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Abstract 

In human-modified landscapes, biodiversity is often confined in remnants of natural habitats and there 

is an urgent need to take significant action to halt the loss of biodiversity, happening at a faster rate 

than ever, driven by many factors such as land use change, habitat fragmentation, pollution, natural 

resources exploitation, climate change, biological invasion, and many other. In this light, identifying 

actions that can be implemented to reduce the loss of biodiversity and simplification of landscapes 

has become a key topic in the field of landscape ecology and conservation biology. Management 

approaches to achieve protection and maintenance of natural ecosystems should consistently consider 

all landscape components so that they can be managed with the goal of maintaining or restoring pre-

existing ecological functions. In fact, through the concepts of meta-population and ecological 

connectivity, as strategies to sustain biodiversity in fragmented landscapes by reconnecting natural 

habitat fragments in anthropogenic environments, Ecological Networks (EN) can be developed. 

Generally, territorial planning refers to models that allow for the reading of potential EN. However, 

their biodiversity content is often not verified, and/or they are never monitored over time once 

implemented. 

The research activities described in this Thesis aimed to contribute filling the knowledge gaps with 

respect to biodiversity verification, EN structure and its monitoring, by identifying what elements 

drive the expression of biodiversity and the factors that influence its content. Specifically, starting 

from a EN model developed in north-eastern Italy, in the context of the landscape project of the region 

Friuli-Venezia Giulia, a vegetation sampling was planned to assess plant diversity contained within 

the nodes of the EN. Then, in the first part of the Thesis, I provided a method to determine the 

adequate number of replicates to effectively characterize biodiversity content of natural habitats 

within the nodes of the EN (Chapter 1). In fact, the field verification of the EN model represents the 

most expensive part both in terms of time and money. For this reason, it is often not carried out as 

well as the monitoring of the network over time. It is necessary, to identify the minimum number of 
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replicates to keep unchanged the characteristics of the observed communities thus reducing the 

sampling effort. 

In the second part (Chapter 2), based on the vegetation sampled, I studied the relationships between 

α and β diversity pattern, landscape structure and connectivity in the nodes of the EN. I found that 

high node connectivity led to a higher species richness (α-diversity) but also increased plant 

communities’ similarity (i.e., low β-diversity). The effect of landscape composition of semi-natural 

land covers (i.e., hedgerows, watercourses) showed a positive effect on species diversity as opposed 

to that of the configuration of anthropogenic elements. Finally, in the last part (Chapter 3), I 

investigated the potential of Spectral Variation Hypothesis (SVH) in linking field-collected and 

remotely sensed data in a complex landscape as the under study one. Specifically, I examined whether 

ecosystem heterogeneity was related to greater diversity and whether the estimated spectral diversity 

was consistent with the observed one. I found that spectral data can be used as a guidance to assess 

and/or monitor plant diversity conserved in the EN. 

In conclusion, the three case studies contained in this Thesis, could provide novel insight in the 

planning and monitoring of ENs, through a multidisciplinary approach that considered different 

points of view with which to evaluate the effectiveness of plant diversity conservation within ENs. 
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Riassunto 

Nei paesaggi modificati dall'uomo, la biodiversità è spesso confinata in frammenti di habitat residuali 

e c'è un urgente bisogno di intraprendere azioni significative per fermare la perdita di biodiversità, 

che avviene a un ritmo più veloce che mai, guidata da molti fattori come il cambiamento d'uso del 

suolo, la frammentazione degli habitat, l'inquinamento, lo sfruttamento delle risorse naturali, il 

cambiamento climatico, l'invasione biologica e molti altri. Sotto questa luce, identificare le azioni che 

possono essere attuate per ridurre la perdita di biodiversità e la semplificazione dei paesaggi è 

diventato un argomento chiave nel campo dell'ecologia del paesaggio e della biologia della 

conservazione. Gli approcci di gestione per raggiungere la protezione e il mantenimento degli 

ecosistemi naturali dovrebbero considerare coerentemente tutte le componenti del paesaggio, in modo 

che esse possano essere gestite con l'obiettivo di mantenere o ripristinare le funzioni ecologiche 

preesistenti. Infatti, attraverso i concetti di meta-popolazione e connettività ecologica, come strategie 

per sostenere la biodiversità in paesaggi frammentati attraverso la riconnessione dei frammenti di 

habitat naturale in ambienti antropogenici, è possibile sviluppare Reti Ecologiche (RE). 

Generalmente la pianificazione del territorio fa riferimento a modelli che consentono la lettura delle 

RE potenziali. Tuttavia, di esse spesso non viene verificato il contenuto di biodiversità, e/o non 

vengono mai monitorate nel tempo una volta implementate. 

Le attività di ricerca descritte in questa Tesi vogliono dare un contributo per colmare le lacune di 

conoscenza rispetto alla verifica della biodiversità, alla struttura della RE e al suo monitoraggio, 

identificando quali siano gli elementi che guidano l’espressione della biodiversità e i fattori che ne 

influenzano il contenuto. Nello specifico, partendo da un modello di RE sviluppato nell'Italia nord-

orientale, nell'ambito del piano paesaggistico della regione Friuli-Venezia Giulia, è stato pianificato 

un campionamento della vegetazione per valutare la diversità vegetale contenuta all'interno dei nodi 

della RE. Quindi, nella prima parte della Tesi, ho fornito un metodo per determinare il numero 

adeguato di repliche per caratterizzare efficacemente il contenuto di biodiversità degli habitat naturali 

all'interno dei nodi della RE (Capitolo 1). Infatti, la verifica sul campo del modello di RE rappresenta 
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la parte più costosa sia in termini di tempo che di denaro. Per questo motivo, spesso non viene 

effettuata così come il monitoraggio della rete nel tempo. È necessario individuare il numero minimo 

di repliche per mantenere inalterate le caratteristiche delle comunità osservate riducendo così lo 

sforzo di campionamento. 

Nella seconda parte (Capitolo 2), sulla base della vegetazione campionata, ho studiato le relazioni tra 

i pattern di diversità α e β, la struttura del paesaggio e la connettività nei nodi della RE. Ho riscontrato 

che un'alta connettività dei nodi ha portato a una maggiore ricchezza di specie (α-diversità) ma anche 

a una maggiore somiglianza delle comunità vegetali (cioè, una bassa β-diversità). L'effetto della 

composizione paesaggistica delle coperture seminaturali (cioè, siepi, corsi d'acqua) ha mostrato un 

effetto positivo sulla diversità delle specie rispetto a quello della configurazione degli elementi 

antropici. Infine, nell'ultima parte (Capitolo 3), ho studiato il potenziale dell'ipotesi di variazione 

spettrale nel collegare i dati raccolti sul campo e quelli rilevati da remoto in un paesaggio complesso 

come quello oggetto di studio. In particolare, ho indagato se l'eterogeneità dell'ecosistema fosse legata 

a una maggiore diversità e se la diversità spettrale stimata fosse coerente con quella osservata. Ho 

scoperto che i dati spettrali possono essere utilizzati come guida per valutare e/o monitorare la 

diversità vegetale conservata nella RE. 

In conclusione, i tre casi di studio contenuti in questa tesi, potrebbero fornire una nuova visione nella 

pianificazione e nel monitoraggio delle RE, attraverso un approccio multidisciplinare che considera 

diversi punti di vista con cui valutare l'efficacia della conservazione della diversità vegetale all'interno 

delle RE.  
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Preface 

Due to rapid biodiversity loss worldwide, identifying actions that can be implemented to reduce the 

degradation and simplification of biodiversity and landscapes has become crucial and a key topic in 

the field of landscape ecology and conservation biology. Thus, the major aim of this Thesis is to 

provide an insight for testing and monitoring diversity and the factors that influence it in the habitats 

and nodes of an EN. Specifically, the Thesis explores the plant diversity content present in an EN, 

evaluating the possible effects of the surrounding landscape on the communities studied and possible 

methods for monitoring vegetation within habitats and nodes over time. The main objectives of this 

research were 1) to provide a methodological framework to support biodiversity data collection 

planning, to optimize the sampling effort and estimate the number of replicates sufficient to 

distinguish different habitats and gather data on species diversity within the EN. 2) to analyze plant 

diversity patterns within nodes of the EN investigating the effects of landscape structure and 

connectivity on plant communities. 3) to investigate the potential of remote sensing for quantitative 

analyzing the biodiversity content of the EN and the study area. 

The Thesis is organized as follows: a general introduction, three chapters containing the articles that 

responded to the three research objectives, and overall conclusions. 

Specifically, in the introduction I briefly presented some key concepts of landscape ecology, as 

landscape connectivity, and the concept of EN, as it is meant in this Thesis. In addition, I briefly 

mentioned some of the gaps existing in the field and described the EN under study, thus providing 

the necessary background for the reading and understanding of this research. 

In the first Chapter, I provided a method to determine the adequate number of replicates to effectively 

characterize biodiversity content of natural habitats within the nodes of the EN, aiming at reducing 

the cost of future sampling and/or monitoring campaigns. 

In the second Chapter, I focused on the relationships between α and β diversity pattern, landscape 

structure and connectivity in the nodes of the EN, aiming at identifying those factors that influence 
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plant diversity within the EN and what suggestions can be applied for the management of the elements 

composing the EN. 

Finally, in the last part I investigated the potential of remote sensing in linking field-collected and 

remotely sensed data in a heterogeneous landscape as the one containing the EN. Specifically, I 

examined the relationship between spectral diversity and heterogeneity and plant diversity, exploring 

the potential of remote sensing data as a guidance to assess and/or monitor biodiversity. 

The conclusions section provides a general overview and synthesis on the key findings emerging 

from these three study cases presented in the Thesis, suggesting potential actions and directions for 

future research on the planning and managing of ENs. 
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General introduction 

Landscape ecology 

The term landscape ecology dates back nearly a century, developing in later years with theory and 

applications (Troll 1939, 1968; Schreiber 1990; Forman 1995). It encompasses several principles that 

unite ecology and landscape perspectives, focusing on spatial pattern and ecological process, biotic 

diversity, species flow, landscape structure and function, spatial and temporal scales, heterogeneity 

effect on fluxes and disturbance, changing patterns, and many others (Risser et al. 1984; Forman and 

Gordon 1986; Risser 1987; Forman 1995). The object of study of this subject is the landscape, defined 

as a mix of local ecosystem or land use types repeated over the land; it is a land mosaic, composed of 

spatial elements (patches, corridors or matrix, Urban et al. 1987; Forman and Gordon 1986; Forman 

1995; see Table 1.1). Landscape ecology is largely founded on the notion that the patterning of 

landscape elements strongly influences ecological characteristics, including plant and animal 

populations. 

From an ecological perspective, the patches represent relatively discrete areas of relatively 

homogeneous environmental conditions where the patch boundaries are distinguished by 

discontinuities in environmental character states from their surroundings of magnitudes that are 

perceived by or relevant to the organism or ecological phenomenon under consideration (Wiens 

1976). What is outside the patches is called matrix and is the most extensive and connected element 

type, therefore plays the dominant role in the functioning of the landscape (Forman and Godron 

1986). Finally, the elements that provide physical links between patches and facilitate the movement 

of an organism through the matrix are called corridors (Forman 1995; Bennet 1998). The types and 

distribution of the landscape elements determine the landscape structure, that is the spatial 

relationships among component parts, and can be divided in two further definitions: landscape 

composition and configuration (Turner 1989; Dunning et al. 1992). Landscape composition refers to 

features associated with the presence and amount of each patch type within the landscape, but without 
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being spatially explicit while landscape configuration refers to the physical distribution or spatial 

character of patches within the landscape (McGarigal and Marks 1995). 

Landscape connectivity 

Landscape connectivity is the degree to which the landscape facilitates or impedes movement among 

resource patches (Taylor et al. 1993), or the functional relationship among habitat patches, owing to 

the spatial contagion of habitat and the movement responses of organisms to landscape structure 

(With et al. 1997). Connectivity is therefore a feature of a whole landscape, where the scale of interest 

is determined by the habitat use and movement scales of the organism in question (Goodwin and 

Fahrig 1998; Tischendorf and Fahrig 2000). 

Table 1.1: Definition of key terms in landscape ecology used in the Thesis 

The definition of landscape connectivity includes two fundamental concepts: structural connectivity, 

corresponding to spatial relationships (continuity and adjacency) between the structural elements of 

Terms Definitions References 

Corridors Landscape elements that provide physical links between patches 

and facilitate the movement of an organism through the matrix. 

Forman (1995); Bennet (1998) 

Functional 

connectivity 

Landscape features that facilitate or impede the movement of 

species between habitat patches. 

Taylor et al. (1993, 2006) 

Landscape Mix of land use types repeated over the land. Urban et al. (1987); Forman and 

Gordon (1986); Forman (1995) 

Landscape 

composition 

amount of each patch type within the landscape. Turner 1989 

Landscape 

configuration 

physical distribution of patches within the landscape. Turner 1989 

Matrix most extensive and connected element type in the landscape. Forman and Gordon (1986) 

Patches Relatively homogeneous areas that differ from their 

surroundings. 

Forman (1995) 

Structural 

connectivity 

Spatial relationships between the structural elements of the 

landscape. 

Tischendorf and Fahrig (2000); 

Taylor et al. (2006) 
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the landscape, which is independent on the ecological characteristics of the species (Tischendorf and 

Fahrig 2000; Taylor et al. 2006), and functional connectivity, which refers to landscape features that 

facilitate or impede the movement of species between habitat patches (Taylor et al. 1993; Taylor et 

al. 2006). Consequently, the ability of species to move or disperse through the landscape is driven 

also by structural features of the landscape (Adriaensen et al. 2003). When landscape connectivity is 

seen by a target organism, it is possible to introduce the term habitat connectivity, which refers to the 

degree of functional connectivity between patches of optimal habitat for that species (Lindenmayer 

and Fischer 2006; Taylor et al. 2006; Correa Ayram et al. 2016). In this way, landscape elements take 

on different levels of habitat suitability allowing to define areas of higher and lower suitability, on 

the base of both the ecological behavior of target species and of the matrix characteristics that 

facilitates or impedes species mobility, and which could be affected by human influence. 

Conservation of biodiversity and Ecological Networks 

Biodiversity loss is one of the main concerns in the Anthropocene, happening at a faster rate than 

ever, driven by many factors such as land use change, habitat fragmentation, pollution, natural 

resources exploitation, climate change, biological invasion, and many other (Landi et al. 2018; IPBES 

2019; EEA 2020). As stated by the United Nations (2015a) there is a need to “take urgent and 

significant action to reduce the degradation of natural habitats, halt the loss of biodiversity and protect 

and prevent the extinction of threatened species”. These actions could be achieved through a 

management approach that coherently consider all the landscape components. 

In the beginning, protected areas (hereafter PAs) were designed to preserve endangered ecosystems, 

nowadays it is clear that biodiversity protection should rely on a smarter management of the 

anthropogenic surrounding landscapes and no longer be confined only to PAs (UN 2015a, 2015b; 

European Commission 2020). Thus, the concept of Ecological Network (hereafter EN) arose, defined 

as ‘‘a coherent system of natural and/or semi-natural landscape elements that is configured and 

managed with the objective of maintaining or restoring ecological functions as a means to conserve 

biodiversity’’ (Bennett 2004). The modeling of ENs, as useful tools to provide an integrated 
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protection of biodiversity also considering biotic interactions among species in an ecosystem, was 

then introduced (Pascual and Dunne 2006). ENs are composed by habitat patches (or nodes of the EN 

graph) suitable for an organism and corridors (or links of the EN graph) that allow the movement of 

the species from a patch to another. However, EN are spatial patterns which are modeled by landscape 

ecologists to quantify connectivity using various methods such as individual-based movement models 

(Grimm and Railsback 2005), least-cost analysis (Adriaensen et al. 2003), circuit theory (McRae et 

al. 2008, 2012), centrality analyses (Rudnick et al. 2012) or landscape graphs (Urban and Keitt 2001). 

Other important methods to quantify connectivity are based on genetic data (e.g., Andreassen and 

Ims 2001) or on tracking animal movements over time (Turchin 1998; Gillis and Krebs 1999, 2000). 

These methods present limitations and they basically favored the spread of approaches based on 

habitat quality and analysis of the autoecology of animal species (Fichera et al. 2015; Gao et al. 2017; 

Cunha and Magalhães 2019). 

All these techniques differ in their capacity to characterize the ecological processes and in the amount 

of input data required. Landscape graphs are an interesting compromise for both those criteria 

(Calabrese and Fagan 2004), making them useful tools, that mix methodological simplicity and 

ecological relevance, suitable for land planning (Urban et al. 2009; Foltete et al. 2014). 

However, some studies have highlighted the exiting gaps among researchers and practitioners in the 

implementation of the ENs as tools to mitigate the effect of habitat fragmentation on biodiversity, 

such as the lack of monitoring to test their effectiveness and the evaluation of the network structure 

only from the structural perspective, ignoring the effective biodiversity hosted within the EN elements 

(Gippolitti and Battisti 2017; Luo et al. 2021). Moreover, many of the research analyzing the influence 

of landscape connectivity on biodiversity were studied for animal species, while the understanding 

of the role of EN connectivity on plants remains limited, especially at the community level (but see 

Uroy et al. 2019; McLeish et al. 2021). 

These gaps will be thoroughly investigated in Chapter 1, by proposing an integrated method to 

determine the adequate sampling effort for the purpose of monitoring an EN, and in Chapter 2, by 
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analyzing the effects of landscape structure and connectivity on plant communities with nodes in an 

EN. 

Remote sensing 

Remote sensing refers to gathering information about an object without coming into direct contact 

with it. In this Thesis, the concept of remote sensing is refired to the study of the Earth’s surface 

characteristics from above. Remote sensing can be used to differentiate objects or materials based on 

their characteristic optical properties. These optical properties are characterized by its interaction with 

incoming electromagnetic radiation, that can be either absorption, reflectance, scattering or 

transmission (Jones and Vaughan 2010). Remote sensing instruments can be grouped into active and 

passive, but since only the passive one was used in the Thesis, only the latter will be described. 

Passive remote sensing instruments capture the reflectance of solar radiation. Most commonly, the 

output is an image consisting of layers that represent information from various parts of the 

electromagnetic spectrum. Such part of the spectrum is referred to as a spectral band, and can vary in 

band width, depending on the covered wavelength range. In addition to the spectral resolution, it is 

important to mention the spatial resolution (i.e., the physical size that represents a pixel) and temporal 

resolution (i.e., the revisiting time of the satellite on the same area) of the images (Woodcock and 

Strahler 1987). In the case of free access products, the images can have medium spatial resolution 

and high temporal resolution (e.g., Sentinel and Landsat) while the paid products can reach very high 

resolutions both spatially and temporally (e.g., WorldView and Pléiades neo). 

Remote sensing of vegetation 

Compared to non-living surfaces, remote sensing of vegetation is complicated by its high spatio-

temporal variability. In general, the spectral reflectance of vegetation is characterized by strong 

absorbance in the visible wavelength region (VIS, 400-700 nm) and relatively high reflection in the 

near infrared (NIR, 700-1000 nm). In the transition zone from VIS to NIR, vegetation spectra are 

characterized by a strong increase of reflectance, which is referred to as red edge (690-790 nm). 
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Depending on the vegetation type, reflectance can differ considerably. Differences between 

vegetation types can be usually detected in the wavelength region ranging from 300 nm to 15 µm 

(Jones and Vaughan 2010). These differences are determined by the interactions of incoming 

radiation and components of the canopy. At the level of entire plants or plant communities, spectral 

reflectance is furthermore substantially influenced by the canopy structure (Asner 1998; Knyazikhin 

et al. 2013; Kattenborn et al. 2018). This includes canopy depth, density, and leaf arrangement 

(Ollinger 2011). Based on differences in spectral properties it is possible to differentiate single 

vegetation types (Ustin and Gamon, 2010), examples include discrete classifications of dominant 

vegetation types at the global scale (Bonan et al. 2002), to the delineation of single habitats at a local 

scale (Mack et al. 2016; Stenzel et al. 2017). Remote sensing can also be used to monitor biodiversity, 

specifically, the combination of remotely sensed and field data represents one of the most promising 

approaches to fill gaps in biodiversity monitoring (Vihervaara et al. 2017). Much research has 

considered the relationships between remotely sensed and field sampled data (e.g., Palmer et al. 2002; 

Rocchini et al. 2015; Lausch et al. 2020), based on the Spectral Variation Hypothesis (SVH), 

proposed for the first time by Palmer et al. (2002). This concept hypothesizes that the variability of 

the spectral response of a remotely sensed image could be used as a proxy to assess plant biodiversity. 

The ability of SVH to detect plant diversity was tested on several ecosystems covering large areas 

(e.g., Feret and Asner 2014; Heumann et al. 2015; Torresani et al. 2019) but few studies have 

investigated SVH application at a greater level of detail over small and complex areas. The potential 

of SVH in linking field-collected and remotely sensed data in a complex landscape will be 

investigated in Chapter 3. Furthermore, its suitability to assess and/or monitor plant diversity 

conserved in a EN or more generally in natural environments over time will also be explored. 

