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In dependence of the identity of the variable region of the heavy chain of the immunoglobulin

(IGHV) gene respect to the germline, chronic lymphocytic leukemia (CLL) may be subdivided into

U-CLL and M-CLL. The evaluation of the IGHV is a hallmark in CLL due to the stability during

time and its prognostic and predictive value. Despite this, IGHV intraclonal diversification (ID) has

been described in  the Sanger  era.  However,  in  the Next  Generation Sequencing era,  no author

developed a solid and reliable workflow for ID identification and quantification. It follows that ID

characterization is still lacking. Moreover, nobody evaluated the clinical impact of ID in CLL yet.

Using the NGS technologies we exploited the immunoglobulin repertoire of 1091 CLL samplesto

generate  a  tailored  approach  for  ID  evaluation.  Using these  data,  we developed  an  innovative

methodology to identify systematic sequencing errors (SE) on sequencing data of immunological

repertoire (RepSeq), correct them and evaluate ID through the calculation of the inverse Simpson

Index (iSI). With focused experiments, we demonstrated the robustness of our approach and the full

superimposition of corrected data with the gold standard for RepSeq, namely unique molecular

identifiers-based amplification protocol. Moreover, we validate our approach by analyzing other B

cell malignancies with documented ID producing a classification coherent with the literature. A

validated cutoff of 1.2 of iSI was generated to discriminate CLL samples with ID features (I) and

samples without (nI).

8Among 983 CLL patients with iSI score available, only 15% of samples displayed ID according to

the iSI 1.2 cutoff. Both M-CLL and U-CLL have sample with ID, despite a significant ID skewing

toward  M-CLL  was  found.  No  variation  in  IGHV  family  or  gene  usage  according  to  the

presence/absence of ID was reported. Analyzing the RepSeq data for the identification of molecular

signatures  compatible  with  canonical  somatic  hypermutation  (SHM)  processes  we  observed  a

significant higher presence of mutations based on Activation induced cytidine deaminase (AICDA)

in the context of I-CLL. Indeed, a significant higher  AICDA mRNA levels was observed in I-M-

CLL. Lastly, taking advantage of 685 CLL patients with time to first treatment (TTFT) available,

we observed a significantly longer TTFT of I-M-CLL respect to nI-M-CLL, whereas no differences

were  observed  in  U-CLL.  In  conclusion,  we  succeeded  to  quantitative  characterize  the  CLL

intraclonal diversification phenomenon and to demonstrate its possible clinical correlation. 
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According to Rai, Minot and Isaacs were the firsts to well-define chronic lymphocytic leukemia

(CLL)  as a discrete clinical entity in 19241. Initially, it was thought that CLL was made of an

homogeneous population of long-living B-cells  incompetent  at  interacting with the surrounding

environment2.  Nowadays,  this  view has  drastically  changed:  CLL is  now considered  an highly

heterogeneous disease in constant interaction with micro-environmental cells supporting its growth

and survival3. This heterogeneity reflects on the clinical course, ranging from an indolent behavior

to a rapid progression4. This extreme variability made necessary efforts for the identification of

biological prognosticators valuable for patients’ stratification and therapy tailoring.

1.1 Epidemiology

CLL is a B cell malignancy characterized by an accumulation of neoplastic B lymphocytes in the

blood and in secondary lymphatic tissues5. CLL is the most common leukemia in the Western world

accounting for the 1% of newly diagnosed cancers in USA in 20126. The incidence is variable,

ranging  from  a  0.06%  of  European/American  individuals  to  the  0.01%  for  eastern

countries,counting for 4-6 new cases per 100.000 individuals with a median age at diagnosis equal

to  65  years7.  Gender  is  a  relevant  factor  seen  that  men  are  almost  doubly  affected  respect  to

females7.  Despite  the  majority  of  CLL cases  are  sporadic,  it  has  been  observed  an  hereditary

propensity for patients whom relatives has contracted CLL8. Moreover, Genome-wide association

studies identified several Small Nucleotide Polymorphisms (SNPs) link to familiar CLL9,10. 

1.2 CLL morphology and immunophenotype 

CLL is a clonal expansion of a malignant B cell population with a specific immunophenotype.  In

the blood smear, leukemia cells are small, mature lymphocytes with dense nucleus and a narrow

border of cytoplasm with partially aggregated chromatin11. CLL cells display high levels of CD19,

CD5 and CD23 and lower levels of CD20 and CD79b respect to normal B cells12. Each leukemic

clone has a restricted expression of κ or λ immunoglobulin light chain13. Recently, a great effort has

been performed in order  to  harmonize criteria  for a  correct  immunological  CLL diagnosis:  the

combination  of  CD5,  CD19,  CD20,  CD23,  κ,  λ antibodies  is  sufficient  to  unambiguously

discriminate CLL14. 

1.3 Diagnosis

The International workshop on CLL (iwCLL) consortium has reported clear guidelines for CLL

diagnosis  based  on  blood  counts,  blood  smear,  differential  count,  immunophenotyping  and

molecular characterization11.  CLL diagnosis requires a peripheral blood count of 5000 clonal B

cells/μl  sustained  for  at  least  3  months11.  If  the  patient  experiences  cytopenia  due  to  marrow

infiltration, the CLL diagnosis is confirmed regardless a low blood count. In absence of enlargement
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of the spleen (splenomegaly), or liver (hepathomegaly) and cytopenia, a B cell count lower than

5000 cells/μl could suggest the presence of a monoclonal B lymphocytosis (MBL)15. The presence

of infiltration in lymph nodes (lymphadenopathy) and the absence of cytopenia with a B cell count

not higher than 5000 cells/μl characterizes small lymphocytic leukemia (SLL)16.

Most  of CLL patients  are  asymptomatic  at  diagnosis,  but  a  minority  could experience disease-

related symptoms including fatigue, weight loss, night sweats, abdominal fullness and an increased

infection frequency17. Anemia, thrombocytopenia, splenomegaly or hepatomegaly could be present:

all these symptoms are fundamental for a correct disease staging17.

1.4 CLL staging systems

Two staging systems are widely adopted to classify CLL patients18,19. Both classifications rely on

standard laboratory tests and physical examination. The modified Rai staging system defines three

categories.  Low-risk  patients  (Rai  stage  0)  have  lymphocytosis  in  blood  and/or  in  marrow,

intermediate-risk patients (Rai stage I-II) have lymphocytosis, splenomegaly and/or hepatomegaly,

enlarged  lymphnodes  ,  high-risk  patients  (Rai  stage  III-IV)  display  additional  disease-related

anemia or thrombocytopenia18. The original Rai classification was modified to reduce the number of

prognostic groups from 5 to 3, low-risk (formerly Rai 0),  intermediate risk (formerly Rai stage I

and II), and high risk (formerly stage III and IV)20. The Binet classification considers the presence

or  not  of  anemia/thrombocytopenia  and  the  number  of  areas  affected  by  the  disease19.  These

features  identify  three  stages  (A,  B,  C)  which  are  characterized  by  specific  hemoglobin

concentration and absolute platelets number19. Despite both systems displayed prognostic relevance,

nowadays they have become insufficient to discriminate between prognostic subgroups21. Therefore,

in the last decades, a collective effort has been made to identify novel biomarkers able to predict

progression and survival of CLL patients. 

1.5 Prognostic biomarkers in CLL

1.5.1 Serum markers

The evaluation of serum markers plays a crucial role in the diagnosis and the prognosis evaluation

of  CLL patients  due  to  the  inexpensiveness  of  standard  clinical  laboratory  tests.  Lymphocyte

doubling time (LDT) reflects the growing rate of malignant lymphocytes per time. It identifies a

subgroup of patients with a poor prognosis affecting both the time to first treatment (TTFT) and

overall  survival (OS)22,23.  Levels of serum thymidine kinase (s-TK)24 and lactate dehydrogenase

(LDH)25 has  been proven to  be  informative  for  patients’ stratification.  Serum  β2-microglobulin

(B2M) is believed to be constitutively released by CLL cells and its level correlates with tumor
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extension.  B2M-levels  measurement  has been put  into laboratory practice since correlated with

other clinical parameters and clinical outcome26. 

1.5.2 Immunophenotypic markers

CLL is  an heterogeneous malignancy constantly interacting with  the microenvironment  to  gain

support  and stimulation  from other  cell  populations  through the  expression  of  multiple  surface

molecules27. The introduction of the flow cytometry in clinical practice allowed the clinicians to

easily  discriminate  between  CLL  and  other  diseases  through  immunophenotypic  panels14.  In

addition,  surface biomarkers have been proven to be efficient  in monitoring CLL behavior and

evolution during time28. Additionally, several of them (see below), demonstrated a prognostic power

in different clinical settings28. 

ZAP70 (zeta-associated  protein-70)  was initially  identified as  a  CD3-associated tyrosine  kinase

involved  in  the  signaling  pathways  of  T  lymphocytes29.  Subsequently,  it  has  been  observed

expressed also in CLL cells and normal B-cell depending on the activation and maturation stage30,

thus playing a role in B-cell receptor (BCR) signaling31. ZAP70 expression is tightly correlated with

the  mutational  status  of  the  Immunoglobulin  and  predicts  a  more  aggressive  behavior  of  the

disease31,32. 

CD38 is a type II membrane glycoprotein acting both as an enzyme and a surface receptor involved

in the regulation of cytoplasmic Ca2+ levels33.  CD38+ CLL cells are mainly found in secondary

lymphoid organs and bone marrow were they closely interact with the microenvironmental cells for

an enhanced survival and proliferation34,35,36.  In a clinical setting, a cutoff of 30% of CLL cells

CD38+ identify cases with poorer outcome37. Despite studies have linked expression of ZAP70 and

CD38, recently, it has been demonstrated the independence between these prognostic markers38.

The adhesion molecule CD49d plays a crucial role in the regulation of the interactions with cells

and the extracellular matrix through vascular-cell adhesion molecule-1 (VCAM-1), fibronectin (FN)

and Emilin-139. In has been demonstrated an interplay between CD38 and CD49d which promotes

CLL survival through multiple mechanisms40. A cutoff of 30% of CLL cells positive for CD49d

discriminates  patients  with different  Rai  stages  and identifies  a  subset  of  patients  with a  more

aggressive  disease41.  It  has  been  demonstrated  that  CD49d  is  an  independent  negative

prognosticator  in   CLL42.  Moreover,  a  multicentric  analysis  confirmed  the  superiority  of  the

prognostic value of CD49d in comparison to other surface markers43,44.

1.5.3 Chromosomal aberrations

CLL is a relatively stable disease respect other hematological malignancies. Indeed, 80% of patients

display 0-2 alterations in chromosomal copy number45. Among those, chromosomal deletions are
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mostly represented respect to translocations observed in only 3% of patients46. The election method

for  the  assessment  of  chromosomal  aberration  in  CLL is  the  interphase  fluorescence  in  situ

hybridization (FISH) based on the hybridization of a fluorophore-conjugated DNA probe to the

region  of  interest.  The  most  common  and  studied  cytogenetic  aberrations  are  represented  by

deletion 13q14, trisomy 12, deletion 11q22.q23 and deletion 17p13. Moreover, as it happens in the

context  of  immunophenotic  markers,  chromosomal  alteration  are  linked  with  the  outcome  as

reported in the hierarchical model proposed by Dohner et al46  .

