlation coefficients for the both drops (ϕH and

ϕel) in the high doping regime, see 3.6 (b)(c) and 3.7 (b)(c). Under these conditions ϕH

takes values between 0.1 V and 0.6 V. The latter might be a quantitative signature of the

regime in which the contribution of ϕH becomes important.
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Figure 3.8: Average electric field versus the doping density across the the space charge
layer and the Helmholtz layer, figures (a) and (b) respectively. Both average fields increase
while increasing the doping density due to the decrease of the spatial extension of both
layers.

Figure 3.8 shows the mean electric field in the (a) space charge layer and the Helmholtz

layer (b). We computed the first using the calculated Lsc (Figure 3.4, Eq. 2.11) and

ϕsc (Figure 3.9), which we obtained by the numerical solution of the system of equations

Eq. 2.35, Eq. 2.12 and 2.13. We computed the latter using the ϕH (Figure 3.6) and LH

we chose. We can see that in both cases the intensities of the fields in these layers are

remarkably high at high doping densities. Which as we mentioned before, might be the

compensating factor that enhances charge transfer in ultra-thin space charge layers.
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3.4 High-doping correction to the Mott-Schottky equa-

tion

The Mott-Schottky analysis allows to study the space charge layer and to characterize

it using data provided by experiments. The fundamental equation used in this analysis,

describes a linear relation between the potential drop in the space charge layer ϕsc and the

square of the inverse capacitance:

1

C2
sc

=
2

eϵscϵ0ND

[
ϕsc −

kBT

e

]
. (3.4)

For moderately high-doped semiconductors, most of the total potential drop is accom-

modated by the space charge layer. This leads to:34,47,48,74

1

C2
sc

=
2

eϵscϵ0ND

[
(Vapp − Vfb)−

kBT

e

]
, (3.5)
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where Vapp−Vfb = ϕsc. However this may be inadequate in the case of extreme high-

doping densities, which are under study here. As we discussed before, in this regime the

contribution of the potential drop of the Helmholtz layer to the total drop across the

interface is substantial.

In this section we provide a derivation of the modified version of the Mott-Schottky

equation in the case where the potential drop in the Helmholtz layer cannot be neglected.

Considering the relation between Vapp and the contributions to the potential drop ϕsc,

Vapp−Vfb = ϕtotal = |ϕsc|+ϕH +ϕel; the expression for ϕH in equation 2.12 and neglecting

ϕel; we obtained:

Vapp − Vfb = ϕsc + A
√
ϕsc, (3.6)

where

A =
LH

√
2

ϵHϵ0

√
eϵscϵ0ND. (3.7)

The latter equation is quadratic in
√
ϕsc, and its solutions are:

√
ϕsc = −A

2
±
√
A2 + 4(Vapp − Vfb)

2
. (3.8)

Imposing the flatband condition (ϕsc = 0 at Vapp = Vfb), the only possible solution is

the positive ’+’. Squaring both sides in Eq. 3.8, we obtained

ϕsc =
A2

2
+ (Vapp − Vfb)−

A2

2

√
1 +

4(Vapp − Vfb)

A2
, (3.9)

which inserted in Eq. 3.4 leads to:

1

C2
sc

=
2

eϵscϵ0ND

[
A2

2
+ (Vapp − Vfb)−

A

2

√
A2 + 4(Vapp − Vfb)−

kBT

e

]
. (3.10)

This equation generalizes the Mott-Schottky relation and it is applicable when ϕH
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cannot be neglected i.e. high doping conditions. Under these conditions the behaviour

changes close to the flatband potential. In the vicinity of the flatband potential Vfb,

(Vapp−Vfb) ≪ A2. Thus one can develop a Taylor expansion of the square root in Eq. 3.9

√
(1 + x) = 1 +

1

2
x− 1

8
x2 + ... (3.11)

The Taylor expansion to second order leads to the cancellation of the low-order terms

and gives:

ϕsc =
(Vapp − Vfb)

2

A2
. (3.12)

Inserting this equation in the Mott-Schottky relation in Eq. 3.4, we obtained:

1

C2
sc

=
2

eϵscϵ0ND

[
(Vapp − Vfb)

2

A2
− kBT

e

]
. (3.13)

The leading term has changed, therefore close to the flatband potential the Mott-

Schottky relation should become quadratic in Vapp, see Figure 3.10 (a).

On the other hand, if A is small enough under conditions far from the flatband potential,

the following relation may apply A2 ≪ Vapp−Vfb. We expanded the general expression for

the modified Mott-Schottky relation (Eq. 3.10) to first order in A:

1

C2
sc

=
2

eϵscϵ0ND

[
(Vapp − Vfb)− A

√
Vapp − Vfb −

kBT

e

]
. (3.14)

Thus Eq. 3.14 shows that a square root term should correct the linear dependence of the

inverse square capacitance on Vapp−Vfb, see Figure 3.10 (b). In principle, this behavior

could be detected in highly doped samples, which would indicate a deviation from the

classical semiconducting electrode. It is important to mention that the quadratic behavior

in the vicinity of the flatband potential and the sub-linear behavior far from it are observed
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Figure 3.10: Behavior of the general Mott-Schottky 1/C2
sc at high doping conditions in two

limits: (a) close to the flatband potential where (Vapp−Vfb) ≪ A2 holds and (b) far from
the flatband potential where A2 ≪ Vapp−Vfb applies. The green dashed lines represent
the curves generated in the two limiting cases, using Eq. 3.13 and Eq. 3.14 for (a) and
(b), respectively. The purple lines represent the behavior of the usual linear Mott-Schottky
analysis generated with the same parameters used in the high-doping correction.

frequently in the experimental data.34,47,48,75 However other effects may be playing a role

in the experiments. The present equations can be tested in precise experiments to check

whether they describe the high-doping regime. We derived expressions for the width of

the space charge layer Lsc in the high-doping regime, based on the capacitances obtained

before. This can be done as equation 2.11 is obtained in the literature.13 In the general

expression for the high-doping regime, Lsc can be expressed as:

Lsc2 =

√
2ϵscϵ0
eND

[
A2

2
+ (Vapp − Vfb) (3.15)

−A
2

√
A2 + 4(Vapp − Vfb)−

kBT

e
]
1
2 . (3.16)

And near the flatband potential, it is given by
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Lsc3 =

√
2ϵscϵ0
eND

[
(Vapp − Vfb)

2

A2
− kBT

e

] 1
2

. (3.17)

3.5 Behavior at dark and illuminated conditions

The onset potentials in the dark and under illumination as a function of the doping density

are depicted in Figure 3.11. The onset potential in the dark is quite constant despite the

differences in doping density, the nature of the dopant and the width of the space charge

layer. On the other hand, the onset potential under illumination varies over a broader range

of applied voltages. It is remarkable that the values Vonset in the dark are weakly affected,

given the variety of space charge layer widths and applied potentials we considered in our

calculations. From this behavior, we infer that in the dark the overpotential-determining

phenomena are independent from the width of the space charge layer Lsc and the band

bending ϕsc. This indicates that the surface reactions at the immediate surface of hematite

limit largely the OER. Not even large changes in oxygen vacancy concentration performed

in experiments affected the J-V curves much.68

The onset potential under illumination showed to be more sensitive to many parameters:

pH, light intensity and morphology of the samples. Some authors suggest that doping

improves slightly the Vonset, as it is shown by the scattered data in Figure 3.11. The

lowest Vonset, we found in literature, correspond to Sn-doped films annealed at 800◦C.70

Similar values for Vonset were reported for hematite films annealed at the same temperature,

but with different morphologies and microstructures.7,26,76 The deposition of overlayers

on hematite and the use of catalysts also allowed to shift Vonset cathodically
27,68,69,77 (by

shifting cathodically we mean to shift Vonset in a negative direction). A strong correlation

between Vonset and surface states has been extensively reported in literature.25,27,68,70

Some authors suggest that surface states act as electron-hole recombination centers

at the hematite surface,25 which has driven much effort to passivate them.26,78 However

they might play as well a second role as mediators of the hole transfer at the OER under

illuminated conditions, instead of the valence band.25 In fact, some authors claim they
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doping density. The black and white dots correspond to the onset potential of the oxygen
evolution reaction.

were able to identify these two varieties of surface states in thin hematite films annealed

at 500◦C and 800◦C,26 by means of cyclic voltametry measurements. They passivated

the problematic surface states by annealing the hematite films at 800◦C, and they claim

that the remaining ones correspond to mediators of the OER.26 The deleterious surface

states are supposed to affect the electron-hole separation because they restrict the band

bending.26 The latter happens because they possess energies below the flatband potential

and pin the Fermi level.26 The remaining “good” surface states at high temperatures can

explain the high surface state capacitances measured by Shinde et al.70 who used samples

annealed at 800◦ C.
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Chapter 4

DFT calculations in undoped

hematite slabs

We showed in the previous chapter that the space charge layer in hematite can reach

widths smaller than 1 nanometer at high but realistic doping concentrations. Recently,

these thin space charge layers have been detected in highly doped and nanostructured

hematite samples.28 This regime also seems to be connected to high photocurrents in

photoelectrochemical water splitting experiments.27,28 Space charge layers of such a small

size are accessible to direct simulation by ab-initio methods.