Ecological network model: the study case 

The studied EN is located in the lowlands of the Friuli Venezia Giulia region (NE Italy; centroid 

coordinates: 45°48'13.4"N - 13°08'11.0"E), within an area that covers almost 300 km2, including a 

large agricultural area embedded in two river systems (Stella and Corno, respectively). The landscape 
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is characterized by a mixed mosaic of intensively and extensively cultivated areas, settlements, semi-

natural (hedgerows and watercourses) and natural habitats (woodlands, shrubs, meadows and fens). 

The area includes eight Natura 2000 Special Area of Conservation (Habitats Directive 92/43/EEC) 

and nine regional protected sites (biotopes), mainly connecting remnants of wetland habitats and 

lowland forests. 

The EN was designed using a habitat-species based model (considering flora and fauna, Figure 1.1) 

developed at the local scale in the context of the regional landscape planning project (Sigura et al. 

2017). The model was based on least-cost path analysis and graph theory, which were used to obtain 

species-specific ENs that were later merged into the final composite multi-species network (Figure 

1.1). The EN was originally modeled using the regional habitat map based on the habitat classification 

proposed by Poldini et al. (2006) and crossing costs for species were attributed by expert assessment 

and literature review data. 

The nodes (target habitats), corridors and steppingstones (links between target habitats) were obtained 

for a set of 10 target animal species and 9 plant communities (assumed to be crucial for several plant 

species of conservation concern) to proxy favorable conditions for the overall network biodiversity. 

The animal species considered were: Arytrura musculus, Bombina variegata, Carabus italicus, 

Coenonympha oedippus, Emys orbicularis, Lucanus cervus, Rana dalmatina, Rana latastei, Triturus 

carnifex, and Zamenis longissimus. While the plant communities were: Alkaline fens dominated by 

Schoenus nigricans (Caricion davallianae), Alluvial forests with Alnus glutinosa and Fraxinus 

excelsior (Alnion glutinosae), Calcareous fens with Cladium mariscus (Magnocaricion elatae), 

Illyrian Quercus-Carpinus betulus forests (Erythronio-Carpinion), Low altitude mowing meadows 

(Arrhenatherion elatioris), Molinia meadows on calcareous, peaty or clayey-silt-laden soils 

(Molinion caerulae), Southeast European Fraxinus-Quercus-Alnus forests (Alno-Quercion roboris), 

Sub-Mediterranean arid meadows (Scorzonerion villosae), and Tunnel forests of Salix alba and 

Populus albae (Salicion albae). 
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The EN is composed of 108 nodes and 17 different habitats (14 terrestrial and 3 aquatic), 

corresponding to a total extent of 5900 ha, of which 1700 ha represent nodes and 4200 ha ecological 

corridors. 
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Figure 1.1: Flow chart of the main steps applied to model the multi-species Ecological Network: starting from a map of the habitats of the study area and combining it 

with a table of costs (time and effort to travel through an environment) it was obtained a map of costs for all 10 animal species and 9 plant communities (habitats) present 

in the landscape. From the overlay of all species-specific networks the multi-species ecological network was obtained as the sum of all identified elements. 
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Specific aims 

The major aim of this Thesis is to provide an insight for testing and monitoring diversity and the 

factors that influence it in the habitats and nodes of an EN. 

Specifically, in Chapter 1, I aimed at providing a methodological framework to support biodiversity 

data collection planning, estimating how many replicates are sufficient to represent plant diversity. 

Specifically, the addressed aims were: 

a) to distinguish and maintain the typification among different habitats; 

b) to gather data on species diversity and heterogeneity within the whole EN. 

The second objective (Chapter 2) was to analyze plant diversity patterns within the EN investigating 

the effects of landscape structure and connectivity on plant communities at two scales. Specifically, 

the following specific aims were addressed: 

a) investigate the effects of landscape structure and connectivity in different habitats on α diversity at 

the habitat scale; 

b) examine the effects of landscape structure and connectivity in different habitats on β diversity at 

the habitat scale; 

c) explore the effects of landscape structure and connectivity on α diversity at the node scale; 

d) inspect the effects of landscape structure and connectivity on β diversity at the node scale. 

The last goal (Chapter 3) was to investigate the potential of remote sensing for quantitative analyzing 

the biodiversity content of the EN and the study area. To do so, starting from the vegetation collected 

in the EN, two R packages were tested to analyze the relationships between spectral and observed 

(taxonomic) diversity. Specifically, I tested whether: 

a) spectral diversity, considered as α and β diversity, can be compared with α and β taxonomic 

diversity and with what degree of relationship;  
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b) spectral heterogeneity (in pixel reflectance variation) is related to ecosystem, landscape 

heterogeneity and plant diversity in a complex landscape, where natural and anthropogenic elements 

interact; 

c) spectral data can be used to assess and/or monitor plant diversity and its dynamics in an Ecological 

Network (EN) or more generally in natural environments over time. 
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ABSTRACT 

In intensively used and human-modified landscapes, biodiversity is often confined to remnants of 

natural habitats. Thus, identifying ecological networks (ENs) necessary to connect these patches and 

maintain high levels of biodiversity, not only for conservation but also for the effective management 

of the landscape, is required. However, ENs are often defined without a clear a-priori evaluation of 

their biodiversity and are seldom even monitored after their establishment. The objective of this study 

was to determine the adequate number of replicates to effectively characterize biodiversity content of 

natural habitats within the nodes of an EN in north-eastern Italy, based on vascular plant diversity. 

Plant communities within habitats of the EN’s nodes were sampled through a hierarchical sampling 

design, evaluating both species richness and compositional dissimilarity. We developed an integrated 

method, consisting of multivariate measures of precision (MultSE), rarefaction curves and diversity 

partitioning approaches, which was applied to estimate the minimum number of replicates needed to 

characterize plant communities within the EN, evaluating also how the proposed optimization in 

sampling size affected the estimations of the characteristics of habitats and nodes of the EN. We 

observed that reducing the total sampled replicates by 85.5% resulted to sufficiently characterize plant 

diversity of the whole EN, and by 72.5% to exhaustively distinguish plant communities among 

habitats. This integrated method helped to fill the gap regarding the data collection to monitor 

biodiversity content within existing ENs, considering temporal and economic resources. We therefore 

suggest the use of this quantitative approach, based on probabilistic sampling, to conduct pilot studies 

in the context of ENs design and monitoring, and in general for habitat monitoring. 

 

Keywords: α diversity, β diversity, multivariate pseudo-standard error, plant biodiversity, protected 

areas, sampling optimization 

 

Abbreviation: EN ecological network; ENRS ecological network resampled subset; HRS habitats 

resampled subset; PA protected area; RC rarefaction curve; SER spatial explicit rarefaction curve   
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INTRODUCTION 

Biodiversity loss is one of the main concerns in the Anthropocene, happening at a faster rate than 

ever, driven by many factors such as land use change, habitat fragmentation, pollution, natural 

resources exploitation, climate change, biological invasion, and many other (Landi et al. 2018; IPBES 

2019; EEA 2020). Although protected areas (hereafter PAs) were designed to face these problems 

through conservation actions focused on endangered target habitats and species, it is now clear that 

biodiversity protection should rely on a more efficient management of the anthropogenic surrounding 

landscapes and no longer be confined only to PAs (UN 2015a, 2015b; European Commission 2020). 

Urgent actions to mitigate habitat loss and fragmentation are needed. These actions must be achieved 

through a management approach that coherently consider all the landscape components, integrating 

also information about functional traits of species and landscape structures through connectivity 

models (Cushman et al. 2013). In this context, the Ecological Network (hereafter EN) was established 

as a useful tool to provide an integrated protection of biodiversity also considering biotic interactions 

among species in an ecosystem (Pascual and Dunne 2006). ENs were described and used as tools for 

conservation planning that rely on the concept of ecological connectivity between the more natural 

portions of a landscape (so called “nodes” of the EN), with the final aim to limit the effects of 

fragmentation of habitat patches (Fahrig 2003; Battisti 2004; Biondi and Nanni 2005; Rosati et al. 

2010). ENs were thought as a patch matrix model (Forman 1995), a vision of landscape in which 

discrete homogeneous habitat patches, surrounded by a more or less inhospitable matrix, are 

connected in a network structure to support ecological connectivity at landscape scale (Foltete 2019). 

Research concerning ENs have developed different approaches directed to assess both the structural 

connectivity, that is a property of the landscape and concerns the spatial pattern of habitat patches 

and is independent on the ecological characteristics of the species (Tischendorf and Fahrig 2000; 

Taylor et al. 2006), and the functional connectivity, defined as the behavioral movement response of 

organisms towards habitat patches (Taylor et al. 1993; LaPoint et al. 2015). In this respect, many 

analytical tools were developed in recent decades such as least-cost modeling, circuit theory, graph-

theoretic methods, aiming at design connectivity models (Foltete 2019). 
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The concept of EN is increasingly accepted as an operational tool for protecting biodiversity, 

improving ecological connectivity and sustainable development of landscapes (Damschen 2013; De 

montis et al. 2016; Keeley et al. 2018; Xu et al. 2019). Several studies have focused on the application 

of ENs, both from the theoretical and practical point of view, highlighting the complex interaction 

between structural and functional features of ENs, and the need for further research on the effects of 

their planning and implementation (Battisti 2013; Boitani et al. 2015; Gippolitti and Battisti 2017; 

Foltete 2019). In particular, the definition of the EN follows often an approach oriented only to the 

structure of the network, while there is a lack of standards in EN projects (e.g., no clear objectives, 

no monitoring activities) to make them a suitable tool for biodiversity conservation (Kareksela et al. 

2013; Gippoliti and Battisti 2017; Jalkanen et al. 2020). Thus, it is essential to assess the spatial 

distribution of the habitats within the EN and to quantify their biodiversity content as they may be 

potentially altered due to anthropic activities of the surrounding matrix, or even by application of an 

improper management of the nodes (Brooks et al. 2002; Wiegand et al. 2005; Thiele et al. 2018). 

Moreover, the identification of the habitats suitable for a species should consider the plant 

communities that are fundamental to habitat definition adopted also in modern European habitat 

classifications (Devillers et al. 1991; Devillers and Devillers-Terschuren 1996; Davies et al. 2004; 

European Commission 2013). The term “habitat” has been used in various contexts with different 

meanings. In the context of EN, we refer to habitat as an assemblage of animals and plants, together 

with their abiotic environment, that contribute as patches of the network. Plant communities also have 

a key role in primary productivity, capturing that portion of solar energy that can support the life of 

all components of the biosphere, as well as in regulation of the nutrients’ cycle and in soil protection 

(Lieth 1973) and stand for a large part of biodiversity of landscapes. 

In this light, a robust and replicable method to detect the biological and structural characteristics of 

plant communities, within the ENs is needed. It should also aim at monitoring the distribution and 

biodiversity content of the habitats. A robust methodological approach which is based on probabilistic 

sampling of plant communities is fundamental to estimate how suitable a sample is for seizing the 

species diversity and relative abundance, avoiding bias (Cao et al. 2002). The adequacy of sampling 
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methods able to reliably characterize ecological communities within a habitat have long been debated 

in literature (e.g., Yoccoz et al. 2001; Balmford et al. 2003; Del Vecchio et al. 2019, Maccherini et 

al. 2020). One recently introduced approach which proved to be useful consists of evaluating 

multivariate differences in the composition of plant communities (Anderson and Santana-Garcon 

2015), using a measure of precision based on dissimilarity matrices called pseudo multivariate 

dissimilarity-based standard error (MultSE), which allows for determination of sample-size adequacy 

within communities. The MultSE is the multivariate analog of the standard error and measures the 

variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated 

sampling for a given sample size (Anderson and Santana-Garcon 2015). This measure of multivariate 

precision was recently used in the context of European habitats monitoring for costal sand dunes by 

Maccherini et al. (2020), and it can represent a valid approach to estimating the optimal sample-size 

required to adequately characterize plant communities within habitats. 

In this study, we provide an integrated method to determine the adequate number of replicates to 

effectively characterize biodiversity within habitats (considered as EUNIS habitat types; Davies et al. 

2004) and nodes in an EN whose main novelty relies on the combination of i) MultSE, ii) rarefaction 

curves, and iii) diversity partitioning approaches. Our main contribution is to provide a 

methodological framework for practitioners to support biodiversity data collection planning, in the 

EN design process or in the monitoring of existing ENs and PAs, as requested by European 

Biodiversity Strategy for 2030 (European Commission 2020). 

In an EN, modeled in the context of the regional landscape planning process at the regional level, we 

sampled 193 vegetation plots in 14 habitats contained within 74 nodes, aiming at estimating how 

many replicates are sufficient a) to distinguish and maintain the typification among different habitats 

and b) to gather data on species diversity and heterogeneity within the whole EN. We tested our 

framework on an EN in Friuli Venezia Giulia region (north-eastern Italy), which was developed in 

the context of the regional landscape planning project (Sigura et al. 2017). The sampled EN is 

composed of numerous PAs and biotopes, as well as several patches of semi-natural and natural 

habitats in an agricultural landscape matrix. These habitats, forming the nodes of the EN, consist 
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mainly of wetlands, linked to the presence of rivers and fens, which are well-known for their 

ecological role and for the high levels of biodiversity (Liccari et al. 2020). These environments are 

usually underrepresented in EN studies and the few studies concerning wetlands tend to give more 

weight to animal diversity instead of plant diversity (Foltete et al. 2020).  
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METHODS 

Study area and EN model 

This study was carried out in a local EN in the Friulian lowland (Friuli Venezia Giulia region, NE 

Italy; centroid coordinates: 45°48’13.4” N – 13°08’11.0” E; Figure 2.1). 

 

Figure 2.1: Study area location (Friuli Venezia Giulia region is represented in yellow) and ecological network 

representation (all the nodes of the EN are shown, including aquatic and smaller than 1 ha nodes). EUNIS 

Habitat Codes are as follows: C1.14 Charophyte submerged carpets in oligotrophic water bodies; C1.24 Rooted 

floating vegetation of mesotrophic water bodies; C2.27 Mesotrophic vegetation of fast flowing streams; C3.21 

Phragmites australis beds; D4.11 Schoenus nigricans fens; D5.24 Fen Cladium mariscus beds; E1.55 Eastern 

sub-Mediterranean dry grassland; E2.2 Low and medium altitude hay meadows; E3.4 Moist or wet eutrophic 

and mesotrophic grassland; E3.51 Molinia caerulea meadows and related communities; F3.23 Tyrrhenian sub-

Mediterranean deciduous thickets; F9.2 Salix carr and fen scrub; G1.A1A Illyrian Quercus-Carpinus betulus 

forests; G1.11 Riverine Salix woodland; G1.223 Southeast European Fraxinus-Quercus-Alnus forests; G1.224 

Po Quercus-Fraxinus-Alnus forests; G1.41 Alnus swamp woods not on acid peat. Colored lines and patches 

are corridors and nodes of the network, representing different habitat types and species-specific networks. An 

example of the hierarchical sampling design in which each node was sampled stratified by habitat 

proportionally to habitat extent within the node is showed. 
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The study area has an extent of 298 km2 and is included in an agricultural context bounded by two 

river systems (Stella and Corno rivers, respectively). The landscape is characterized by a mixed 

mosaic of intensively and extensively cultivated areas, settlements, semi-natural (hedgerows and 

watercourses) and natural habitats (woodlands, shrubs, meadows and fens), including eight Natura 

2000 Special Area of Conservation (Habitats Directive 92/43/EEC) and nine regional protected sites 

(biotopes), connecting mainly wetland habitats. 

The geology of the area is mainly composed of Quaternary sand sediments, silt sediments and silt-

clay sediments generated by glacial fluvial transport during Pleistocene and by alluvial deposit during 

Holocene. The area is characterized by an average annual temperature of ca. 13°C and an average 

annual rainfall between 1100 and 1400 mm. 

In this intensively cultivated landscape, connectivity was mapped on a habitat-species based model 

(flora and fauna), developed at the local scale in the context of the regional landscape planning 

process (Sigura et al. 2017). The model is based on least-cost path analysis and graph theory used to 

obtain species-specific ENs which were later merged into the final composite multi-species network, 

where the nodes (natural habitats), corridors and stepping stones (links between natural habitats) were 

obtained for a set of 19 target species (10 animal species and 9 plant communities, assumed to be 

crucial for several plant species of conservation concern) to capture favorable conditions for 

biodiversity. Specifically, the EN was originally modeled from the habitat map of the region (ISPRA 

2017), using the habitat classification proposed by Poldini et al. (2006) (see Table 2.1), and crossing 

costs for species were attributed by expert assessment and literature review data. However, for a more 

comparable interpretation and replicability of this study, the adopted habitat classification was 

converted according to the European Nature Information System (EUNIS, Davies et al. 2004) 

classification which has a one-to-one correspondence with the previous classification (Table 2.1). 

The term habitat is here understood as an assemblage of plants together with their abiotic 

environment. The EN is composed of 108 nodes and 17 different habitats, for a total extent of 5900 

ha of which 1700 ha represent nodes and 4200 ha ecological corridors. 
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Table 2.1: Habitat codes of the area according to Poldini et al. (2006) and correspondence with EU and EUNIS 

habitat classification along with descriptive statistics of the study area (i.e., area, number of patches, number 

of plots and average richness). Asterisk (*) in EU habitat codes denotes priority habitats according to Habitats 

Directive. Plus (+) before EUNIS habitat codes denotes habitats that were updated after the sampling (see main 

text). 

Habitat 

FVG 

(Poldini et 

al. 2006) 

EU Habitat 

(Directive 92/43/EEC) 

EUNIS 

Habitat 

 

Area (ha) 

 

N. 

Patches 

N. Plots 

Average 

richness 

(± SD) 

AC6 

3260 - Water courses of plain to 

montane levels with the Ranunculion 

fluitantis and Callitricho-Batrachion 

vegetation 

C2.27 - Mesotrophic 

vegetation of fast flowing 

streams 

48.6 7 

Not 

sampled 

Not 

sampled 

AF5 

3140 - Hard oligo-mesotrophic waters 

with benthic vegetation of Chara spp. 

C1.14 - Charophyte 

submerged carpets in 

oligotrophic water bodies 

59.3 10 

Not 

sampled 

Not 

sampled 

AF6 / 

C1.24 - Rooted floating 

vegetation of mesotrophic 

water bodies 

5.0 1 

Not 

sampled 

Not 

sampled 

BL13 

91L0 - Illyrian oak-hornbeam forests 

(Erythronio-Carpinion) 

G1.A1A - Illyrian Quercus - 

Carpinus betulus forests 

599.4 17 34 23.3 ± 5.7 

BU10 

91E0* - Alluvial forests with Alnus 

glutinosa and Fraxinus excelsior 

(Alno-Padion, Alnion incanae, 

Salicion albae) 

G1.41 - Alnus swamp woods 

not on acid peat 

410.5 43 28 23.3 ± 5.0 

BU11 / F9.2 - Salix carr and fen scrub 45.8 8 12 25.0 ± 5.2 

BU5 

92A0 - Salix alba and Populus alba 

galleries 

G1.11 - Riverine Salix 

woodland 

186.4 31 39 23.6 ± 6.9 

BU7 

91F0 - Riparian mixed forests of 

Quercus robur, Ulmus laevis and 

Ulmus minor, Fraxinus excelsior or 

Fraxinus angustifolia, along the great 

rivers (Ulmenion minoris) 

G1.223 - Southeast European 

Fraxinus - Quercus - Alnus 

forests 

112.4 20 8 25.9 ± 4.8 

BU8 

91F0 - Riparian mixed forests of 

Quercus robur, Ulmus laevis and 

G1.224 - Po Quercus - 

Fraxinus - Alnus forests 

1.9 1 1 18 
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Ulmus minor, Fraxinus excelsior or 

Fraxinus angustifolia, along the great 

rivers (Ulmenion minoris) 

GM11 / 

F3.23 - Tyrrhenian sub-

Mediterranean deciduous 

thickets 

153.1 41 27 22.5 ± 4.7 

PC8 

62A0 - Eastern sub-Mediterranean 

dry grasslands (Scorzoneretalia 

villosae) 

+ E1.55 - Eastern sub-

Mediterranean dry grassland 

2.9 1 1 35 

PM1PM2 

6510 - Lowland hay meadows 

(Alopecurus pratensis, Sanguisorba 

officinalis) 

E2.2 - Low and medium 

altitude hay meadows 

127.2 37 19 29.7 ± 5.8 

PU1 

6430 - Hydrophilous tall herb fringe 

communities of plains and of the 

montane to alpine levels 

+ E3.4 - Moist or wet 

eutrophic and mesotrophic 

grassland 

4.1 1 2 12 ± 14.1  

PU3 

6410 - Molinia meadows on 

calcareous, peaty or clayey-siltladen 

soils (Molinion caeruleae) 

E3.51 - Molinia caerulea 

meadows and related 

communities 

71.7 20 7 33.9 ± 8.5 

UC1 / 

+ C3.21 - Phragmites 

australis beds 

3.7 1 1 21 

UC11 

7210* - Calcareous fens with 

Cladium mariscus and species of the 

Caricion davallianae 

D5.24 - Fen Cladium 

mariscus beds 

9.9 2 3 14.3 ± 4.2 

UP4UP5 7230 - Alkaline fens 

D4.11 - Schoenus nigricans 

fens 

75.5 28 10 14.9 ± 6.2 

 

Sampling design and data collection within the EN 

Among the nodes, we selected and sampled all the nodes larger than 1 ha. Purely aquatic habitats 

(i.e., C1.14, C1.24, C2.27, EUNIS codes; see Table 2.1) within the nodes were not sampled, since 

they require completely different assumptions for connectivity than terrestrial ones. Ecological 

corridors were not sampled. Thus, the final dataset relies on 74 nodes and 14 habitats. The adopted 

sampling design was hierarchical (Figure 2.1), where each habitat type was sampled within each node 

(that could contain more than one habitat), proportionally to habitat extent within the node. The 
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sampling density with respect to the habitat extent was chosen as follows: a squared plot of 100 m2 

was randomly placed for a habitat area < 5 ha, 2 plots for an area ≥ 5 and ≤ 10 ha and, finally, 3 plots 

for an area > 10 ha. In total, 193 plots were randomly selected within the EN corresponding to an 

overall sampling density of 0.11 plot/ha. Occurrence and abundance (% visual cover estimation) of 

vascular plant species were recorded within each plot. Nomenclature and taxonomy of species 

followed Bartolucci et al. (2018) for native species and Galasso et al. (2018) for alien species. Data 

were collected during spring and summer 2019. 