13q14 Deletion

Is  the  most  common  deletion  in  CLL found  in  almost  50% of  patients47.  Despite  historically

associated with good prognosis, recent studies demonstrated that its prognostic power depends on

the entity of the deletion48. Accordingly, small deletions targeting miR-15a/miR16-1 locus only are

good  prognosticators49.  On  the  contrary,  patients  carrying  wider  deletions  involving  genes  as

DLEU750 and RB151 display a shorter TTFT and OS respect to patients with small deletions48.

Trisomy 12

Dohner et. al. Initially proposed a prognostic model in which trisomy 12 was an intermediate risk

marker46. In present days this assumption remain controversial due to contrasting evidences about

the trisomy effect52,53. Trisomy 12 is found in 10-20% of patients and is considered an early driver

mutation in CLL which pathogenic activity could resemble a gene dosage effect54.  Its  presence

seems associated with the appearance of other chromosomal aberrations55 and morphological and

immunophenotypic modifications in CLL cells53.

11q23 Deletion

11q23 deletion is observed in 5-20% of CLL patients at diagnosis and is considered a negative

prognosticator often associated with a progressive disease and advanced Rai stage symptoms56,57.

Most of the time the deletion is larger than 20 mega bases (“classical deletion”)58, but rarely is very

small (“atypical”)59 and it is often associated with ATM mutations on the other allele58. Almost all

the deletions cause the loss of ATM gene as well as other genes including RDX, FRDX1, RAB39,

CUL5,  ACAT,  NPAT,  KDELC2,  EXPH2,  MRE11,  H2AX, and  BIRC3.  ATM deletion  has  been

associated  with  an  increased  genomic  instability60,  BIRC3  lesion  may  be  involved  in

chemorefractoriness61.

17p13 Deletion

5-10% of CLL patients harbor 17p13 deletion at  diagnosis, which increases to 30% in patients

treated with chemo-immunotherapy undergoing refractory CLL62. Interestingly, 17p deletion is the

most  common  aberration  acquired  after  treatment  not  only  in  CLL,  but  also  in  mantle  cell
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lymphoma  (MCL)63 or  diffuse  large  B-cell  lymphoma  (DLBCL)64.  17p13  deleted  patients  are

always included in the high risk category being a negative prognosticator of OS and progression

free survival (PFS)56. A negative prognosis is explained by the fact that 17p13 band contains TP53

gene,  responsible  for  cell-cycle  regulation  resulting  in  genetic  instability65 and  atypical

immunophenotype66.

1.5.4 Genetic lesions

Although initially considered a relatively stable disease, the advent of Next Generation Sequencing

(NGS) paved the way for a fine characterization of the subclonal composition of CLL, revealing a

genomic complexity higher than previously expected67. An higher sensitivity allowed to identify

minor populations carrying distinct genetic modifications clinically relevant for the evaluation of

the  disease68.  Few  genes  have  been  found  to  be  mutated  in  more  than  5%  of  patients, thus

suggesting that mutations are a secondary event acquired during time.

TP53

TP53 is mutated in approximately 50% of human malignancies69. It encodes the tumor-suppressor

protein p53 and is involved in a multitude of cellular activities including apoptosis, regulation of the

cell cycle and DNA repair mechanisms70. TP53 mutations are found in 10-15% of CLL and in 70-

80% of  patients  carrying  17p1371,  consistently  with  a  double-hit  mechanism72.  In  a  context  of

chemorefratoriness,  up  to  40%  of  patients  harbor  TP53 mutations,  probably  risen  due  to  an

evolutionary advantage of mutated clones over chemotherapy71. To corroborate this hypothesis, it

has  been  observed  that  small  TP53-mutated  clones  are  selected  by  the  therapy  resulting  in  a

dramatic  enlargement  of  the  mutated  CLL  clone73,74,75.  TP53-disrupted  patients  experience  a

progressive disease with a global worsen of clinical symptoms, thus it correlates with a poor clinical

outcome and response to chemotherapy73–75.

SF3B1 

SF3B1 gene encodes for the subunit 1 of the splicing factor 3b, one of the major components of the

spliceosome involved in the excision of introns and mRNA maturation76. Although the impact of

SF3B1 mutations has not been fully understood, it is plausible an effect on proliferation/ survival

due  to  the  disregulation  of  splicing  programs77.  SF3B1  is  found  mutated  in  5-10%  of  newly

diagnosed CLL patients and in almost 20% of chemorefractory CLL78. From a clinical perspective,

SF3B1 mutation correlates with a lower Progression free survival (PFS) and OS79 and ranks in the

intermediate risk category80,78.

BIRC3
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Nuclear factor-kB signaling pathway is essential for the survival and proliferation of CLL cells81.

Baculoviral IAP Repeat Containing 3 (BIRC3) is a negative regulator of the non-canonical NF-kB

pathway acting as a E3 ubiquitin ligase82.  BIRC3 mutations are rarely found at  diagnosis83,  but

increase in therapy-resistant CLL patients. Clinically, BIRC3 mutations are located in the high risk

category80:  patients with BIRC3 mutations experience a very poor survival, with shorter TTFT and

associate with chemorefractoriness80,61. 

NOTCH1

NOTCH1 is a transmembrane receptor working as a transcription factor84. The binding with Jagged

or Delta ligand families promote its proteolytic cleavage and its subsequent nuclear translocation

which  in  turn  activate  specific  genetic  programs85.  It  is  constitutively  expressed  in  CLL

cells86 increasing cell survival and apoptosis resistance87.  NOTCH1 mutations are observed in 10-

20% of CLL patients, being   the most frequent mutations in CLL patients88. Mutations in NOTCH1

gene  have  been  proven  to  be  independent  predictors  of  severe  prognosis  together  with  TP53-

mutations, which are mutually exclusives89.

Mutational status of the heavy chain variable region of the immunoglobulin (IGHV)

In 1999, Stevenson and collaborators were able to discriminate two main subgroups of CLL patients

in dependence of mutational load of the IGHV expressed by the pathological clone. Patients with a

CLL  clone  carrying  an  IGHV  with  an  identity  percentage  higher  than  98%  respect  to  the

corresponding germline gene experienced a poorer prognosis respect to those having clones with

IGHV identity lower than 98%90. Nowadays, the evaluation of the mutational status of IGHV is

become the gold standard for CLL having both prognostic91 and predictive value92. Its role in CLL

will be described in Chapter 2.

1.6 Therapeutic strategies

For decades, the inefficacy of standard treatments together with the advanced age of patients made

necessary a “watching waiting” approach17. Glucocorticoid administration was the first treatment

option in 1940, but it was briefly abandoned due to a transient response followed by several adverse

effects17. With the advent of alkylating agents93 and nucleoside analogues94, patients could benefit

from significantly higher PFS and a partial relief of symptoms. The introduction of monoclonal

antibodies  in  association  with  standard  chemotherapy  revolutionize  CLL  treatment95.  Finally,

targeted molecular therapies has been developed to target specific molecular pathways necessary for

disease progression, chemorefractoriness and genomic instability96.  

1.6.1 Chemotherapy

Chemotherapic treatment strategies act on DNA synthesis and replication, mainly affecting fast-

growing cells.  The usage of alkylating agents in combination with glucocorticoids was the first
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chemotherapic combination to obtain an objective response rate (ORR) of 40-70 with a partial

remission97. The administration of chlorambucil or cyclophosphamide alone were not able to give

survival benefits93, but their combination with nucleoside analogues like fludarabine demonstrated

improved  treatment-free  survival.  Fludarabine/chlorambucil  (FC)  rapidly  became  the  first-line

treatment for CLL patients98.

1.6.2 Immunotherapy

The principle  of  immunotherapy is  targeting  surface  antigens  of  cancer  cells  with  monoclonal

antibodies  (mAb)  eliciting  a  Complement  Dependent  Cytotoxicity  (CDC)99 or  an  Antibody

Dependent Cellular Toxicity (ADCC)100.  Rituximab anti-CD20 was the first  to be introduced in

clinical practice in combination with FC chemotherapy (FCR) with significant improvements in

PFS and OS101. Notably, it was observed that FCR have a more pronounced effects on low-risk

patients101. A second and third generation anti-CD20 were developed to target more specifically the

epitope resulting in higher affinity and efficacy and immuno-mediated effects. Ofatumumab is a 2nd

generation  humanized  antibody  against  an  epitope  different  than  that  targeted  by  Rituximab102,

Obinotuzumab is a 3rd generation gycoengineered antibody with reduced CDC activity but higher

ADCC102. 

1.6.3 Molecular therapy

New therapies needed to be designed to reduce adverse effects harming high-risk patients possibly

overcoming chemoresistance scenarios96. Moreover, recent advances highlighted an high contribute

of the microenvironment to CLL cells survival and proliferation103. The BCR is a key player in

providing constant activation of CLL cells in both autonomous and non-autonomous ways104: this

evidence encouraged the development of new drugs to inhibit its pathway. Ibrutinib was the first

molecule  designed  to  target  the  Burton’s  tyrosine  kinase  (BTK)  inhibiting  NF-kB and  MAPK

pathways105.  On the contrary, Idelalisib affects the activation of  PI3Kδ thus inhibiting AKT and

MAPK pathways106.  Lastly,  venetoclax  is  a  BCL2 inhibitor  which  promotes  the  apoptosis  and

induces tumor lysis107. 

1.6.3 Stem cell transplantation

High-risk  patients  with  17p  deletion,  TP53  mutations  or  chemoresistant  to  purine  analog

combination within 2 years are eligible for allogenic transplantation (allo-SCT)108. The development

of  novel  agents  for  treating  CLL lowered  the  number  of  patients  undergoing  transplantation.

