
Synthetic seismic data generation with deep learning
G. Roncoroni a,⁎, C. Fortini b, L. Bortolussi a, N. Bienati b, M. Pipan a
a University of Trieste, Department of Mathematics and Geosciences, Trieste, Italy
b ENI – Upstream & Technical Services, San Donato Milanese, Italy
a b s t r a c ta r t i c l e i n f o

Article history:
 Accepted 26 April 2021

We study the applicability of deep learning (DL) methods to generate acoustic synthetic data from 1Dmodels of
the subsurface.
1. Introduction

Learning (DL) solutions to generate syntheti
We designed and implemented a Neural Network (NN) and we trained it to generate synthetic seismograms
(common shot gathers) from 1-D velocitymodels on two different datasets: one obtained frompublished results
and the other generated by Finite Differences (FD) numerical simulation. We furthermore compared the results
Keywords:
Reflection seismic
Seismic modelling
Deep learning
Machine learning
Synthetic seismogram
from the proposed model with the published one.
Moreover, we tried to to add more flexibility to this methodology by allowing change of wavelet and the acqui-
sition geometry. We obtained good results in terms of both computation efficiency and quality of prediction.
Themain potentialities of thework are the low computational cost, a high prediction speed and the possibility to
solve complex non-linear problemswithout knowing the physical law behind the phenomenon, which could led
great advantages in the solution also of the inverse problem.
DL to generate 1-D acoustic synthetic seismograms without solving wave equation Solution to the 1-D problem
through custom Recurrent Neural Network Retraining strategy to improve flexibility and applicability Computa-
tional complexity analysis.

approaches (see e.g. Oord, Dieleman, Zen, Simonyan, Vinyals, Graves,
The main objective of this work is the im
plementation of Deep
Kalchbrenner, Senior and Kavukcuoglu (2016)). The application of DL
to sciences, and in particular to geophysics, is a new branch that has
c seismograms from 1D been rapidly developing in the last years benefiting to the big improve-

acoustic models without solving the wave equation. This is done by
training a NN model which after training is able to predict common
shot gathers from 1-D velocity models.

The wave equation, is non linear with respect to velocity. Numerical
solutions schemes, such as finite difference or pseudo-spectral schemes,
are computationally demanding and the results may be affected by dis-
persion error and boundary reflections.

TheNN approach is computational demandingonly duringNN train-
ing and is affected by the problems in the training dataset. The proposed
methodology can solve the forward problem of seismic wave propaga-
tion faster than classical methods, especially when high-frequency
source wavelets are considered.

Although direct application and computational advantages, being
able to simulate datawith a simple 2D geometry but taking into account
the multiples reflection, leads the path to possible future works for a
better and faster solution of the inverse problem.

The generation from text data of an audio track that simulates the
human voice, is a similar problem that has been already tackled by DL

⁎ Corresponding author.
E-mail address: groncoroni@units.it (G. Roncoroni).
ments in the cost-to-performance ratio of computational resources. The
power of Deep Learning is due to the capacity of finding recurrent pat-
terns or causality without the need of user judgment or explicit coding
by capturing statistical relations to provide generative or discriminative
models.

Oye and Dahl Øye and Dahl (2019) proposed a method based on
Convolutive Neural Network (CNN) to estimate velocity models from
Raw Shot Gathers, with possible applications to Full Waveform Inver-
sion. This is a new approach that can overtake the computational limit
of the old methods (such as genetic algorithms) used to estimate a ve-
locity model. Also Yang and Ma Yang and Ma (2019) developed a tech-
nique to build seismic velocity models using U-net. Guo et al. Guo et al.
(2019) used Bi-directional Long Short-Term Memory (LSTM) for
seismic impedance inversion, an ill-posed and non-linear problem.
The Bi-directional LSTM recurrent neural network applied to the inverse
problem of P-impedance estimation can be attractive because it does
not need a prior estimate of the wavelet, one of the main problems in
this type of studies.

Moseley and MarkhamMoseley et al. (2019a) proposed a wavenet-
like net Oord et al. (2016), a stack of causal CNN layers, for a fast approx-
imate simulation of acoustic waves.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2021.104347&domain=pdf
https://doi.org/10.1016/j.jappgeo.2021.104347
mailto:groncoroni@units.it
https://doi.org/10.1016/j.jappgeo.2021.104347
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/jappgeo


Table 1
Parameters used to produce the second dataset.