In this chapter we show a series of calculations for hematite slabs, based on density

functional theory. We analyzed how the band bending develops as we add, one by one,

elements of the interface to the models. The atomistic models we used to study the space

charge layer in undoped systems are depicted in Figure 4.1. First we started with the

stoichiometric termination of the (0001) α-hematite surface (Fig. 4.1 (a)), which is the

most stable termination of this material in a wide range of oxygen potentials according

to ab-initio thermodynamics;53,56 then we added one hydroxyl group on each side of the

slabs(Fig. 4.1 (b)), while keeping the neutrality of the surface; we also added two additional

electrons to the latter (Fig. 4.1 (c)) in order to charge the OH groups. We will show in the

next chapter the results obtained by doping the slabs with Ti by substitution of Fe atoms.
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(a) (b) (c)

→
z +2e-

Figure 4.1: Atomistic models used to study the space charge layer in undoped systems.
The slab in (a) corresponds to the stoichiometric termination of the (0001) α-hematite
surface, (b) corresponds to the latter slab with one additional hydroxyl group on each side
(keeping the neutrality of the surface) and (c) illustrates the addition of two extra electrons
to the slab in (b). In this case, the slabs consist of 5-bilayers of Fe2O3

Here, we focused on the development of the band bending in the semiconductor. We

disregarded completely any description of the liquid part of the electrochemical interface in

the simulations. The description of the electrolyte implies the addition of ions and water

molecules: i.e. the formation of a double layer of charges on both sides of the interface.

As a consequence, extra electrostatic terms might arise from the liquid region. In the

case of the simulations with adsorbed OH groups, the electrostatic potentials generated by

these species (which decay as 1/r) might screen the potential arising from the liquid. It

is important to keep in mind that the description of the full interface is out of reach for

anyone at the moment. For example, Ulman et al.32 used a minimalistic model for the

solid region to get a more detailed description of the electrolyte (water molecules and ions)

using ab initio molecular dynamics (AIMD) calculations. Moreover, it is also impossible

to simulate the system under the conditions used in experiments. In this case, electric

fields arising from external applied biases should be taken into account. Other important
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aspect to consider is the liquid nature of the electrolyte. Since this is not an static system,

different configurations of the liquid should be sampled. This is already done using AIMD

calculations, however it requires orders of magnitude of simulation time.

4.1 Band bending

We reported the local top of the valence band for each oxygen atom layer in the hematite

slabs in Figures 4.2, 4.3 and 4.4. We chose the top of the valence band as the energy at

which the PDOS of the O-2p states was dropped to 0.001 a.u.; we also reported the energies

obtained with thresholds of 0.005, 0.001 and 0.01. We computed the band bending on each
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Figure 4.2: Top of the valence band with respect to the Fermi level vs. the positions
of the oxygen atoms for the pristine FeO3Fe slabs with (a) 5-bilayers, (b) 7-bilayers, (c)
9-bilayers and (d) 11-bilayers. The band bending saturation starts to become visible in the
7-bilayered system.
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Figure 4.3: Top of the valence band with respect to the Fermi level vs. the positions of the
oxygen atoms for adsorbed-OH slabs with a) 5-bilayers, b) 7-bilayers, c) 9-bilayers and d)
11-bilayers. The band bending saturation is visible in the bigger slab.

case, as the difference between the maximum and minimum of each curve in Figures 4.2,

4.3 and 4.4. The band bending is usually introduced as a monotonous function, however

its actual description is an open question. In this case it is the difference between the local

top of the valence band energy in the center of the slab and at the surface. We want to

emphasize that this is not always the case, as we will see in chapter 5.

Figure 4.5 shows the band bending (BB) for the (a) pristine surface, for the surface

with (b) adsorbed OH groups and for the surface with (c) adsorbed OH groups and two

additional electrons. It is around ∼ 0.14 eV for the pristine surface and ∼ 0.49 eV for the

surface with OH groups. The band bending reached saturation for the pristine and neutral

slabs with the adsorbed OH, as suggested in Figure 4.5. In the charged slabs with the

OH groups, the band bending reaches a value of ∼ 1 eV for the 11-bilayered surface, but
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Figure 4.4: Top of the valence band with respect to the Fermi level vs. the positions of
the oxygen atoms for OH slabs with two additional electrons made of a) 5-bilayers, b) 7-
bilayers and d) 9-bilayers. The band bending saturation saturation has not been achieved
even in larger slab.

we did not observed any trace of saturation up to this slab thickness. In general, the band

bending strongly depends on the threshold, see Figure 4.5 (a) and (b) for the slabs with

small number of bilayers and for all the slab sizes in (c). Despite the choice of threshold is

arbitrary, the arbitrariness in the procedure is overcome when the band bending converges

with slab thickness. We observed that the band bending is independent of the choice

of threshold whenever saturation has been achieved. The bands are basically flat in the

center of the slabs, when they are thick enough to show convergence of the band bending

with the slab thickness, see Figures 4.2, 4.3 and 4.4. We considered the model is large

enough to describe the depletion region when this happens. We observed this behavior in

the 7-bilayered slab for the pristine surface and in the 11-bilayered slab with the adsorbed

OH groups, see Figures 4.2 (b) and 4.3 (d). The slabs with charged OH groups have not
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Figure 4.5: The bending of the top of the valence band as a function of the slab size for
the (a) pristine surface, for the surface with (b) adsorbed OH groups and for the surface
with (c) adsorbed OH groups and two additional electrons. At some points in the graph,
small jumps are visible. They are due to atoms with the same z coordinate having slightly
different values of the displayed quantities.

developed any flat structure up to the 11-bilayered slab. This might be a signature that

more bilayers are needed to reach convergence of of the band bending with the slab size.

Clearly, the charged systems are not converged with respect to the slab size and the fact

that a compensating charge is needed in the vacuum to keep the charge-neutrality in the

system also complicates the calculations. However, the DFT calculations themselves are

converged. We added the two extra electrons aiming to charge the OH group on each side

of the slabs, as we will see below. Therefore we will use the results of the charged slabs in

this chapter, to check the effect of the extra charge on the system.
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Figure 4.6: Energy of the localized Fe-3s orbitals along the doped slabs with different sizes.
Two states with different energy levels were found on each Fe atom for the (a) pristine-
doped slab and (b) the slabs with one OH group attached to each side. The low energy state
(solid lines) and high energy state (dashed lines) corresponded to two different eigenvalues.
The flatness developed on the center of the slabs as the size of the slabs increase, might be
a signal of saturation in the case of the uncharged slabs.
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We analyzed the behavior of deeper states, namely the Fe-3s states, to confirm the

electrostatic nature of the shifts of the bands in proximity of the surface. We extracted the

energy from these states using the projections of the wavefunctions into molecular orbitals.

We filtered the wavefunctions displaying Fe-3s states with coefficients greater than 0.9, in

order to find localized states. We found two different states with different energies for each

Fe atom, which due to their localized nature, correspond to different eigenvalues in the

band structure. We plotted the two states we found as a function of the position of the Fe

atoms in Fig. 4.6 for the (a) (b) pristine slab, (c) (d) the slab with adsorbed OH-groups

and (e) (f) the slab with adsorbed OH-groups and two additional charges. The solid lines in

figure 4.6 represent the states with lower energy and the dashed lines represent the states

with higher energy. In the uncharged slabs, we observed that the energies of the Fe-3s

states converge in the center of the slabs as the number of bilayers increases. The latter

gives rise to a flat region in the inner part of the slabs, that might indicate convergence of

the band bending.

Due to the irregularity of the shapes displayed in Figure 4.6, we calculated the band

bending (BB) as the difference between the maximum point and minimum on each plot.

The trends followed by the band bending of the Fe-3s states as a function of the slab size

can be found in figure 4.7, for the (a) pristine, (b) OH-adsorbed and (c) charged-OH slabs.

Figure 4.7 (a) and (b) suggests that the bending of the energy bands from the Fe-3s states

has reached saturation in the uncharged cases. Which confirms the convergence of the

calculations, as observed using the O-2p orbitals . We also observed in 4.6 (e)(f) and 4.7

(c) that there is no signature of saturation in the case of the charged slabs with adsorbed

OH groups, as already seen using the O-2p orbitals. From the latter results, we got a

qualitative insight of the electrostatics using the energy of the Fe-3s orbitals. However,

we would like to point out that we cannot make a quantitative connection between the

results in this section and classical expression for the width of the space charge layer (Eq.

2.11). Neither with the results obtained from the analysis done with the O-2p nor from

the one done with the Fe-3s orbitals. The reason for this is that the slabs we analyzed

here are undoped, and we did not consider other sources of doping like oxygen vacancies.