Moreover, its usage is still limited by many factors as a high incidence of infections, toxicity of the

therapeutic regimen and graft-versus-host disease109. On the contrary, one of the major advantages is

the graft-versus-tumor effect in a non-myeloablative context that drives the transplanted immune
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system against the leukemic cells. In the near future, it is likely that allo-SCT will continue to be

applied on patients who failed therapy, are intolerant or unable to uptake the novel agents108.
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2.1 Immunoglobulin structure, regions and genes 

The  immunoglobulin  is  an  heterodimeric  glycoprotein  that  can  be  both  secreted  in  the

microenvironment  and  exposed  on  the  membrane110.  It  associates  with  CD79a  and  CD79b  to

constitute the B cell receptor (BCR) having a pivotal role in the adaptive immune response due to

their role in antigen recognition111. Immunoglobulins are exclusively expressed by B lymphocytes

and eventually secreted by plasma cells in a soluble form112. The immunoglobulin consists of two

identical heavy chains codified in the IGH locus (14q32.33) and two identical light chains codified

in the IGK (2p11.2) and IGL (22q11.2) loci113. The heavy chain has a variable domain (Vh) and

three/  four  constant  domains  (Ch1-4).  The  Ch  region  mediates  effector  functions  including

complement activation and Fc receptor binding114. In dependence of the antigen encountered and the

signaling pathways activated, Ch may change through the the class switch recombination (CSR)

process  which  highly  affects  the  physicochemical  properties  of  the Immunoglobulin115.  The Vh

domain of the heavy chain (IGHV) is in charge of antigen recognition115.It is a multigene complex

comprised  of  39 functional/  open  reading  frame  variable  (VH)  genes,  85  V pseudogenes,  23

diversity (DH) genes and 6 joining (JH) segments with a various allelic variability116. Through the

V(D)J recombination process of the Vh, unique VH, DH and JH segments are fused together to

originate the functional immunoglobulin117. In the last decades, many authors proposed a numbering

scheme for antibodies in order to uniquely identify hyper variable regions responsible of antigen

recognition118. In 1997, Lefranc et al. introduced a standardized numbering system based on the

alignment  of  the  amino  acid  sequence  against  a  germline  database  stored  in  the  international

ImMunoGeneTics database119. IMGT numbering is globally applied and subdivide the IGHV into

four framework (FWR1-4) and three complementarity-determining (CDR1-3) regions. VH segment

comprises FWR1, CDR1, FWR2, CDR2, FWR3 and the initial nucleotides of CDR3, DH segment

makes the central part of the CDR3 that terminates in the JH segment together with FWR4. This

subdivision  has  functional  significance  since  CDR  regions  are  directly  involved  in  antigen

recognition  while  FWRs  are  structural  determinants  of  the  immunoglobulin  structure120.  In

particular,  it  is  established  that  CDR3  region  is  the  determinant  for  most  of  the  antibody

specificities121.  Unique combinations of V-D-J and CDR3 unambiguously identify clonotypes as

distinct B cell populations expanded from the same progenitor which underwent both positive and

negative selection mechanisms.

2.2 Immunoglobulin importance in B-cell development

It is widely accepted that the immunoglobulins regulates both an antigen-dependent and an antigen-

independent  phase in  the developmental  history of the B cell122.  Pro-B cells  initially  express a
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precursor form of the BCR (pro-BCR), meanwhile they start the V(D)J recombination to assemble a

productive immunoglobulin123. The completion of the V(D)J recombination allows the pro-B cell to

express a µ isotype membrane immunoglobulin (mIgµ) which associates with ψLs (a surrogate of

the  light  chain),  CD79a  and  CD79b124.  mIgµ  expression  promotes  the  clonal  expansion  and

differentiation  of  pre-B  cells  leading  to  the  light  chain  recombination125.  The  failure  of  BCR

assembly or the BCR self reactivity induce an additional round of “receptor editing” process trying

to recover lymphocytes from anergy or deletion126. A pre-B cell expressing a functional BCR, with

rearranged  heavy  and  light  chains,  becomes  an  immature  B-cell  characterized  by  an  high

susceptibility  to  BCR-induced apoptosis127.  Immature B cells  which  pass  through self-tolerance

checkpoint migrate into periphery for additional controls for BCR auto-reactivity128. The surviving

fraction of immature B cells may become mature in secondary lymphoid organs where, if necessary,

they will undergo antibody affinity maturation in germinal centers129. In secondary lymphoid organs

B cell will largely interact with T cells to generate a highly specific immunological repertoire130.

2.3 The importance of the immunoglobulin in CLL

With regards to CLL, many evidences support the hypothesis that is a BCR-dependent disease.

Indeed,  BCR  is  widely  exploited  by  malignant  lymphocytes  to  interact  with  the

microenvironment103. First, in vitro evidences demonstrated that CLL might be activated through

BCR stimulation  with  anti-IgM  monoclonal  antibodies,  with  M-CLL having  an  heterogeneous

behavior131 respect to U-CLL which were far more susceptible132. Additionally, it has been observed

with  gene  expression  profile  (GEP)  experiments  that  BCR  is  active  in  proliferation  centers,

especially in lymph nodes133. In this setting, BCR stimulation promotes cell survival, proliferation

and migration134.  Secondly,  the  mutational  status  of  the  IGHV gene is  one  of  the  most  robust

prognostic markers in CLL due to its extreme stability during time and its prognostic and predictive

power90,92.  Indeed,  U-CLLs  undergo  clonal  evolution135 and  are  more  prone  to  acquire  genetic

lesions136.  Many  evidences  support  the  view  of  a  direct  involvement  of  the  BCR  in  CLL

pathogenesis: the BCR engagement by antigens would select specific immunoglobulins lending an

evolutionary advantage to the CLL clone104. This view is enforced by highlighting the ability of

CLL immunoglobulins to perform an antigen-independent BCR activation and signaling137. Finally,

the discovery of highly similar immunological repertoires among CLL patients characterized by a

restricted usage of IGHV genes and similar CDR3 led to coin the term ‘stereotipy’ 138. Currently, to

assign an immunoglobulin to a stereotyped cluster, is required that the combination of V, D, J genes

has to belong to the same family clan139, the CDR3 have the same length and shares at least 50%

amino acid identity and 70% similarity in the amino acid physico-chemical properties140.  These
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criteria identify 30% of total IGHV from CLL samples belonging to specific stereotypes with some

of  them  specifically  correlated  to  prognosis  (Subset#1,  Subset#2,  Subste#4,  and  Subset#8)141.

Lastly, the efficacy of the BTK inhibitor ibrutinib further proved the importance of the BCR in this

setting142. Ibrutinib exerts its effect by regulating BCR-mediated interactions of CLL cells with the

microenvironment143 depriving  them  from  survival  and  growth  signals  resulting  in  disease

regression144. Although these data confirm the pivotal role of the BCR in CLL development and

evolution, the involvement of the antigenic stimulation in malignant transformation and in disease

progression has not been not fully elucidated.

2.4 Somatic hypermutation as a source of diversity

V(D)J recombination generates the primary antibody repertoire responsible for the first line defense

of the organism in an antigen-independent way117.  The immature B cells  circulate  in  the blood

stream since they encounter a chemotactic gradient that attract them toward the secondary lymphoid

organs145. In the interfollicular region, B cells widely interact with antigen-specific T cells which

activate  them146.  B  lymphocytes  with  low-affinity  immunoglobulins  differentiate  into  antibody-

producer plasmablasts while B cells with high-affinity immunoglobulins enter the germinal center

(GC) reaction to undergo antibody affinity maturation through somatic hypermutation (SHM) of the

immunoglobulins and eventually class switch recombination 145. SHM consists in the introduction

of  mutations  in  both heavy and light  immunoglobulin  chains  aimed at  increasing the antibody

affinity  against  a  specific  antigen147.  The  process  is  initiated  by  the  deamitation  of  cytidines

performed by activation-induces deaminase (AID) which preferentially recognizes single-stranded

DNA in  WRC sequences  (W=A+T,  R=A+G)  148 on  both  the  forward  and  reverse  strands  and

deamintes the cytidine giving way to abasic sites149. In dependence of which reparation mechanism

is activated to repair the lesion, different mutations may be generated147. It is thought that one of the

biggest contributor  of WA motifs  is  the error-prone polymerase  η (polη)150 which miscorporate

dGTP on the  opposite  strand of  the deaminated base147.  Despite  the evidence  for  a  nucleotidic

mutational preference, it  is increasingly accepted that AID targeting preferences also depend on

factors including genetic locus, gene usage, V(D)J combination and immunoglobulin position151.

SHM  is  regulated  in  a  cell-cycle  dependent  way152 and  is  directly  dependent  on  AID  post-

translational  modification,  subcellular  localization  and  turnover153.  AID  acts  mainly  on

immunoglobulin  loci  in  dependence  of  the  DNA conformational  and  epigenetic  status  and  its

mutational activity is strictly regulated by molecular partners154.
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2.5 SHM and intraclonal diversification in CLL

The pivotal role of BCR stimulation triggered by (auto) antigens in CLL development and evolution

has been demonstrated by multiple evidences despite a general consensus about its involvement in

disease progression is still debated. The clinical  subdivision of CLLs based on SHM level of IGHV

gene90,  a  peculiar  IGHV  gene  usage  of  CLLs155 and  the  existence  of  immunoglobulin

stereotypes156 are  clear  signals  of  selective  pressure  toward  the  ‘fittest’ BCR.  In  physiological

conditions, immature B cells undergo several rounds of SHM to further differentiate the BCR157.

The insertion of  mutations  in the immunoglobulin increase the BCR signaling capacity  and its

affinity  for  the  putative  antigen158.  With  this  kept  in  mind,  M-CLL,  which  express  an  IGHV

mutational profile compatible with SHM action, should derive from a post-germinal center B cell

while U-CLL should be generated from a naive B cell that has never encountered the antigen159.

This is a clear example of the importance of the study of the immunoglobulins in CLL and more

widely, in B cell malignancies160. Given the uniqueness of the VDJ rearrangements combined with

unique CDR3 region, the IGHV has been exploited for tracing the cell of origin, the development

and the evolution B cell tumors160. Importantly, the monitoring of the intraclonal variation of IGHV

mutational  levels  inside  the  pathological  clone  and  during  disease  progression  suggested  a

persistent,  post-transformation,  BCR  activation  highlighting  the  importance  of  the  antigenic

stimulation  in  tumor  cell  growth161.  The term intraclonal  diversification (ID) of  the  IGHV was

coined to describe an ongoing mutational process of the immunoglobulin, characterizing a fraction

of neoplastic cells which acquire new mutations in the IGHV outdistancing from the progenitor

pathological clone162. Studies of the immunological repertoire with Sanger sequencing revealed high

levels  of  ID  in  follicular  lymphoma  (FL)163,  diffuse  large  B-cell  lymphoma  (DLBCL)164,

intermediate ID levels for Hairy cell leukemia (HCL)165, while limited ID has been observed in

mantle cell lymphoma (MCL)160. According to the presumed germinal center origin, it was initially

assumed  a  causative  link  between  AID  expression  and  intraclonal  heterogeneity  of  the

immunoglobulin, partly confirming this hypothesis162,166. Regarding the study of ID in CLL, Gurrieri

et al. firstly described ID as occurring in half of CLL tested162. These findings were reproduced by

Degan  et  al.  who  confirmed  the  results  with  different  methodologies167.  Most  of  the  research

focused on heavy chains, despite following studies demonstrated the presence of ID also in light

chains168. Regarding the implication of AID, much effort has been made to analyze different aspects

of the phenomenon. AID expression was investigated in both U-CLL and M-CLL showing that both

subtypes expressed the enzyme, with higher expression levels in U-CLL169. AID overexpression in

CLL primary samples was able alone to induce ID and CSR166. AID was successfully translated into

protein which retained all the biologic functions observed in healthy B cells, including SHM and
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CSR170. Despite the low number of samples analyzed, Palacios et al. classified CLLs into 3 groups

(high, intermediate, low) in dependence of AID relative expression demonstrating that high AID

expression levels correlated with a bad prognosis169. Interestingly, Degan et al. reported a marked

upregulation of polη in ‘significantly mutated’ patients with ID features167. All together, these results

confirmed the  presence  of  ID in  CLL,  despite  the  methodological  restrictions  impeded a  solid

characterization of the phenomenon together with a reliable quantification of the heterogeneity. The

advent of the high-throughput Next-Generation Sequencing (NGS) revolutionized the study of the

immunological repertoire due to an increased discrimination power respect to Sanger sequencing171.