Parameter Set values

Sampling rate [s] 0.001 s
Listening time [s] 1 s
Grid point [x, y] [600, 600]
Grid spacing [min, max] [5, 5] m
Ricker peak f [Hz] 20 Hz
Velocity [min, max] [1500 m/s, 5000 m/s]
Depth [min, max] [100 m, 3000 m]
Number of layers [3–8]
The methodology proposed in this work considers the seismogram
as a time-series (as in speech generation) rather than a matrix of pixels
(as in image processing). We have used a custommade Recurrent Neu-
ral Network Sherstinsky (2020) model to implement such strategy.
Fig. 1. The NN is made of two Long Short Term Memory (LS

Fig. 2. Performance on overlapping signals during the training. Prediction without Convolutive
180.

2

The result is a model able to learn how to solve the problem in 1-D-
layered media and capable of an approach to increase flexibility and to
reduce the computational cost in the training process.

The final goal is to speed up forward modelling for the wave
equation with respect to the classical methodology and to provide
a starting point for future applications to more complicated scenar-
ios, e.g. elastic approximation, or to a new approach to the inverse
problem.
2. Methods

2.1. Datasets

We used two different datasets to train NN and to evaluate the im-
portance of the dataset on different training and prediction features:
the first taken by Moseley et al. Moseley et al. (2019a), hereinafter
TM) layers, a Convolutive layer, and a final LSTM layer.

Layer (A, B), at epochs 320 and 322 respectively, andwith Convolutive Layer (C), at epochs



Fig. 3. The dataset is split in four tensors: two for the input and two for the output data (training and validation dataset, respectively). Input tensors are made of a number of velocity
functions and output tensors of Common Shot Gather panels (CSG).

Fig. 4. Training of the proposed net on the MOS dataset: Loss vs Epochs plot. Orange line
represents the trend of validation dataset prediction while blue line shows the training
one.
referred to as MOS, which was used to tackle the same task, the other
generated by numerical simulation [with the codes provided in the
Devito Project by Louboutin et al., 2019 Louboutin, Lange, Luporini,
Kukreja,Witte, Herrmann, Velesko and Gorman (2019)], hereinafter re-
ferred to as DEV.

Both datasets consists of two tensors (training/validation): two for
the input and two for the output data. The input tensor is made of a
number of velocity functions (10,000) and the output tensor of Com-
mon Shot Gather panels (CSG; 10,000 panels of 11 seismic traces for
MOS data and 257 seismic traces for DEV data).

We split both test datasets, made of 10,000 input velocity functions
and 10,000 output CSG, in training and validation datasets (80% the for-
mer and 20% the latter).

We will hereafter use the notation tensor for multi-dimensional ar-
rays: in particular, the output of the NN is a multi-dimensional array
with size [10,000, 257, 1000].

MOS is available on GitHub Moseley et al. (2019b). It is made of a
tensor with velocity functions and a tensor with the associated CSG
panels. The50% reduction in size of thedataset, compared to the original
20,000 sample Moseley's dataset, is due to the fact that our model is
based on a reduced number of weights, compared to Moseley's one,
and does not require large datasets. We have applied a random data se-
lection and splitting procedure.

The CSG panel was computed by solving thewave equation by using
finite differences over a 3Kmx3Kmgrid in a horizontally layeredmodel.
There are 11 evenly spaced receivers, with horizontal spacing of 200 m,
and the source is at the 6th receiver position.

MOS and DEV mainly differ in number of receivers and source-
receiver offset, i.e., DEV is the result of numerical simulation with the
parameters shown in Table 1. We randomly generated different
3

subsurface models by using the velocity and depth constraints shown
in Table 1.

In order to generate the input velocity function for FD (in depth) and
for NN (in time) we used the following workflow:

for each velocity function:
n= generate a casual number of horizons.



Fig. 5. Loss vs Epochs of the training on DEV dataset. Orange line represents the trend of
validation dataset prediction while blue line shows the training one.
generate n random depth values.
sort depth values and append 0 at the beginning.
generate n + 1 velocity values.
build velocity function in depth.
convert depth to time.
build velocity function in time.
Normalize data between 0 (1000 m/s) and 1 (6000 m/s) “.