 

Data Analysis 

Habitats and nodes within the EN were analyzed in terms of species richness (alpha diversity) and 

compositional dissimilarity as a measure of species complementarity among sampling units (sensu 

Whittaker 1972 defined as beta diversity). The latter was analyzed using the Bray–Curtis (BC) 

dissimilarity index (Bray and Curtis 1957). This index is defined as the sum over the whole species 

of the ratio between the difference of abundance values and the sum of abundance values for each 

species, and it represents the vegetation plots pairwise differences using quantitative species 

abundance data. The BC dissimilarity index ranges between 0, when two plots share the same 

elements, to 1, when the two sampling units are totally different. First, we performed a preliminary 

analysis to evaluate statistical differences in species richness among habitats and nodes using 

ANOVA test followed by Tukey post-hoc test (using the “multcomp” R package, Hothorn et al. 

2008) when significant. These differences represented our baseline diversity values characterizing the 

EN in terms of biodiversity and its variability among habitats/nodes, given the maximum sampling 

effort available. Then, we characterized diversity patterns through sample-based rarefaction curves 

(RCs) using exact method and spatially explicit rarefaction curves (SERs, Chiarucci et al. 2009; 

Bacaro et al. 2012, 2016), using the function available in “rarefy” package (Thouverai et al. 2020) 

and in “vegan” R package (Oksanen et al. 2019). We compared first the habitat-based curve and 

node-based curve to the rarefaction curve for the whole dataset (both RC and SER) and then the 
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curves for each habitat (RCs and SERs) to the whole dataset curve (both RC and SER). Finally, we 

compared RC for each node with respect to the whole dataset RC. The difference between RC and 

SER somehow expresses the amount of spatial autocorrelation among sampling units, based on the 

spatial structure of the collected data and already proved to be effective in different habitats (Bacaro 

et al. 2016; Tordoni et al. 2018). 

Species richness patterns across different spatial scales (plot, habitat/node, whole EN) were also 

evaluated by means of additive partitioning techniques (Lande 1996; Crist et al. 2003) using the 

“adipart” function in the “vegan” R package (Oksanen at al. 2019) and their significance was tested 

using a null model that permutes the original data matrix 999 times to assess deviation from random 

expectations. 

Pseudo multivariate dissimilarity-based standard error (MultSE) was computed following the method 

described by Anderson and Santana-Garcon (2015), and using the code and functions provided 

therein. MultSE (Equation 1 and 2) is based on the chosen dissimilarity measure, thus providing a 

powerful tool to examine the relative precision of a sampling procedure. It is calculated as follows: 

𝑀𝑢𝑙𝑡𝑆𝐸 =  √𝑉/𝑛      (1) 

where V is a multivariate measure of pseudo variance in the space of the chosen dissimilarity measure: 

𝑉 =  
1

(𝑛−1)
∑ ∑

𝑑𝑖𝑗
2

𝑛

𝑛
𝑗=(𝑖+1)

(𝑛−1)
𝑖=1      (2) 

where n is the number of sampling units and d represents the squared distance between individual 

sampling points to their centroid, given a chosen dissimilarity measure. 

To calculate MultSE, we first downweighted the abundance of the plant community matrix using a 

log (x + 1) transformation and then we computed the BC dissimilarity. This was computed both for 

habitats and habitats aggregated within nodes, and then for the whole dataset. A double resampling 

scheme was used to generate means for each sample size and 95% confidence intervals; in particular 

the first was obtained from 10,000 permutations and the latter from 10,000 bias-adjusted bootstrap 

resamples. When the profile of MultSE in relation to the increasing sampling size reaches an 

asymptote, we can consider that sample size as an adequate number of replicates beyond which only 
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small fluctuations of sampling precision can be observed. The point where the slope of MultSE profile 

changes, was estimated using R package “segmented” (Muggeo 2003; Muggeo 2008). These were 

calculated only for the habitats and for the whole dataset. The number of plots for each node profile 

was often not large enough to estimate breaking points. 

To verify if and how the proposed reduction in sampling size affects diversity, we reduced the whole 

dataset adopting resampling strategies as suggested by the results of MultSE. In particular, the 

complete dataset was resampled both randomly and stratified by habitats. The plots were resampled 

from the whole dataset, using the number of plots derived from MultSE estimation for the habitats 

(999 random resamples) and for the whole EN (999 random resamples). These subsets of plots were 

then tested to investigate if there were significant differences in species richness between habitats 

(only for habitats resampling). Species diversity patterns across different scales (plot/habitat/whole 

EN and plot/node/whole EN) were evaluated both for the habitats resampled subset (HRS) and for 

the whole EN resampled subset (ENRS). Finally, the resulting statistics were compared with those of 

the original dataset to determine the effect in sampling reduction in the ability to discriminate among 

habitats and EN nodes.  
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RESULTS 

Overall, 74 nodes of the EN were sampled, of which 56 were formed by a singular habitat and 18 by 

multiple habitats. The most common habitats within the nodes were G1.11 Riverine Salix woodland 

(present within 26 nodes, see Table 2.1 for more details on habitats), F3.23 Tyrrhenian sub-

Mediterranean deciduous thickets (19), G1.A1A Illyrian Quercus-Carpinus betulus forests (17), 

G1.41 Alnus swamp woods not on acid peat (14), E2.2 Low and medium altitude hay meadows (13), 

while the less common were F9.2 Salix carr and fen scrub (7), D4.11 Schoenus nigricans fens, E3.51 

Molinia caerulea meadows and related communities, G1.223 Southeast European Fraxinus-Quercus-

Alnus forests (5), D5.24 Fen Cladium mariscus beds (2), other habitats were present only within a 

singular node. Most of these habitats (11) were attributable to wetland habitats and were present in 

78% of the nodes, occupying 84% of the total extent of the EN’s nodes. 

A total of 399 plant species were sampled in the EN, of which 42 were aliens and 20 were protected, 

rare or endemic species according to European, Italian, or Regional red lists. The most frequent native 

species were Rubus caesius (occurring in 126 plots), Rubus ulmifolius (118), Quercus robur (107), 

Hedera helix (106), Cornus sanguinea (104) and Salix alba (94). Concerning alien species, the most 

frequent were Platanus hispanica (61), Robinia pseudoacacia (33) and Potentilla indica (28). Finally, 

the most frequent protected species were Ruscus aculeatus (Habitat Directive 92/43/CEE Annex V, 

18 occurrences) and Neottia ovata (CITES and (CE) N. 407/2009 Annex B, 8 occurrences). 

The sampling activity, that aimed at verifying the biodiversity content of the EN, helped also to verify 

the correspondence between cartography and ground-data. Moreover, it permitted us to update the 

habitat attribution to a precise habitat type thanks to a greater level of detail and considering natural 

dynamism among plant communities (e.g., see Table 2.1 habitats distinguished by the symbol +). 

Concerning species richness calculated at the habitat level (Figure 2.2), the higher values were in 

meadows (31.3 ± 8.8 species), the lowest ones in fens (14.9 ± 5.3 species), while intermediate values 

were observed in shrublands and forests (23.3 ± 5.8 species). Species richness was significantly 

different among these 3 groups, but not within the groups. Conversely, no significant differences 

emerged for species richness between EN nodes. 
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Figure 2.2: Species richness in habitats and ANOVA resulting p-value. The color scale identifies the 3 groups 

with significant differences resulting from ANOVA post-hoc analysis (α < 0.05): fens (light yellow), meadows 

(light green) and shrublands and forests (green). 

Rarefaction curves (RCs, Figure 2.3) calculated from the whole dataset confirmed that spatially 

explicit rarefaction curve (SER) accumulated a lower number of species than RC and revealed that 

the habitat-based RC accumulated species less rapidly than the node-based RC and SER. RCs for 

habitats (Figure S2.1) showed that none of the curves reached a plateau. A similar trend was observed 

also in the RCs for nodes (Figure S2.2). 

Figure 2.3: Spatially explicit rarefaction curve (SER, blue dashed line), traditional rarefaction curve (RC, 

black dotted line), habitat-based rarefaction curve (red solid line) and node-based rarefaction curve (green solid 

line) calculated from the whole dataset. 
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Additive partitioning (Figure 2.4) for habitats showed how within habitats diversity (i.e., the average 

inventory diversity) accounted for 15.61% of the total EN diversity and it was lower than between 

habitats diversity (78.43% of total diversity). For nodes, this pattern was even more evident, with a 

diversity within nodes (3.84% of total diversity) lower than between them (90.2% of total EN 

diversity). 

 

Figure 2.4: Additive partitioning of diversity across different scales: within each plot (α plot), within each 

habitat or node (β plot) and between habitats or nodes (β). Asterisks indicate a significant difference from 

random expectations resulting from a null model (*** p < 0.001). 

MultSE profiles in relation to sample size for each habitat within the EN (Figure 2.5) flattened out 

between 7 and 10 plots depending on habitat type, a similar trend was observed also in the MultSE 

profiles of the nodes (Figure S2.3). The MultSE profile for the whole dataset (Figure S2.4) flattened 

out at around 25 plots. 

Based on habitats’ MultSE profiles, the minimum number of replicates needed to characterize the 

main features of each habitat was reported in Table S2.1, while the minimum number of replicates 

needed for the whole EN was 27.77 ± 1.77 (mean ± SD) according to the point where the slope of 

MultSE profile changed. 
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Figure 2.5: MultSE profile based on Bray–Curtis dissimilarity for each habitat within the ecological network. 

The white space on the left is due to a MultSE higher than 0.5 in the first plots. 

In addition, our results proved to be robust when reducing the size of the dataset to the ones suggested 

by the previous analysis (i.e., 53 plots for HRS, 28 for ENRS) detecting similar patterns in terms of 

species richness and additive partitioning of diversity (Table 2.2, Table 2.3). 

Table 2.2: Summary statistics of additive partitioning results showing the differences in species richness (α) 

at plot and habitat/node level vs. dissimilarity (β) at plot and network level derived from 999 stratified 

resampling of the original dataset based on the plot numbers given by the decay of habitats MultSE and from 

999 random resampling of the original dataset based on the plot numbers given by the decay of whole EN 

MultSE. 

Term Distrib

ution of 

values 

α plot Rate of 

Significance 

(% of 

permutations 

with p < 

0.05) 

β plot Rate of 

Significance 

(% of 

permutations 

with p < 

0.05) 

α 

(habit

at/nod

e) 

Rate of 

Significance 

(% of 

permutations 

with p < 

0.05) 

β 

netwo

rk 

Rate of 

Significance 

(% of 

permutations 

with p < 

0.05) 

Habitat 

Min. 0.08 

100% 

0.16 

100% 

0.25 

100% 

0.70 

100% 

1st 

quart. 

0.09 0.18 0.27 0.72 

Median 0.09 0.18 0.28 0.72 

3rd 

quart. 

0.10 0.19 0.28 0.73 

Max. 0.10 0.20 0.30 0.75 

Node 

Min. 
0.10 

100% 

0.000

0 

60.2% 

0.11 

96.1% 

0.80 

96% 

1st 

quart. 

0.11 0.02 0.14 0.85 

Median 0.12 0.03 0.14 0.86 

3rd 

quart. 

0.12 0.03 0.15 0.86 

Max. 0.14 0.06 0.20 0.89 
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Table 2.3: Summary statistics of ANOVA results derived from 999 stratified resampling of the original dataset 

based on the plot numbers given by the decay of habitats MultSE. Fisher values (F) and measures of effect size 

(Ƞ2) are shown along with the overall rate of significance of the tests. 

Term Distribution of values F Ƞ2 
Rate of Significance (% of 

permutations with p < 0.05) 

Habitat 

Min. 1.17 0.17 

93.9% 

1st quart. 3.23 0.37 

Median 4.14 0.43 

3rd quart. 5.21 0.49 

Max. 13.16 0.70 
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DISCUSSION 

Sampling diversity of plant communities, in terms of species richness and composition, allowed us 

to verify and update the distribution of the habitats within the nodes of the EN. In fact, the field survey 

can reach a higher level of detail than cartographic data, thus being able to capture and interpret the 

different aspects of plant mosaics and their dynamism over time, potentially caused by global change 

and/or anthropic pressure (Franklin et al. 2016). Moreover, this verification between ground and map 

data in EN planning should be required (Gippoliti and Battisti 2017) and it should be undertaken 

independently of the cartographic reference checks, which are completed during map drafting. In fact, 

these incongruences between maps and the observed environment can be a limit in the planning and 

design phase of the EN and in the application of indexes for connectivity analysis, where weight 

evaluation of the nodes is requested (i.e., probability of connectivity index). Moreover, it highlights 

once again the need for verification and monitoring of the modeled EN once implemented. This issue 

is well known in literature, and Foltete et al. (2020) recently highlighted the weakness of approaches 

based on landscape structure data, suggesting to not use landscape graphs in operational contexts 

without validating them beforehand with empirical data on species or communities. 

As expected, the species richness and rarefaction curves for habitats and nodes (Figure 2.2, 2.3, S2.1, 

S2.2) described the high heterogeneity existing between nodes, in fact, the method used to identify 

the EN has been developed to cover the functional areas needed to host the highest number of different 

species (Sigura et al. 2017), assuming that the species and habitats used for modeling the EN stand 

as a proxy for many other species. Moreover, the SERs for habitats (Figure S2.1) showed an 

increasing species richness going from moist or wet grasslands and fens (D4.11, D5.24, E3.4), to 

shrublands and forests (F3.23, F9.2, G1.A1A, G1.11, G1.223, G1.41) and meadows (E2.2, E3.51). A 

similar trend was found by De Simone et al. (2016) studying patterns of biodiversity in cultivated 

landscapes, where meadows and woodlands proved to be hotspots of biodiversity. Furthermore, the 

habitat-based RC accumulated species less rapidly than the node-based RC (Figure 2.3) while the 

SER first displayed a trend similar to the node-based RC, and then to the habitat-based one. This 

feature indicated a higher similarity among habitats in terms of species composition, than nodes. 



36 

 

Nodes were also generally more extended than habitats and therefore they accumulated species more 

rapidly (Arrhenius 1921). Additionally, some of the nodes were often composed by more habitats, 

allowing for a faster accumulation of species. 

These results pointed out that node-based RC accumulated more species than habitat-based RC, 

suggesting that a sampling design based on nodes is more efficient in capturing the EN heterogeneity: 

similar habitats, sharing similar species composition and structure (e.g., shrublands and forests shared 

numerous species: Salix spp., Alnus glutinosa, Populus spp., Quercus robur, Fraxinus spp., etc.), 

include indeed a high redundant composition of species that can be characterized with fewer sampling 

units. This is further corroborated by additive partition of diversity (Figure 2.4), which showed as 

nodes were more diverse between them than habitats themselves. 

Regarding MultSE profiles, the number of plots required for characterizing habitats ranged from 4 to 

8 (Figure 2.5 and Table S2.1). Grassland habitats needed fewer plots than woodland habitats, due to 

the lower degree of habitat complexity. Probably the applied plot size was too small for forest habitats 

due to the scale of the vegetation patchiness but, even though the plot size might not completely 

proper in every habitat, a uniform plot size was needed for the aims of this work and for further 

research concerning the EN under study. The number of plots required for nodes ranged from 2 to 10 

(Figure S2.3), depending on the number of habitats present within the node. It is interesting to note 

that if we consider the whole dataset (Figure S2.4), 28 replicates (14.51% of the original dataset) are 

sufficient to maintain the same level of heterogeneity of the network as observed with all the sampling 

units. Indeed, the additive partitioning of diversity for the reduced dataset, showed a minimum 

variation of α plot, β plot and β (Table 2.2) thus the overall signal for the whole EN remained 

comparable to the original. This suggests that sampling all the nodes of the EN leads to a redundancy 

in the data, if the aim is to point out an overall plant diversity contained within the EN. 

Conversely, the approach that allows for distinguishing best among plant communities is the habitat-

based sampling design. Indeed, when considering the HRS’ analysis (53 plots, 27.46% of the original 

dataset), we noticed that the significant difference between habitat composition remained constant 

(Table 2.3) and the partitioning of diversity underwent a slight variation (Table 2.2). In this case, the 
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observed variation in the diversity partitioning was due to a lower redundancy of sampled species, in 

fact, oversampling habitats that had many species in common (e.g., shrublands and forests) led to a 

lower diversity between habitats (72.38% in the reduced dataset vs. 66.64% of the original dataset). 

Considering the results in their totality, the best approach between habitat-based and node-based 

depends on the aims of the research: in our study case the habitat-based approach gave us important 

information both on the heterogeneity of the network and on habitats’ structure and composition, but 

a node-based approach can be a valid alternative when time and resources are scarce and the aim is 

to point out an overall richness for the studied EN. 

It is worth noting that our results give a general indication on the adequate sampling effort that can 

be applied in similar contexts. It should be highlighted that our EN is predominantly wetlands based, 

so more studies would be needed if applied to other habitat types (e.g., an EN based primarily on 

grasslands would probably need more plots). Moreover, the proposed methodology can be useful for 

monitoring the ENs over time considering that ENs are never monitored after being implemented 

(Gippoliti and Battisti 2017). That is, starting with a sampling design proportional to the extent of the 

EN under study, it is possible to establish the minimum and sufficient number of sampling units to 

subsequently monitor diversity variation over time. Finally, our results on MultSE profiles, albeit 

applied in a completely different context, are consistent with previous studies (Anderson and Santana-

Garcon 2015; Maccherini et al. 2020), thus confirming it to be a useful statistic for assessing sample-

size adequacy in studies of ecological communities. 

Since ENs are often modeled on the basis of species-habitat interactions and designed based on graph 

theory (Urban et al. 2009; Galpern et al. 2011), it is extremely important to join biological data in the 

graph’s early construction stage (Foltete et al. 2020) to confirm the distribution of the habitats in the 

area and their composition in terms of plant communities, as they are the primary component for 

habitats determination (Devillers et al. 1991; Devillers and Devillers-Terschuren 1996; Davies et al. 

2004; European Commission 2013) and the basis on which the interaction species-habitat are set up. 

As already acknowledged in literature, it is not recommended to analyze plant communities by 

preferential sampling (e.g., Diekmann et al. 2007; Lájer 2007) which may lead to biased results, and 
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for this reason the sampling design must be probabilistic and replicates independent, and it is essential 

to establish a measure of sampling adequacy to exhaustively distinguish different plant communities. 

A final consideration regarding wetlands should be made. These environments are reported to be less 

studied in ENs’ literature (Foltete et al. 2020) and they are known to be vulnerable ecosystems 

extremely important for the maintenance of biodiversity, as they are peculiar environments extremely 

rich in both plant and animal diversity. More than 78% of the habitats within our EN were attributable 

to wetland habitats and 4 of those resulted to be rich of rare, protected, or endemic species. In 

particular, Schoenus nigricans dominated fens (D4.11) presented 7 species as well as Molinia 

caerulea meadows (E3.51), while Illyrian Quercus robur-Carpinus betulus forests (G1.A1A) and 

Alnus glutinosa swamp woods (G1.41) respectively 5 and 4 species. This result confirms that these 

habitats are particularly important for the conservation of biodiversity in this region (Poldini and 

Oriolo 2002; Wassen et al. 2005, Dybkjær et al. 2012, Natlandsmyr and Hjell 2016; Della Longa 

2019) and should be paid particular attention.  
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CONCLUSIONS 

In this study, we used an innovative integrated approach in order to estimate the adequate sample size 

to maintain the observed features of plant communities within the habitats and nodes of the EN. This 

integrated method helped to fill the gaps regarding the collection of biodiversity data before the 

definition of an EN as well as the monitoring of biodiversity content within existing ENs. 