With  the  use  of  NGS,  an  incredibly  higher  read  depth  allowed  a  fine  discrimination  and

quantification of lymphocyte populations, but on the other hand, NGS introduced a wide spectrum

of artifacts172. To remove artifacts, the introduction of Unique Molecular Identifiers (UMI) has been

postulated  in  order  to  tag  each  RNA molecule  of  the  immunological  repertoire  and  remove

amplification and sequencing artifacts  with bio-informatic procedures173.  Bagnara et  al.  recently

described an UMI-based multiplex amplification protocol in order to amplify B cell repertoires with

single-cell resolution in an unbiased way174. They applied such protocol to study ID in 62 untreated

CLL samples confirming previous findings162. They observed ID in both M-CLL and U-CLL with a

mutational signature compatible with AID but not with an active selection175. However, dividing

CLL samples by the number of mutations acquired by post-transformation subclones, they were

unable  to  demonstrate  any  correlation  with  the  clinical  parameters175.  The  low  numerosity  of

patients could have limited the discrimination power of the analysis. Moreover, the bio-informatic

analysis made with available packages could not be optimal for the study of ID. By now, no effort

has been undertaken to developed a tailored workflow for the analysis of the subclonal composition

of  circulating  B  lymphocytes  in  CLL in  order  to  quantify  ID.  In  the  absence  of  a  valuable

methodology for ID quantification, any research group has ever screened a wide CLL cohort to

identify patients displaying ID features. Lastly, nobody has ever evaluate the real impact of ID in

CLL.
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Extensive  evidences  demonstrated  a  central  role  of  the  immunoglobulin  in  the  ontogeny  and

evolution of CLL. The entity of the mutational load of the variable region of the heavy chain of the

Immunoglobulin (IGHV) have both prognostic and predictive value. A 98% cutoff in the IGHV

identity respect to the germline subdivides CLL into U-CLL (identity > 98%) and M-CLL (identity

≤ 98%)   with  distinct  biological  and  clinical  features.  The  IGHV hallmark  is  the  stability  in

mutational load over time. Nevertheless, in the Sanger era, the intraclonal diversification (ID) of the

IGHV has been described. However,  a substantial  lack of tailored bioinformatic pipelines,  high

costs and methodological limitations forbade to evaluate ID in a large CLL chort.

By taking  advantage  of  a  cohort  with  1091  CLL patients,  we  aim to  develop  a  bioinformatic

pipeline tailored for  the  characterization of  the immunological  repertoire  of  CLL assessing the

IGHV heterogeneity through the ID study.  In particular,  we plan to  focus  on the correction of

systematic sequencing errors since hugely affect heterogeneity quantification. We aim to validate

both methodologically and biologically the results obtained, in order to assemble a bioinformatic

package exploitable for ID assessment in all B cell malignancies irrespective of the experimental

protocol adopted for the immunoglobulin amplification.  Once identified samples with clear and

quantifiable ID features, we plan to investigate the contribution of multiple mutational signatures in

ID generation. In particular, we are interested in the involvement of AID enzyme codified by the

activation-induced  cytidine  deminase  (AICDA) gene  since  contrasting  results  are  reported176,169.

Lastly,  we are interested in evaluating whether ID may have a prognostic value in  the clinical

setting. 
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4.1 CLL cohort

The  cohort  used  in  the  study  comprises  a  retrospective  cohort  of  1091  CLL primary  samples

referred  to  a  single  institution  (Clinical  and  Experimental  Onco-Hematology  Unit,  Centro  di

Riferimento Oncologico, I.R.C.C.S., Aviano, Italy) for molecular and cytogenetic analyses (Fig.1a).

All the patients were diagnosed and treated according to iwCLL guidelines11. Clinical outcome data

were updated in June 2021. All the patients were analyzed before therapy. Among the 1091 CLL

samples  analyzed,  we  obtained  983  eligible  patients  for  the  evaluation  of  the  intraclonal

diversification (ID, Fig.1a). Fig.1b represent schematically each step performed to evaluate the ID

in the CLL cohort with reported the number of patients surviving each filtering step.  Among the

final cohort of 983 patients, time-to-first treatment (TTFT) was available for 685 CLL patients. The

median  follow-up  from CLL diagnosis  was  25  months  (95% CI  23.0-28.0  months),  with  320

progression. The use of clinical samples for this study was approved by the IRB of the Centro di

Riferimento Oncologico of  Aviano (Approval  n.  IRB-05-2010,  n.  IRB-05-2015) upon informed

consent  in  accordance  with  the  declaration  of  Helsinki.  For  the  comparison  of  the  intraclonal

diversification  among  B  cell  malignancies,  28  DLBCL,  40  FL,  14  HCL and  43  MCL were

collected. No clinical data were available for these samples.
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Fig.1. Schematic representation of the  CLL cohort used and of the experimental workflow.  Fig.1a. Flowcharts of

CLL samples divided by the Lymphotrack amplification protocols. The flowcharts report the number of patients

analyzed with IGHV-Leader and FR1 Lymphotrack protocols and numbers  of  patients  surviving to filtering steps.

Fig1b. Flowchart of the workflow for ID evaluation. The flowchart represent schematically each step performed to

evaluate the intraclonal diversification (ID) in the CLL cohort with reported the number of patients surviving each

filtering step. 

4.2 CLL cells purification

Primary CLL cells were obtained from peripheral blood samples by Ficoll-Hypaque (Pharmacia) 

density gradient centrifugation177. All studies were performed on highly purified samples (>85% 

CLL cells), or after purification by immunomagnetic positive selection (CD19+), as previously 

described178.

4.3 DNA/RNA extraction

Nucleic acids were purified using DNA Mini/Micro kit (Qiagen), DNA/RNA AllPrep Mini/Micro

kit  (Qiagen),  RNA  Mini/Micro  kit(Qiagen)  or  TRIZOL  reagent  (Invitrogen),  according  to

manufacturer’s instructions. Complementary DNA (cDNA) was synthesized using up to 500 ng of

RNA using OligodT Primers (Promega) and Improm-II Reverse Transcriptase (Promega), according

to manufacturer’s instructions.

4.4 IGHV amplification.

Sequencing analysis of IGHV was performed on either genomic DNA or cDNA using leader or

consensus primers for the IGHV/FR1 regions with appropriate constant JH primers, according to

Lymphotrack  NGS  methods  (Invivoscribe,  San  Diego,  Fig.2a),  as  previously  reported179.  In

dependence of the amplification protocol adopted, amplicons with different length were generated

(Fig.2b). Differences in amplicon length relapse on the superimposition between read1 and read2

generated with the Illumina sequencing (Fig.2b). Being the superimposition parameter a key aspect
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in the analysis of repertoire sequencing (RepSeq), data strategies to handle these results were taken

into account (see below for further details). Sequences were analyzed using the IMGT databases

and the Igblast package180. Specifically, as reported in Fig.1a, IGHV-Leader libraries were generated

for  923  patients  with  the  IGHV-Leader  Lymphotrack  assay  using  2  μl  of  cDNA as  a  starting

material  and  in  168  patients  with  the  FR1  Lymphotrack  assay  using  100  ng  of  DNA.  FR1

Lymphotrack assay was also used for the libraries generation for 14 HCL, 43 MCL, 28 DLBCL and

40 FL using 100 ng of DNA as a input. PCR products were purified with the PureLink Quick PCR

Purification kit (ThermoFischer). Each sample was diluted to 2 nM of concentration to generate the

sequencing library. All the samples were sequenced on a  MiSeq (Illumina) with 2x250 or 2x300

strategies.

Fig.2.  Schematic  representation of  amplification protocols.  Fig.2a.  Graph of  the  Lymphotrack Amplification

protocols. Boxes represent the genomic regions where the multiplex PCR primers anneal. Black arrows define the

amplification direction of specific primers.  Fig.2b. Plot of different amplicon lengths generated by Lymphotrack

assay. The yellow bar represents the amplicon generated with the multiplex PCR. The sizes in terms of base pairs (bp)

are reported on the right. Blue and red arrows represent read1 and read2, respectively. The region covered by both reads

is the superimposition region.

4.5 Illumina sequencing errors in RepSeq data

Two main  NGS error  sources  are  reported:  I)  amplification  and II)  systematic  errors.  Random

amplification  errors  are  introduced  by  the  Taq polymerase  in  both  the  library  preparation  and

sequencing processes with an error range between 10–5 to 10-8 in a context-independent fashion.

Random  low-frequency  errors  may  take  place  due  to  incorrect  nucleotide  incorporation  by

polymerases in both the PCR-amplification and the sequencing process181.  Systematic errors are
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exclusively  characteristics  of  the  sequencing  machine  and  partially  dependent  on  the  reagents

adopted in the sequencing run. The read quality lowers in a position-dependent and read-dependent

fashion due to reagents’ decay182. Importantly, it has been reported that Miseq data could be affected

by systematic errors in dependence of the library-preparation protocol and the nucleotidic sequence

flanking the specific base183 Overall, sequencing systematic errors are the most problematic since

generate false mutations with high frequency that lead to an overestimation of ID. Kept this in

mind, we developed a custom analysis pipeline tailored for RepSeq analysis to specifically identify

and suppress systematic error. To identify such errors we exploited the comparison of different

amplification protocols (Fig.2a). In particular,  we selected 62 samples previously amplified with

the IGHV-Leader assay and we re-processed them with the FR2 assay, sequencing the library in a

MiSeq 2x300 v3 flowcell. FR2 protocol allows to generate paired reads completely superimposable

(Fig.2b). We exploited the full reads superimposition of FR2 assay to evaluate whether mutations

observed in  the  same region of  IGHV-Leader  processed  samples  were recapitulated.  Mutations

(respect to the assigned germline) were identified on re-aligned immunoglobulin fastq sequences

and mutational frequency was calculated as the ratio between the number of the alternate alleles

respect to the total observations. Results from this procedure was integrated in the final pipeline for

the ID analysis (see below).

4.5 RepSeq library analysis

To perform the analysis of ID we decided to design a custom pipeline for the analysis of RepSeq

data generated with our assays. The pipeline was made of two part: I) the first part consisted in

canonical  steps  generally  adopted  in  all  RepSeq  analysis;  II)  the  second  part  was  specifically

tailored to handle systematic sequencing errors, correct them and analyze data for inverse Simpson

Index (iSI) calculation.

4.5.1) General pipeline for RepSeq analysis

Fig.3a  schematically  display  all  the  steps  used  for  this  part  of  the  pipeline.  Fastq  files  were

demultiplexed with  bcl2fastq  (v.  2.6.1).  Paired  fastq  reads  were merged and hard filtered  with

vsearch  (v.2.14.2)184.  Merging  and  filtering  steps  was  performed  with  loose  parameters  (--

fastq_mergepairs  -fastq_minmergelen  5  -fastq_maxdiffs  20;  --fastq_filter  -fastq_minlen  100  -

fastq_maxee 3.0) to keep most of data for further analysis. Primers were removed with cutadapt (v.