Data in DEV dataset has 257 evenly spaced receivers, with horizontal
spacing of 5 m, and the source at the 129th receiver position.

2.2. NN architecture

We tested several architectures, varying the number of Hidden
Layers (HL), neurons and with different number of filters and different
Fig. 6. Prediction and residuals of a predicted CSG panel. 0-offset prediction and residuals (a), m

4

kernel sizes in the convolutional layer. After an extensive tests
phase, we were able to define the best performing architecture,
shown in Fig. 1. This NN consists of two LSTM layers Hochreiter and
Schmidhuber (1997), a convolutional layer Simard et al. (2003), and a
final LSTM layer. We choose LSTM because they are recurrent NN,
which means they can deal with causal tasks, and they have a long
short-termmemory, so they should better represent the physics behind
the task.

All of the LSTM layers have a number of neurons equal to the number
of sensors in the recording array to be simulated. The LSTM used in this
model are implemented by the Keras layer CuDNNLSTM, a Fast LSTM
implementation with NVIDIA CUDA Deep Neural Network library
(cuDNN), a GPU-accelerated library of primitives for Deep Neural Net-
works (DNN) Chetlur et al. (2014). In the convolutional layer the kernel
size is [64, 4] and it has 4 filters with a ReLu activation function Glorot
et al. (2011). This gives the NN the flexibility to get values in the win-
dow [t - 4: t] from the 64 closer neurons, whit t the time steps, and to
store it in 4 different filters.

The proposed DL architecture (Fig. 1) provides an output h at
time t from three different input, namely: Xt, h(t-1) and the cell
state line. The latter is from the method used to obtain the long
term memory. The output is calculated from a series of weights, ac-
tivation functions and simple mathematical operations. In case of
overlapping signals, such as e.g. multiple/primary reflections, such
architecture is unable to perform correct predictions at times larger
than the overlap point. This is the reason for the introduction of the
CNN layer: it increases the number of input to the same neuron
thus allowing a correct prediction even in the post-overlap part of
the record. Fig. 2 A,B,C illustrate the performance of such solution
during the training: in Fig. 2 A,B (without Convolutive Layer) the
loss function is stable from epoch 320 and the problem is not
solved. Fig. 2 C (with Convolutive Layer) shows a successful predic-
tion from epoch 180.

In order to train the NN,we need tominimize the norm of the differ-
ence between the prediction and the reference output, this is called loss
function: the most used loss functions in regression tasks are the mean
square error and the mean absolute error.

However, in our scenario, geometrical spreading and transmission
losses cause an amplitude decay with time, such that the loss function
is sensitive to the direct wave only due to its dominant amplitude and
NN outputs zeros. Accordingly, in the first implementation, the NN
ax-offset prediction and residual (b). In redwe highlighted the phase shift in the residuals.



Fig. 7.Residual plot of bothmodels: LSTMmodel in blue,WaveNet-like Oord et al. (2016)model in orange. Vertical axis is logarithmic. Horizontal axis, called residual, ismade of 50 linearly
divided bins in a range of 0 to 0.001 (MAE).

Fig. 8. Reference dataset (in blue), predicted data (in orange) and residual of 1000 CSG panels in frequency domain.
was not able to predict reflections because they did not affect the loss
function enough.

In order to sort this problem out we redefined the loss function as

loss ¼ ‖ytrue−ypred‖1⋅ G ð1Þ

with G defined as a quadratic function G ¼ x2

ex
where x is the two-way

traveltime ex the median on the whole domain of the function y = x2.
After computing the loss function, the error is backpropagated and

the weights on each neuron are updated by using the backpropagation
algorithm. For this task we tested several algorithms, namely Adam
Kingma and Ba (2014), Adamax Kingma and Ba (2014), AdaGrad
Kingma and Ba (2014) and SGD Nemirovski et al. (2009) and we
5

eventually chose a special case of the Adam algorithm, AdaMax
Kingma and Ba (2014), which is the most used for regression tasks
and exhibits better performance for this problem.We tested also differ-
ent batch sizes and we got best stability in loss function with batch
size 512.
2.3. NN training

We implemented the NN by leveraging on the Keras library Chollet
et al. (2015). We trained the model on two NVIDIA Tesla P100 GPU
accelerators.