The importance of validating ENs obtained through graph analysis, based on land cover maps and/or 

habitat maps, is widely known (e.g., Foltete et al. 2020). It is fundamental to optimize sampling design 

to enhance temporal and economic resources and define the minimum effort to adequately represent 

the biodiversity content of the networks. 

Overall, our results gave us important information on the biodiversity conserved within the EN, the 

composition of plant communities and the sufficient sampling effort. One of the future developments 

of this study could be to distinguish between different ecological roles (e.g., Deák et al. 2020) of plant 

species within the habitats for fine-tuning the methodology for applied practical conservation. In fact, 

the use of total biodiversity in our models is perfect for testing the integrated method but, in practical 

conservation planning, distinguish between different ecological roles would be better. However, this 

study represents a novel approach to be applied in the context of designing and monitoring ENs, and 

thus more tests are needed to validate its suitability in different habitats and organisms. In addition, 

we would recommend the use of this approach for conducting pilot studies on ENs, both for designing 

and monitoring, aiming at optimizing resources and in general for habitat monitoring.  
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ABSTRACT 

Natural habitats in rural and urban areas are increasingly fragmented and altered by human impacts 

that are limiting the animal and plant dispersal process. Fragmentation and isolation can be reversed 

by restoring landscape connectivity through effective Ecological Network (EN) planning. However, 

most of the studies analyzing the influence of connectivity and landscape structure on biodiversity 

are focused on animals, while the understanding of their interplaying role on plant diversity remains 

limited. 

We studied the relationships between α and β diversity pattern and landscape structure and 

connectivity in the nodes of an EN developed in agricultural landscapes, as a part of regional 

landscape planning framework in Friuli Venezia Giulia region (North-East of Italy). As an innovation, 

the study aims at parsing the interacting effect of landscape structure, surrounding habitats and nodes, 

and structural connectivity on EN plant diversity at two specific scales of investigation i.e., the habitat 

and the node scale. The habitat was the basic ecological unit, while the node was the basic 

cartographical unit for the EN mapping (multi-habitat or mono-habitat nodes). 

We found that high node connectivity leads to higher species richness (α-diversity) but also increases 

plant community similarity (i.e., low β-diversity) at both scales. The effect of landscape structure 

showed differing trends depending on the habitat. In general, landscape composition of semi-natural 

land cover (i.e., hedgerows, watercourses) showed a positive effect on species diversity as opposed 

to that of the configuration of anthropogenic elements on both scales. Our results provided crucial 

information on the landscape processes useful to improving biodiversity conservation by EN. Our 

findings suggest that i) improving connectivity within ENs favors α plant diversity ii) different 

habitats have different sensibility to landscape structure iii) semi-natural land cover around nodes 

improve plant diversity; iv) planning both mono-habitat and multi-habitats nodes, increases the 

biodiversity conserved therein; v) nodes with more compact shapes are to be preferred. 

 

Keywords: connectivity metrics, landscape composition, landscape planning; Local Contributors of 

Beta Diversity; multi-scale analysis; multiple regressions; species richness 
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Abbreviation: AREAMN mean area (class natural land use); CCe Closeness centrality; Dg node 

degree; DsqrtA maximum distance to square root of area ratio; Ec eccentricity; ED edge density (class 

agricultural land use); EN ecological network; F flux; GLM Generalized Linear Models; GLMM 

Generalized Linear Mixed Models; GYRATEMN mean radius of gyration (class natural land use); 

HRA hedgerow area; IF interaction flux; LCBD Local Contributors of Beta Diversity; NOH number 

of habitats; NOLU number of land uses; TE total edge (class natural land use); WA watercourse area  
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INTRODUCTION 

Biodiversity loss is one of the major concerns of our time, caused by many factors such as land use 

change, habitat fragmentation, pollution, natural resource exploitation, climate change, and biological 

invasion (Landi et al. 2018; IPBES 2019; EEA 2020). Among them, land use change is considered 

the major cause of natural habitat fragmentation and alteration due to the sprawl of rural and urban 

areas (Foltête et al. 2014). In these landscapes, natural patches and/or protected areas are often 

surrounded by an anthropogenic matrix that limits animal and plant dispersal process, increasing their 

functional isolation (Nowicki et al. 2014; Mossman et al. 2015). Fragmentation and isolation of 

natural habitats can be reversed by restoring landscape connectivity through an effective Ecological 

Network (EN) planning by implementing nodes, corridors, and steppingstones (Mossman et al. 2015). 

Connectivity is a key concept in landscape management as it encompasses all aspects affecting the 

displacement of an individual among resource or habitat patches within landscapes (Baguette and 

Van Dyck 2007). Many approaches based on spatial modeling have been proposed to estimate 

potential landscape connectivity, such as indices of landscape pattern (Cook 2002), least-cost 

modeling (Vuilleumier and Prélaz-Droux 2002; Adriaensen et al. 2003; Gurrutxaga et al. 2010; Théau 

et al. 2015), randomized shortest paths (Panzacchi et al. 2016), cost-benefit methods (Drielsma et al. 

2007), circuit theory (McRae et al. 2008) and graph-theoretic methods (Urban and Keitt 2001; Urban 

et al. 2009). Among them, landscape graph modelling is a promising approach applied in different 

scenarios (Galpern et al. 2011; Foltete et al. 2020; Sahraoui et al. 2021). 

ENs are increasingly accepted as proactive tools for preserving biodiversity by improving landscape 

connectivity (Gilbert-Norton et al. 2010; Damschen 2013; Modica et al. 2021). ENs represent also an 

effective approach integrating environmental management strategies and landscape planning and can 

be understood by different actors (De Montis et al. 2016; Keeley et al. 2018; Sahraoui et al. 2021). 

The practical implementation of EN planning depends on opportunities, the interest of landowner and 

other stakeholders, and costs (Bergsten and Zetterberg 2013; Mossman et al. 2015). Therefore, it is 

crucially important to provide practitioners with practical, field-tested advice for planning effective 

ENs to support biodiversity. On the other hand, landscape connectivity and conservation plans often 
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rely solely on environmental and land cover data (Brooks et al. 2004): however, such a broad 

approach based on these heterogeneity surrogates, hardly can be used to conserve the real biodiversity 

content of a large area (Araujo et al. 2001; Schindler et al. 2013), and also raises criticism for the lack 

of validation and monitoring plans in addition to ignoring the community structure (Gippolitti and 

Battisti 2017; Luo et al. 2021). 

EN models are typically based on nodes, such as a single or groups of habitat patches, identified to 

support the viability of many species, with different movement and dispersal capabilities, and hence 

expressing different connectivity requirements (Minor and Lookingbill 2010; Brodie et al. 2015). 

However, many of the studies analyzing the influence of landscape connectivity on biodiversity were 

studied for animal species, while the understanding of the role of EN connectivity on plants remains 

limited, especially at the community level (but see Uroy et al. 2019; McLeish et al. 2021). Plant 

communities are a primary component for habitat identification that has been adopted also in modern 

European habitat classifications (Devillers et al. 1991; Devillers and Devillers-Terschuren 1996; 

Davies et al. 2004; European Commission 2013; Maccherini et al. 2020). Plants support the life of 

most of the other ecosystem organisms, and they also regulate nutrient cycling and soil protection 

(Lieth 1973) and represent a large portion of landscape biodiversity. Landscape connectivity for 

plants is mainly linked to their ability to disperse between habitat patches via propagules. Their 

dispersal is only successful if habitat patches are sufficiently connected (Fahrig and Merriam 1985; 

Bowne and Bowers 2004) or if it is facilitated by suitable landscape features (Taylor et al. 1993). 

Moreover, the ability of plants to disperse in fragmented landscapes also depends on their dispersal 

strategy, only specialized species can profit by long-distance dispersal events (Vittoz and Engler 

2007; Boscutti et al. 2018). 

Landscape structure and connectivity often interplay generating complex interacting effects on biota 

(Uroy et al. 2019) that are poorly investigated especially in EN context. The effects of landscape 

structure (i.e., composition and configuration) on plant communities are still debated (Zambrano et 

al. 2019; Fahrig 2020) as are those regarding connectivity (Uroy et al. 2019; McLeish et al. 2021), 
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and for this reason our understanding and ability to analyze the interaction between them on plant 

communities has yet to be improved. 

This research integrates the study of both α and β plant diversity as a function of landscape structure 

and connectivity in an EN. As an innovation, it aims at parsing the interacting effect of landscape 

structure, surrounding habitats and nodes, and structural connectivity on EN plant diversity at two 

specific scales of investigation i.e., the habitat and the node scale. The habitat was the basic ecological 

unit, while the node was the basic cartographical unit for the EN mapping (multi-habitat or mono-

habitat nodes). 

We hypothesized that plant diversity (i.e., α and β) is related to landscape structure (i.e., composition 

and configuration) and EN connectivity, and their effect depends on habitat type and node 

complexity. The hypothesis was tested by exploring the plant diversity in the nodes of an EN 

developed as part of regional landscape planning framework in Friuli Venezia Giulia region (North-

East of Italy). Our aim was to explore how landscape structure and EN connectivity characteristics 

influence the plant diversity of both habitats and EN nodes.  
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METHODS 

Study site 

This study was carried out in a local EN in the lowlands of the Friuli Venezia Giulia region (NE Italy; 

centroid coordinates: 45°48'13.4" N - 13°08'11.0" E; Figure 3.1). The study area has an extent of 298 

km2 including a large agricultural area embedded in two river systems (Stella and Corno, 

respectively). The landscape is characterized by a mixed mosaic of intensively and extensively 

cultivated areas, settlements, semi-natural and natural habitats. It includes eight Natura 2000 Special 

Area of Conservation (Habitats Directive 92/43/EEC) and nine regional protected sites (biotopes), 

mainly connecting remnants of wetland habitats and lowland forests. 

 

Figure 3.1: Study area location and ecological network representation. An example of the hierarchical 

sampling design in which each node was sampled stratified by habitat proportionally to habitat extension 

within the node is shown on the top right of the figure. 

The soils of the area consist mainly of Quaternary sand, silt and silt-clay sediments formed by glacial 

fluvial transport during the Pleistocene and by alluvial deposition during the Holocene. The area is 
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characterized by an average annual temperature of about 13°C and an average annual precipitation 

between 1100 and 1400 mm. 

 

Ecological network model 

The studied EN was designed using a habitat-species based model (considering flora and fauna) 

developed at the local scale (Figure 3.1) in the context of the regional landscape planning process 

(Sigura et al. 2017). The model was based on least-cost path analysis and graph theory, which were 

used to obtain species-specific ENs that were later merged into the final composite multi-species 

network. The nodes (target habitats), corridors and steppingstones (links between target habitats) 

were obtained for a set of 10 target animal species and 9 plant communities (assumed to be crucial 

for several plant species of conservation concern) to proxy favorable conditions for overall network 

biodiversity. Specifically, the EN was originally modeled using the regional habitat map based on the 

habitat classification European Nature Information System (EUNIS, Davies et al. 2004) and crossing 

costs for species were attributed by expert assessment and literature review data. 

The entire EN is composed of 108 nodes and 17 different habitats (14 terrestrial and 3 aquatic), 

corresponding to a total extent of 5900 ha, of which 1700 ha represent nodes and 4200 ha ecological 

corridors. Nodes vary greatly in extent, ranging from less than 1 ha up to 432 ha, with an average of 

22 ± 59 ha, in shape and habitat composition, as they can consist of a single habitat (mono-habitat) 

or many habitats (multi-habitat, Figure 3.1). 

The lack of information on the actual distribution of species in the modelling process makes the 

assessment of biodiversity, within the nodes, extremely important for EN model reliability. 

 

Sampling design and data collection 

Plant diversity in all EN nodes composed of terrestrial habitats and bigger than 1 ha were sampled 

(i.e., 87 nodes). The sampling design chosen was hierarchical (e.g., Figure 3.1): each habitat type was 

sampled within each node proportional to the area occupied within the node (see Table S3.1). 

Sampling density in relation to habitat extent was chosen as follows: a random square plot of 100 m2 
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for a habitat area < 5 ha, 2 plots for an area ≥ 5 and ≤ 10 ha, and finally 3 plots for an area > 10 ha. A 

total of 219 plots were randomly selected within the nodes of the EN, corresponding to an overall 

sampling density of 0.13 plot/ha. Presence and abundance (% visual cover estimate) of vascular plants 

rooted in each plot were recorded. Nomenclature and taxonomy of species followed Bartolucci et al. 

(2018) for native species and Galasso et al. (2018) for alien species. Data were collected in spring 

and summer 2019 and 2020. 

The 14 habitats present in the EN were divided into 3 groups based on the similarity of their ecological 

characteristics (e.g., attributable by EUNIS habitat classification level) and differences in species 

richness resulting from previous chapter: 1. woods, 2. meadows, and 3. fens (see Table S3.1). 

 

Analysis at the habitat scale 

Response variables 

We considered α diversity (i.e., species richness), and β diversity as response variables. The latter 

was examined by calculating Local Contributors of Beta Diversity (LCBD, Legendre and De Caceres 

2013) in the R package “adespatial” (Dray et al. 2021). LCBDs represent comparative indicators 

specifying the degree by which each sampling unit contributes to β diversity compared to a site with 

an average species composition, thus assessing ecological uniqueness in terms of species composition 

for each sampling unit. LCBDs were obtained as sums of rows derived after centering and squaring 

each column of the composition matrix. 

The relationships between α and β diversity values at the habitat scale were assessed to identify their 

respective trends. 

 

Explanatory variables: landscape structure and connectivity metrics 

Landscape composition and configuration around each plot was assessed using several landscape 

metrics (see Supplementary material) calculated on a circular buffer centered in the plot and with a 

radius of 250 m (Figure 3.2), which has been already proven to be a sensitive scale when analyzing 

plant diversity in similar landscapes (Kumar et al. 2006; Boscutti et al. 2018). 



55 

 

 

Figure 3.2: Schematization of the study: on the left the representation of the two scales of analysis, at the 

habitat scale (P, red diamonds) with a 250 m buffer around the plot and at the node scale (N, green polygons, 

different shades of green indicate different habitats) with a 250 m buffer around the node. Blue arrows (C) 

indicate connectivity between nodes. In the background, land use classes (red for urban land use, yellow for 

agricultural land use, blue for watercourses, and green for hedgerows). On the right, the diagram summarizing 

the materials and methods: the response variables (α and β diversity), the explanatory variables (connectivity 

metrics and landscape metrics), and the statistical analyses (GLMM at the habitat scale and GLM at the node 

scale). 

All landscape metrics were calculated using the R package “landscapemetrics” (Hesselbarth 

et al. 2019). Connectivity within the modeled EN was assessed by 7 connectivity metrics (see 

Supplementary material) using Graphab software (Foltete et al. 2012a). These metrics were integrated 

into the final dataset by linking the value of the metric for a node to all the plots collected within that 

node. To reduce multicollinearity in the set of landscape and connectivity metrics, correlation analysis 

was performed in R (R Core Team 2021, see Supplementary material) estimating coefficients using 

non-parametric Spearman’s ρ. A total of 29 variables were selected as not highly correlated (< |± 0.7|) 

(see Table S3.2) and used in the full models. 

 

Model selection 

Prior to model simplification, all quantitative variables were standardized (zero mean, unit variance) 

to obtain comparable coefficient values. A subsequent stepwise selection procedure based on AIC 

minimization criteria (Burnham and Anderson 2002), using the function “dredge” within the 
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“MuMIn” R package (Barton 2020), was run for both α and β diversity models. Finally, the Minimum 

Adequate Model (MAM) was obtained simplifying the resulting models by removing one-by-one the 

non-significant interaction terms or variables (p > 0.1) using a manual backward selection procedure. 

The overall final variables resulting in the two MAMs are reported in Table 3.1. 

Table 3.1: Explanatory variables resulting from the MAMs at the habitat scale. For more details on formulas 

and meaning, see Foltete et al. (2012a) for connectivity metrics and the “landscapemetrics” package 

vignette (Hesselbarth et al. 2019) for landscape metrics. Connectivity formula terms: nk = number of patches 

in the component k, Ni = all patches close to the patch i, dij = least-cost distance between the patches i and j, e-

αdij probability of movement between the patches i and j, α = brake on movement distance, β = exponent to 

weight more or less capacity. Landscape metric formula terms: eik = total edge length in meters, A = area in 

square meters, G = radius of gyration of each patch. 

Connectivity metric Formula Meaning Reference 

Closeness centrality (CCe) 
𝐶𝐶𝑒𝑖 =

1

𝑛𝑘 − 1
∑ 𝑑𝑖𝑗

𝑛𝑘

𝑗=1

 

𝑗 ≠ 𝑖 

Mean distance from the patch i to 

all other patches of its component 
k. 

Freeman 1978 

Eccentricity (Ec) 𝐸𝑐𝑖 = 𝑚𝑎𝑥
𝑗

𝑑𝑖𝑗  
Maximum distance from the patch 

i to another patch of its component 

k. 

Urban &Keitt 2001 

Flux (F) 
𝐹𝑖 = ∑ 𝛼𝑗

𝛽

𝑛

𝑗=1

𝑒−𝛼𝑑𝑖𝑗  

𝑗 ≠ 𝑖 

For the focal patch i: sum of 

capacity of patches other than i and 

weighted according to their 

minimum distance to the focal 
patch through the graph. This sum 

is an indicator of the potential 
dispersion from the patch i or, 

conversely to the patch i. 

Urban & Keitt 2001; Saura & Torné 
2009; Foltete et al. 2012b 

Interaction flux (IF) 𝐼𝐹𝑖 = ∑ 𝛼𝑖
𝛽

𝑛

𝑗=1

𝛼𝑗
𝛽

𝑒−𝛼𝑑𝑖𝑗  

Sum of products of the focal patch 

capacity with all the other patches, 

weighted by their interaction 
probability. 

Foltete et al. 2014; Sahraoui et al. 

2017 

Node degree (Dg) 𝐷𝑔𝑖 = 𝑁𝑖 ∨ 
Number of patches connected 

directly to the patch i. 
Freeman 1978 

Landscape metric Formula Meaning Reference 

Edge density (ED; class 

agricultural land use) 𝐸𝐷 =
∑ 𝑒𝑖𝑘

𝑚
𝑘=1

𝐴
∗ 10000 

The edge density equals the sum of 
all edges of class i in relation to the 

landscape area. The metric 

describes the configuration of the 
landscape. 

McGarigal et al. 2012 

Mean area (AREAMN; class 

natural land use) 

𝐴𝑅𝐸𝐴𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

The metric summarizes each class 

as the mean of all patch areas 
belonging to class i. The metric 

describes the composition of the 

landscape. 

McGarigal et al. 2012 

Mean radius of gyration 

(GYRATEMN; class natural 

land use) 

𝐺𝑌𝑅𝐴𝑇𝐸𝑀𝑁

= 𝑚𝑒𝑎𝑛(𝐺[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

The metric summarizes each class 
as the mean of the radius of 

gyration of all patches belonging to 
class i. It measures the distance 

from each cell to the patch centroid 

and is based on cell center-to-cell 
center distances. The metrics 

characterizes both the patch area 

and compactness. 

Keitt et al. 1997; McGarigal et al. 
2012 

Total edge (TE; class natural 
land use) 𝑇𝐸 = ∑ 𝑒𝑖𝑘

𝑚

𝑘=1

 

Sum of all edges between class i 

and all other classes k. It measures 

the configuration of the landscape 

because a highly fragmented 
landscape will have many edges. 

McGarigal et al. 2012 
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The models were designed as follows: the effects of landscape structure and connectivity of the EN 

on α and β diversity were examined using two different Generalized Linear Mixed Models (GLMMs; 

Bolker et al. 2009) using a Penalized Quasi-likelihood (PQL) method by means of the “MASS” R 

package (Venables and Ripley 2002). The random effect in both models was the node to which the 

sampling unit belonged to. A quasi-Poisson distribution was used to model the error structure in the 

α diversity model, and a Gamma distribution in the β diversity model. 

 

Analysis at the node scale 

Response variables 

The 219 plots used to survey the biodiversity of habitats were pooled by node obtaining 87 

observations and then considering α diversity (i.e., species richness of the nodes), and β diversity (i.e., 

LCBD of the nodes) as response variables. Their relationship was then assessed to identify the 

respective trend and compare it to that at the habitat scale. 

 

Explanatory variables: landscape structure and connectivity metrics 

In contrast to the habitat scale where all areas around the sampled points have the same extent, the 

nodes have very different shapes and sizes, so we considered other variables for the landscape 

structure: i.e., node shape, number of habitats forming the node and type of land covers (natural and 

anthropogenic) surrounding the node. Various shapes indexes were calculated with QGIS (QGIS 

Development Team 2021) using the EN nodes as the main spatial unit (see Supplementary material). 