2.3) with tight parameters (-p 0.15 -o 8 –discard-untrimmed ) and reads with no primer found were

removed185. Residual reads were collapsed with a custom python script and those with a read count

equal to 1 were removed. Remaining reads were aligned with IgBlast (v. 1.8.0)180 against the IMGT

reference database updated on 17th of August 2020. Surviving sequences were filtered to keep
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functional Ig sequences with a custom python script. Data was parsed with pRESTO (v.0.6.2)186 and

the clonotype assignment and germline identification were performed with the ChangeO package

(v.0.4.6). We exploited the DefineClones.py package of ChangeO which assign clonotypes based on

VH, JH segments and similar CDR3 usage. In particular, sequences with same VH, JH and same-

length CDR3 with a maximum nucleotidic Hamming distance equal to 0.07 were assigned to the

same clonotype/clone175. Accordingly, each clonotype/clone consists of all descendants (subclones)

of a  single,  fully  rearranged common ancestor  presenting the same VH, JH and similar  CDR3

sequence.

The first  part  of the analysis  (“General  pipeline for RepSeq analysis”)  produces  three files:  1)

*MajClone.tab  reporting  clonotypes  with  their  relative  frequencies;  2)  *germ-pass.tab,  the

ChangeO-generated  .tab  delimited  file  with  all  the  information  regarding  Ig  analyzed;  3)

*grouped.fastq which is a fastq file containing all the reads survived from merging, filtering and

primer-removal steps. All the subsequent analyses were performed only on the sequences belonging

to the pathological clonotype/clone identified in this way.

Fig.3 Analysis pipeline for RepSeq data. Fig.3a Canonical analysis pipeline for RepSeq data.  The scheme reports

the steps performed for a generic RepSeq data analysis. Fig.3b. Custom pipeline for systematic error correction. The

graph shows the packages adopted for error suppression in RepSeq data. 
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4.5.2) Systematic error(SE)-correction pipeline

As reported in Fig.3b, the second part of the analysis exploits information contained in all the three

files generated by the “General pipeline for RepSeq analysis” (Fig.3a), to correct possible errors and

calculated iSI. The SE-correction pipeline was made of 5 different packages: Realign-reads.py, Ig-

Pileup.py,  Parse_Ig_QUAL.py,  ReCollapse.py  and  iSI_calculation.py.  Realign-reads.py  takes

original fastq data, selects reads belonging to the pathological clone and realigns them against the

IMGT-gapped germline sequences  and produces  a  fastq  file  whose sequences  and qualities  are

aligned according the IMGT numeration. Ig-Pileup.py package takes as input the aligned .fastq file

and generates a pileup file consisting in a NxM table (with N=[A, C, G and T], all the possible

nucleotide, M=[1...n], all the immunoglobulin positions. The Parse_Ig_QUAL.py is responsible for

the SE identification and correction. Briefly, to identify SE the pileup generated in the previous step

is parsed and all the positions with a cumulative frequency ≥ 0.1% were considered. If the median

nucleotidic quality score (phred), observed in dependence of the immunoglobulin position is lower

than 21, according to the comparison between IGHV Leaders and FR2 protocol (see above), the

nucleotide was considered as a SE and corrected. The erroneous nucleotide is substituted with the

2nd most expressed nucleotide in that position with the highest median phred (Fig.4). ReCollapse.py

re-collapses the newly corrected sequences and iSI_calculation.py calculates the iSI on corrected

sequences with a frequency higher or equal to 0.1% of the reads per clonotype (Fig.3b). 

Fig.4.Decisional flowchart for systematic error correction. The scheme reports the working principle for systematic

error correction.
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4.6 Inverse Simpson index (iSI) calculation

As previously reported, diversity indexes may be exploited to study the repertoire diversity of B-

cell populations187. Instead of performing diversity measures on the whole B-cell population, we

focused only on the pathological clonotype as defined above. To describe the subclonal composition

we calculated the iSI since capable of accurately describing the B-cell population weighting for

sequence numerosity and proportion among sequences188. As an example, a pathological clone with

a single predominant subclone would display an iSI almost equal to 1 (non-intraclonal group, “nI”,

Fig.5a). On the contrary, a pathological clone with multiple subclones equally represented, thus

displaying  ID,  would  have  higher  iSI  (intraclonal  group,  “I”,  Fig.5b).  Instead  of  removing

sequences with a count lower than an arbitrary cutoff, for iSI calculation we decided to include all

the sequences with a frequency≥ 0.1 % of the total number of reads belonging to that clone. In this

way,  we were  able  to  normalize  the  number  of  sequences  removed independently  of  the  total

number of reads. Moreover, we calculated the iSI only for clones with a total read number ≥ 5000,

to avoid iSI overestimation due to low count clones (Fig.1b). 

Fig.5. iSI associated with illustrative pylogenetic trees. Fig.5a. Phylogenetic tree of a sample with no ID (nI).  The

graph reports the immunoglobulin phylogenetic of a CLL sample without ID.  Fig.5b.  Phylogenetic trees of CLL

samples with ID. The picture depicts the trees generated from immunoglobulins of samples with ID features (I and II).

Tree were generated with igphyml.

4.7 UMI-tagged Ig library generation. 

To  compare  the  results  generated  by  our  custom  pipeline  against  the  gold  standard  for  the

immunological  repertoire  analysis,  we adapted  an  immunoglobulin  library  preparation  protocol

exploiting Unique Molecular Identifier (UMI)-tagged primers (Fig.6). Firstly, we amplified 500 ng

of RNA with a JH-specific UMI-tagged RT-primer to specifically retro-transcribe only Ig sequences

(Fig.6a). Since having clonotype information from RepSeq generated libraries, we used VH-specific
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primers (see Table1) to avoid amplification biases in multiplex PCR reactions. A single-cycle PCR

was adopted to insert the VH-specific UMI-tagged primer with the specific programs (1 cycle of

98°C for 30 s; 55°C for 2 min; 72°C for 15 min) using a Verity Thermal Cycler (ThermoFisher,

Fig.6b). Amplicon quantification was performed with an in-house qPCR assay with custom primers

for  Illumina  partial  adapter  (fwd:  GTTCTACAGTCCGACGATCG,  rev:

TTGGCACCCGAGAATTCCAC).  Then,  30.000  molecules,  to  avoid  excessive  singletons  that

could affect the analysis, was used for the second round PCR and indexed with custom primers

containing P5 and P7 Illumina sequences adapters, with the following protocol: 98°C for 1min; 35

cycles of 98°C for 20s; 60°C for 15 s; 72°C for 35 s; 1 cycle 72°C for 15 min (Fig.6c). Each step

previously reported needed a purification step with SPRIselect beads to remove primer excess. Each

sample was diluted to final concentration of 3.5 nM and were sequenced on a MiSeq with the 2x300

flowcell.

Fig.6. Experimental steps for the generation of UMI-tagged library of IGHV.  The schematic representation reports

the three steps for the generation of the IGHV sequencing library.  Fig.6a. JH-specific retro-transcription. Fig.6b.

Single-cycle VH-specific PCR. Fig.6c Second-round PCR with Illumina P5, P7 adapters.
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Table1: UMI-tagged library preparation primer design. The table reports the nucleotidic sequences of primers used

in the experiment divided by Partial-Adapter (complementary to P5/P7 Illumina adapters), Unique Molcular Identifier

(UMI, the sequence necessary for sequence consensus generation) and IGHV-specific primers.

4.8 UMI-tagged Ig library analysis

Fig.7 reports  a schematic overview of steps performed in the analysis of UMI-tagged data. We

designed  UMI  to  resemble  those  previously  published  by  Khan  et.  al.  consisting  in  three

degenerated 5 H nt. portions (H=A+C+T) interspaced by two spacers (see Table1) attached on both

5’ and  3’ ends189.  Spacers  allowed  to  uniquely  identify  UMI  regions  removing  possible  small

insertions/deletions.  Moreover,  non-G  degenerated  sequences  allowed  to  partially  identify

substitutions  happening  on  UMIs  to  correct  them,  thus  reducing  the  UMI  numerosity.  Lastly,

applying UMI on both ends (Fig.6) allowed to account for different error rates in sequencing reads,

thus performing read-specific error polishing. To perform the analysis of ID, we designed a tailored

workflow, also for this UMI strategy, divided in two distinct parts: I) UMI_Analysis to handle UMI-

tagged reads and II) UMI_Error-correction to remove systematic errors. 

4.8.1) UMI_Analysis

Read  merging  and  read  hard-filtering  were  performed  with  vsearch(v.  2.14.2)189.  Forward  and

Reverse UMI (FWR_UMI, REV_UMI) were extracted with a python custom script. Primers were

removed with cutadapt (v. 2.3)189. Only reads having primers cut were analyzed in the following

steps. We performed an error correction procedure on both FWR_UMIs and REV_UMIs which

were  clustered  separately  with  a  custom  python  script.  The  working  principle  was  that  ‘G’

nucleotides identified in degenerated portions were sequencing substitutions to cluster with UMIs

non-containing ‘G’ with a density based method (python sklearn package, DBSCAN method)189.

UMI distances were calculated as the Hamming distance slightly modified to handle ‘G’ as ‘N’

nucleotides. After the initial UMI correction, UMI were clustered with the UMIClusterer directional

algorythm of umi_tools (v.1.0.1)190. Finally, clustered UMI-tagged reads were collapsed to generate
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consensus sequences for further analysis. We annotated sequences with information regarding the

number of sequences per cluster for subsequent analysis. Sequences were collapsed with a python

script and aligned with IgBlast against the IMGT reference database190. IgBlast output data was

parsed  with  MakeDb.py  package  of  pRESTO186 and  non-functional  sequences  were  removed.

ChangeO package  (v.  0.4.6)  was  exploited  for  clonotype  assignment  (see  General  pipeline  for

RepSeq analysis) and germline identification (Fig. 7a).

4.8.2) UMI_Error-correction

In  principle,  UMI  were  designed  to  remove  random  amplification  errors  generating  during

preparation so they are not able to remove high frequency systematic errors. UMI were introduced

to  remove  amplification  biases  and  primer-amplification  biases  giving  the  best  picture  of  the

subclonal heterogeneity of specific clonotypes. To remove massive sequencing errors we adapted

principles of the error-polishing pipeline adopted for RepSeq data with slight modification (see

Sequencing errors  correction  pipeline).  Raw reads  were  re-aligned against  the  IMGT reference

database, we then generated count matrices in a position and nucleotide-dependent way. For each

position/nucleotide we calculated the median phred weighted for the total number of nucleotides

observed at  specific  positions,  highlighting systematic  errors characterized by weighted median

phred  < 21. To correct erroneous positions we exploited the same decisional scheme adopted for

LymphoTrack data (see Sequencing errors correction pipeline, Fig.4). ID was calculated as reported

above by means of iSI. 
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Fig.7. Bioinformatic pipeline for the analysis of UMI-tagged RepSeq data. Fig.7a. Schematic representation of

the UMI_Analysis pipeline for UMI-tagged RepSeq data. The scheme reports all the steps performed for the analysis

of UMI-tagged RepSeq data. Part of the packages are available online, while “custom python scripts” were written ad

hoc for this analysis.  Fig.7b. Custom pipeline for systematic error correction in UMI-tagged RepSeq data.  The

graph shows the custom packages exploited for error suppression in UMI-tagged RepSeq data. All the packages were

developed in house.