The band bending developed in these cases is intrinsic to hematite, therefore its origin is
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Figure 4.7: Trends in the band bending of the Fe-3s orbitals energy bands as a function
of the size. The band bending on each case was computed as the difference between the
highest and lowest points in the plots in Fig. 4.6. The band bending of Fe-3s orbitals
shows convergence in the case of the uncharged slabs.

purely quantum mechanical. As we will show in the next chapter, we found a connection

between the DFT data obtained from the doped systems to the analytical expression in

Eq. 2.11.

4.2 Atomic and electronic structure of the space charge

layer

As we showed in the previous section, the band bending increased as we added the OH

group to the stoichiometric slab and then with the additional charge. The former agrees

with chemical intuition because the OH-groups tend to attract negative charge towards
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Figure 4.8: Percentage of Löwdin charges transferred to every atom in the slab with OH
groups by the addition of two extra electrons. This calculation corresponds to the 7-
bilayered slabs with OH termination. The position of the atoms in the slabs are represented
by geometrical figures. The red circles correspond to the Fe atoms, the blue triangles to
the oxygen atoms in hematite, the green squares to the H atoms from the OH groups and
the yellow triangles to the O atoms from the OH groups. It can be seen that the greatest
percentage of charge is received by the O atom from the OH group.

the surface. In our model, the surface density of one adsorbed OH group corresponds to

4.4 OH/nm2. When charges are added to the slab, the accumulated charge at the surface

leads to an increase in the band bending. The Löwdin pseudo-atomic charges confirm the

trend. The charge of the additional electrons goes mainly to the OH groups, although

also atoms inside the slab receive a tiny part of it (Figure 4.8). The additional electrons

correspond to a surface charge of 0.7 C/m2.

The additional charge on the hydroxyl group is also reflected in a clear change of

geometric and electronic configuration of the hydroxyl group: in the neutral system, the

angle ∠Fe-O-H is ∼ 120◦, which is representative of sp2 hybridization; in the charged

system, this angle changes to 104.7◦-107.8◦, very similar to the 109.5◦ of tetrahedral sp3-

hybridized systems, and to 104.5◦ in water. The geometry of the surface does not change

significantly with slab thickness in the neutral system (Tab. 4.1). This fact is useful for
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Relaxed slabs
5 bilayers 7 bilayers 11 bilayers

Uncharged-OH slabs

Fe-O (Å) 1.83 1.83 1.83
O-H (Å) 0.98 0.98 0.98
∠Fe-O-H 119.3◦ 119.5◦ 119.9◦

Charged-OH slabs

Fe-O (Å) 1.94 1.93 1.91
O-H (Å) 0.98 0.98 0.98
∠Fe-O-H 104.8◦ 106.2◦ 107.2◦

Table 4.1: Length of the O-H and Fe-O bonds and the angle ∠Fe-O-H for the uncharged-
OH slabs and charged-OH slabs.

future calculations, since one can relax a small slab and use the same molecule orientation

before relaxing larger systems. On the contrary, in the charged system, Löwdin charges and

geometry of the surface continue to change with slab thickness, as a further confirmation

that the charged system is not yet converged at the considered thicknesses. In that case,

clearly the space charge layer extends beyond the sizes considered here.

The PDOS of the 7-bilayered slabs can be seen in Figure 4.9. The projected density of

states (PDOS) of the pristine slabs and the neutral slabs with adsorbed OH groups do not

show considerable changes as the number of bilayers in the slab increases. However, this is

not the case for the charged slabs, where the gap decreases as the slab thickness increases,

see Figure 4.10 (a) and (b). The band gap decreases in the three systems in comparison to

the one of bulk hematite. This could be explained because of the emergence of empty states

at the top of the valence band, see Figure 4.9 (a), (b) and (c). In the case of the charged

slabs (Fig. 4.10 (a) and (b)), the gap also decreases due to the shift of the conduction band

towards the gap. The empty states in the valence band from the pristine slab correspond to

surfaces states; Ulman et al. identified them in previous DFT calculations and passivated

them with Ga2O3 overlayers.
78 We also observed the same states in our calculations and we

identified analogous surface states in the slabs with adsorbed OH groups (both neutral and

charged). In addition to that, we detected surface states in the bottom of the conduction

band in the three systems. Some peaks appear in the bandgap upon charge addition in
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Figure 4.9: Projected density of states of a) pristine, b) uncharged OH and c) charged OH
hematite slabs with 7 bilayers. The PDOS plotted for the different orbitals were multiplied
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Figure 4.10: Density of states of charged OH hematite slabs. a) 7-bilayered slab and b)
11-bilayered slab. Here we multiplied the pdos for the different orbitals by 2. The total
density of states is adjusted to correspond to half of the atoms from the same side of the
slab.
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the systems with attached OH molecules, see Figure 4.9 (b). These small peaks are mainly

due to the s orbitals from the H atoms from the OH group and the 4p states from the top

iron atoms. In the charged-OH slabs, the band gap gets reduced as the number of bilayers

increases (Figure 4.10).

We plotted the band structure for the three systems in the Γ̄−M̄−K̄− Γ̄ direction, see

figure 4.11. The pristine surface has some empty states at the top of the valence band, as

shown by the PDOS; and it also presents a dispersive state around the K point, see Figure

4.11 (a). We checked the projections of these states into molecular orbitals and confirmed

-1

-0.5

0

0.5

1

1.5

2

2.5

E
 (

e
V

)

� M K �

7-bilayers, pristine

-1

-0.5

0

0.5

1

1.5

2

2.5

E
 (

e
V

)

� M K �

7-bilayers, uncharged OH

-1

-0.5

0

0.5

1

1.5

2

2.5

E
 (

e
V

)

� M K �

7-bilayers, charged OH

(a) (b)

(c)

Figure 4.11: Band structure of the 7-bilayered a) pristine, b) uncharged OH and c) charged
OH hematite slab.

that these empty states consist on surface states which are delocalized on the surface.

These states consist mostly of p-orbitals from the oxygen atoms located in the first two

bilayers of the slab and of a small contribution from d-orbitals from the iron atoms from

the upper bilayer. When we added the OH groups to the pristine slab, the band that was
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previously the valence band shifts and becomes completely empty, see Figure 4.11(b). The

latter happens because the slab donated electrons to the OH groups. The contribution

from Fe-3d orbitals increases in the surface states, though the one from O-2p orbitals is

still dominant. Upon addition of electrons, the single band mentioned before goes back to

the original situation of having an empty pocket around the point K with surface states

composed by superficial O-2p orbitals, see Figure 4.11(c). In addition to this, there is a

massive change in the electronic structure in the slab with additional electrons: some bands

appear across the band gap and some of these states are even occupied. We found out that

these states are delocalized in the vacuum. However this effect cannot be attributed to a

realistic physical phenomenon because it is caused by the background of positive charges

used by Quantum Espresso to perform the calculations for the charged slab.

Figure 4.12 shows the probability density of some representative states from the valence

band and conduction band at the K̄ point (k⃗ = (1/3, 1/3, 0)) for the (a) pristine slab, (b)

the slab with adsorbed OH groups (c) and the slab with the OH groups and two additional

electrons, all in the slabs with 7-bilayers. We depicted the surface states around the top of

the valence band with blue lines and the bulk states in the conduction band with golden

lines, see Figure 4.12. In order to identify the surface states, we integrated the probability

density of the states from 5 Ångstroms of vacuum above the surface to the position of the

second Fe atom in the slab and then we normalized it with the complete integral along the

slab (including the 5 Ångstrom of vacuum on each side). Then we filtered the states by

setting a threshold of 0.5 for the minimum weight the states can have close to the surface,

i.e. the states with weights greater than 0.5 were considered surface states. As a further

control, we checked the shape of the states to reject surface resonances.

We observed that in the three cases, the nature of the states and their position in the

valence and conduction band, reflected the band bending picture. We confirmed that the

empty states in top of the valence band indeed correspond to surface states, see VB SS in

figure 4.12. We also noticed that states with bulk character start to appear as one moves

away from the valence band, see HOMO and below HOMO in Figure 4.12. We detected

bulk states and surface resonances close to the bottom of the conduction band (CB BS

and CB SR) and we identified surface states at higher energies deep into the band (CB
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Figure 4.12: Probability density of representative states from the valence and conduction
band at the K̄ point in the 7-bilayered (a) pristine slab, (b) the slab with adsorbed-OH and
(c) adsorbed-OH with two additional electrons at the K̄ point. These states are degenerate
and therefore have a symmetric counterpart on the other side of the slab. In this case we
plotted the spin up states. HOMO represents the highest occupied state in the valence
band, we also plotted some states deeper in the valence band and denoted them as Below
HOMO. We identified surface states in the top of the valence band VB SS and a few eV
deep into the conduction band CB SS. The surface resonances and bulk states at/close to
the bottom of the conduction band are denoted by CB SR and CB BS. The dashed and
dotted vertical lines represent the position of the hydrogen atoms and the top iron atoms
in the slabs. The weight of the surface states close to the top of the valence band depicted
in (a), (b) and (c) are 0.51, 0.54 and 0.57 respectively. The weight of the surface state
found in the conduction band CB SS in the (a) pristine surface is 0.89 and was found at
0.3 eV deep in the conduction band; in (b) the slab with attached OH groups the weight
of the CB SS is 0.6 and it was found at 1.2 eV deep in the conduction band; (c) In the
charged-OH slab the weight of the state is 0.94 and it was found at 1.4 eV deep in the
conduction band.
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SS). Our observations suggest that the deepness of the energies of the surface states in the

conduction band might be correlated to the relative band bending shown by the different

slabs. In the K̄, the surface states in the conduction band CB SS were found at energies

of ∼ 0.3 eV, ∼ 1.2 eV and ∼ 1.4 eV deep in the conduction band in the pristine slab, the

neutral slabs with attached OH and the charged slab with the OH group respectively, see

Figure 4.12 (a), (b) and (c). We used the orbital projections from the states to track more

surface states in the 7-bilayered slabs. We filtered the wavefunctions with atomic states

close to the surface that were multiplied by high Fourier coefficients (∼0.7). In table 4.2,

we report the depth at which we found these states in the conduction band and the weight

of their probability density close to the surface, whenever the data was available.