Fig. 9. Two predictionswith all 257 offset on two independent profiles. Both arewith the input profile, on the left, the desired output, in themiddle, and the predicted output, on the right.
All the images shown in this paper are predicted from blind data,
which means that the net was not trained on them.

Hidden layer geometry is the same, but we used different numbers
of neurons in the output layer to reproduce the number of geophones.

Fig. 3 shows the structure of the training processwith theNN seen as
a black box. We split the generated dataset, made of 10,000 samples, in
training and validation datasets (80% the former and 20% the latter).
With samples we are referring to a the vector of velocity values and its
associated CSG panel. The proposed model is based on few weights re-
spect toMosley'smodel, sowedecided tousehalf dataset.Data selection
and splitting is done randomly and no specific samples were selected.

A major drawback of such approach is the limited flexibility, i.e. the
trainedNN is able to predict a number of different situations but source-
receiver offset spacing and input wavelet are limited to the ones it was
trained with. This can overly extend the training time and reduce the
profitability of the method.
6

Therefore, we developed an alternative strategy by retraining the
model, first trained with one of the two test datasets, with smaller
datasets that included new features to avoid the need of a complete
training for each modified feature.

Due to the fact that the NN has to internally encode information like
input wavelet and offset spacing into its weights, a change of simulation
parameters should not vary deeply the main distribution of weights.

By doing so the function to be minimized by the NN should bemore
linear Kavzoglu (2009) and it should need less epochs to converge to a
good result.

The training process on MOS dataset is shown in Fig. 4, in which the
loss is plotted against epochs of training, we applied Early stop criteria
as Keras Callback. The training process on DEV dataset is shown in
Fig. 5: validation and training loss do not diverge too much and they
are close enough to each other, which means prediction is good and it
is not overfitting.



Fig. 10. Reference output and prediction of a CSG panel with numerical dispersion problems due to Finite Differences grid dispersion (A and B).

Fig. 11. Input, reference output, prediction of the retrained model and prediction of the original model.

7



Fig. 12. Loss vs epochs for the retraining of a model with a different waveform (a) and different offset spacing (b).

Fig. 13. Prediction of an independent velocity function of the retraining of amodel with a different waveform (a) and different offset spacing (b). Old prediction (on the right) and the new
prediction (in the middle).
3. Results

3.1. MOS dataset

After the training phase, we tested the net on the dataset generated
by Moseley et al. Moseley et al. Moseley et al. (2019a) to evaluate the
8

capability of the net to generalize the problem, i.e. to make correct pre-
dictions from datasets different from the training ones.

In this case the training lasted 40 h on two NVIDIA Tesla P100 GPU
accelerators and the loss decreased quite smoothly.

After the training, we tested the NN on a case not utilized in the
training phase: an example of this prediction and of the corresponding



Fig. 14. Loss vs time for different offsets. We can notice a plateau at (5− 8) × 10−4. With
letter A, B, C and Dwe referred to the plateau of, respectively, 3,5, 9, 17 offsets. With letter
E we show the plateau of the remainder data.
residuals is shown in Fig. 6. The direct wave is well predicted; there are
still small errors in themagnitude of the gained reflections, but the peak
positions are correctly predicted.

In Fig. 6 we can split the analysis of the results in two parts, focusing
the part from 0 ms to 350 ms and from 350ms to the end.

The first part of the data contains primary reflections and we find
some small phase shifts, in red boxes in Fig. 6, but the prediction is
good. It is able also to accurately reproduce interference between
signals.

The second part is characterized by the presence of multiple reflec-
tions only and noise and no primary reflections: in this case the NN
does not reproduce anything. This problem can be found in all the
dataset and it is present also in the Moseley et al. model Moseley et al.
(2019a). This lack of prediction is due to an inadequate statistics on
such event in the training dataset.

In order to evaluate prediction performances of NN, we predicted
1000 panels from the dataset and we analyzed the error by plotting
the residuals of both nets on a histogram with a logarithmic vertical
axis (Fig. 7) and the horizontal axis divided in 50 bins linearly spaced
from 0 to 0.001: we can see that using LSTM we got a lower error. We
further compared the reference data and the results of prediction of
our net in the frequency domain. In Fig. 8 we can see the amplitude
spectrum of reference data (in blue) and predicted data (in orange)
and residual of 1000 CSG panels. Results are satisfactory as themean ab-
solute error is 0.89%.
3.2. DEV dataset

We trained the net on another dataset obtained from numerical
simulation to have better control of the training process. That allow
us to study in depth the importance of the dataset and test differ-
ent critical situations. In order to do this, we kept the offset spacing
and wavelet fixed, but we varied the number of layers in the 1-D
model.