Table1.  Table  of  primers  adopted  for  UMI-tagged  Ig  library  preparation.  The  table  reports  the  nucleotidic

sequences of primers used in UMI-tagged amplification protocol.

4.9 Hotspot and Coldspot mutability calculation

To evaluate the mutability of hotspots/coldpots in RepSeq data we applied the igphyml algorythm

on corrected data with the SE_correction pipeline. We run the algorithm with the HLP substitution

model  that  accounts  for  the  nucleotidic  context  assuming  the  dependence  between  multational

spots191.  The  algorithm  reports  the  variations  in  mutability  of  selected  nucleotidic  motifs.  To

confirm the results we applied a custom python script which retrieved  the  mutations per sample

from the corrected pileup file  and cataloged them as compatible with  the enzymatic activity of

AID, polη, APOBEC3A/B or other signatures. The package searched for specific motifs including

AID  hotspots  (WRC/GYW),  AID  coldspots  (SYC/GRW)192,  polη hotspots  (WA/TW)193 and

APOBEC3A/B (TC/GA) hotspots194 where underlined is the mutated nucleotide (R=A+G, Y=C+T,

S=G+C, W=A+T).

4.10 qRT-PCR

AICDA and Beta-2-Microglobulin (β2M) mRNA levels were assessed through Taqman-qPCR assay

(Thermo Fisher) using a CFX96 PCR System (BioRad). The relative expression was calculated with

the ΔΔCT method using MEC1 cell line as a normalization control.
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4.11 Survival analysis

All the statistical analyses were performed R programming language. Two-sided tests were applied

and a level of 0.05 was established as statistically significant. TTFT was computed from date of

diagnosis to first treatment (events) or last follow-up (censoring). To compare differences in TTFT

of  different  groups  we  applied  the  Log-rank  tests  and  Kaplan-Meier  curves  were  used  for

visualization.  Survival  analysis  has  been  done  with  R  (v.3.6.3)  with  R  packages  survival  and

survminer.

4.12 Bioinformatic analysis

All the analysis had been performed with a dell working station equipped with Intel® Xeon(R) W-

2265 CPU @ 3.50GHz × 24, RAM 64Gb. Python3.6.8 has been used to run all the scripts in the SE-

correction pipeline. 
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5.1 Development of the bioinformatic pipeline for ID assessment

At the present days, no author developed a solid and unbiased methodology for ID evaluation and

quantification in the NGS era. We then focused on systematic errors since generation of erroneous

SNP could have an high impact in ID quantification181. 

5.1.1) Identification of systematic sequencing errors (SE)

In the context of RepSeq data, we identified an error pattern compatible with the profile reported by

Shirmer  et  al172.  and  Kozich  et  al195.(Fig.8a,b). We  found  huge  drops  associated  with  specific

trinucleotidics sequences in dependence of the read position (Fig.8a,b). As reported in Fig.8a,b,

read1 quality was far better than read2 quality. In particular, we observed a strong phred decrease in

read2 nucleotides preceded by CCC, CCG, CGG, GGG and TGG trinucleotides (Fig.8b). Moreover,

the  noisiest  nucleotide  called  in  read2  were  “G”  bases  preceded  by  the  above  mentioned

trinucleotidic motifs (Fig.8c). Error profiles calculated were integrated in the decisional scheme

(Fig.4) to correct SE.  Using the data retrieved by the 62 samples sequenced with both IGHV-

Leader and FR2, we evaluated mutations with a frequency range of 0.1%-100% and we identified

3025,  and  1880  mutations  respectively  using  the  IGHV-Leader  and  the  FR2  assay  with  1676

mutations  commonly  identified  by  both  protocols  (Fig.8d,e).  Interestingly,  338  out  of  1349

mutations identified by only IGHV-Leader protocols,  had frequencies higher than 1% (range 1%-

61%, median 3.13%) that could massively affect the iSI calculation. We then calculated the median

phred for the 3025 mutations and a significantly lower phred was observed for the 1349 mutations

(median phred 15 range: 3-20) respect to the 1676 common mutations (median phred 38, range: 21-

42, p<0.0001; Fig.8f). These finding are in keeping with Kozich et. al. who identified systematic

errors as point mutations with phred < 21195. Accordingly,  this information was integrated in our

custom pipeline to correct SE according to the steps reported in Fig.3.
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Fig.8. Systematic Errors analysis. Fig.8a. Heatmap of read1 phred scores. The heatmap reports the median phred

quality observed (color intensity, see legend) in dependence of read position (x-axis) and trinucleotidic motif previous

to the nucleotide evaluated (y-axis). Each square represents median phred for each nucleotide calculated for 983 CLL

samples.  Fig.8b. Heatmap of read2 phred scores. The heatmap reports the median phred quality observed (color

intensity,  see  legend)  in  dependence  of  read  position  (x-axis)  and  trinucleotidic  motif  previous  to  the  nucleotide

evaluated (y-axis). Each square represents median phred scores for each nucleotide calculated for  983 CLL samples.

Fig.8c. Heatmap of read2 phreds in a 100bp-200bp window for G nucleotide. The heatmap reports the phred scores

calculated for Gs in dependence of the read position. Fig.8d. Venn diagram of mutations observed in IGHV-Leader

and FR2 processed samples. The Venn diagram report mutations found with IGHV-Leader (red circle) and with FR2

assays (black circle).  Fig.8e. Dotplot of mutations observed in IGHV-Leader and FR2 assays. The dotplot reports

the frequency of single mutations observed with IGHV-Leader (x-axis) and with the FR2 assay (y-axis). Blue dots

represent mutations identified with both protocols, red dots are mutations observed only with IGHV-Leader.  Fig  8f.

Boxpot of phred scores. The blue boxplot represents the phred of mutations found by IGHV-Leader and FR2 assays.

The red boxplot reports the phred of mutations identifed only by IGHV-Leader. 

5.1.2) Sequencing errors pipeline validation

In order to evaluate the capacity of our new developed pipeline to properly correct SE we took

advantage of 91 CLL samples specifically amplified both with IGHV-Leader and FR1 assay.  We

identified the  pathological  clonotype  as  reported.  Samples  amplified  with  the  two  strategies

displayed  the  same  pathological  clone  (data  not  shown).  In  particular,  we  defined  the  major

subclone  the  most  represented  sequence  inside  the  pathological  clonotype.  All  the  sequences

belonging to the pathological clonotype which are not identified as the major subclone were defined

as minor subclones (i.e. same VH, JH and similar CDR3 but at least 1 nucleotide of difference from

the major clone). We compared the frequency distribution of the pathological subclones identified

with both strategies and identical nucleotidic sequence. Analyzing the frequency correlation of the

major subclones retrieved by the IGHV-Leader or FR1, poor correlation was observed when the
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pipeline without correction was applied (concordance correlation coefficient 0.5532; Fig.9a). On the

contrary, when the pipeline for SE-correction was employed, significant correlation was obtained

between  IGHV-Leader  and FR1 major  clone  identification  (concordance  correlation  coefficient

0.9015; Fig.9b). When the frequencies of the minor subclones were examined, again similar results

were observed with a more significant correlation observed when the pipeline for SE-correction was

applied  (concordance  correlation  coefficient  0.9488,  0.7985;  respectively;  Fig.9c,d).  These  data

show  that  we  are  able  to  identify  systematic  errors  and  correct  them  to  obtain  an  unbiased

quantification of the intraclonal heterogeneity.

Fig.9 Comparison of IGHV-Leader and FR1 assays in dependence of analysis. Fig.9a,c. IGHV-Leader vs FR1

correlation dotplot of the major subclone frequency.  The dotplots report the frequencies of major clone obtained

with both amplification protocols and subsequently analyzed with the canonical pipeline alone. Fig.9b,d. IGHV-Leadr

vs FR1 correlation dotplot of the minor subclones frequency. The dotplots report the frequencies of minor subclones

obtained with amplification protocols and subsequently analyzed with the SE-correction pipeline. 

5.1.3) Comparison between RepSeq data generated with Lymphotrack and UMI strategy

We compared RepSeq data results with data obtained from 52 samples processed with our custom

UMI-tagged amplification strategy. Data were analyzed with both the canonical pipeline alone and

in  combination  with  the  SE-correction  method. Comparing  uncorrected  and  corrected  data  we
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observed  a  significant  improvement  in  the  frequency  calculation  for  both  major  subclones

(concordance  correlation  coefficients:  0.30  uncorrected,  0.97  corrected;  Fig.10a,b)  and  minor

subclones  (concordance  correlation  coefficients:  0.87  uncorrected,  0.92  corrected;  Fig.10c,d).

Overall,  these data point out to a significant drastic improvement in the unbiased calculation of

subclonal  frequencies  with the  use  of  pipeline  considering  the  SE correction.  All  together,  we

demonstrated that the multiplex-PCR in combination with our SE-correction analysis  is  able  to

recapitulate UMI-based amplification protocols, being interchangeable in terms of heterogeneity

observed in the immunological repertoire.

Fig.10.  Comparison  of  IGHV-Leader and  UMI-tagged  library  preparation. Fig.10a,c.  UMI-tagged  vs  IGHV-

Leader correlation dotplot of the major subclone frequency. The dotplots report the subclones’ frequency obtained

with  both  amplification  protocols  analyzed  with  the  canonical  pipeline  alone.  Fig.10b,d. UMI-tagged  vs  IGHV-

Leader correlation dotplot of the minor subclones frequency. The dotplots depict the subclonal frequencies observed

with both protocols analyzed with the canonical pipeline together with the custom SE-correction pipeline.
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5.1.4) Comparison between iSI obtained with different protocols and analyses

To evaluate the IGHV heterogeneity inside the pathological clone, we calculated the iSI since a

solid and reliable measurement for clonal heterogeneity (See Material and Methods). When the ID

was evaluated for the 91 CLL after SE correction, superimposable iSI both in the context of IGHV-

Leader and FR1 assay was observed (median iSI 1.052, range: 1.0-14.54; median iSI 1.064, range:

1.0-15.6; respectively; p<0.0001; Fig.11a). In keeping with results presented so far, among the 52

samples processed with IGHV-Leader assay and UMI-tagged custom protocols, again we observed

superimposable  iSI  (median  iSI:  1.03,  range:  1.0-20.4,  median  iSI  1.098,  range  1.0-23.7,

respectively; p<0.0001, Fig.11b). These data further confirmed the robustness of the SE-correction

pipeline and the goodness of the iSI to resume the sample heterogeneity. 

Fig.11. iSI comparison among different amplification protocols. Fig.11a. iSI correlation from IGHV-Leader vs

FR1 experiment with SE-correction application. The dotplot reports the iSI values of 91 samples processed with both

IGHV-Leader  and  FR1  assays.  Fig.11b.  Correlation  between  iSI  values  from  IGHV-Leader  vs  UMI-tagged

experiment with SE-correction application. The dotplot reports the iSI values of 52 samples obtained processed with

both IGHV-Leader and UMI-tagged amplification protocols. 