7 bilayers 11 bilayers
CB depth (eV) weight CB depth (eV) weight

Pristine 0.25 0.92 0.29 0.89
0.40 −− 0.40 0.93

0.44 0.94
OH 0.35 0.50 0.39 0.51
Charged OH 0.87 −− 1.50 −−

1.2 0.60 1.65 −−

Table 4.2: Surface states from the conduction band CB SS in the three systems we modeled.
We report the deepness at which the surface states were found in the conduction band and
the weight of the probability density in the vicinity of the surface (up to the position of
the second Fe atom). In this table we report the analysis in slabs with 7 bilayers and 11
bilayers. Every row in the table correspond to a surface state e.g., we found three surface
states in the pristine slab with 11 bilayers. In this analysis we used the projections from
the wavefunction into atomic orbitals to identify the states, therefore we did not have data
to compute the weight in all cases: two dashes appear when the latter occurs.

We performed the same analysis in the 11-bilayered slabs to check the robustness of

the latter analysis (using slabs not convered with slab thickness), see Table 4.2. In general,

we found surface states with the same nature in all cases. The surface states found in the
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pristine and the adsorbed OH slabs are located practically at the same deepness in the

conduction band for both slab sizes, while this is not the case for the charged slabs. The

latter might be a consequence of the lack of convergence in this system. However, we find

remarkable that in the charged slabs the depth of the states in the conduction band seems

to be correlated with the band bending displayed at different slab sizes (the band bending

is larger in the 11-bilayered slab than in the 7-bilayered). In the 11-bilayered slabs, we

were also able to identify the band bending picture we observed in the smaller 7-bilayered

system: we found surface states at the top of the valence band and we found bulk states

at the bottom of the conduction band. Therefore, the band bending picture represented

by the states plotted in figure 4.12 agree qualitatively with the three different systems in

the 11-bilayered case. These calculations provide information on the electronic structure,

independently of the lack of convergence of the band bending with slab size. As we observed

in the analysis using the system with 11-bilayers, we obtained the same qualitative picture

and similar quantitative results as in the smaller slabs, see Table 4.2. This is supported by

the fact that the localized states in the surface are clearly constant independently of the

slab size. As it was mentioned before, the DFT calculations are converged in all the cases.

4.3 Potential across the slabs and work function

Figure 4.13 shows the planar and macroscopic averages of the potential across the slabs for

the 11-bilayered slabs. The addition of the OH group and the subsequent addition of the

charges are evidenced in the change of the potential around the surface compared to the

potential of the pristine surface, see Figure 4.13 (a), (b) and (c). Apart from changes of the

potential close to the surface, the addition of the two electrons also changes significantly

the behavior of the potential in the vacuum, which is constant in the neutral slabs but

shows variations in the charged case.

We computed the work function W for the three slabs in all the sizes, see Table 4.3.

We noticed that the work function converges when the band bending reaches saturation,

as it can be seen for the values of the uncharged OH and pristine slabs (Tab. 4.3). The
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Figure 4.13: Planar and macroscopic averages of the potential across the 11-bilayered
hematite slabs. The resulting potential across the pristine slab, the slab with an adsorbed
OH molecule (OH Group), and the slab with the OH molecule plus two additional charges
(charged OH), can be seen in figure (a), (b) and (c) respectively.

trends in the values of W agree with the physical intuition as the OH groups and the

electrons are added to the slabs. When the OH group is added, it attracts electrons to

the surface and lowers their energy in the solid. All this makes more difficult to extract

electrons from the surface and therefore the work function increases. When the system is

charged by adding electrons, their energy in the solid increases and it is easier to extract

them: the work function decreases. Kraushofer et. al measured the work function of the

stoichiometric surface using X-ray photoelectron spectroscopy (XPS).79 They reported a

value of 5.7 ± 0.2 eV, which differs from our DFT result by 8%. We did not find values

for the other terminations, but it has to be taken into account that the electrochemical

environment might difficult the measurement of the work function.
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Slab size(bilayers) Evacuum (eV) EFermi (eV) W (eV)
Pristine
5 5.63 0.49 5.15
7 6.86 1.68 5.18
11 8.56 3.36 5.20
Adsorbed OH group
5 6.54 -0.39 6.93
7 7.89 0.96 6.93
11 9.73 2.80 6.93
Charged OH
5 3.95 2.04 1.91
7 4.91 3.10 1.81
11 6.30 4.71 1.59

Table 4.3: Work function calculated at different slab sizes for the undoped systems. The
Work function W was calculated as the difference between the energy in the middle of
the vacuum Evacuum and the EFermi energy. Both quantities were obtained from the DFT
calculations. The energy Evacuum was extracted from the macroscopic average of the po-
tential distribution in the middle of the vacuum e.g., in the case of the 11-bilayered slabs
the Evacuum values were extracted from figure 4.13

We will show the influence of doping in the band bending and the electronic structure

on the (0001) slab in the next chapter.
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Chapter 5

DFT calculations in doped hematite

slabs

As we discussed before, high doping leads to ultrathin space charge layers. However in

the context of water splitting using hematite photoanodes, this regime is rarely explored

in experiments and in theoretical calculations. In this chapter, we used density functional

theory to show the effect of high doping on the behavior of the band bending and the elec-

tronic structure in the atomistic models we proposed for the (0001) hematite stoichiometric

surface. We also show that the DFT calculations obtained in this work agree quantitatively

and qualitatively with the band bending picture offered by the classical analysis.

We doped the systems described in the previous chapter with titanium atoms, which

provide electrons to the slabs. We substituted on each slab, two Fe atoms located in the

third position in the direction from the top of the surface to the bulk. The structure of

the slabs we used in our DFT simulations are depicted in Figure 4.1. The donor density

varies with slab size, since the number of doping atoms is constant and the volume of the

slab increases as we added more bilayers of hematite. Despite of that, we still managed

to obtain slabs with considerably high donor densities. The addition of the two Ti atoms

represents donor densities of 2.5×1021 cm−3, 1.8×1021 cm−3, 1.4×1021 cm−3 and 1.15×1021

cm−3 for the slabs with 5, 7, 9 and 11 bilayers respectively.
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(a) (c)

→
z

(b)

+2e-

Figure 5.1: Atomistic models used to study the space charge layer in doped systems. The
slab in (a) corresponds to the stoichiometric termination of the (0001) α-hematite surface
doped with Ti, (b) corresponds to the latter slab with one additional hydroxyl group on
each side (keeping the neutrality of the surface) and (c) illustrates the addition of two extra
electrons to the slab in (b). In this case, the slabs consist of 5-bilayers of Fe2O3

5.1 Band bending

We determined the top of the valence band for the different slabs as we did in the previous

chapter, using the projected density of states of the O-2p orbitals and setting the same

thresholds. Figures 5.2, 5.3 and 5.4 show the local top of the valence band as a function of

the positions of the oxygen atoms for the doped pristine slab, the slab with the adsorbed

OH groups and the slab with the OH groups and two additional electrons, respectively.

In the three figures we mentioned before, we show how the local top of the valence band

behaves as we added additional bilayers of hematite to each system. The vertical dashed

lines on each case show the position of the doping Ti atoms in the slabs. In general, we

observed that in the doped case the structures developed by the valence band along the

slabs did not follow a unitary trend in shape. Due to this irregularity, we decided to set the

band bending as the difference between the maximum and minimum points in Figures 5.2,

5.3 and 5.4. This definition of the band bending can be problematic, since in some cases the
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Figure 5.2: Top of the valence band with respect to the Fermi level vs. the positions of
the oxygen atoms for doped stoichiometric slabs composed by a) 5-bilayers, b) 9-bilayers,
c) 11-bilayers and d) 13-bilayers. As in the undoped case, the top of the valence band was
measured using the O-2p orbitals. The dashed lines represent the positions of the Ti atoms
used to doped the slabs.

minimum value of the energy is located at the surface. However, the actual quantity might

be quite different. As commented in the last chapter, the band bending is ill-defined. It

depends on many factors, including the position of the dopants, as it was shown by Yang et

al.80 in their study of Shottky barrier formation. A detail description of the band bending

is out of the scope of this thesis, since it is a different research direction. However, we will

keep the definition previously proposed to give the first steps towards the understanding

of the band bending.