In Fig. 9 are presented two predictions with 256 offsets on two inde-
pendent velocity profiles: we show the input profile on the left, the de-
sired output in the middle, and the predicted output on the right.
9

In Fig. 9-a, prediction is very close to the target, except for the central
area at 950 ms, in which we find a small positive amplitude error.

In Fig. 9-b, we have a CSGwithmultiple reflections: we have plotted
the 2-way traveltime of the primary reflections over the predicted data,
so that we can easily identify non-primary reflections. We can see a
multiple reflection predicted from the model at 600ms.

In the panel we can also see a signal, similar to the one generated by
reflection from edges, reproduced by the net. Prediction time for 257
offset CSG (DEV dataset) is 0.064 s.

3.3. The role of the training dataset

Because the NN does not model data from equations, it has to learn
from the output of a forward model how an input of the forward
model is related to its response. This leads to a crucial role of the dataset
used: a bad dataset will lead to a bad model as the net will learn all the
features that are in training data.

In Fig. 10, we have a critical level of numerical dispersion, marked
with A and B in Fig. 10. Despite this, the net is able to accurately repro-
duce such phenomena.

It is interesting that such predictions come from the same trained
net that made the prediction shown in Fig. 9: this means that the net
is also able to discern when and how dispersion has to be predicted.
The NN can discern different scenarios and predicts numerical dis-
persion quite accurately. The model had problems in predicting mul-
tiple reflections, as presented in the previous section, and we found a
problem due to inadequate statistics on such events in the training
dataset.

At the beginning themodel was trained on a subsurface model with
7 layers: this lead to a very low probability in finding multiple reflec-
tions and the net seemed not to learn what these signals were due to.
In order to make an event important in a dataset we had to find a lot
of examples of this, and it has to be of significant amplitude compared
to others: in this dataset multiple reflections were too sparse and of
low amplitude to affect it significantly.

To try to solve this problem, we retrained the already trained model
on a dataset generated on purpose to contain several multiple reflec-
tions. We imposed a 3-layers subsurface model with the first two layers
closer to each other than the third one. This led to a dataset with lots of
statistics on multiple reflections.

In Fig. 11 we can see: the input, the reference output, the prediction
of the retrained model and the prediction on the original model.

Aswe can see in the retrainedmodel prediction, amultiple reflection
at 500ms is close to the reference signal, while the old net did not pre-
dict this signal.

3.4. Retraining

In order to improve the applicability of the proposed NN, we had to
make it more flexible by allowing rapid inclusion of information like
waveform and offset spacing.

A short scheme of this process follows:

1. Generate a new small dataset ~10% of the dimensions of the first
dataset with the new features.

2. Train the previously trained model on the new dataset.
As we can see from loss vs epochs plot, in Fig. 12, the new training

converges quickly to a minimum and the space in which the gradient
is computed seems to be smooth.

It is apparently not necessary to create new set of weights, because
the old prediction is already in the range of the new right solution: a
limited amount of additional work is enough to reach the best solution
as it reaches a minimum in less than an hour.



10



Table 2
Total training time, themomentwhere the problem starts to be solved and prediction time
for each number of offsets considered.

Offsets Total time (h) Solving time (h) Prediction time (s)

3 4.80 h not solved 0.017 s
5 4.74 h not solved 0.015 s
9 4.80 h 4.00 h 0.015 s
17 5.05 h 2.16 h 0.019 s
33 5.83 h 0.80 h 0.021 s
65 7.24 h 0.60 h 0.024 s
129 9.46 h 0.80 h 0.033 s
257 16.21 h 0.80 h 0.064 s
Fig. 13-a compares the old prediction (on the right) and the new pre-
diction (in the middle), after the retraining, with a different waveform.
While in the old model the source wavelet was a Ricker with peak fre-
quency 10 Hz, in the retrained model we used a higher 20 Hz frequency.

As we have done for the waveform, we have trained a model also to
predict a different offset spacing: the results are shown in Fig. 13-b.