5.2 Evaluation of the intraclonal diversification in CLL 

For this study, the immunological repertoire of 1091 CLL primary samples was amplified with the

Lymphotrack  Assay  (Fig.1a,b)  and  analyzed  with  our  pipeline  (Fig.3).  Specific  identifiable

pathological clone was retrieved in 1058 CLL samples (97.0%) while 33 cases (3.0%) showed no

evidence of a prevalent CLL clone neither with IGHV-Leader nor with FR1 assays (Fig.1a,b) and

for this reason excluded from following analysis. Moreover, among the 1058 cases, 75 samples

even if displaying a single prevalent clone were kept out due to a total number of reads referring to

the pathological clone lower than 5000 (Fig.1a,b). Evaluating the ID on the pathological clone on

the remaining 983 CLL samples a iSI median value of 1.0 (range 1.0-20.4; Fig.12a) was found.

38



Since a literature regarding ID in the NGS era is still lacking, we initially identify an arbitrary cutoff

for the iSI to identify cases with or without ID. By plotting the iSI against the percentage of the

most represented subclone (major subclone) inside the defined pathological clone (Fig.12b,c), we

observed a gap in the distribution corresponding to a iSI equal to 1.2 which identified a major

pathological subclone with at least the 92% of identical sequences (Fig.12c). Applying this cutoff of

1.2 of iSI to CLL samples we observed that only 15% (n=144) of CLL displayed characteristic of

ID. In keeping, patients with a iSI >1.2 were defined intraclonal (I) while samples with a iSI ≤ 1.2

were defined as non-intraclonal (nI). 

Applying the 1.2 cutoff of iSI, all 91 CLL samples, amplified with both IGHV-Leader and FR1

assays  were correctly classified, since observed 59 nI samples and 32 I samples with both protocols

(p<0.0001, χ2 test;  Fig.12d). Same results were obtained for samples generated with UMI and

IGHV-Leader strategies, since we found 30 nI samples and 22 I samples (p<0.0001, χ2 test; Figure

12e).  The application  of  the  1.2  cutoff  reliably  discriminated  samples  processed  with  multiple

protocols.

Fig.12. Intraclonal Diversification (ID) in CLL. Fig.12a. iSI distribution in CLL. The boxplot reports the iSI values

calculated for the 983 CLL patients analyzed with the SE-correction pipeline. Fig.12b,c. Correlation between iSI and
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percentage of major subclone. The dotplot report the iSI values of 983 CLL samples in dependence of the frequency

of the major subclone. Fig.12d. iSI comparison of IGHV-Leader vs FR1 experiment. The upper figure is a dotplot

reporting  iSI  values  calculated  for  91  samples  after  IGHV-Leader  and  FR1 amplification.  The  lower  2x2  matrix

summarizes the number of CLL patients classified as non-intraclonal (nI) or with intraclonal (I) diversification. Fig.12e

iSI comparison of IGHV-Leader vs UMI-tagged experiment. The upper dotplot is reporting iSI values calculated for

52 CLL samples after IGHV-Leader and the custom UMI-tagged amplification. The lower 2x2 matrix summarizes the

number of CLL patients classified as non-intraclonal (nI) or with intraclonal (I) diversification.

5.3 Biological validation of the ID cutoff

We further validated our iSI cutoff by analyzing other B-cell malignancies better characterized in

the literature regarding ID. In particular, we amplified the immunological repertoire of 14 HCL195,

28 DLBCL164 and 40 FL163 generally recognized to experience an ongoing mutational process of the

IGHV, thus displaying ID features.  Moreover, we sequenced 43 samples of MCL as a negative

control for ID since their pre-GC origin, thus lacking of SHM features and often displaying an

unmutated configuration of the IGHV160. In keeping, as reported in Fig.13, we observed that 50% of

HC (n=7), 67.8% of DLBCL (n=19) and 72% of FL samples (n=31) did show ID features according

to the 1.2 iSI cutoff. The median iSI for HC, DLBCL and FL was 1.22 (range: 1.0-2.0), 1.34 (range

1.0-15.3)  and  2.44  (range  1.0-16.56),  respectively,  thus  confirming  higher  ID  in  these

linfoproliferative disorders. On the contrary, 43 MCL cases presented a median iSI of 1.06 (range:

1-3.39),  and  in  keeping  only  10/43  (22%)  MCL cases  displayed  feature  compatible  with  ID

(Fig.13).

Fig.13 Comparison of iSI between different B cell malignancies. The boxplots report the iSI values calculated for 43

MCL, 14 HCL, 28 DLBCL and 40 FL classified as non-intraclonal (nI) or with intraclonal (I) diversification.
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5.4 Gene usage analysis in CLL

Accordingly to the canonical 98% cutoff of IGHV mutations, our cohort was comprised of 508

samples with a M-CLL and 475 with an U-CLL. The distribution of IGHV genes across the whole

cohort was comparable with data reported in the literature155, both in the context of total cohort and

by splitting between M and U-CLL samples (Fig.14a-c). Among 983 CLL samples, our pipeline

classified  144  CLL  samples  as  displaying  ID  features.  Considering  together  ID  and  IGHV

mutational  status,  we observed 422 nI-M-CLL,  417 nI-M-CLL,  53 I-U-CLL, and 92 I-M-CLL

samples, with a significant overrepresentation of intraclonal cases among M-CLL cases (p=0.0022,

Fig.15a,b), suggesting that ID partly depends on SHM mechanisms targeting the immunoglobulin

loci. No significant skewing in the IGHV-family usage was observed between intraclonal and non-

intraclonal  cases  (Fig.15a,b).  Globally,  there  were  no  significant  differences  in  the  IGHV-gene

usage  between samples  with  or  without  ID (Fig.15c,d).  Focusing on the  IGHV-gene usage  we

observed a slight skewing toward IGHV3-21 usage (14/39, 35.9%) in both M (8/24, 33.3%) and

UM (6/15, 40.0%) samples with ID, although not significant (Fig.15e,f).

Fig.14. Barchart of immunoglobulin family and gene usage. Fig.14a. Barchart of IGHV-family usage in CLL. The

chart reports the number of CLL patients with a pathological clone with specific IGHV-family genes irrespective of the

mutational status. Fig.14b. Barchart of IGHV-family usage in CLL in dependence of the IGHV mutational status.

The barchart reports the number of CLL patients divided by IGHV mutational status and IGHV-family expressed by the

pathological clone.  Fig.14c. Barchart of IGHV genes usage in CLL depending on IGHV mutational status.  The

barplot reports the IGHV-gene usage of CLL patients in dependence of the IGHV mutational status.
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Fig.15. Barchart of IGHV-family and gene usage of CLL samples with ID.  Fig.15a. Barchart of CLL samples

splitted  by  IGHV  mutational  status. The  barchart  reports the  number  of  CLL divided  by  IGHV-families  in

dependence  of   presence/absence  of  ID.  Fig.15b.  Barchart  of  IGHV-family  usage  in  dependence  of  IGHV

mutational status and presence/absence of ID. The plot reports number of CLL splitted by IGHV mutational status
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and presence/absence of ID.  Fig15c. Barchart of IGHV gene usage in CLL patients for samples with ID. The

barchart report the number of CLL patients in dependence of presence/absence of ID. Fig15d. Barchart of IGHV gene

usage in CLL patients for samples with ID in dependence of IGHV mutational status.  The barchart reports the

number of CLL patients in dependence of IGHV genes and mutational status, and presence/absence of ID.  Fig15e,f.

Most expressed IGHV genes in ID samples. The barchats compared the most expressed IGHV genes in M-CLL

(Fig.15e) and U-CLL (Fig.15f) divided by presence/absence of ID. 

5.5 Molecular mechanisms of ID

We firstly evaluated changes in mutability levels of know mutational hotsposts/coldspots of AID

and Poln. For this purpose, only the 840 CLL samples amplified with IGHV-Leader were processed

with  the  igphyml  algorithm  (See  Materials  and  Methods).  We  observed  significantly  higher

mutability rates in samples with ID, irrespective of the mutational status (Fig.16). In keeping, AID

hotspots (WRC/GYW) and Poln hotspots (WA/TW) significantly increased their mutability rates in

the  context  of  I  cases  respect  to  nI  cases  (Fig.16).  Interestingly,  AID  coldspots  (SYC/GRS)

supposed not to be targeted by AID activity were significantly less mutated in samples with ID

respect to their non-intraclonal counterpart (Fig.16). 

Fig.16. Mutability rate of mutational hotspots/coldspots in dependence of presence/absence of ID.  The boxplots

report mutability rate calculated with the igphyml algorithm. The upper boxplot reports the frequency of mutations in

the forward strand compatible with AID hotspots (WRC, W=A+T, R=A+G), AID coldspots (SYC, S=G+C, Y=C+T),

and poln hotspots (WA). The lower boxplots report the frequency of mutations in the reverse strand compatible with

AID hotspots (GYW), AID coldspots (GRS), and polη hotspots (TW). Samples were divided in dependence of IGHV

43



mutational status.and presence/absence of ID, intraclonal (I), non-intraclonal (nI). P values were calculated with the

unpaired two-samples Wilcoxon test.

We  further  expanded  the  mutational  analysis  to  evaluate  additional  mutational  signatures.  We

developed a custom python package to analyze AID, polη and APOBEC3A/B signatures. Firstly, we

were  able  to  reproduce  data  generated  by  igphyml  (Fig17a).  Secondly,  we  assessed  multiple

mutational signatures in dependence of the mutations’ frequency. In particular, we considered as

“shared” all the mutations with a cumulative frequency ≥ 92% which are supposed to be acquired

before the malignant transformation.  Mutations with a cumulative frequency between 0.1% and

92% were defined  as “partial” since supposed to be introduced during disease evolution. Starting

from  “shared”  mutations,  we  observed  no  significant  variation  in  the  in  the  introduction  of

mutations before the transformation (Fig. 17b, upper panel). Considering “partial” mutations, we

observed a significant increased mutability in AID and polη hotspot compatible with an ongoing

SHM process (Fig. 17b, lower panel). On the contrary, AID coldspot and APOBEC hotspots were

not affected. Given the AID contribution in the generation of the signature observed, we evaluated

the AICDA expression levels in a subset of 90 samples, 27 samples displaying ID (19 I-M-CLL, and

8 I-U-CLL) and 65 non-intraclonal samples (40 nI-M-CLL, and 25 nI-U-CLL). In keeping with

literature,  U-CLL samples had  AICDA levels higher that M-CLL samples (p=0.00096, Fig.18a).