We plotted the trends developed by the band bending as the number of bilayers in-

creased, in Figure 5.5. Despite the variety of shapes developed by the structures in Figures

5.2, 5.3 and 5.4, the trends in Figure 5.5 (b) suggest that the band bending in the neutral

Ti-doped hydroxylated and the Ti-doped pristine systems converged. On the other hand,
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Figure 5.3: Top of the valence band with respect to the Fermi level vs. the positions of
the oxygen atoms for doped stoichiometric slabs with additional OH groups composed by
a) 5-bilayers, b) 7-bilayers, c) 9-bilayers and d) 11-bilayers. As in the undoped case, the
top of the valence band was measured using the O-2p orbitals.

the charged slab with the adsorbed OH showed to be more problematic. In the latter

case, convergence has not been reached using 11-bilayers, which might arise due to the

complication of calculations in the presence of macroscopic electric fields.

The 11-bilayered slabs in the pristine case and in the case with adsorbed OH groups

showed convergence in the band bending. The converged band bendings are ∼ 0.07 eV

and ∼ 0.01 eV, respectively. These band bendings are one order of magnitude smaller

than ones developed by the undoped slabs. Qualitatively, this makes sense in the band

bending picture, since the additional electrons provided by the Ti atoms screen better the

potential. We decided to connect the DFT results to the equation for the width of the

space charge layer Lsc (Eq. 2.11), using the results from the converged slabs. In order to

compute Lsc, we set the converged band bendings as the drop in the space charge layer

ϕsc, and used the donor density we estimated for the 11-bilayered slabs. We found space
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Figure 5.4: Top of the valence band with respect to the Fermi level vs. the positions of the
oxygen atoms for doped stoichiometric slabs with additional OH groups and two additional
electrons composed by a) 5-bilayers, b) 7-bilayers, c) 9-bilayers and d) 11-bilayers. As in
the undoped case, the top of the valence band was measured using the O-2p orbitals.

charge layer widths of ∼ 6 Å and ∼ 3 Å for the doped pristine slab and for the doped

slab with adsorbed OH groups, respectively. The ∼ 6 Å we found for the pristine slab is

visible in the space charge structure developed in Figure 5.2 (c) and (d), which displayed

Lsc between 5 Å and 6 Å. We could not observe the same in the case of the slab with the

OH group, because in this case the calculated Lsc is too small and it is probably lost in the

noise observed in Figure 5.3 (d). As we mentioned in the previous chapter, we were able

to find a quantitative and qualitative correspondence between the results from our DFT

calculations and the continuous model we used in this work. It is important to keep in

mind that this connection was possible because these slabs are doped and because we are

using the band bending from the valence band as the potential drop in the space charge

layer.
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Figure 5.5: The bending of the top of the valence band as a function of the slab size for
the doped (a) pristine, (b) OH-adsorbed hematite slabs and (c) OH-adsorbed with two
additional electrons hematite slabs. The band bending on each case was computed as the
difference between the highest and lowest points in Figures 5.2, 5.3 and 5.3. At some points
in the graph, small jumps are visible. They are due to atoms with the same z coordinate
having slightly different values of the displayed quantities.

We also checked the effect of high doping on the core Fe-3s orbitals. We selected the

energies corresponding to the localized Fe-3s orbitals, and as in the previous chapter, we

found two states for every Fe atom. Figure 5.6 shows these energies as a function of

the positions of the iron atoms: (a) (b) pristine, (c) (d) adsorbed OH groups and (e) (f)

charged slab with OH groups. We defined the band bending as the difference between the

maximum and minimum of the Fe-3s energies for each slab. Figure 5.7 shows the band

bending as a function of the slab size for the (a) doped pristine slab, (b) the slab with the

adsorbed OH-groups and the one with the (c) adsorbed OH and two additional electrons.

The latter result suggest that the band bending converged for the Ti-doped pristine slab

and for the Ti-doped slab with adsorbed OH groups, see (a) and (b), respectively.
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Figure 5.6: Bending of the energy bands of the localized Fe-3s orbitals along the doped

slabs with different sizes. Two states with different energy levels were found on each Fe

atom for the (a) pristine-doped slab and (b) the slabs with one OH group attached to each

side. The low energy state (solid lines) and high energy state (dashed lines) corresponded

to two different eigenvalues. The flatness developed on the center of the slabs as the size

of the slabs increase, might be a signal of saturation.
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Figure 5.7: Trends in the bending of the Fe-3s orbitals energy bands along the doped slabs.
The band bending on each case was computed as the difference between the highest and
lowest points in the plots Fig. 5.6.

The flatness developed by the Fe-3s energy bands in the middle of the slabs might be

a signature of the convergence of the slabs, see 5.6 (a), (b), (c) and (d). In these cases,

it is possible to see space charge layer-like structures in the Ti-doped pristine slab and in

the Ti-doped slab with adsorbed OH groups. If we assume that Lsc can be measured from

the surface to the minima in Figure 5.6, it takes values of ∼ 5 Å in the pristine case and

∼ 4 Å in the neutral OH case. Which agree qualitatively with the picture obtained using

the O-2p orbitals and the continuous equations, where Lsc took values of ∼ 6 Å and ∼ 3

Å respectively. We want to clarify that in this case, it is not possible to make a quantitative

connection with Eq. 2.11, since in this analysis we are dealing with core states and not

with states from the valence band. We did not do the same analysis in the charged OH
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Figure 5.8: Top of the valence band with respect to the Fermi level vs. the positions of
the oxygen atoms for the 5-bilayered doped stoichiometric slab with additional OH groups
and expanded in-plane lattice constant. The lattice constant was expanded 0.4205% with
respect to the one of pure hematite according to the experimental values reported for
hematite and ilmenite. As in the previous cases, the top of the valence band was measured
using the O-2p orbitals. The band bending takes values of 0.02 eV, 0.022 eV and 0.023
eV for the 0.001 a.u., 0.005 a.u and 0.01 a.u. thresholds respectively. These values are
practically the same as the one reported for the fully relaxed structure previously reported.

slab, since this calculation is not converged and the space-charge structure is not clear

here, see Figure 5.6(e) and (f). In the three systems the Fe-3s bands bent in a greater

extent than the valence band (calculated from the PDOS of the O-2p orbital states). We

did not find any kind of quantitative correlation between both quantities. Qualitatively,

the larger the BB of the valence band, the larger the BB of the Fe-3s energy band.

We used the in-plane lattice constant from bulk hematite to model the slabs in the

Ti-doped systems. Experimentally, it has been observed that high levels of doping with Ti

lead to the expansion of the lattice constant. For example, the lattice constant expands 1%

in isostructural ilmenite (which contains 50% Ti) with respect to hematite. We tested the

effect of the expansion of the lattice constant in the band bending to show the robustness

of our calculations. In this case, we performed the test in the 5-bilayered doped slab

with adsorbed OH groups. The 5-bilayered slabs have the largest doping density in our
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calculations, which corresponds to 20% Ti. We made a slab with an expanded in-plane

lattice constant, while keeping the z-directions positions obtained in the relaxation of the

original 5-bilayered cell. We expanded the lattice constant 0.4205% with respect to the one

of pure hematite according to the experimental values reported for hematite and ilmenite.

Figure 5.8 shows the local top of the valence band as a function of the oxygen atoms

positions in the slab. As we did before, we computed the band bending. In this case, we

obtained practically the same results as in the system without the expansion of the cell,

see Figure 5.8. The latter confirms the little effect of the expansion of the lattice constant

in our conclusions.

5.2 Electronic structure of the space charge layer

Figure 5.9 shows the projected density of states (PDOS) for the (a) pristine slab, (b) the

slab with the adsorbed OH groups and (c) the slab with the OH groups and two additional

charges. In this figure the PDOS is multiplied by a factor of 2.5 to compare better the

contributions from the atoms close to the surface. We still observe the presence of empty

states at the top of the valence band in the case of the two charge-neutral slabs, see Fig.

5.9 (a) and (b). In the doped-pristine slab, we found that the contribution from the O-2p

orbitals states is not longer dominant at the top of the valence band. By doping, the

contribution from the 3-d orbitals from the Fe atoms becomes substantial in this region,

as shown by the blue line in Figure 5.9 (a). These states were empty in the undoped case

(Fig. 4.9 (a)) and were filled with the electrons donated by the titanium atoms.
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Figure 5.9: Projected density of states of the (a) pristine, (b) OH-adsorbed and (c) OH-
adsorbed with two additional electrons doped hematite slabs with 11-bilayers. The pdos
plotted for the different orbitals were multiplied by a factor of 2.5 to make them more
visible. The density of states is adjusted to correspond to half of the atoms from the same
side of the slab.