18 landscape metrics were calculated on a buffer area of 250 m around each node (Figure 3.2) and 

are reported in Table S3.2. Connectivity within the EN was assessed using the same 7 metrics 

described above. To exclude multicollinear variables, correlation analysis was performed with the 

same specification as described above (see Supplementary material). A total of 18 variables were 

found to be uncorrelated (see Table S3.2) and used in the full models. 
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Model selection 

The modeling procedure was the same as explained in the section on the habitat scale. The overall 

final variables resulting in the two MAMs are reported in Table 3.2. 

Table 3.2: Explanatory variables resulting from the MAMs at the node scale. For more details on formulas 

and meaning, see Foltete et al. (2012a) for connectivity metrics and Forman and Godron (1986) and Lang and 

Blaschke (2007) for DsqrtA metric. Connectivity formula terms: nk = number of patches in the component k, 

Ni = all patches close to the patch i, dij = least-cost distance between the patches i and j, e-αdij probability of 

movement between the patches i and j, α = brake on movement distance, β = exponent to weight more or less 

capacity. Landscape formula terms: Dmax = maximum distance between two vertices of a polygon, A = area. 

Connectivity metric Formula Meaning 

Closeness centrality (CCe) 
𝐶𝐶𝑒𝑖 =

1

𝑛𝑘 − 1
∑ 𝑑𝑖𝑗

𝑛𝑘

𝑗=1

 

𝑗 ≠ 𝑖 

Mean distance from the patch i to all other patches of its component 

k. 

Eccentricity (Ec) 𝐸𝑐𝑖 = 𝑚𝑎𝑥
𝑗

𝑑𝑖𝑗  Maximum distance from the patch i to another patch of its 
component k. 

Flux (F) 
𝐹𝑖 = ∑ 𝛼𝑗

𝛽

𝑛

𝑗=1

𝑒−𝛼𝑑𝑖𝑗  

𝑗 ≠ 𝑖 

For the focal patch i: sum of capacity of patches other than i and 
weighted according to their minimum distance to the focal patch 

through the graph. This sum is an indicator of the potential 

dispersion from the patch i or, conversely to the patch i. 

Interaction flux (IF) 𝐼𝐹𝑖 = ∑ 𝛼𝑖
𝛽

𝑛

𝑗=1

𝛼𝑗
𝛽

𝑒−𝛼𝑑𝑖𝑗  
Sum of products of the focal patch capacity with all the other 

patches, weighted by their interaction probability. 

Node degree (Dg) 𝐷𝑔𝑖 = 𝑁𝑖 ∨ Number of patches connected directly to the patch i. 

Landscape metric Formula Meaning 

Hedgerow area (HRA) 

𝐻𝑅𝐴

= ∑
𝐴[ℎ𝑒𝑑𝑔𝑒𝑟𝑜𝑤]

𝑇𝑜𝑡𝑎𝑙𝐴
 

Percentage of hedgerows area. 

Maximum distance to square root of 

area ratio (DsqrtA) 
𝐷𝑠𝑞𝑟𝑡𝐴 =

𝐷𝑚𝑎𝑥

√𝐴
2  

Maximum distance between two polygon part's vertices divided by 
the square root of polygon’s area. The minimum value of the metric 

corresponds to a circle, and the value increases as the shape 

becomes narrower. 

Number of habitats (NOH) 𝑁𝑂𝐻 = ∑ 𝐻𝐴𝐵𝑖  Sum of the number of different habitats present inside the node i. 

Number of land uses (NOLU) 𝑁𝑂𝐿𝑈 = ∑ 𝐿𝑈𝑆𝐸𝑖  Sum of the number of different land uses present around the node i. 

Watercourse area (WA) 

𝑊𝐴

= ∑
𝐴[𝑤𝑎𝑡𝑒𝑟𝑐𝑜𝑢𝑟𝑠𝑒]

𝑇𝑜𝑡𝑎𝑙𝐴
 

Percentage of watercourse area. 

The models were designed as follows: the effects of landscape structure and connectivity of the EN 

on total α and β diversity were examined using two different Generalized Linear Models (GLM). In 

the α diversity model a quasi-Poisson distribution was used to model the error structure while in the 

β diversity model a Gamma distribution was used.  
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RESULTS 

α and β diversity pattern and relationship in the EN 

A total of 443 plant species were recorded during the sampling activity, of which 47 were alien and 

24 were classified as protected, rare, or endemic species according to the European, Italian, or 

regional Red Lists (see Table S3.3). The most frequent native species were Rubus caesius (present in 

57.5% of the plots), Cornus sanguinea (54.3%), Rubus ulmifolius (53.9%), Quercus robur (53.4%), 

Hedera helix (51.1%), and Salix alba (45.2%). Among alien species, the most common were Platanus 

hispanica (27.9%), Robinia pseudoacacia (15.1%) and Potentilla indica (14.6%). Finally, the most 

frequent protected or endemic species were Ruscus aculeatus (Habitat Directive 92/43/CEE Annex 

V, 8.7%), Centaurea jacea subsp. forojulensis (endemic, 5.0%), and Gladiolus palustris (Habitat 

Directive 92/43/CEE Annex II, 4.6%). 

The mean number of species per plot was 24.4 ± 7.7, per habitat was 14.9 ± 5.3 in fens, 23.3 ± 5.8 in 

woods, and 31.3 ± 8.8 in meadows, and finally per node it was 39.4 ± 29.6. Concerning β diversity, 

the mean LCBD value (*10-3) per plot was 4.6 ± 0.9, per habitat was 5.6 ± 0.4 in fens, 4.1 ± 0.6 in 

woods, and 5.8 ± 0.4 in meadows, and finally per node it was 11.5 ± 3.0. 

The relationships between α and β diversity values at the habitat and node scales showed significant 

contrasting relationships (p < 0.05; Figure 3.3). At the habitat scale, α diversity increased at high 

values of β diversity, whereas it was negatively related at the node scale. 

 

Figure 3.3: Observed relationships between α and β diversity values at the habitat scale (a), and at the node 

scale (b). 
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α and β diversity vs connectivity and landscape structure of the EN 

Habitat scale 

GLMMs showed that the habitat α and β diversity had consistent responses to both connectivity and 

landscape structure (Table 3.3). 

Table 3.3: Results of the GLMM models testing the effects of landscape metrics and connectivity metrics on 

α diversity (species richness) and β diversity (LCBD) at the habitat scale. 

α diversity at the habitat scale 

Coefficients Estimate Std. Error t-value P-value 

Intercept 2.545 0.099 25.707 < 0.001 *** 

Eccentricity (Ec) 0.041 0.023 1.779 0.079 . 

Flux (F) 0.248 0.090 2.749 0.007 ** 

Closeness centrality (CCe) 0.286 0.144 1.982 0.051 . 

Total edge of natural land use (TE) 0.178 0.076 2.328 0.021 * 

Habitat 0.902 0.103 8.772 < 0.001 *** 

CCe:Fens -0.093 0.152 -0.610 0.543 

CCe:Meadows -0.389 0.151 -2.585 0.011 * 

CCe:Woods -0.322 0.145 -2.224 0.028 * 

F:Fens -0.117 0.096 -1.220 0.225 

F:Meadows -0.169 0.099 -1.698 0.092 . 

F:Woods -0.250 0.091 -2.751 0.007 ** 

TE:Fens 0.103 0.075 1.370 0.173 

TE:Meadows -0.256 0.080 -3.192 0.002 ** 

TE:Woods -0.174 0.079 -2.190 0.030 * 

β diversity at the habitat scale 

Coefficients Estimate Std. Error t-value p-value 

Intercept -5.152 0.029 -174.854 < 0.001 *** 

Flux (F) -0.020 0.010 -2.027 0.045 * 

Interaction flux (IF) 0.048 0.029 1.664 0.099 . 

Node degree (Dg) -0.056 0.024 -2.332 0.022 * 

Edge density of agricultural land use 

(ED) 
-0.025 0.009 -2.802 0.006 ** 

Mean area of natural land use 

(AREAMN) 
0.047 0.015 3.007 0.003 ** 

Mean radius of gyration of natural land 

use (GYRATEMN) 
-0.039 0.014 -2.838 0.005 ** 

Habitat -0.342 0.029 -11.682 < 0.001 *** 

In particular, the MAM on α diversity (R2 = 0.57, p = <0.001, Figure 3.4, Table 3.3) included the 

following predictive variables: Closeness centrality (CCe), Eccentricity (Ec), Flux (F), and Total 

Edge (TE) all with a significant interaction term with habitats except for Ec. The α diversity model 

showed a positive relationship with Ec, F in fens and meadows, CCe in fens, and TE in fens; in 
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contrast it was negatively related to CCe in woods and meadows, and TE in meadows. No relationship 

was observed between species richness and F and TE in woods. 

 

Figure 3.4: Effects on α diversity (i.e., species richness) of eccentricity; flux, closeness centrality and total 

edge with anthropic land uses in different habitats (fens, woods, and meadows) resulting from the GLMM at 

the habitat scale. 

On the other side, the MAM developed to explain variation in β diversity (R2 = 0.76, p = <0.001, 

Figure 3.5, Table 3.3) retained the following predictors: Flux (F), Interaction flux (IF), Node degree 

(Dg), Edge density of agricultural land use (ED), Mean area of natural land use (AREAMN), Mean 

radius of gyration of natural land use (GYRATEMN), and habitat without interaction, as no 

interaction between habitat and considered variables emerged. Overall, it was observed a positive 

relationship with IF, AREAMN, and a negative relationship with F, Dg, ED, GYRATEMN. 
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Figure 3.5: Effects on β diversity (i.e., LCBD) of flux, interaction flux, node degree, edge density of 

agricultural land use, mean radius of gyration of natural land use, and mean area of natural land use along with 

mean values of LCBD per habitat resulting from the GLMM at the habitat scale. 

Node scale 

The MAM for α diversity (R2 = 0.86, p = <0.001, Figure 3.6, Table 3.4) included the following 

predictive variables: Closeness centrality (CCe), Eccentricity (Ec), Interaction flux (IF), Node degree 

(Dg), Maximum distance to square root of area ratio (DsqrtA), log transformed Hedgerow area 

(HRA), Number of habitats (NOH), and Watercourse area (WA). α diversity increased at the increase 

of Ec, Dg, HRA, NOH, and WA, but decreased in nodes with high CCe, IF, and DsqrtA. 

The β diversity MAM at node scale (R2 = 0.57, p < 0.001, Figure 3.7, Table 3.4) retained the following 

predictive variables: Flux (F), Node degree (Dg), Maximum distance to square root of area ratio 

(DsqrtA), Hedgerow area (HRA), Number of habitats (NOH), Number of land uses (NOLU), and 

Watercourse area (WA). It estimates a positive relationship with HRA and WA and a negative 

relationship with F, Dg, DsqrtA, NOH and NOLU. 
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Figure 3.6: Effects on α diversity (i.e., species richness) of closeness centrality, eccentricity; interaction flux, 

node degree, hedgerow area, maximum distance to square root of area ratio, number of habitats, and 

watercourse area resulting from the GLM at the node scale.  

Figure 3.7: Effects on β diversity (i.e., LCBD) of flux, node degree, hedgerow area, maximum distance to 

square root of area ratio, number of habitats, number of land uses, and watercourse area resulting from the 

GLM at the node scale. 
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Table 3.4: Results of the GLM models testing the effects of landscape metrics and connectivity metrics on α 

diversity (species richness) and β diversity (LCBD) at the node scale. 

α diversity at the node scale 

Coefficients Estimate Std. Error t-value p-value 

Intercept 3.619 0.031 116.758 < 0.001 *** 

Closeness centrality (CCe) -0.084 0.031 -2.691 0.009 ** 

Eccentricity (Ec) 0.110 0.031 3.583 < 0.001 *** 

Interaction flux (IF) -0.175 0.034 -5.068 < 0.001 *** 

Node degree (Dg) 0.106 0.039 2.716 0.008 ** 

log (Hedgerow area) (HRA) 0.459 0.109 4.211 < 0.001 *** 

Maximum distance to square root of area 

ratio (DsqrtA) 
-0.217 0.036 -6.038 < 0.001 *** 

Number of habitats (NOH) 0.341 0.039 8.783 < 0.001 *** 

Watercourse area (WA) 0.131 0.036 3.616 < 0.001 *** 

β diversity at the node scale 

Coefficients Estimate Std. Error t-value p-value 

Intercept -4.485 0.019 -237.063 < 0.001 *** 

Flux (F) -0.037 0.021 -1.781 0.079 . 

Node degree (Dg) -0.068 0.031 -2.223 0.029 * 

Hedgerow area (HRA) 0.142 0.038 3.734 < 0.001 *** 

Maximum distance to square root of area 

ratio (DsqrtA) 
-0.107 0.026 -4.126 < 0.001 *** 

Number of habitats (NOH) -0.136 0.034 -4.014 < 0.001 *** 

Number of land uses (NOLU) -0.096 0.021 -4.496 < 0.001 *** 

Watercourse area (WA) 0.081 0.024 3.319 0.001 ** 
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DISCUSSION 

The present work integrates the study of both α and β plant diversity as a function of landscape 

structure and connectivity at two different scales of analysis (habitat and node) in an EN. 

Landscape structure and connectivity play different roles on plant species depending on whether one 

considers species richness or community dissimilarity (Damschen et al.2006; Billeter et al. 2008; 

Concepcion et al. 2012; Thiele et al. 2018; Chisté et al. 2018; Uroy et al. 2019). Our findings showed 

contrasting trends when considering different scale of investigation (i.e., habitat or node). Based on 

the models (Tables 3.3, 3.4), connectivity had a more pronounced effect on α diversity while 

landscape structure on β diversity at both scales. In general, we found that improved connectivity 

leads to greater species richness but also to homogenization of communities. The landscape 

composition of semi-natural land covers (i.e., hedgerows, watercourses) showed a positive effect on 

species diversity as opposed to that of the configuration of anthropogenic elements. 

 

Plant diversity: α and β contribution and relationships in the EN 

The number of species (443) found within the EN was about 68.1% of the overall species richness of 

the study area (ca 650 taxa, Poldini 1991). When considering the percentage of the EN nodes extent 

on the overall study area (5.7%), the EN contribution in terms of total biodiversity is remarkable, 

confirming the high conservation potential of the areas that constitute ENs (e.g., Pryke et al. 2015; 

Xun et al. 2017). 

The relationship between α and β diversity showed contrasting trends (Figure 3.3), highlighting a 

species composition homogenization as the species richness increases at the node scale (pools of 

habitat) while promoting β diversity in single habitat patches with high floristic richness. The scale 

dependence of biodiversity patterns is a well-known issue in ecology, where the effects of abiotic and 

biotic processes can only be detected at an appropriate investigation scale and can be masked by using 

large sample units that aggregate environmental heterogeneity (Huston 1999). In our study, the 

differences between communities belonging to different habitats were well detectable at the finest 

scale (habitat): habitat showing a high α diversity exhibited also a greater community heterogeneity 
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(e.g., meadows). At the node scale, habitat pools into nodes resulted in richer communities in multi-

habitat nodes but with low species variation compared to mono-habitat nodes that contributed more, 

in term of uniqueness, to the total EN plant diversity. What has been observed in the mono-habitat 

nodes could also be related to the presence of rare and/or specialist plant species that contribute to 

the uniqueness of those patches as recently found by Deák at al. (2020) in fragmented dry grassland. 

 

α and β diversity vs connectivity and landscape structure 

Habitat scale 

Connectivity had different effects depending on the habitat: α diversity in meadows and woods 

(Figure 3.4) was higher when the belonging nodes were closer to each other (low CCe), but a higher 

structural probability of dispersion (high F) showed no effect on woods, suggesting that landscape 

connectivity might be linked to the species dispersion ability between communities (Fahrig and 

Merriam 1985; Bowne and Bowers 2004; Vittoz and Engler 2007; Boscutti et al. 2018). 

Ec also showed a positive effect on α diversity, leading to the conclusion that habitats, belonging to 

the nodes of the EN, that were peripheral, most of the times were also well-connected. We expected 

that the most peripheral nodes were less rich because of the position in the graph, instead we have 

observed that the parameter affecting more species richness was the degree of connection. This 

suggests that the location of the nodes within the network is not as important as the degree of 

connectivity between them and confirm the importance of connections between patches for higher 

plant richness (Damschen et al. 2006; Uroy et al. 2019). 

Total β diversity showed opposite trends in response to landscape connectivity (Figure 3.5) where 

habitats within nodes with more connections (high F and Dg) had lower community dissimilarity, as 

already pointed out by other studies (see Uroy et al. 2019). In contrast, it has been observed in other 

research (e.g., Mouquet and Loreau 2003; Tscharntke et al. 2012), that when connectivity decreases, 

landscapes may become highly heterogeneous, causing strong divergence in the composition of local 

communities due to reduced dispersal ability. Thus, rewarding species that have the ability to disperse 

over long distances and in anthropogenic landscapes (Boscutti et al. 2018). 
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Our results showed clear effects of landscape structure on α and β diversity in different habitats 

composing the EN nodes, although drivers of diversity are often difficult to identify at the fine scale 

and are more readable at a broader scale (Amici et al. 2015). 

The effect of landscape configuration, related to the amount of margin (TE) between habitats and 

anthropogenic land use, on α diversity was shaped by habitat type response (Figure 3.4). Meadows 

showed to be more sensitive to the agricultural matrix displaying a lower species richness as TE 

increased, and this could be due to a reduction in specialist species that are more sensitive to landscape 

composition than generalists, as found for example by Miller et al. (2015) for glades, where specialists 

were observed to be generally poor dispersers and more sensitive to anthropogenic disturbance. 

Woods appeared to be unaffected by landscape configuration, related to the amount of margin (TE), 

while in fens an increasing in TE resulted in higher species richness (Figure 3.4). This may be 

explained by ecological conditions of the habitat, characterized by water submersion and low nutrient 

availability. As a result, fens plant communities have low species richness in undisturbed landscapes 

while at the increase of landscape disturbance species richness tends to increase due to the ingression 

of generalist species (Mälson et al. 2008; Øien et al.2018). 

Concerning β diversity, the effect of landscape structure was consistent in all habitats (not significant 

interaction) and showed that the contribution of sampling units to β diversity was the highest when 

natural patches were larger (high AREAMN), more compact (low GYRATEMN), and had a smaller 

shared boundary with agricultural land use (low ED, Figure 3.5). What was observed could be related 

to the amount of core area within the patches that is known to play a role in determining diversity: 

e.g., Hill et al. (2003) found that large forest patches contain the greatest local diversity as well as the 

greatest number of rare and shade-tolerant tree species, those species that certainly contribute more 

to the uniqueness of sampling units’ composition. 

 

Node scale 

The nodes of the EN represent the hubs of biodiversity and are the basis for effective planning. 

Therefore, information on possible drivers that may influence the characteristics of communities 



68 

 

within the nodes is critical. What emerged from the connectivity analysis is consistent with what was 

observed at the habitat scale and confirms that α diversity of nodes (Figure 3.6) was higher when the 

nodes were closer to each other (low CCe), with more connections (high Dg) and with β diversity 

values suggesting a homogenization of communities as connectivity increased (Figure 3.7). These 

trends were expected based on other studies (e.g., Damschen et al. 2006; Brudvig et al. 2009; Thiele 

et al. 2018). Even at the node scale, it can be seen that a decrease in connectivity leads to a decrease 

in the number of species in the nodes: a decrease in connectivity can in fact decrease species richness 

acting as a strong ecological filter and selecting for species that are able to disperse and survive in 

isolated patches (Uroy et al. 2019). Often those species with higher dispersal ability are generalists 

(Haddad and Tewksbury 2006) leading specialist species to be more affected by connectivity loss 

(Mouquet and Loreau 2003; Tscharntke et al. 2012; Miller et al. 2015; Boscutti et al. 2018). This 

decrease in response to the loss of structural connectivity was detected to be even stronger in grassland 

communities (Adriaens et al. 2006; Brückmann et al. 2010; Evju et al. 2015). 

The effects of landscape structure on plant diversity at the node scale provide useful insights to EN 

planning, in particular our results (Figure 3.6) pointed out that α diversity is positively related to the 

amount of semi-natural land covers (HRA and WA) confirming their positive effects on species 

diversity in agricultural landscapes (Billeter et al. 2008). Moreover, we verified the importance of 

planning multi-habitat nodes (NOH variable) to increase species richness. 

Considering the shape of the node that most contributes to α diversity, we observed that the greater 

and more regular the expansion along the maximum distance between two vertices (lower DsqrtA) 

the greater the α diversity. This is in contrast to other observations that state that more complex shapes 

have more species (e.g., Moser et al. 2002; Heegaard et al. 2007). However, in the first case the 

authors considered all patches in a landscape without distinguishing between natural and rural land 

uses; while in the latter they considered habitat patches individually, and unlike their study, in our 

case nodes often already contained multiple habitats and thus the dispersal ability of species within 

nodes probably contributed more to diversity than the contribution resulting from dispersal from the 
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outer matrix, which, being predominantly agricultural, can be a source of weeds and/or alien species 

(Hulme 2005; Boscutti et al. 2018). 