3.5. Computational complexity

We measured the time required to train 500 epochs as a function
of the dimension of the desired output. To do this we trained the same
net increasing the number of columns (offsets) of the output matrix
as 2n + 1.

In order to evaluate the net performance, we checked also the trends
of the loss as a function of time: this is plotted in Fig. 14.

As we can see we have different trends but all of them show a pla-
teau. If we analyze the behavior of the function in the surroundings of
such plateauwe findout that it is the point atwhich the net really learns
to solve the problem, as shown in Fig. 15.

Up to a 9-offset threshold the net is not able to solve the problem in
500 epochs; then it seems to learn faster when the number of offsets
increases.

Total training time and time required to solve the problem are re-
ported in Table 2.

In Fig. 15 we can see the exact timingwhen the problemwas under-
stood with 5, 129 and 257 offsets. We got this timing by looking at the
predictions made during the training of the NN at the time the loss
Fig. 15. Comparison between synthetic (FD simulation, column left) and predicted data for 5 (

Fig. 16. Prediction time vs offsets.

11
exited the plateau. We can also see that 500 epochs are not enough to
solve the problem if the number of offset is 5.

In order to evaluate prediction time we used each trained model to
predict 100 panels andwe took the average time for eachmodel. Results
are shown in Fig. 16. Prediction time for a 257 offset CSG panel, under
constraints shown in Table 1 and with the same hardware, is of 0.08 s
compared to 2.17 s of the FD algorithms used in this paper. According
to this benchmark, this would lead to a method that is 27 times faster
than the classical one.

Even thoughprediction time is smaller compared to that obtained by
classical methods, it is affected by different factors.

Prediction time for this net depends only on the number of offsets
used, on temporal discretization and on record length in time.

The FD generation time, instead, does not depend on number of off-
sets but on model extension and discretization.
4. Conclusions

The potentialities of Neural Network (NN) in the solution of non lin-
ear problems are well known and the successful application to the pres-
ent case, i.e. synthetic seismic data generation in the 1-D acoustic case,
demonstrates such potential.

The proposed methodology is robust and can solve the forward
problem, i.e. numerical modelling of seismic wave propagation starting
from the velocity model faster than classical methods, especially when
high-frequency source wavelets are considered.

For the 1-D acoustic case NN are a good alternative to the classical Fi-
nite Difference (FD) method. They are able to rapidly and accurately
solve the problem.

The waveform is well reproduced and the net manages to predict
multiple reflections.

While prediction time is much lower than classical methods
(e.g. FD), the training process needs large times and datasets.
Such large training effort may imply that the applicability of the
method is limited.

In order to tackle such issue and increase flexibility and applicability
we propose a strategy based on retraining.

The proposed method gives good results and is able to make adjust-
ments of the NN parameters in a short time (less than one hour on two
NVIDIA Tesla P100 GPU accelerators) and with a small dataset.
a), 129 (b) and 257 (c) offsets.

Data are reported in Table 2.



In thisway, even thoughwe are still linked to FD data generation,we
are able tomodify parameters in the NN by using just a small amount of
data generated by FD. Our results show that the proposed method al-
lows fast and easy parameter change.

The specific architecture and the use of LSTM allowed to obtain
seismograms with lots of offsets without substantially increasing the
training time.

One possible future work is the application of this methodology for
the inverse problem solution and may offer great benefits in the solu-
tion of challenging cases, such as e.g. velocity function inversion in pres-
ence of multiple reflections.

This technique may open new perspectives of development, in par-
ticular the extension to the 2-D and 3-D elastic case. Due to the perfor-
mance demonstrated in the present work, such extension may be
feasible and they can lead to efficient alternative to classical methods.

Nonetheless, the complexity of such extension will require a com-
plete revision of the design of the net.

Author statement

G. Roncoroni: Conceptualization, Methodology, Software, Writing -
original draft.

N. Bienati: Conceptualization, Supervision, Writing - review &
editing

C. Fortini: Conceptualization, Supervision, Software, Writing - re-
view & editing.

L. Bortolussi: Conceptualization, Supervision, Software, Writing - re-
view & editing.

M. Pipan: Conceptualization, Supervision, Writing - original draft,
Writing - review & editing, Project administration.

Declaration of Competing Interest

None.