In the case of the neutral slab with the OH groups, the O-2p orbitals continue to be

dominant at the top of the valence band as shown by the purple, orange and pink lines in

Figure 5.9 (b) and (c). In this case we observed that the amount of empty states at the

top of the valence band decreased considerably in comparison with the undoped case, see

Figures 4.9 (b) and 5.9 (b). This situation is reflected in the reduction of the band bending

from 0.14 eV in the undoped case, to 0.01 eV in the doped case. In this case, the empty

states in the undoped case were filled with the electrons provided by the Ti atom.

The main changes we observed in the PDOS of the slabs with adsorbed OH groups by
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Figure 5.10: Nature of the states from the gap in the doped slab with and adsorbed OH
group and two additional charges. This figure corresponds to the 11-bilayered slab plotted
in the z⃗ direction. The spheres in red represent the iron atoms, the blue represent the
oxygen atoms, the gray represent the titanium atoms and the cyan represents the hydrogen
atoms. The spheres in pink and purple show the iron and oxygen atoms, respectively, which
contribute the most to the state in the gap.

adding two extra electrons are: the complete filling of the valence band and the emergence

of filled states in the middle of the gap. The O-2p states continue to be the dominant

states at the top of the valence band. The states in the gap are mainly constituted by

3d-orbitals from the Iron atoms represented with pink spheres in Figure 5.10 and from the

O-2p states from the oxygen atoms represented by the purple spheres in the same Figure.

Seriani et al. reported similar states appearing in the gap of systems composed by TiO2

surfaces and small copper clusters,81 where they reported these gap states correspond to

polaronic states.

A polaron forms when a charge carrier moves slowly enough to displace the surrounding

atoms due to their mutual interaction. The latter leads to the formation of a potential

well that lowers the energy of the carrier and fosters its confinement.82 They can be

characterized by the magnetic moment of the atom where they form, the charge of the atom

and the geometric distortion around that atom.81 Since the determination of the effective

charges might be arbitrary, this would complicate the identification of polarons. As a better

indicator of the presence of polarons, Seriani et al.81 and other authors83–86 suggest to check

the spin localization, which can be identified by the increase of the magnetic moments. We

observed that the greatest change in magnetic moment, occur in the iron atoms which

contribute to the gap states in Figure 5.9(c) and which we previously identified in Figure
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Figure 5.11: Percentage of Löwdin charges transferred to every atom by the addition of
two extra electrons in the doped slab with OH groups. This calculation corresponds to the
11-bilayered slabs. The position of the atoms in the slabs are represented by geometrical
figures. The red circles correspond to the Fe atoms, the purple circles to the doping Ti
atoms, the blue triangles to the oxygen atoms in hematite, the green squares to the H atoms
from the OH groups and the yellow triangles to the O atoms from the OH groups. It can
be seen that the greatest percentage of charge is received by the Fe atoms represented by
the pink spheres in Figure 5.10. The dashed lines show the position of these Fe atoms.

5.10. These Fe atoms also received a substantial part of the charge added to the OH slabs,

as it can be seen in Figure 5.11. According to the Löwdin charges analysis, the Fe atoms

gained +|0.21|e from the two additional electrons added to this slab; while each oxygen

atom from the hydroxyl groups gained +|0.11|e and the rest of the charge is the delocalized

along the slab. We also observed geometric distortions of the atomic configuration around

these Fe atoms, in comparison to the neutral slab with the OH groups. The latter facts

suggest that the state we found in the gap corresponds to a polaron.

It is well known that excess charge carriers form polarons in hematite6,82,87 and in many

other transition-metal oxides.82 In the case of hematite, excess electrons tend to localize

in iron atoms, leading to the formation of small polarons. The latter implies the reduction

of Fe3+ to Fe2+.6 DFT+U simulations and quantum mechanical calculations have shown
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that doping hematite leads to the formation of electron polarons on a nearby Fe atom to

the doping atoms, when Fe atoms are substituted by Si, Ge, Zr and Sn.6,88,89 In the case

of Ti-doping, some experiments reported that the presence of Ti4+ did not lead to the

formation of Fe2+, which mean that polarons do not form just by Ti-doping.6,90 The latter

agrees with the calculations from Ref. 89 and our DFT+U calculations for the neutral

Ti-doped slabs, where we did not observed polarons. The addition of the electrons in our

calculations triggered the appearance of polarons. The latter suggest that the addition of

electrons from sources different to Ti-doping might lead to the experimental observation

of polarons in this system.

Despite the calculations of the charged slabs are not converged with slab size, the latter

discussion on polarons is valid since this is a local effect: We observed the same polaron,

located in the same position and the same magnetic and electronic structure, regardless

of the slab size. As we mentioned before, the fact that the calculations are not converged

with slab size does not mean that the DFT calculations are not converged. The same is

true for the smaller slabs of the uncharged systems. As we did in the last chapter, we also

analyzed the nature of the states in the valence band and the conduction band. We were

not able to identify surface states at the top of the valence band in any system, our DFT

calculations did not provide enough resolution to do it. However, we still manage to find

bulk states at the bottom of the conduction band. And also found surface states in the

conduction band in the slabs with the OH groups, in both uncharged and charged cases.

In the neutral slab with the OH group, we found surface states 0.8 eV, 1eV and 1.15 eV

deep into the conduction band. In the case of the charged slab we found surface states

located at depths of 1.1 eV and 1.5 eV in the conduction band.

5.3 Potential distribution and work function

Figure 4.13 shows the planar and macroscopic averages of the potential across the doped

slabs with 11 bilayers in the case of the (a) pristine slab, (b) the slab with the adsorbed OH

groups and the (c) the slab with the OH group and the additional charges. The position of
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Figure 5.12: Planar and macroscopic averages of the potential across the 11-bilayered
doped hematite slabs. The resulting potential across the doped slabs: pristine slab, slab
with an adsorbed OH molecule (OH group), and the slab with the OH molecule plus two
additional charges (charged OH), can be seen in figure (a), (b) and (c) respectively.

the doping atoms is represented by the dashed-vertical lines. The position of the plateau

both in the vacuum and in the center of the slab did not change substantially. The latter

is reflected in the calculated work functions, see 5.1. We computed the work functions for

the three systems at different slab sizes. The values converged in the largest slabs for the

pristine slab and the neutral slab with the attached OH. The calculated work functions in

both systems showed a difference of 0.1 eV in comparison with their undoped analogues.

These calculations suggest that doping does not have a major impact on the work functions.

However, it can be seen that in the doped case, the neutral slabs with the attached OH

still show work functions higher than the pristine case (as in the undoped case). The lack
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of convergence of the charged slabs is evident in the work functions calculated for different

slab sizes in table 5.1.

Slab size Evacuum (eV) EFermi (eV) W (eV)
Pristine-doped
5 5.80 0.38 5.42
11 8.71 3.38 5.32
13 9.29 3.99 5.30
OH group-doped
5 6.56 -0.31 6.87
7 7.88 1.02 6.85
9 8.90 2.04 6.86
11 9.70 2.85 6.86
Charged OH-doped
7 5.44 3.59 1.86
9 6.12 4.34 1.78
11 6.67 5.03 1.64

Table 5.1: Work function calculated at different slab sizes for the doped systems. As in the
previous chapter, the work function W was calculated as the difference between the energy
in the middle of the vacuum Evacuum and the EFermi energy. The energy Evacuumvalues
from the 11-bilayered slabs were extracted from the macroscopic average of the potential
in the middle of the vacuum, see figure 5.12.
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Conclusions

In this work, we studied the space charge layer in hematite photoanodes by means of the

Poisson-Boltzmann equations, the Stern model and density functional theory, due to its

relevance in the photoelectrocatalytic water oxidation. Recently, the presence of ultrathin

space charge layers has been experimentally observed under water splitting conditions,

which occurs at high doping conditions. However this regime is rarely explored. We used

a continuous model based on the Stern model and the Poisson-Boltzmann equations to

explore a series of water-splitting experimental data and to examine the consequences of

the high doping regime on the interface. Finally, we used density functional theory to

get an atomistic insight into the space charge layer in the stoichiometric (0001) hematite

surface. These are the main conclusions we draw from our study:

1. Using the continuous equations, we detected ultrathin space charge layers with thick-

nesses of ∼ 10 Å in experiments employing highly-doped nanostructured hematite

films. These experiments also displayed a regime of high photoelectrocatalytic ef-

ficiency, which is unexpected given the small size of the space charge layers in the

samples. The substantial volume-fraction of the electrode, occupied by the space

charge layer, plays a role in the efficiency observed in these films. Such thin space

charge layers are in principle accessible to quantum mechanical ab-initio calculations.

2. At high doping densities a substantial fraction of the potential drop is located in the

Helmholtz layer, which according to our calculations can take values between 0.1 V

and 0.6 V. This contrasts with the conventional behavior of the interface, where the
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potential drop in the space charge layer dominates. And which is considered necessary

for the separation and transport of charge carriers under water splitting conditions.

The substantial drop in the Helmholtz layer happens at the same high doping condi-

tions where ultrathin space charge layers develop. This regime might probably give

place to considerable molecular and ionic rearrangements in the Helmholtz layer.