What we observed in the β diversity models (Figure 3.7) is consistent with what was noticed at the 

habitat scale: node contribution to total β diversity was higher when nodes had more compact shape 

(low DsqrtA), were surrounded by few land uses (low NOLU), and numerous semi-natural elements 

(high HRA and WA). The only exception is that mono habitat nodes promoted higher community 

differentiation (low NOH). The resulting signal of DsqrtA and NOLU confirms that different 

anthropogenic land uses shaping the boundary of natural patches promote homogenization of plant 

communities (Chisté et al. 2018). 

 

The lesson we learned 

In summary, the practical implementation of a connectivity plan depends on opportunities, the interest 

of landowners and other stakeholders, and cost (Bergsten and Zetterberg 2013; Mossman et al. 2015). 

Therefore, it is crucially important to provide practitioners with practical, field-tested advice for 

planning effective ENs to improve the viability of target species. 

On the other hand, landscape connectivity and conservation planning often rely solely on 

environmental and land cover data (Brooks et al. 2004): however, such a broad approach based on 

these heterogeneity surrogates, can hardly be used to conserve the real biodiversity content of a large 

area (Araujo et al. 2001; Schindler et al. 2013). 

EN planning should take into account which are the key drivers of biodiversity in the landscape and 

how they interact, rather than being based on untested assumptions, as also emphasized by Mossman 

et al. (2015). Our methodology used simple models to explore the relationships between plant 

diversity, landscape structure, and connectivity to provide guidance on how the EN should be 

structured and which elements are drivers of plant diversity. 

Overall, our results provided important information about the plant diversity pattern within the EN, 

allowing us to highlight where action is needed to optimize the expression and conservation of 

biodiversity. To the best of our knowledge, our study is the first to test, by extensively sampling all 
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nodes in the EN, the effectiveness of an EN model based on a habitat map and expert assessment of 

species movement to design the connectivity model. In addition, our work investigated the effects of 

connectivity and landscape structure on a multi-species connectivity model by considering two scales 

of investigation: the habitat scale, considering the single habitat patch, and the node scale considering 

all habitat patches forming the single node as a whole. 

Our study contributes to an unresolved issue, about the multiplicity of factors that modulate the effects 

of landscape connectivity on plant communities (Uroy et al. 2019), adding a new element to an answer 

that likely cannot be unique. 

In summary, based on our results, we can conclude that:  

i) improving connectivity (e.g., planning habitat patches similar to the target), within ENs 

favors plant α diversity although it increases similarity of plant communities; 

ii) different habitats have different requirements and imply different management. Forests 

were less sensitive to land use intensification (e.g., increase in anthropogenic land use 

edge) than meadows and fens. Specifically, the latter were observed to be very sensitive, 

and the disturbance favored the entry of generalist species; 

iii) less land use intensity (ED, TE, NOLU) and semi-natural areas around nodes (HRA and 

WA) mitigates the effects of landscape structure, as seen at both scales for α and β 

diversity models; 

iv) inclusion of nodes in ENs, both mono-habitat (higher β diversity, i.e., more unique 

community) and multi-habitats (higher α diversity, i.e., richer community), increases the 

plant diversity conserved therein as attested to by the plant diversity pattern at the node 

scale (Figure 3.3) and by the effect on α and β diversity of NOH in the models at the node 

scale (Figure 3.6, 3.7); 

v) nodes that maximize compactness (low DsqrtA) are to be preferred, as they were observed 

increasing both α and β diversity.  
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CONCLUSIONS 

In this study, we analyzed the relationships among plant diversity, landscape structure, and 

connectivity in an EN. From an applied perspective our methodology helped to fill the gaps regarding 

the knowledge on key-drivers related with landscape context and network pattern that influence plant 

diversity. Understanding the effects of surrounding landscape patterns and intrinsic properties of ENs 

on species diversity at different scales, could help promote effective environmental and conservation 

strategies and management practices of ENs. From our research, it was possible to highlight the role 

of connectivity and landscape structure in shaping plant diversity. It takes on different meanings 

depending on whether we consider species richness (α diversity) or dissimilarity among communities 

(β diversity). The role of connectivity in promoting greater species richness at both scales was evident 

and was in contrast to that of increasing similarity among communities. Landscape structure has 

shown different trends in different habitats and that can have a positive or negative effect depending 

on whether the patches considered are semi-natural or anthropogenic. 

Our results provided important information about the behavior of plant communities within the EN, 

allowing us to highlight where action is needed to optimize the expression and conservation of 

biodiversity. Based on our results, we can conclude that i) improving connectivity within ENs favors 

α plant diversity ii) different habitats have different sensibility to landscape configuration iii) semi-

natural buffer areas around nodes mitigate the effects of landscape structure; iv) planning nodes both 

mono-habitat and multi-habitats, increases the biodiversity conserved therein; v) nodes with more 

compact shapes are to be preferred. 

Some weaknesses of the study might be that the animal component that is an integral part of the multi-

species EN was not able to be included and that multiple buffers of different sizes on sampling units 

and nodes to observe the landscape structure effects at different scales was not able to be used. Thus, 

integrating these deficiencies for future studies aimed at EN design and management is suggested. 

It is further suggested the use of these indications to support land-use planning decisions, particularly 

in prioritizing, modifying of existing ENs, and designing new ENs.  
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ABSTRACT 

As there is an urgent need to protect rapidly declining global diversity, it is important to identify 

methods to quickly estimate the diversity and heterogeneity of a region and effectively implement 

monitoring and conservation plans. The combination of remotely sensed and field-collected data, 

under the paradigm of the Spectral Variation Hypothesis (SVH), represents one of the most promising 

approaches to boost large scale and reliable biodiversity monitoring practices. Here, the potential of 

SVH to capture information on plant diversity at fine scale in an ecological network (EN) embedded 

in a complex landscape, has been tested using two new and promising methodological approaches, 

based on “biodivMapR” and “rasterdiv” R packages. The first estimates α and β spectral 

diversity and the latter ecosystem spectral heterogeneity expressed as Rao's Quadratic heterogeneity 

measure (Rao’s Q). Our aims were to investigate if spectral diversity and heterogeneity provide 

reliable information to assess and/or monitor over time floristic diversity maintained in a EN selected 

as an example and located in North-East Italy. We analyzed and compared spectral and taxonomic α 

and β diversities and spectral and landscape heterogeneity, based on field-based plant data collection 

and remotely sensed data from Sentinel-2A, using different statistical approaches. We observed a 

positive relationship between taxonomic and spectral diversity and also between spectral 

heterogeneity, landscape heterogeneity, and the amount of alien species in relation to native ones. 

Our results confirmed the effectiveness of estimating and mapping α and β spectral diversity and 

ecosystem spectral heterogeneity using remotely sensed images. Moreover, we highlighted that 

spectral diversity values become more effective to identify biodiversity-rich areas, representing the 

most important diversity hotspots to be preserved. While the spectral heterogeneity index in 

anthropogenic landscapes could be a powerful method to identify those areas most at risk of biological 

invasion. 

 

Keywords: biodiversity patterns, free and open-source algorithms, multispectral, satellite images, 

spectral diversity maps, spectral heterogeneity maps, vegetation plots  
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INTRODUCTION 

As there is an urgent need to protect rapidly declining global diversity (IPBES 2019), it is important 

to identify methods to quickly estimate the diversity and heterogeneity of a region and effectively 

implement monitoring and conservation plans. It is well known that biodiversity assessment through 

field surveys has a very high cost both in terms of time and money. Economic limitations often cause 

the inability to implement monitoring programs based on large-scale fieldwork (Vihervaara et al. 

2017). Biodiversity monitoring programs must be planned on a sound basis to obtain quality 

information and three aspects are considered particularly relevant, i.e., sampling design, sample size 

and type of statistical analysis (Yoccoz et al. 2001, Maccherini et al. 2020). These requirements make 

it complex to obtain statistically valid monitoring data for better understanding and modeling of 

biodiversity over space and time (Rocchini et al. 2021a). In contrast to traditional monitoring, earth 

observation based on airborne and satellite systems is particularly important for biodiversity 

monitoring, as it allows the observation of regions that may be easily accessible or even remote with 

a high spatial and temporal resolution, thus enabling the production of maps for modeling and 

monitoring diversity from local to global scales (Féret et al. 2017; Rocchini et al. 2016, 2018). 

Operational methods for detecting biodiversity patterns and ecosystem heterogeneity using remote‐

sensing data shall require minimum supervision and should not rely on extensive ground-based data 

collection, as they should be non-expensive and ready-to-use methods (Féret and de Boissieu 2020). 

From this point of view, the development of Free and Open-Source algorithms to measure and 

monitor biodiversity and/or ecosystem heterogeneity from space provide robust, reproducible, and 

standardized estimates of ecosystem functioning and services (Rocchini and Neteler 2012). 

The combination of remotely sensed and field-collected data represents one of the most promising 

approaches to boost large scale and reliable biodiversity monitoring practices (Vihervaara et al. 2017). 

To date, much research has considered the relationships between remotely sensed and field sampled 

data (e.g., Palmer et al. 2002; Rocchini et al. 2015a; Lausch et al. 2020), under the paradigm of the 

Spectral Variation Hypothesis (SVH), proposed for the first time by Palmer et al. (2002) and further 

developed by Rocchini et al. (2004, 2010). This concept hypothesizes that the variability of the 
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spectral response of a remotely sensed image could be used as a proxy to assess plant biodiversity. 

The ability of SVH to detect plant diversity was tested on several ecosystems covering large areas 

(e.g., Féret and Asner 2014; Heumann et al. 2015; Torresani et al. 2019), but few studies (e.g., 

Marzialetti et al. 2021) have investigated SVH application at a greater level of detail over small, 

complex, and heterogeneous areas. 

Typically, in these studies, diversity is defined in term of α and β components (Whittaker 1960, 1972), 

accounting for taxonomic diversity in ground-based data as well as for spectral diversity in remotely 

sensed data. Specifically, α diversity represents local diversity or diversity within a community and 

β diversity represents compositional variation among communities. Furthermore, another often 

neglected component of ecological diversity is represented by ecosystem heterogeneity that is linked 

to a range of ecological processes and functions that, in addition to species diversity patterns and 

change (Rocchini et al. 2018), includes metapopulation dynamics (Fahrig 2007), population 

connectivity (Malanson and Cramer 1999) or gene flow (Lozier et al. 2013). 

Here, we decided to test the potential of SVH to capture information on plant diversity at fine scale 

in a complex landscape, computing both traditional α and β components and ecosystem heterogeneity 

via remote sensing. Two new and promising methodological approaches for estimating α and β 

spectral diversity and ecosystem heterogeneity have been tested using the R packages 

“biodivMapR” (Féret and Asner 2014; Féret and de Boissieu 2020) and “rasterdiv” 

(Marcantonio et al. 2021; Rocchini et al. 2021b) respectively. Specifically, we investigated whether 

spectral diversity and heterogeneity can be used as proxies for taxonomic diversity and landscape 

heterogeneity. In more detail, i) we examined whether spectral diversity, considered as α and β 

diversity, can be compared with α and β taxonomic diversity and with what degree of relationship 

and ii) whether spectral heterogeneity (in pixel reflectance variation) is related to ecosystem, 

landscape heterogeneity and plant diversity in a complex landscape, where natural and anthropogenic 

elements interact, and thus whether this data can be used to assess and/or monitor plant diversity and 

its dynamics in an Ecological Network (EN) or more generally in natural environments over time. 
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We tested the reliability of the two methodological approaches on an EN in Friuli Venezia Giulia 

region (north-eastern Italy), which was developed at the local scale in the context of the Regional 

Environmental Landscape Plan (Sigura et al. 2017). The considered EN was modelled as a composite 

multi-species ecological network where the nodes (natural habitats), corridors (links between natural 

habitats) capture favorable conditions for biodiversity in an agricultural landscape matrix. Most of 

these natural habitats are wetlands which are vulnerable ecosystems extremely important for the 

maintenance of biodiversity and among the most exploited and impacted by human activity especially 

in Europe (Jones and Hughes 1993; European Commission 2007; Jantke et al. 2011). These 

environments are usually characterized by marked vegetation zonation, associated with the 

environmental gradients, determined primarily by hydrology (Liccari et al. 2020), which permits one 

to host numerous species, including rare and endemic ones.  
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METHODS 

Study site 

This study was carried out in the lowlands of the Friuli Venezia Giulia region (NE Italy; centroid 

coordinates: 45°48'13.4" N - 13°08'11.0" E; Figure 4.1). The study area has an extent of 298 km2 

including vast agricultural area bordered by two river systems (Stella and Corno, respectively). The 

landscape is characterized by a mixed mosaic of intensively and extensively cultivated areas, 

settlements, semi-natural and natural habitats, including eight Natura 2000 Special Area of 

Conservation (Habitats Directive 92/43/EEC) and nine regional protected sites (biotopes), mainly 

connecting wetland habitats. 

 

Figure 4.1: Study area, representation of the Ecological Network model with natural habitat patches as nodes 

(colored polygons) and corridors as links (dotted lines), and location of the sampling units. 

The geology of the area consists mainly of Quaternary sand, silt and silt-clay sediments formed by 

glacial fluvial transport during the Pleistocene and by alluvial deposition during the Holocene. The 

area is characterized by an average annual temperature of about 13°C and an average annual 

precipitation between 1100 and 1400 mm. 
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The natural habitats of the area are woods, meadows and fens and have been classified following 

EUNIS habitat classification (Davies et al. 2004; Chytrý el al. 2020). Specifically part of the forests 

are dominated by Carpinus betulus and Quercus robur (EUNIS habitat codes G1.A1A) while the wet 

forests by Alnus glutinosa, Fraxinus spp., and Salix spp. (EUNIS habitat codes F3.23, F9.2, G1.11, 

G1.22, G1.41), dry meadows are characterized by Arrhenatherum elatius, Brachypodium rupestre, 

Bromopsis erecta, Carex spp., Chrysopogon gryllus, Festuca rubra, Filipendula vulgaris, Lolium 

spp., Lotus spp., , Trifolium spp. (EUNIS habitat codes E1.55, E2.2) while wet meadows by Carex 

spp., Molinia spp. and Filipendula ulmaria (EUNIS habitat codes E3.4, E3.51) and fens by Armeria 

helodes (endemic), Cladium mariscus, Equisetum palustre, Frangula alnus, Lysimachia vulgaris, 

Molinia caerulea, Potentilla erecta, Salix cinerea, Scirpoides holoschoenus, Schoenus nigricans, and 

Senecio fontanicola (endemic; EUNIS habitat codes D4.11, D5.24). 

 

Data collection and analysis 

Sampling units 

Data on plant richness and composition have been collected during a field campaign realized to 

characterize plant diversity in the EN (see previous Chapters). All EN nodes with an area over 1 ha 

were sampled. The sampling design chosen was hierarchical, with each habitat type sampled within 

each node, proportional to habitat extent within the node (see Table S3.1 from Chapter 2). Sampling 

density in relation to habitat extent was chosen as follows: a square plot of 100 m2 was randomly 

placed for a habitat area < 5 ha, 2 plots for an area ≥ 5 and ≤ 10 ha, and finally 3 plots for an area > 

10 ha. A total of 219 plots were randomly selected within the EN, corresponding to an overall 

sampling density of 0.13 plot/ha. Presence and abundance (% visual cover estimate) of each vascular 

plant species rooted in each plot were recorded. Nomenclature and taxonomy of species followed 

Bartolucci et al. (2018) for native species and Galasso et al. (2018) for alien species. Data were 

collected in the spring and summer of 2019 (193 plots) and 2020 (26 plots). 
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Satellite data 

The SVH has been tested using Sentinel-2 Level 2A (bottom of atmosphere, which is already 

atmospherically corrected) multispectral images with tile 33TUL for the year 2019, downloaded from 

Copernicus Open Access Hub (Copernicus Open Access Hub 2021). The reflectance signal of the 

vegetation was derived from the Sentinel-2A’s multispectral instrument (MSI) on board, that 

measures the solar electromagnetic spectrum from 457 nm to 2280 nm with 13 bands. 

The images were further processed using SNAP-ESA Sentinel Application Platform (ESA SNAP 

Homepage 2021) to select the bands of interest (bands: 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12), scaling them 

all to 10 m x 10 m spatial pixel resolution using bilinear interpolation, and finally to crop the images 

with the extent of the study area. The selected bands were blue (B02, 458–523 nm), green (B03, 543–

578 nm), red (B04, 650-680 nm), three red edges (B05, 698-713 nm; B06, 733-748 nm; B07, 773-

793 nm), near infrared (B08, 785–899), near infrared narrow (B08A, 855-875 nm), and two short 

wave infrareds (B11, 1565-1655 nm; B12, 2100-2280 nm). 

 

Spectral diversity estimation 

We used the R package “biodivMapR” (Féret and Asner 2014; Féret and de Boissieu 2020) for 

estimating spectral α and β diversity. The estimation method is based on the SVH and takes advantage 

of high spatial resolution multispectral information to differentiate species or groups of species based 

on the optical traits corresponding to the reflectance of each pixel (Ustin and Gamon 2010; Homolová 

et al. 2013; Féret and de Boissieu 2020). We considered taxonomic diversity in ground-based data 

and spectral diversity in remotely sensed data. In general, α diversity, here taxonomic or spectral, 

summarizes the number of different elements (species or reflectance spectrum values) within 

sampling units and can be expressed as richness (i.e., the number of species) and evenness (i.e., their 

relative abundance) (Whitaker 1960, 1972; Féret and Asner 2014). To consider both richness and 

evenness and compare spectral and taxonomic diversity values, we computed species richness and 

Shannon diversity index (H’, Shannon 1948), the latter varies from 0 in plots with one dominant 

species to an undetermined maximum in plots with equally abundant species. 
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β diversity, whether taxonomic or spectral, represents the variation among sampling units in both 

composition and abundance values (Whittaker 1960, 1972; Féret and Asner 2014). β diversity in 

remotely sensed and field data was analyzed using the Bray–Curtis (BC) dissimilarity index (Bray 

and Curtis 1957). This dissimilarity index is defined as the sum over the whole species of the ratio 

between the difference of abundance values and the sum of abundance values for each species, and it 

represents the vegetation plots (or spectral value of the pixels) pairwise differences using quantitative 

species abundance data. The BC dissimilarity index ranges between 0, when two plots share the same 

elements, to 1, when the two sampling units are totally different. 

The package supports only one multispectral raster image at a time in its functions. Thus, we chose 

to use a satellite image taken on 03 June 2019, as it was the period with the most active green biomass 

and the most ground surveys carried out. The Sentinel 2 multi-spectral image was filtered to remove 

non‐vegetated, shaded, and cloudy pixels as suggested by Féret and de Boissieu (2020). The applied 

thresholds were as follows: 1) Normalized Difference Vegetation Index (NDVI) higher than 0.4 to 

exclude non‐vegetated/dry vegetation pixels, 2) NIR > 1500 to remove shaded areas as these are 

characterized by low overall reflectance, and 3) blue < 500 to ignore cloudy pixels as residuals from 

atmospheric corrections may lead to increased reflectance in the blue domain (Féret and de Boissieu 

2020). 

After the filtering, a Principal Component Analysis (PCA) was performed on a random sub‐set (21% 

ca) of the image to ensure computational efficiency. The result of this PCA has been then applied to 

order the whole image. Subsequently, a second filtering based on PCs thresholding was applied 

discarding automatically the pixels showing values beyond the mean PC value ±3 standard deviations 

for any of the first five components and the mask was updated accordingly. Finally, the PCA 

preprocessing, including random pixel selection was applied a second time with the updated mask. 

Based on PCA results, relevant features for biodiversity mapping were selected considering the PCA 

outputs. 

Spectral species mapping, based on k‐means clustering of the components selected from the PCA, 

was performed setting number of clusters parameter to 50. This value was suggested by Féret and de 
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Boissieu (2020) for tropical forests, but it was also indicated that the number of clusters should be set 

according to the level of heterogeneity of the landscape under study, in our case quite high. 

The α and β spectral diversity maps were produced through the computation of three indexes (i.e., 

species richness and H’ for α diversity and BC for β diversity), based on the distribution of clusters 

in the spectral species map for a window size set of 6 x 6 pixels over the whole image. The smaller 

the window, the more accurate the estimate, but small windows may not contain a sufficient number 

of pixels. For this reason, we decided to use a window of 6x6 pixels as a compromise. Finally, spectral 

diversity index values were extracted for the sampled plots (plots containing less than three pixels 

were discarded) in order to compare field inventories with diversity indices estimated by the 

“biodivMapR” package. We compared these values by linear regression, correlation analysis and 

using the R package “Metrics” (Hamner and Frasco 2018) that computes evaluation metrics (i.e., 

RMSE, bias) that are commonly used in supervised machine learning to compare actual and predicted 

values. 

 

Spectral ecosystem heterogeneity estimation 

The “rasterdiv” package (Marcantonio et al. 2021) provides a flow of functions based on 

information theory and generalized entropy, incorporating abundance information for each 

informative value but also on the relative numerical distance between these values (Rocchini et al. 