Acknowledgments

The authors would like to thank Eni, for the opportunity to pursue
this work, also through the use of the computational resources made
available at ENI's HPC4,1 and for the approval to bring it to publication.
1 HPC4 is a supercomputer owned by ENI spa that has a peak performance of 18.6
Petaflops

12
The authors also thank the Landmark's University Grants Program
(UGP) and the National Research Program in Antarctica of the Italian
Ministry of University and Research for the additional support

References

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.,
2014. Cudnn: Efficient primitives for deep learning. CoRR abs/1410.0759. URL.
http://arxiv.org/abs/1410.0759.

Chollet, F., et al., 2015. Keras. https://keras.io.
Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Gordon,

G., Dunson, D. (Eds.), Proceedings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics. PMLR, pp. 315–323.

Guo, R., Zhang, J., Liu, D., Zhang, Y., Zhang, D., 2019. Application of Bi-Directional Long
Short-Term Memory Recurrent Neural Network for Seismic Impedance Inversion.
pp. 1–5 URL.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9,
1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Kavzoglu, T., 2009. Increasing the accuracy of neural network classification using refined
training data. Environ. Model Softw. 24, 850–858.

Kingma, D., Ba, J., 2014. Adam: A Method for Stochastic Optimization. International Con-
ference on Learning Representations.

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann, F.J., Velesko, P.,
Gorman, G.J., 2019. Devito (v3.1.0): an embedded domain-specific language for finite
differences and geophysical exploration. Geoscientific Model Development 12,
1165–1187 URL:. https://www.geosci-model-dev.net/12/1165/2019/ https://doi.
org/10.5194/gmd-12-1165-2019.

Moseley, B., Markham, A., Nissen-Meyer, T., 2019a. Fast Approximate Simulation of Seis-
mic Waves with Deep Learning.

Moseley, B., Markham, A., Nissen-Meyer, T., 2019b. Seismic Simulation Wavenet. URL.
https://github.com/benmoseley/seismic-simulation-wavenet.

Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A., 2009. Robust stochastic approximation ap-
proach to stochastic programming. Society for Industrial and Applied Mathematics
19, 1574–1609.

Oord, A.V.D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,
Senior, A., Kavukcuoglu, K., 2016. Wavenet: A generative model for raw audio. URL.
http://arxiv.org/abs/1609.03499.

Øye, O., Dahl, E., 2019. Velocity model building from raw shot gathers using machine
learning. https://doi.org/10.3997/2214-4609.201900039.

Sherstinsky, A., 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) network. Physica D: Nonlinear Phenomena (0167-2789),
132306 https://doi.org/10.1016/j.physd.2019.132306. https://www.sciencedirect.
com/science/article/pii/S0167278919305974.

Simard, P.Y., Steinkraus, D., Platt, J.C., 2003. Best practices for convolutional neural net-
works applied to visual document analysis. Seventh International Conference on Doc-
ument Analysis and Recognition. Proceedings, pp. 958–963 https://doi.org/10.1109/
ICDAR.2003.1227801.

Yang, F., Ma, J., 2019. Deep-learning inversion: A next-generation seismic velocity model
building method. GEOPHYSICS 84, R583–R599. https://doi.org/10.1190/geo2018-
0249.1.

http://arxiv.org/abs/1410.0759
https://keras.io
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0015
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0015
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0015
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0020
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0020
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0020
https://doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0030
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0030
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0035
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0035
https://www.geosci-model-dev.net/12/1165/2019/
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.5194/gmd-12-1165-2019
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0045
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0045
https://github.com/benmoseley/seismic-simulation-wavenet
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0055
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0055
http://refhub.elsevier.com/S0926-9851(21)00094-X/rf0055
http://arxiv.org/abs/1609.03499
https://doi.org/10.3997/2214-4609.201900039
https://doi.org/10.1016/j.physd.2019.132306
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1190/geo2018-0249.1
https://doi.org/10.1190/geo2018-0249.1

	Synthetic seismic data generation with deep learning
	1. Introduction
	2. Methods
	2.1. Datasets
	2.2. NN architecture
	2.3. NN training

	3. Results
	3.1. MOS dataset
	3.2. DEV dataset
	3.3. The role of the training dataset
	3.4. Retraining
	3.5. Computational complexity

	4. Conclusions
	Author statement
	Declaration of Competing Interest
	Acknowledgments
	References