It also leads to modifications to the usual Mott-Schottky relation between the in-

verse of the square capacitance and the applied voltage, which holds in the depletion

approximation. At high doping densities, we showed that the Mott-Schottky rela-

tion becomes quadratic in the applied bias close to the flatband potential. Far from

flatband conditions, the Mott-Schottky relation shows a sub-linear behaviour which

follows from a quadratic correction.

3. This kind of analysis should always be done whenever experiments are performed in

semiconductor-electrolyte interfaces. We did this analysis on the hematite-electrolyte

interface under water splitting conditions, but this study can be extended to other

systems e.g., other oxides. Experimentalists should perform this kind of analysis to

get an estimate on the space charge layer width and the potential drops whenever

they characterize their samples with the Mott-Shottky analysis. This should become

a standard way to analyze the experimental data, which could provide insight into

why experiments lead to different outcomes, compare experiments and provide more

insight into the electrostatics.

4. We showed Density Functional Theory describes space charge layers at an atomistic

level. We studied the evolution of the space charge layer in models that range from

the pristine stoichiometric surface to the doped hydroxylated surface with additional

electrons. Using DFT, we calculated the band bendings displayed in every surface

and we got an atomistic insight into the electronic structure of the space charge layer

in every case. The band bending showed to be independent of the particular choice

of threshold used to calculate it, once it reaches saturation with the slab thickness.

Band bending convergence was achieved for the pristine slab and for the neutral slab

with two additional OH groups, in both undoped and doped conditions. The band
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bending did not reach saturation for the surface with adsorbed OH groups and two

additional electrons, in any case. We calculated band bendings of ∼0.14 eV for the

undoped pristine surface and ∼0.49 eV for the neutral surface with adsorbed OH. The

larger band bending in the OH-terminated surface agrees qualitatively with chemical

intuition, given that the OH group attracts negative charge to the surface. In the

doped case, we found band bendings of ∼ 0.07 eV and ∼ 0.01 eV for the pristine and

OH-terminated slabs, respectively. The decrease of the band bending with Ti-doping

can be explained by the better screening of the potential provided by the Ti-donated

electrons. The latter band bendings correspond to space charge layer widths of ∼6

Å and ∼3 Å, where the first is visible in the larger pristine slab. The DFT results

for the doped slabs showed a qualitative and quantitative correspondence with the

continuous model. The quantitative correspondence just occurs in the doped case

because the band bendings observed in the undoped slabs have an intrinsic origin, and

therefore there is no connection with the continuous model. Despite the limitations

imposed by the minimalistic description of our systems, we managed to gain an

insight of the electronic structure of space charge layers in hematite surfaces. Here

we disregarded the effect of the electrolyte to focus on the development of the space

charge layer in the solid. The simulation of the electrolyte would have implied a large

amount of computational resources. Considering the electrolyte means charging the

surface, therefore one must consider the ions and the water molecules. The non-

static nature of the liquid is another important factor to take into account, given that

many configurations of the system are required in the calculations. The latter can in

principle be achieved using ab initio molecular dynamics calculations. Although the

latter research area is really active, one has to sacrifice either the solid part or the

liquid. The simulation of the full interface is still a challenge.
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55 E. Krén, P. Szabó, and G. Konczos. Neutron diffraction studies on the (1x) fe2o3xrh2o3

system. Phys. Lett., 19:103, 1965.

56K. Reuter and M. Scheffler. Composition, structure, and stability of ruo2(110) as a

function of oxygen pressure. Phys. Rev. B, 65:035406, 2001.

57N. Seriani, W. Pompe, and L. Colombi Ciacchi. Catalytic oxidation activity of pt3o4

surfaces and thin films. J. Phys. Chem. B, 110:14860, 2006.

58N. Seriani. Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparti-

cles. Nanotechnology, 20:445703, 2009.

104



59 J.-F. Boily, S. Chatman, and K. M. Rosso. Inner-helmholtz potential development at

the hematite (a-fe2o3) (001) surface. Geochim. Cosmochim. Acta, 75:4113, 2011.

60T. Lopes, L. Andrade, F. Le Formal, M. Gratzel, K. Sivula, and A. Mendes. Hematite

photoelectrodes for water splitting: evaluation of the role of film thickness by impedance

spectroscopy. Phys. Chem. Chem. Phys., 16(31):16515, 2014.

61A. Gorji and N. Bowler. Static permittivity of environmentally relevant low-

concentration aqueous solutions of nacl, nano3, and na2so4. J. Chem. Phys.,

153(1):014503, 2020.

62W. Wachter, W. Kunz ad R. Buchner, and H. Hefter. Is there an anionic hofmeister

effect on water dynamics? dielectric spectroscopy of aqueous solutions of nabr, nai, nano

3 , naclo 4 , and nascn. J. Phys. Chem., 109(1):8675, 2005.

63T. P. Trainor, A. M. Chaka, P. J. Eng, M. Newville, G. A. Waychunas, J. G. Catalano,

, and G. E. Brown. Structure and reactivity of the hydrated hematite (0001) surface.

Surf. Sci., 573:204, 2004.

64Y. S. Hwang and J. J. Lenhart. The dependence of hematite site-occupancy standard

state triple-layer model parameters on inner-layer capacitance. J. Colloid Interface Sci.,

319(1):206, 2008.

65M. Liu, J. L. Lyons, D. Yan, and M. S. Hybertsen. Semiconductor-based photoelectro-

chemical water splitting at the limit of very wide depletion region. Adv. Funct. Mater.,

26:219, 2016.

66K. D. Malviya, D. Klotz, H. Dotan, D. Shlenkevich, A. Tsyganok, H. Mor, and A. Roth-

schild. Influence of ti doping levels on the photoelectrochemical properties of thin-film

hematite (alpha-fe 2o3) photoanodes. J. Phys. Chem. C, 121(8):4206, 2017.

67H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, and S.C. Warren. Probing the photo-

electrochemical properties of hematite (-fe2o3) electrodes using hydrogen peroxide as a

hole scavenger. Energy Environ. Sci., 4:958, 2011.

105



68 L. Steier, I. Herraiz-Cardona, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, S. D. Tilley,

and M. Grätzel. Onset potential behavior in a-fe2o3 photoanodes: the influence of surface

and diffusion sn doping on the surface states. Adv. Funct. Mater., 24(48):7681, 2014.

69M. Forster, R. J. Potter, Y. Ling, Y. Yang, D. R. Klug, Y. Li Yat, and A. J. Cowan. Oxy-

gen deficient a-fe2o3 photoelectrodes: a balance between enhanced electrical properties

and trap-mediated losses. Chem. Sci., 6:4009, 2015.

70 P. S. Shinde, S. H. Choi, Y. Kim, J. Ryu, and J. S. Jang. Onset potential behavior

in -fe2o3 photoanodes: the influence of surface and diffusion sn doping on the surface

states. Phys. Chem. Chem. Phys., 18:2495, 2016.

71K. Itoh and J. O. M. Bockris. Stacked thin-film photoelectrode using iron oxide. J. Appl.

Phys., 56:874, 1984.

72K. Sivula. Mott–schottky analysis of photoelectrodes: Sanity checks are needed. ACS

Energy Lett., 6:2549, 2021.

73A. Natarjan, G. Oskam, and P. C. Searson. The potential distribution at the semicon-

ductor/solution interface. J. Phys. Chem. B, 102:7793, 1998.

74 S. P. Harrington and T. M. Devine. Analysis of electrodes displaying frequency dispersion

in mott-schottky tests. J. Electrochem. Soc., 155:C381, 2008.

75C. Fabrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, and J. R. Morante.

Tuning the fermi level and the kinetics of surface states of tio2 nanorods by means of

ammonia treatments. J. Phys. Chem. C, 117:20517, 2013.

76Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li. Sn-doped hematite nanos-

tructures for photoelectrochemical water splitting. Nano Lett., 11:2119, 2011.

77B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann. Pho-

toelectrochemical and impedance spectroscopic investigation of water oxidation with

“copi”-coated hematite electrodes. J. Am. Chem. Soc., 134:16693, 2012.

106



78K. Ulman, M.-T. Nguyen, N. Seriani, and R. Gebauer. Passivation of surface states

of -fe2o3(0001) surface by deposition of ga2o3 overlayers: A density functional theory

study. J. Chem. Phys., 144:094701, 2016.

79 F. Kraushofer, Z. Jakub, M. Bichler, J. Hulva, P. Drmota, M. Weinold, M. Schmid,

M. Setvin, U Diebold, P. Blaha, and G. S. Parkinson. Atomic-scale structure of the

hematite -fe2o3(1102) “r-cut” surface. J. Phys. Chem. C, 122(3):1657, 2018.

80 J. Yang, A. Hellman, Y. Fang, S. Gao, and M. Käll. Schottky barrier formation and

band bending revealed by first-principles calculations. Sci. Rep., 5:11374, 2015.

81N. Seriani, C. Pinilla, and Y. Crespo. Presence of gap states at cu/tio 2 anatase surfaces:

Consequences for the photocatalytic activity. J. Phys. Chem. C, 119:6696, 2015.

82A. J. E. Rettie, W. D. Chemelewski, D. Emin, and C. B. Mullins. Unravelling small-

polaron transport in metal oxide photoelectrodes. J. Phys. Chem. Lett., 7:421, 2016.