2021b). We used this package for calculating the Rao's Quadratic heterogeneity measure (Rao's Q; 

Rao 1982). It can be defined as the expected difference in reflectance values between two pixels 

drawn randomly with replacement from the evaluated set of pixels. The 10 selected bands from the 

Sentinel image of 03 June 2019 were re-scaled to 8-bit radiometric resolution as suggested by the 

authors (Rocchini et al. 2021b) and a moving window of 9 × 9 pixels was used for calculating the 

index (Qmulti) and the weight for the distance matrix (alpha) was set to 1, 5 and infinite (see package 

vignette for more details, Marcantonio et al. 2021). A larger window was used here since in this case 
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the larger the window the greater the accuracy of the heterogeneity index. For this reason, we decided 

to use a window of 9 x 9 pixels and not 6 x 6 as in the previous case. 

In addition, we also calculated the Rao’s Q on an NDVI time series (i.e., one image per month for the 

year 2019; QNDVI) rescaled to 8-bit radiometric resolution, with a moving window of 9 x 9 pixels and 

alpha set to 1, 5 and infinite. Here again, Rao’s Q values were extracted for all the sampled plots and 

the relationships between spectral heterogeneity and field data were estimated using Generalized 

Additive Models (GAM) and transformation-based Redundancy Analysis (tb-RDA). We 

hypothesized that in a highly heterogeneous landscape, such as the one under study, relationships 

were to be sought between spectral heterogeneity, landscape heterogeneity, and the amount of native 

and alien species. For this reason, in the GAMs we considered Rao’s Q values deriving from both 

NDVI time series (QNDVI) and multispectral single image (Qmulti) as response variables and ratio of 

alien to native species richness (RatioAN) and Shannon index for land use category (ShannonLU) 

calculated in an area of 250 m around the plots as predictive variables. 

Six GAMs were considered, the response variables were alternatively QNDVI1, QNDVI5, QNDVIInf, 

Qmulti1, Qmulti5, QmultiInf, and the predictive variables were always ShannonLU as smooth term and 

RatioAN as linear term. 

Regarding β diversity, the contribution of previous variables (Qmulti, RatioAN and ShannonLU) with 

the addition of three other variables (i.e., native species richness, N.Nat; focal species richness, N.Foc; 

and habitat type) to the observed community composition, was considered using tb-RDA (Legendre 

and Gallagher 2001). QNDVI and alien species richness were not considered as they were highly 

collinear with Qmulti and RatioAN respectively. The tb-RDA was based on Hellinger (Legendre and 

Legendre 2012) pre-transformed species composition matrix. Species abundances were log 

transformed before Hellinger transformation was done. These transformations were made possible as 

tb-RDA supports the use of many data transformations to perform ordination, offering much more 

flexibility for the analysis of community data (Blanchet et al. 2014). Variation partitioning was then 

computed in order to assess which group of variables (habitat, land use and Rao’s Q) contributed 

more to explain the variability in the community composition.  
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RESULTS 

Comparison of α and β spectral diversity vs measured taxonomic diversity 

The resulting α and β spectral diversity maps, obtained from the “biodivMapR” package, are shown 

in Figure 4.2. 

 

Figure 4.2: Spectral α diversity map, expressed as Shannon index, of the study area (a) and of the EN nodes 

(b). Spectral β diversity map, expressed as Bray-Curtis dissimilarity index, produced by the projection of the 

n × n dimensional space of the dissimilarity matrix into an n × 3 dimensional space (PCoAs), of the study area 

(c) and of the EN nodes (d). 

The comparison between the observed values of α and β taxonomic diversity calculated from sampled 

plots and the ones remotely estimated via the “biodivMapR” are reported below. 
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The regression between observed taxonomic and estimated spectral species richness (Figure S4.1a) 

gave an RMSE = 16.68 and a bias = 15.15 that indicate a high underestimation of the number of 

species. We also computed the Pearson correlation between the observed species richness and the 

estimated one obtaining a value of 0.16 (p = 0.03). This result was partly expected considering the 

study of Féret and Asner (2014) where they observed an underestimation that could be explained by 

the limited number of spectral species compared to the maximum taxonomic diversity. However, as 

stated by Féret and Asner (2014), it can be easily corrected with a linear factor derived from the 

relationship obtained between field data and estimation (for example in our case by 0.4 Figure S4.1b). 

The regression between observed taxonomic and estimated spectral H’ (Figure S4.2) yielded an 

RMSE = 0.39 in H’ units and a bias = -0.01 that indicated a slight overestimation of H’. We also 

computed the Pearson correlation between the observed H’ and the estimated H’ obtaining a value of 

0.53 (p < 0.001). The regression between observed taxonomic and estimated spectral BC (Figure 

S4.3) yielded an RMSE = 0.17 in BC units and a bias = 0.06 that indicated a slight underestimation 

of BC dissimilarity. Mantel correlation between the observed BC and the estimated one yielded a 

value of 0.48 (p < 0.001). 

The spectral β diversity map, expressed as BC dissimilarity index, produced by the projection of the 

n × n dimensional space of the dissimilarity matrix into an n × 3 dimensional space (PCoAs, Figure 

4.2c,d), presents a good estimate of natural habitats, showing a distribution along the positive PCoA1 

axis for 79% of the pixels contained in the nodes of the EN. 

 

Spectral heterogeneity vs landscape heterogeneity and taxonomic plant diversity 

The resulting QNDVIInf and QmultiInf spectral heterogeneity maps, obtained from the “rasterdiv” 

package, are shown in Figure 4.3. 

We observed significant relationships in all GAMs between spectral heterogeneity, land use diversity, 

and alien native species richness ratio, except for the term RatioAN in Qmulti1 GAM (Table 4.1, Figure 

S4.4). The adjusted R2 increased as the weight for the distance matrix was higher for both QNDVI and 
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Qmulti GAMs. Comparing the models with the same distance weight, those with Qmulti had always a 

higher goodness-of-fit (Table 4.1). 

(a) (b) 

  

Figure 4.3: Rao’s Q index, calculated from the NDVI time series covering the year 2019 (QNDVI) with the 

weight for the distance matrix set to infinite, for the study area (a). Rao’s Q index, calculated from the 10 bands 

of the Sentinel 2 image of 03 June 2019 (Qmulti) with the weight for the distance matrix set to infinite, for the 

study area (b). 

The best model (R2 = 0.43) was the one using the Qmulti with the highest distance weight. The linear 

term RatioAN was always positive related to Rao’s Q in all models, while the smooth term 

ShannonLU was more positively related to Rao’s Q the greater the distance weight considered (Figure 

S4.4). 

Table 4.1: Summary of generalized additive models (GAMs) for spectral heterogeneity (Rao’s Q index 

calculated from NDVI timeseries (QNDVI) and from a multispectral image (Qmulti) with three different weights 

for the distance matrix (i.e., 1, 5, infinite) vs. alien native species richness ratio (RatioAN, linear term) and 

Shannon index calculated on land uses (ShannonLU, smooth term). Est. ± SE = estimate ± standard error; Edf 

= effective degrees of freedom. 

QNDVI1 ~ RatioAN + s(ShannonLU)    R2 = 0.21 

Terms Est. ± SE p-value Edf p-value 

Intercept 45.43 ± 1.95 < 0.001 - - 

RatioAN 51.82 ± 19.83 0.010 - - 
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Smooth (ShannonLU) - - 2.25 < 0.001 

QNDVI5 ~ RatioAN + s(ShannonLU)    R2 = 0.25 

Intercept 76.36 ± 3.49 < 0.001 - - 

RatioAN 99.34 ± 35.60 0.006 - - 

Smooth (ShannonLU) - - 3.37 < 0.001 

QNDVIInf ~ RatioAN + s(ShannonLU)    R2 = 0.27 

Intercept 282.50 ± 12.34 < 0.001 - - 

RatioAN 347.65 ± 125.88 0.006 - - 

Smooth (ShannonLU) - - 3.67 < 0.001 

Qmulti1 ~ RatioAN + s(ShannonLU)    R2 = 0.25 

Intercept 51.92 ± 1.59 < 0.001 - - 

RatioAN 18.02 ± 16.20 NS - - 

Smooth (ShannonLU) - - 3.34 < 0.001 

Qmulti5 ~ RatioAN + s(ShannonLU)    R2 = 0.41 

Intercept 92.52 ± 2.40 < 0.001 - - 

RatioAN 72.55 ± 24.55 0.003 - - 

Smooth (ShannonLU) - - 4.64 < 0.001 

QmultiInf ~ RatioAN + s(ShannonLU)    R2 = 0.43 

Intercept 368.62 ± 9.64 < 0.001 - - 

RatioAN 401.20 ± 98.43 < 0.001 - - 

Smooth (ShannonLU) - - 4.51 < 0.001 

The tb-RDA ordination explained 36.20% of the variance, the first three axes accounting for 11.30%, 

10.15% and 5.41% of the total explained variance, respectively (Figure 4.4). The first seven axes out 

of eighteen exceeded the threshold of statistical significance (p < 0.05). The first axis was correlated 

with native (N.Nat) and focal (N.Foc) species richness and ratio of alien to native species richness 

(RatioAN) and the second with land use diversity and spectral heterogeneity (ShannonLU and 

QmultiInf, Figure 4.4, S4.5). The axes from three to seven mainly described the difference between 

plant community composition in different habitats dictated by the presence of hygrophilous or 

xerophilous, woodland or grassland species. Forest habitats were mainly distributed along the second 

axis based on a gradient of spectral heterogeneity (RDA2 -0.54), land use diversity (RDA2 -0.44) and 

ratio of alien to native species richness (RDA2 -0.38) while fens and meadows were distributed on 
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the first and third axes along a gradient of focal (RDA1 -0.40; RDA3 -0.38) and native species 

richness (RDA1 -0.37; RDA3 0.36). These gradients showed that higher values of Rao's Q spectral 

heterogeneity were more related to wet habitats, and with those habitats where the land use diversity 

of the surrounding landscape was higher, features that are also known to often promote plant invasion. 

 

Figure 4.4: tb-RDA ordination based on Hellinger pre-transformed species composition matrix, with site 

grouped per habitat and displaying the following variables: focal species richness (N.Foc), native species 

richness (N.Nat), Rao’s Q index, calculated from the 10 bands of the Sentinel 2 image of 03 June 2019 with 

the weight for the distance matrix set to infinite (QmultiINF), and ratio of alien to native species richness 

(RatioAN), Shannon index on land use diversity (ShannonLU). 

The variation partitioning on species composition data highlighted that habitat was the main 

explanatory factor, accounting for 29% of the total variation (Figure 4.5). Interestingly, spectral 

heterogeneity and land use diversity contributed only to 8% of total variation, with the latter almost 
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completely negligible in explaining plant community variations.

 

Figure 4.5: Partition of the variation of the community matrix according to the three explanatory variable 

groups, namely habitat, land use heterogeneity, and spectral heterogeneity (Rao’s Q index).  
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DISCUSSION 

This research aimed at investigating the use of SVH in a complex and anthropogenic landscape, using 

two new and promising methodological approaches for estimating α and β spectral diversity and 

ecosystem heterogeneity. Their outputs differed but both gave important information on plant 

diversity expendable for planning data collection and monitoring campaigns for biodiversity 

conservation programs. 

The relationships between floristic and spectral α and β diversity indices provided evidence of the 

potential, but also of the limits, of remote sensing data as proxies of plant diversity (Rocchini et al. 

2021a). In particular, in our case study, in a heterogeneous and anthropogenic landscape, where 

natural habitat patches (the nodes of the EN) are embedded in an agricultural matrix, these 

relationships were slightly weaker in comparison with other studies in homogeneous natural habitats 

(Nagendra et al. 2010; Hall et al. 2012; Warren et al. 2014; Heumann et al. 2015; Arekhi et al. 2017; 

Mandosela et al. 2017; Torresani et al. 2019). For example, Féret and Asner (2014), in homogeneous 

natural forests, reported a weak relationship between observed taxonomic and estimated spectral 

species richness that could be easily corrected with a linear factor derived from the relationship 

obtained between field data and estimation, as we also noticed in our results. Moreover, Féret and 

Asner (2014) in tropical forests reported an underestimation of both α and β diversity indices but with 

high correlation rates (between 0.73 and 0.86 for α and between 0.61 and 0.75 for β). On the contrary, 

we observed an overestimation of α diversity (H’) and an underestimation of β diversity (BC) and 

both diversity indexes achieved lower correlation values between floristic and spectral values (i.e., 

0.53 and 0.48 respectively). These lower correlation values observed may be determined by the plot 

dimension (10 x 10 m) in comparison with that of the window used to calculate the spectral species 

(60 x 60 m): in a highly heterogeneous landscape, such as the one under study, the signal can vary a 

lot moving away from the sampled plot due to plant community and land use variations, driven by 

many factor such as habitat type, anthropic pressure, and edge effect (Porensky and Young 2013; 

Amici et al. 2015). The effect of the grain size on the robustness in the relationship between spectral 

diversity and taxonomic diversity has been examined by different authors (e.g., Rocchini et al. 2004; 
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Oldeland et al. 2010) and all of them concluded that the increase of the spatial scale of analysis, from 

both field and remotely sensed data, increased correlation between spectral heterogeneity and species 

richness. This issue, defined Modifiable Areal Unit Problem (MAUP), is a well-known pattern in 

landscape ecology and has been exhaustively discussed and analyzed by Jelinski and Wu (1996). 

Nevertheless, in our case, the relationship between taxonomic and spectral diversity values became 

more accurate for high diversity values (Figure S4.1, S4.2, S4.3), thus highlighting that spectral 

diversity values become more reliable for biodiversity-rich areas that also represent the most 

important diversity hotspots to be monitored and preserved. In addition, the spectral maps in Figure 

4.2 have given evidence of the real differences between plots both in terms of α and β diversity. In 

fact, taking into consideration the entire study area and the sorting of the β diversity values of the 

pixels on the three axes of the PCoA (Figure 4.2c,d), it was possible to observe that the majority of 

the pixels linked to the positive part of the first axis of the sorting, represented in red, corresponded 

to the forested nodes of the EN. 

The results produced by “rasterdiv” package (Figure 4.3) highlighted the influence of the 

surrounding landscape composition and fragmentation on the values expressed by the Rao's Q 

heterogeneity index. In fact, the areas with higher values of spectral heterogeneity were not those that 

we would expect to be richer in biodiversity, but those that were characterized by more anthropogenic 

impact (high values of land use diversity) and so also to biological invasion (high values of alien to 

native species richness ratio). Remote sensing data can provide information on complex systems, 

which depend on the original radiometric and spectral resolution, giving different results and 

interpretations depending on the composition of the study area and the type of existing vegetation. 

Using an ecological parallelism, the spectral space defined by many bands is analogous to the 

Hutchinson’s hypervolume, defined by a set of n independent axes corresponding to those variables 

(abiotic and biotic) shaping species’ niches (Hutchinson 1959; Blonder 2018). In this case, spectral 

space was expected to be related to both species’ niches and their relative diversity (Thouverai at al. 

2021), and this was the case, albeit with a relationship opposite to that expected. That is, greater 

spectral difference was found to be related to greater ratio of alien to native species richness rather 
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than greater native or focal species richness (Figure 4.4). However, this result should not be neglected 

as it relates well to the use of remote sensing techniques for monitoring invasive alien plants across 

vast areas (Rocchini et al. 2015b). Many studies have demonstrated the capability of remote sensing 

approaches to detect invasive plant species and to map their distribution (Müllerová et al. 2016; 

Skowronek et al. 2017a, 2017b; Vaz et al. 2018; Lopatin et al. 2019; Ewald et al. 2020) and certainly 

the use of the Rao’s Q heterogeneity index in anthropogenic landscapes could be a powerful method 

to identify those areas potentially more prone to biological invasion. 

GAMs (Table 4.1, Figure S4.4) showed that the greater the weighting between the spectral distance 

of pixels, the greater the relationship between spectral heterogeneity, land use diversity, and ratio of 

alien to native richness. It was interesting to observe that Qmulti was better explained than QNDVI by 

the above-mentioned variables, probably because the amount of spectral information contained in the 

10 bands used in Qmulti was greater than that contained in the two bands of QNDVI, albeit the latter was 

calculated over a longer time frame. Spectral heterogeneity analysis suggests that the indexes can be 

interpreted in the opposite way (e.g., - Qmulti or - QNDVI), in our case study, and could allow to identify 

a method to detect core areas within nodes (i.e., patches of natural habitats) of an EN. The core area 

is the inner part of a node that is less affected by the external impacts and to the edge effects, these 

latter are important ecological processes that are closely related to species habitat protection (Paton 

1994), community dynamics (Fagan et al. 1999), and ecological restoration (Loveridge et al. 2010; 

An et al. 2021). The analysis of heterogeneity using Rao’s Q, can thus represent a new tool to be 

integrated in the context of EN structure optimization. 

Variation partitioning (Figure 4.5) pointed out that the variable contributing the most to explaining 

differences among communities was habitat while the contribution of land use diversity is completely 

negligible in this context. Instead, spectral heterogeneity contributes to nearly one-third of the 

explained variation. This shows that the Rao’s Q in complex areas, not dominated by a single habitat, 

is unable to account for variation among different communities. However, this result also suggests, 

observing the forests in the ordination plot (Figure 4.4, S4.5), Rao’s Q potential to explain variation 

in the composition of the community in environments dominated by forest habitats. 
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Our results highlighted the effectiveness of estimating and mapping α and β spectral diversity and 

ecosystem spectral heterogeneity using remotely sensed images. This is currently a key topic in 

ecology and could provide landscape managers with rapid and effective tools to estimate and monitor 

global change (Rocchini et al. 2021a). Moreover, this study confirms once again the robustness and 

importance of SVH for estimating and monitoring diversity in different habitats (Féret and Asner 

2014; Warren et al. 2014; Arekhi et al. 2017; Mandosela et al. 2017; Torresani et al. 2019; Marzialetti 

et al. 2021). In addition, we suggest experimenting with spectral heterogeneity analysis in the field of 

landscape ecology (e.g., ENs structure analysis) as well as the use of spectral diversity maps as fast 

approach in data-poor settings as starting base. 

The observed relationship between spectral and floristic diversity, in a complex and anthropogenic 

landscape, supports SVH as a method to quickly estimate α and β diversity and heterogeneity. 

Moreover, it is suggested to explore their variation across regions to effectively implement 

monitoring and conservation plans allowing the production of maps for modeling and monitoring 

diversity from local to global scales (Féret et al. 2017; Rocchini et al. 2016, 2018), considering also 

recent innovative contributions for the implementation of multi-temporal analysis with image 

composition optimization based on seasonal profiles (Praticò et al. 2021), on object or pixel-based 

techniques (Tassi et al. 2021), implemented on Google Earth engine (Gorelick et al. 2017) or on open-

source workflow with combined use of optical and radar data (De Luca et al. 2022).  
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General conclusions 

Key findings and implications 

The broad objective of this Thesis was to provide an insight for testing and monitoring diversity and 

the factors that influence it in the habitats and nodes of an EN. Specifically, the Thesis explored the 

plant diversity content present in an EN, evaluating the possible effects of the surrounding landscape 

on the communities studied and possible methods for monitoring vegetation within habitats and nodes 

over time. 

One of the main conclusions achieved (Chapter 1) relates to reducing sampling effort to assess and 

monitor plant diversity hosted in the EN over time. The importance of validating ENs obtained 

through graph analysis, based on land cover maps and/or habitat maps, is widely known (e.g., Foltete 

et al. 2020). Moreover, the practical implementation of EN planning depends on opportunities, the 

interest of landowner and other stakeholders, and costs (Bergsten and Zetterberg 2013; Mossman et 

al. 2015). It is thus fundamental to optimize sampling design to enhance temporal and economic 

resources and define the minimum effort to adequately represent the biodiversity content of the ENs 

and in general natural habitats leading to an effective possibility to carry out projects related to 

biodiversity conservation and smart landscape management. 

ENs are increasingly accepted as proactive tools for preserving biodiversity by improving landscape 

connectivity (Gilbert-Norton et al. 2010; Damschen 2013; Modica et al. 2021) and represent also an 

effective approach integrating environmental management strategies and landscape planning that can 

be understood by different actors (De Montis et al. 2016; Keeley et al. 2018; Sahraoui et al. 2021). 

Therefore, it is crucially important to provide practitioners with practical, field-tested advice for 

planning effective ENs to support biodiversity. However, plant diversity is often neglected when 

considering the influence of landscape connectivity on biodiversity (but see Uroy et al. 2019; 

McLeish et al. 2021). Another conclusion achieved in this Thesis (Chapter 2) relates precisely to the 

study of plant diversity as a function of landscape structure and connectivity considering two 

investigation scales, aiming at parsing the interacting effect of landscape structure, surrounding 



108 

 

habitats and nodes, and structural connectivity on EN plant diversity. Important information about 

the plant diversity pattern within the EN was derived, i.e., i) improving connectivity within ENs 

favors α plant diversity ii) different habitats have different sensibility to landscape configuration iii) 

semi-natural buffer areas around nodes mitigate the effects of landscape structure; iv) planning nodes 

both mono-habitat and multi-habitats, increases the biodiversity conserved therein; v) nodes with 

more compact shapes are to be preferred. These indications highlight where action is needed to 

optimize the expression and conservation of biodiversity, contributing to an unresolved issue, about 

the multiplicity of factors that modulate the effects of landscape connectivity on plant communities 

(Uroy et al. 2019), adding a new element to an answer that likely cannot be unique. 