Interestingly, a significant increase of AICDA levels in I-M-CLL samples respect to their nI-M-CLL

counterpart was observed (p=0.014, Figure 18b), whereas there was no difference in AICDA levels

in U-CLL samples between intraclonal and non-intraclonal samples (P=0.73, Figure 18b). 
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Fig.17.  Mutability  rate  of  mutational  hotspots/coldspots  in  dependence  of  presence/absence  of  ID. Fig.17a

Mutational signatures in the IGHV in dependence of presence/absence of ID. The boxplots report mutability rate

calculated  with  the  custom pipeline.The  upper  boxplot  reports  the  frequency  of  mutations  in  the  forward  strand

compatible with AID hotspots (WRC, W=A+T, R=A+G), AID coldspots (SYC, S=G+C, Y=C+T), poln hotspots (WA)

and APOBEC3AB (TC). The lower boxplots report the frequency of mutations in the reverse strand compatible with

AID hotspots (GYW), AID coldspots (GRS), poln hotspots (TW) and APOBEC3AB (GA).  Fig.17b. Evaluation of

mutational  signatures  among  “shared”  and  ”partial”  mutations. The  upper  boxplots  report  the  frequency  of

“shared” mutations coherent with known mutational signatures. The lower boxplots report the frequency of “partial”

mutations  compatible  with  known mutational  signatures.  P values  were  calculated  with  the  unpaired  two-samples

Wilcoxon test. * referes to p.value < 0.01
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Fig.18. AICDA mRNA expression levels in CLL. Fig.18a Boxplot of AICDA relative expression level depending

on the mutational status. The boxplots report  the relative expression levels of  AID mRNA.  Fig.18b. Boxplot of

AICDA relative expression in dependence of mutational status and presence/absence of ID. The boxplots report the

relative expression levels of AICDA mRNA in dependence of mutational status and presence/absence of ID. MEC1 cell

line were used as normalization control. P values were calculated with the unpaired two-samples Wilcoxon test.

19 Evaluation of the prognostic significance of ID

Among the 983 CLL patients used for the analyses, we retrieved the TTFT of 685 patients. Firstly,

the survival analysis confirmed that the IGHV mutational status alone significantly discriminate

between patients with a good prognosis respect to patients with a poorer one (Fig.19a). Secondly,

we assessed whether the presence of ID was able to stratify CLL patients and we observed that, in

M-CLL subgroup, patients with ID features had a significantly longer TTFT respect to the nI-M-

CLL counterpart (p=0.021; Fig.19b). On the contrary, in the U-CLL subgroup, we did not observe

any difference in TTFT (p=0.73; Fig.19c). Overall, these data demonstrate that the presence of ID in

the M-CLL subgroup is able to identify a prognostic subgroup with a favorable prognosis. 

46



Fig.19 Kaplan-Meier curve of TTFT in CLL patients. Fig.19a Kaplan-Meier curve of CLL patients splitted by

IGHV mutational status. The survival curve compares the TTFT of both M-CLL (367 pts) and U-CLL (318 pts)

patients.  Fig.19b Kaplan-Meier on the M-CLL subgroup depending on ID absence/presence. The survival curve

compares the TTFT in the non intraclonal M-CLL subgroup (nI-M-CLL, 304 pts) and in the intraclonal M-CLL (I-M-

CLL, 63 pts). Fig.19c Kaplan-Meier on the UM-IGHV subgroup depending on ID absence/presence. The survival

curve compares the TTFT in the non intraclonal UM-IGHV subgroup (nI-UM-IGHV, 286 pts) and in the intraclonal

UM-IGHV (I-M-IGHV, 32 pts).
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Many authors reported that CLL cells were characterized by intraclonal diversification, an ongoing

somatic  mutation  targeting  the  IGHV  gene  suggesting  that  CLL  cells  can  differentiate  in-

vivo162,168,196. Nevertheless, most of these studies employed the low-throughput Sanger sequencing,

thus identifying ID in qualitative terms rather than in a quantitative way197,162. So far, few groups

have tried to address the study of ID with high-throughput antibody receptor sequencing (RepSeq)

taking advantage of the  higher analytical capacity of NGS171. Despite this, the increased sensitivity

of NGS technology present some pitfalls that lead to an increased number of sequencing artifacts

that could generate confounding results in RepSeq data172. Nowadays, the biological and clinical

impact of ID in CLL is still unknown since: I) no bioinformatic pipelines are available to correct

sequencing  errors  in  RepSeq  data  for  a  solid  and  reliable  characterization  of  the  subclonal

heterogeneity; II) no strict approaches to study ID in CLL were developed. Due to this technical

limitation, the biological and clinical impact of ID in CLL is still unknown. 

By taking advantage of our well-characterized cohort of 1091 CLL patients, we investigated the

impact  of  ID  with  a  robust  and  reliable  NGS approach.  Starting  from findings  of  Shirmer  et

al.172 and Kozich et al.195 who described systematic errors on Illumina platforms, we confirmed their

findings (Fig.8) and we integrated such information to develop a systematic error (SE) correction

pipeline able to identify and remove systematic errors in RepSeq data (Fig.3). To validate our SE-

correction pipeline we exploited UMI-tagged RepSeq as the election method for the analysis of the

immunological repertoire and “virtually” error free. Surprisingly, even in the context of UMI-tagged

RepSeq data we identified systematic errors compatible with those observed in our method. For this

reason, we applied the same mathematical principles to suppress SE even in the context of UMI-

tagged  data  (Fig.6).  After  the  application  of  our  pipelines,  RepSeq  data  showed  complete

superimposition  irrespective  of  the  amplification  protocol  adopted  (Fig.9-12).  All  these  data

confirmed that our SE-correction pipeline on RepSeq data finely resumes the subclonal composition

of the CLL clone both in terms of major and minor subclones irrespectively by the amplification

protocol adopted.

As reported, for the IGHV-Leader and FR1 assays we respectively used RNA and DNA as starting

material.  Being  the  comparison  between  IGHV-Leader  and  FR1  protocols  completely

superimposable (Fig.9) we were also able to demonstrate that the subclonal composition observed

in CLL with NGS did not depend by the starting material suggesting no role for the RNA-editing

phenomena in the context of immunoglobulin hypermutation processes.
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Since at  the moment no specific methods for intraclonal heterogeneity has been developed, we

exploited the inverse Simpson Index (iSI) for ID evaluation. Initially, we identified an arbitrary

cutoff of iSI=1.2 which discriminated between CLL patients with  a major subclone counting for at

least  the 92% of the total  sequences analyzed respect to those with a  major subclone at  lower

frequencies (Fig.12). To biologically validate the 1.2 cutoff of iSI, other B cell malignancies with

proven  ID  (FL198,  DLBCL164 and  HCL164)  and  without  this  feature  (MCL160),  were  analyzed.

Applying the same methodology employed for CLL samples, our workflow was able to classify

samples coherently with the literature data with a clearly evident high levels of ID in FL163 and

DLBCL164, intermediate ID levels in HCL199 and low ID in MCL160 (Fig.13).

Having demonstrated that our approach was fully capable of resembling literature data and correctly

identifying samples with ID, accordingly to the iSI cut-off of 1.2 we identified that ~15% of CLL

samples tested display ID (Fig.15b). This percentage is far lower than other 50% reported in other

studies162,167. Reports derived from a pre-NGS era and based on Sanger were biased by the relatively

low sensibility of Sanger and the inability to discriminate very small subclones. Moreover, it was

almost  impossible  to discriminate  between real  mutations and errors  introduced by the cloning

procedures. In the context of NGS era, in 2021 Bagnara et al. tried to tackle ID evaluation in CLL

with an UMI-tagged amplification approach175. They divided CLL samples into “low” and “high

complexity” based on the non-shared mutations between different CLL subclones175. Interestingly, it

was reported that the median frequency of CLL minor subclones (excluding the most represented

subclone)  was  8%,  percentage,  the  same  percentage  that  in  our  cohort  discriminated  between

samples with or without ID (Fig.12b,c). Although they overcome technical limitations of Sanger

sequencing,  the  RepSeq  analysis  was  lacking  of  error-correction  procedures  which  inevitably

affected  results  as  we  demonstrated  (Fig.10).  Moreover,  they  did  not  apply  any  mathematical

approaches for quantitative evaluation of ID. In this way their finding related to the percentage of

CLL with ID could be overestimated even with the use of UMI.

IGHV family and gene frequencies of both M-CLL and U-CLL was compatible with those observed

in the literature confirming the uniformity of our cohort155. According to the literature, both M-CLL

and U-CLL displayed ID features196,196, but analyzing the IGHV mutational status in dependence of

presence/absence of ID, we observed that M-CLL have significantly high numbers of samples with

ID (Fig.15), probably due to some remnant SHM machinery activation of the post germinal center

process.  We then taken into account the IGHV family and gene usage analysis in dependence of the

IGHV mutational status and the presence/absence of ID. No significant variations in family/gene
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usage  between  intraclonal  and  non-intraclonal  cases  were  reported  (Fig.15).  Interestingly,  we

observed that  CLL clones  expressing IGHV3-21 display higher  level of ID, suggesting that  ID

could be partially dependent on the IGHV usage (Fig.15e,f).  In keeping with Sutton et.  al who

described a subgroup of CLLs with IGHV4-34 (subset4) with intensive ID, we observed a slight

increase in I-M-CLL expressing IGHV4-34 but we cannot identify any known subset197. Moreover,

Kostareli et al. described an intraclonal diversification in CLL expressing the light chain IGKV2-

30168. We performed light chain sequencing on a small fraction of our CLL samples. Preliminary

results confirmed that ID could be observed also in the light chains, with a clear cut correlation with

ID in the heavy chains, despite the low number of samples tested (data not shown). 

Evaluating  multiple  mutational  signatures  on  corrected  IGHV sequences  we  found  mutational

profiles compatible with AID activation192 and polη-dependent193 reparation mechanisms. To notice

that AID coldspot was significantly less mutated, result compatible with a more target-specific AID

activity respect to off-target events200. We also assessed AICDA mRNA levels in a fraction of our

cohort and we observed significantly higher levels of the enzyme in I-M-CLL samples respect to the

nI-M-CLL. This  increase in AICDA levels could reflects an increased ID in the IGHV, as Huemer

et al. reported176. On the contrary, there were no differences in  AICDA mRNA levels in U-CLL

group despite the median  AICDA mRNA level in I-U-CLL was lower than nI-U-CLL (Fig.18b).

Interestingly,  AICDA mRNA levels  are  comparable  between I-M-LL and I-U-CLL.  These  data

perfectly fit with findings of Palacios et. who divided CLL cells based on AID expression169. They

divided U-CLL in 3 groups (absent (-), intermediate (+) and high(++) AID levels) and M-CLL in 2

groups (absent (-) and intermediate (+) AID levels). AID(-) U-CLL represent nI-U-CLL with no ID

and have the highest AID levels, AID(+) U-CLL are I-U-CLL with levels comparable to I-M-CLL

which are AID(+) M-CLL. AID(-) M-CLL are nI-M-CLL whereas it is likely that AID(-) U-CLL were

misclassified.

To conclude, we evaluated whether ID could have a clinical significance. Surprisingly, we found

that I-M-CLL have a significantly longer TTFT than their nI counterpart. Again, this is in keeping

with Palacios. et al. who found that AID(+) were mostly indolent CLL which further corroborates the

parallelism observed with our findings. We showed no differences in the U-CLL subgroup, despite

low significance could resulted due to a low number of I-U-CLL samples.

In this thesis are reported all the key steps to develop and validate our pipeline capable of correcting

systematic  errors  in  RepSeq data  and evaluating  the  ID through the  calculation  of  the  inverse

Simpson  Index.  Dividing  for  ID  presence  we  observed  distinct  mutational  features  in  the
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immunological repertoire of samples with ID and, most importantly, this thesis demonstrates that ID

has a prognostic significance in M-CLL subgroup, being a favorable prognostic factor.
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