83 L. Giordano, G. Pacchioni, T. Bredow, and J. F. Sanz. Cu, ag, and au atoms adsorbed

on tio2(1 1 0): cluster and periodic calculations. Surf. Sci., 471:21, 2001.
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Appendix A

Implementation of continuous

equations

Here we show the robustness of the analysis with the continuous equations. We performed

the same analysis using different dielectric constants for hematite and for the different

Helmholtz parameters.

Analysis with ϵ = 57 with the OH termination
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Figure A.1: Calculated drop of the space charge layer Lsc versus the doping density. The

inset shows a zoom in on the data at high doping densities ∼ 1021cm−3. The white and

black dots represent the data of the onset of the OER under illuminated (1 sun) and dark

conditions. Here we used ϵ = 80 and together with the Helmholtz parameters extracted

from the simulations of the OH termination.
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Figure A.2: Behaviour of the potential drops across the interface of hematite-OH. Figures

(a) and (b) show plots of the ratios ϕH/ϕsc and ϕel/ϕsc versus the doping density. Figures

(c), (d) and (e) show ϕsc, ϕH and ϕel versus the applied voltage with respect to the flatband

potential for three different samples located in different regions of (a). The doping densities

of the samples in these experiments were 2.28 × 1018cm−3, 1.1594 × 1020cm−3 and 7 ×
1020cm−3 respectively. The vertical lines in (c), (d) and (e) represent the potential values

for the onset of the oxygen evolution reaction on both dark and illuminated conditions.

The zero of the applied voltage is referenced to the flat band potential Vfb. Voltages higher

than zero mean applied voltages more positive than Vfb. Here, ϵ = 57 has been used for

bulk hematite, together with the Helmholtz parameters extracted from the simulations of

the OH termination. 113
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Figure A.3: Potential drop in the Helmholtz layer versus the doping density, (a). Figures

(b) and (c) show linear fits performed for the data of onset potential under illuminated

and dark conditions respectively. Here, ϵ = 57 has been used for bulk hematite, together

with the Helmholtz parameters extracted from the simulations of the OH termination.
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Figure A.4: Potential drop in the Gouy-Chapman layer versus the doping density, (a).

Figures (b) and (c) show linear fits performed for the data of onset potential under illu-

minated and dark conditions respectively. Here, ϵ = 57 has been used for bulk hematite,

together with the Helmholtz parameters from the simulations of the OH termination.
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Figure A.5: Average electric field versus the doping density across the the space charge

layer and the Helmholtz layer, figures (a) and (b) respectively. It can be seen that both

average fields increase while increasing the doping density due to the decrease of the spatial

extension of both layers. Here, ϵ = 57 has been used for bulk hematite, together with the

Helmholtz parameters extracted from the simulations of the OH termination.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1×1018  1×1019  1×1020  1×1021

φ
sc

 (
V

)

Doping density (cm-3)

φsc vs. ND 

Iandolo et al.
Klahr et al.

Steier et al.
Cowan et al.
Shinde et al.
Lopes et al.

Rothschild et al.
Le Formal et al.

Vonset light
Vonset dark

Figure A.6: Potential drop in the space charge layer versus doping density. Here, ϵ = 57

has been used for bulk hematite, together with the Helmholtz parameters extracted from
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Analysis with ϵ = 80 with the stoichiometric termina-

tion
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Figure A.7: Calculated drop of the space charge layer Lsc versus the doping density. The

inset shows a zoom in on the data at high doping densities ∼ 1021cm−3. The white and

black dots represent the data of the onset of the OER under illuminated (1 sun) and dark

conditions. Here we used ϵ = 80 and the Helmholtz parameters extracted from simulations

of the stoichiometric simulation.
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Figure A.8: Behaviour of the potential drops across the interface of hematite-NaOH. Fig-

ures (a) and (b) show plots of the ratios ϕH/ϕsc and ϕel/ϕsc versus the doping density.

Figures (c), (d) and (e) show ϕsc, ϕH and ϕel versus the applied voltage with respect to the

flatband potential for three different samples located in different regions of (a). The dop-

ing densities of the samples in these experiments were 2.28× 1018cm−3, 1.1594× 1020cm−3

and 7 × 1020cm−3 respectively. The vertical lines in (c), (d) and (e) represent the poten-

tial values for the onset of the Oxygen evolution reaction on both dark and illuminated

conditions. The zero of the applied voltage is referenced to the flat band potential Vfb.

Voltages higher than zero, mean applied voltages more positive than Vfb. Here, ϵ = 80 has

been used for bulk hematite, together with the Helmholtz parameters extracted from the

simulations of the stoichiometric termination.
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Figure A.9: Potential drop in the Helmholtz layer versus the doping density, (a). Figures

(b) and (c) show linear fits performed for the data of onset potential under illuminated and

dark conditions respectively. Here, ϵ = 80 has been used for bulk hematite, together with

the Helmholtz parameters extracted from the simulations of the stoichiometric termination.
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Figure A.10: Potential drop in the Gouy-Chapman layer versus the doping density, (a).

Figures (b) and (c) show linear fits performed for the data of onset potential under illu-

minated and dark conditions respectively. Here, ϵ = 80 has been used for bulk hematite,

together with the Helmholtz parameters extracted from the simulations of the stoichiomet-

ric termination.
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Figure A.11: Average electric field versus the doping density across the the space charge

layer and the Helmholtz layer, figures (a) and (b) respectively. It can be seen that both

average fields increase while increasing the doping density due to the decrease of the spatial

extension of both layers. Here, ϵ = 80 has been used for bulk hematite, together with the

Helmholtz parameters extracted from the simulations of the stoichiometric termination.
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Figure A.12: Potential drop in the space charge layer versus doping density. Here, ϵ = 80

has been used for bulk hematite, together with the Helmholtz parameters extracted from

the simulations of the stoichiometric termination.
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Appendix B

Code continuos equations

The code we used to analyze the experimental data is written in Python. The equations for

the interface were solved numerically using the library scipy. This code should be compiled

with versions of Python 3.

import numpy as np

import math

from scipy.optimize import fsolve

#fundamental constants

e=1.60217662E-19

k=1.3806488E-23

eps0=8.8541878128E-12

T=298.15 #temperature at 25C

#Dielectric constant hematite

eps=57 #dielectric constant hematite

#Helmholtz layer parameters
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eps_H=25.3

LH=4.4E-10

#parameters reported in paper

#Doping density in cm^-3

n=7E20

#range of aplied voltage (V)

vo=0.8

vf=1.7 + 0.05 ## + 0.05 is just to take into account 1.7 in the interval

#flatband potential

vfb=0.53

#Vonset potential

vonset_l=1.0 #light

vonset_d=1.58 #dark

#concentration of the solution(M)

c=1.0330

epsel=64.42

#the conversion of the parameters to SI units are performed within the

#calculations

FileName=’results_LeFormal2011.dat’

f=open(FileName,’w’)

f.write("# c0(M)\t ND(cm-3) \t L_sc(A) \t L_H(A) \t Vapp-Vfb \t

phi_sc \t phi_H \t phi_el \t phi_el+phiH \t phi_tot\n")

#i is the voltage across the interface Vapp-Vfb

for i in np.arange(vo-vfb,vf-vfb,0.05):
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#Solving phi_H + phi_el + phi_sc - (Vapp-Vfb)==0 numerically

#i=(vapp-Vfb)

#Defining function

func = lambda x : (2*k*T/e)*np.arcsinh(math.sqrt((e*eps*abs(x)*(n*1.0E6))/

(4*(c*6.022140857E26)*epsel*T*k))) + ((LH*math.sqrt(2))/(eps_H*eps0))

*math.sqrt(e*eps*eps0*(n*1.0E6*abs(x))) +abs(x)-i

#Getting the solution

phi_sc= fsolve(func,i)

#Using output phi_sc as input to calculate the other quantities

phi_el=(2*k*T/e)*np.arcsinh(math.sqrt((e*eps*abs(phi_sc)*(n*1.0E6))/

(4*(c*6.022140857E26)*epsel*T*k)))

phi_H = ((LH*math.sqrt(2))/(eps_H*eps0))*math.sqrt(e*eps*eps0*

(n*1.0E6*abs(phi_sc)))

L_G = math.sqrt((epsel*eps0*k*T)/(2*e*e*c*6.022140857E26))

L_sc=math.sqrt((2*eps*eps0)/(e*(n*1.0E6)))*math.sqrt(abs(phi_sc)

-(k*T/e))

phi_total=abs(phi_sc)+phi_H+phi_el

#-----------writing in file

#Lsc and LH are written in angstrom, note *1E10 in the printing

f.write(" %.4f \t %.2E \t %.4f \t %.4f \t %.4f \t %.4f \t %.4f

\t %.4f \t %.4f \t %.4f\n " %(c, n, L_sc*1.0E10, LH*1.0E10, i,

phi_sc, phi_H, phi_el, phi_H + phi_el, phi_total ))

f.close()

123



124