In addition to traditional assessing/monitoring biodiversity methods, it is important to identify new 

approaches to quickly estimate the diversity and heterogeneity of a region and effectively implement 

monitoring and conservation plans. As mentioned above economic limitations often cause the 

inability to implement monitoring programs based on large-scale fieldwork (Vihervaara et al. 2017). 

In contrast to traditional monitoring, earth observation based on airborne and satellite systems is 

particularly important for biodiversity monitoring, as it allows the observation of regions that may be 

easily accessible or even remote with a high spatial and temporal resolution, thus enabling the 

production of maps for modeling and monitoring diversity from local to global scales (Féret et al. 

2017; Rocchini et al. 2016, 2018). The combination of remotely sensed and field-collected data, under 

the paradigm of the SVH, represents one of the most promising approaches to boost large scale and 

reliable biodiversity monitoring practices. In the last part of the Thesis (Chapter 3) the potential of 

SVH to capture information on plant diversity at fine scale has been tested using two new and 

promising methodological approaches, based on “biodivMapR” (Féret and Asner 2014; Féret and 

de Boissieu 2020) and “rasterdiv” (Marcantonio et al. 2021) R packages. The first estimates α 

and β spectral diversity and the latter ecosystem spectral heterogeneity expressed as Rao's Q 

heterogeneity measure. I investigated if spectral diversity and heterogeneity provide reliable 

information to assess and/or monitor floristic diversity hosted in the EN, or in general in natural 

environments over time. The results showed a positive relationship between taxonomic and spectral 
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diversity and also between spectral heterogeneity, landscape heterogeneity, and amount of alien 

species in relation to natives. Moreover, the results highlighted the effectiveness of estimating and 

mapping α and β spectral diversity and ecosystem spectral heterogeneity using remotely sensed 

images. In addition, it was also observed that spectral diversity values became more reliable for 

biodiversity-rich areas, representing the most important diversity hotspots to be preserved. While the 

spectral heterogeneity index in anthropogenic landscapes could be a powerful method to identify 

those areas most at risk of biological invasion. 

Research outlook and future perspectives 

Considering that ENs will increasingly represent tools with which to connect and protect the patch of 

natural habitats containing most of landscapes' biodiversity, it is necessary to study them thoroughly. 

In fact, the possibility of comparing field surveys in different ENs would lead to a better 

understanding and optimization of efforts to verify and monitor biodiversity. It would also allow a 

better understanding of the patterns of diversity in relation to connectivity, with the possibility to 

distinguish between different ecological roles of the species under study. 

Another noteworthy approach is the use of remote sensed data to assess biodiversity, suggesting 

experimenting spectral diversity with different type of remote sensing instruments (e.g., LiDAR, 

SAR) and to explore their potential in different application fields such as conservation biology, 

landscape ecology, and many others. In conclusion, due to rapid biodiversity loss worldwide, 

identifying actions that can be implemented to reduce the degradation of biodiversity and 

simplification of landscapes has become crucial and a key topic in the field of landscape ecology and 

conservation biology. It is mandatory that research make steps forwards to limit and mitigate this 

irreversible biodiversity erosion.
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Supplementary materials to Chapter 1 

Table S2.1: Estimated sample size for each habitat based on the slope change in the linear relation between 

MultSE and sample size. The value could not be estimated in habitats with 3 or less replicates (NA = Not 

assessed, see main text). 

Habitat EUNIS Estimated sample size (± SE) 

G1.A1A - Illyrian Quercus - Carpinus betulus forests 8 ± 0.31 

G1.41 - Alnus swamp woods not on acid peat 7 ± 0.31 

F9.2 - Salix carr and fen scrub 5 ± 0.23 

G1.11 - Riverine Salix woodland 8 ± 0.33 

G1.223 - Southeast European Fraxinus - Quercus - Alnus forests 4 ± 0.22 

G1.224 - Po Quercus - Fraxinus - Alnus forests NA 

F3.23 - Tyrrhenian sub-Mediterranean deciduous thickets 7 ± 0.29 

E1.55 - Eastern sub-Mediterranean dry grassland NA 

E2.2 - Low and medium altitude hay meadows 6 ± 0.26 

E3.4 - Moist or wet eutrophic and mesotrophic grassland NA 

E3.51 - Molinia caerulea meadows and related communities 4 ± 0.18 

C3.21 - Phragmites australis beds NA 

D5.24 - Fen Cladium mariscus beds NA 

D4.11 - Schoenus nigricans fens 4 ± 0.21 
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Figure S2.1: Spatially explicit rarefaction curves (SERs, dashed lines) and traditional rarefaction curves (RCs, 

solid lines) calculated for each habitat of the ecological network. The black solid line represents the RC 

calculated from the whole dataset.  
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Figure S2.2: Classic rarefaction curves (RCs) calculated for each node of ecological network. The black 

dashed line represents the RC calculated from the whole dataset.  
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Figure S2.3: MultSE profile based on Bray–Curtis dissimilarity for each node within the ecological network.  
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Figure S2.4: MultSE profile based on Bray–Curtis dissimilarity for the whole dataset within the ecological 

network. 
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Supplementary materials to Chapter 2 

Metrics and correlation tables 

Habitat scale 

All class and landscape level metrics of “landscapemetrics” package (Hesselbarth et al. 2019) 

were used, except for the core area metrics. For more information see the package vignette at: 

https://cran.r-project.org/web/packages/landscapemetrics/landscapemetrics.pdf 

The metrics with more than 25% of NA values were discarded. 

Correlation analysis was executed using the R function cor(), estimating coefficients using non-

parametric Spearman’s ρ, and then the metrics were selected using the function findCorrelation() of 

the R package “caret” (Kuhn 2008) and setting the cutoff to ± 0.7. 

Correlation values will be archived along with data supporting the results in an appropriate public 

repository and the data DOI will be included in the event of publication. 

Seven connectivity metrics were calculated on Graphab (Foltete et al. 2012a): betweenness centrality 

(BC), closeness centrality (CCe), connectivity correlation (CCor), eccentricity (Ec), flux (F), 

interaction flux (IF) and node degree (Dg). Correlation analysis was executed using the R function 

cor(), estimating coefficients using non-parametric Spearman’s ρ, and then the metrics were selected 

using the function findCorrelation() of the R package “caret” (Kuhn 2008) and setting the cutoff 

to ± 0.7. 

Correlation values are reported in the table below. 

 BC CCe CCor Ec F IF Dg 

BC 1.00 -0.26 0.50 0.01 0.51 0.48 0.68 

CCe -0.26 1.00 -0.10 0.24 -0.29 -0.19 -0.25 

CCor 0.50 -0.10 1.00 -0.07 0.09 0.39 0.82 

Ec 0.01 0.24 -0.07 1.00 0.14 0.02 -0.05 

F 0.51 -0.29 0.09 0.14 1.00 0.41 0.26 

https://cran.r-project.org/web/packages/landscapemetrics/landscapemetrics.pdf
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IF 0.48 -0.19 0.39 0.02 0.41 1.00 0.56 

Dg 0.68 -0.25 0.82 -0.05 0.26 0.56 1.00 

 

Node scale 

All shapes indexes present in Polygon Shape Indices tool were calculated on QGIS (Quantum GIS 

Development Team 2021) using the EN nodes as the main spatial unit. Namely, perimeter divided by 

area, perimeter divided by square root of area, maximum distance between to vertices, maximum 

distance between to vertices divided by area, maximum distance between to vertices divided by 

square root of area, and shape index (Perimeter / (2 * Square Root (PI * Area))). All shape indexes 

are obviously interrelated, so we chose the unitless indexes and then the less correlated to the others. 

 Per sqrt A D sqrt A Shape index 

Per sqrt A 1.00 0.70 1.00 

D sqrt A 0.70 1.00 0.70 

Shape index 1.00 0.70 1.00 

Landscape metrics were calculated for a buffer area of 250 m around each node, taking into accounts 

the number of land uses, watercourse area, woodland area, hedgerow area, semi-natural woodland 

area, permanent grassland, agricultural areas with residual natural elements, extensive crops, tree 

crops, intensive arable land, urban areas and the number of habitats within each node. 

Correlation analysis was executed using the R function cor(), estimating coefficients using non-

parametric Spearman’s ρ, and just woodland area was correlated with number of habitats and 

hedgerow area (cutoff ± 0.7). 

Correlation values will be archived along with data supporting the results in an appropriate public 

repository and the data DOI will be included in the event of publication. 

Seven connectivity metrics were calculated on Graphab (Foltete et al. 2012a): betweenness centrality 

(BC), closeness centrality (CCe), connectivity correlation (CCor), eccentricity (Ec), flux (F), 

interaction flux (IF) and node degree (Dg). Correlation analysis was executed using the R function 
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cor(), estimating coefficients using non-parametric Spearman’s ρ, and then the metrics were selected 

using the function findCorrelation() of the R package “caret” (Kuhn 2008) and setting the cutoff 

to ± 0.7. 

Correlation values are reported in the table below. 

 BC CCe CCor Ec F IF Dg 

BC 1.00 -0.29 0.43 -0.33 0.22 0.29 0.63 

CCe -0.29 1.00 -0.18 0.33 -0.59 -0.35 -0.18 

CCor 0.55 -0.18 1.00 -0.10 0.11 0.35 0.89 

Ec -0.33 0.33 -0.13 1.00 -0.18 -0.07 -0.29 

F 0.22 -0.59 0.11 -0.18 1.00 0.59 0.03 

IF 0.29 -0.35 0.23 -0.07 0.59 1.00 0.26 

Dg 0.63 -0.18 0.89 -0.29 0.03 0.26 1.00 
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Table S3.1: Habitat of the area according to EUNIS habitat classification, belonging group in the models along 

with descriptive statistics of the study area (i.e., total area, mean area ± standard deviation, number of patches, 

number of plots and average total, native and alien richness). 

EUNIS 

Habitat 

Group 

 

Total 

area 

(ha) 

 

Mean area 

± SD (ha) 

N. 

Patches 

N. Plots 

Average 

richness 

(± SD) 

Average 

native 

richness 

(± SD) 

Average 

alien 

richness 

(± SD) 

C3.21 - Phragmites 

australis beds 

2. meadows 3.7 3.7 1 1 21.0 20.0 1.0 

D4.11 - Schoenus 

nigricans fens 

3. fens 77.5 2.8 ± 2.0 28 12 15.1 ± 5.7 15.0 ± 5.5 0.1 ± 0.3 

D5.24 - Fen Cladium 

mariscus beds 

3. fens 9.9 5.0 ± 5.6 2 3 14.3 ± 4.2 14.3 ± 4.2 0.0 ± 0.0 

E1.55 - Eastern sub-

Mediterranean dry 

grassland 

2. meadows 33.6 11.2 ± 12.9 3 4 34.8 ± 7.3 34.8 ± 7.3 0.0 ± 0.0 

E2.2 - Low and 

medium altitude hay 

meadows 

2. meadows 149.2 3.7 ± 3.6 40 30 32.0 ± 7.7 29.7 ± 8.1 2.3 ± 1.5 

E3.4 - Moist or wet 

eutrophic and 

mesotrophic grassland 

2. meadows 8.5 4.3 ± 0.2 2 3 

17.0 ± 

13.2  

17.0 ± 

13.2 

0.0 ± 0.0 

E3.51 - Molinia 

caerulea meadows 

and related 

communities 

2. meadows 50.4 3.7 ± 5.6 19 8 33.9 ± 7.4 33.5 ± 7.0 0.4 ± 0.5 

F3.23 - Tyrrhenian 

sub-Mediterranean 

deciduous thickets 

1. forests 

and 

shrublands 

186.2 3.6 ± 3.4 46 30 22.4 ± 5.0 19.9 ± 5.2 2.5 ± 1.3 

F9.2 - Salix carr and 

fen scrub 

1. forests 

and 

shrublands 

46.6 5.2 ± 4.9 9 12 25.0 ± 5.2 23.0 ± 4.9 2.0 ± 1.3 
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G1.A1A - Illyrian 

Quercus - Carpinus 

betulus forests 

1. forests 

and 

shrublands 

603.4 31.8 ± 56.2 19 36 23.2 ± 5.6 22.9 ± 5.7 0.3 ± 0.7 

G1.11 - Riverine Salix 

woodland 

1. forests 

and 

shrublands 

199.2 6.0 ± 7.9 34 40 23.4 ± 6.9 20.7 ± 6.3 2.7 ± 1.3 

G1.223 - Southeast 

European Fraxinus - 

Quercus - Alnus 

forests 

1. forests 

and 

shrublands 

112.5 5.6 ± 4.7 20 9 26.1 ± 4.6 23.0 ± 4.9 3.1 ± 2.5 

G1.224 - Po Quercus 

- Fraxinus - Alnus 

forests 

1. forests 

and 

shrublands 

1.9 1.9 1 1 18.0 15.0 3.0 

G1.41 - Alnus swamp 

woods not on acid 

peat 

1. forests 

and 

shrublands 

416.4 11.0 ± 15.2 38 30 22.6 ± 5.7 20.7 ± 5.7 1.9 ± 1.5 
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Table S3.2: Explanatory variables used to build the full models at the habitat and node scales and related 

references. 

Connectivity metrics (both scales) References 

Betweenness centrality Bodin & Saura 2010; Foltete et al. 2012a 

Closeness centrality Freeman 1979 

Eccentricity Urban &Keitt 2001 

Flux Urban & Keitt 2001; Saura & Torné 2009; Foltete et 

al. 2012b 

Interaction flux Foltete et al. 2014; Sahraoui et al. 2017 

Node degree Freeman 1979 

Landscape metrics (habitat scale) References 

Coefficient of variation fractal dimension 

index 
Mandelbrot 1977; McGarigal, et al. 2012 

Coefficient of variation of patch area McGarigal et al. 2012 

Coefficient of variation perimeter-area 

ratio 
McGarigal et al. 2012 

Coefficient of variation of related 

circumscribing circle 
Baker & Cai 1992; McGarigal et al. 2012 

Edge density of agricultural land use McGarigal et al. 2012 

Mean area of natural patches McGarigal et al. 2012 

Mean fractal dimension index Mandelbrot 1977; McGarigal, et al. 2012 

Mean fractal dimension index of 

agricultural land use 
Mandelbrot 1977; McGarigal, et al. 2012 

Mean of related circumscribing circle of 

agricultural land use 
Baker & Cai 1992; McGarigal et al. 2012 

Mean radius of gyration of agricultural 

land use 
Keitt et al. 1997; McGarigal et al. 2012 

Mean radius of gyration of natural 

patches 
Keitt et al. 1997; McGarigal et al. 2012 

Mean shape index Patton 1975; McGarigal et al. 2012 

Mean shape index of agricultural land use Patton 1975; McGarigal et al. 2012 

Natural patch density McGarigal et al. 2012 

Normalized landscape shape index of 

agricultural land use 
Patton 1975; McGarigal et al. 2012 

Normalized landscape shape index of 

natural patches 
Patton 1975; McGarigal et al. 2012 

Patch richness McGarigal et al. 2012 

Patch richness density McGarigal et al. 2012 

Percentage of natural patches McGarigal et al. 2012 

Simpson’s diversity index Simpson 1949; McGarigal et al. 2012 

Total edge with anthropogenic land use McGarigal et al. 2012 

Landscape metrics (node scale) References 

Maximum distance to square root of area 

ratio 
Forman & Godron 1986; Lang & Blaschke 2007 

Agricultural areas with residual natural 

elements 
/ 

Extensive crops / 

Hedgerow area / 

Intensive arable land / 

Number of habitats / 

Number of land uses / 
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Permanent grassland / 

Semi-natural woodland areas / 

Tree crops / 

Urban areas / 

Watercourse area / 
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Table S3.3: List of collected species. Type A=alien, N=native, PRE=protected, rare or endemic. % = 

percentage of occurrence. Protection HD=habitat directive, RRL=regional red list, NRL=national red list, 

R=rare, E=endemic 

Species Type % Protection Species Type % Protection 

Acalypha virginica L. A 3.20 - 

Lactuca sativa L. subsp. 

serriola (L.) Galasso, 

Banfi, Bartolucci & 

Ardenghi 

N 1.83 - 

Acer campestre L. N 30.14 - 
Lamium galeobdolon 

(L.) L. 
N 1.83 - 

Acer negundo L. A 5.94 - Lamium maculatum L. N 2.28 - 

Acer pseudoplatanus L. N 4.11 - Lamium orvala L. N 6.39 - 

Achillea millefolium 

aggr. 
N 2.74 - Lapsana communis L. N 0.91 - 

Aegopodium podagraria 

L. 
N 0.91 - Lathyrus pratensis L. N 9.59 - 

Agrimonia eupatoria L. 

subsp. eupatoria 
N 1.83 - 

Lathyrus venetus (Mill.) 

Wohlf. 
N 1.37 - 

Agrostis capillaris L. N 0.46 - 
Lathyrus vernus (L.) 

Bernh. 
N 1.83 - 

Agrostis gigantea Roth N 1.83 - Laurus nobilis L. N 5.02 - 

Agrostis stolonifera L. N 3.65 - Lemna minor L. N 2.28 - 

Ailanthus altissima 

(Mill.) Swingle 
A 0.46 - Leontodon hispidus L. N 1.37 - 

Ajuga reptans L. N 10.05 - 
Leucanthemum 

ircutianum DC. 
N 5.02 - 

Alisma plantago-

aquatica L. 
N 1.37 - 

Leucanthemum 

platylepis Borbás 
PRE 0.46 R 

Alliaria petiolata (Bieb.) 

Cavara & Grande 
N 0.46 - Leucojum aestivum L. N 1.83 - 

Allium carinatum L. N 1.37 - 
Ligustrum lucidum 

W.T.Aiton 
A 5.94 - 

Allium polyanthum 

Schult. & Schult.f. 
N 0.46 - 

Ligustrum sinense 

Lour. 
A 1.83 - 

Allium scorodoprasum 

L. 
A 0.46 - Ligustrum vulgare L. N 41.10 - 

Allium suaveolens Jacq. PRE 1.37 NRL 
Limniris pseudacorus 

(L.) Fuss 
N 16.44 - 

Allium ursinum L. N 7.31 - 
Limniris sibirica (L.) 

Fuss 
PRE 1.37 NRL 

Allium vineale L. N 3.65 - Linum tenuifolium L. N 0.46 - 

Alnus glutinosa (L.) 

Gaertn. 
N 39.27 - 

Lolium arundinaceum 

(Schreb.) Darbysh. 

subsp. arundinaceum 

N 13.24 - 

Alopecurus myosuroides 

Huds. subsp. 

myosuroides 

N 0.46 - 
Lolium multiflorum 

Lam. 
N 2.74 - 

Alopecurus pratensis L. 

subsp. pratensis 
N 0.91 - Lolium perenne L. N 3.65 - 

Amaranthus retroflexus 

L. 
A 0.46 - 

Loncomelos pyrenaicus 

(L.) L.D.Hrouda subsp. 

pyrenaicus 

N 4.11 - 

Amorpha fruticosa L. A 9.59 - Lonicera caprifolium L. N 14.16 - 

Anacamptis laxiflora 

(Lam.) R.M.Bateman, 

Pridgeon & 

M.W.Chase 

PRE 0.46 RRL 
Lonicera japonica 

Thunb. 
A 9.13 - 

Anacamptis palustris 

(Jacq.) R.M. Bateman, 

Pridgeon & M.W. 

Chase 

PRE 0.46 NRL Lonicera xylosteum L. N 1.37 - 
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Anemonoides nemorosa 

(L.) Holub 
N 14.16 - 

Lotus corniculatus L. 

s.s. 
N 16.44 - 

Angelica sylvestris L. N 3.20 - 
Lotus herbaceus (Vill.) 

Jauzein 
N 5.48 - 

Anisantha sterilis (L.) 

Nevski 
N 0.46 - Lotus maritimus L. N 0.46 - 

Anthericum ramosum L. N 0.91 - 
Luzula multiflora 

(Ehrh.) Lej. 
N 0.46 - 

Anthoxanthum 

odoratum L.  subsp. 

odoratum 

N 4.57 - 
Lychnis flos-cuculi L. 

subsp. flos-cuculi 
N 2.28 - 

Anthriscus sylvestris 

(L.) Hoffm. 
N 0.46 - Lycopus europaeus L. N 5.02 - 

Aphanes arvensis L. N 0.46 - 
Lysimachia arvensis (L.) 

U.Manns & Anderb. 
N 0.46 - 

Arctium minus (Hill) 

Bernh. 
N 0.91 - 

Lysimachia nummularia 

L. 
N 5.02 - 

Aristolochia clematitis 

L. 
N 0.91 - Lysimachia vulgaris L. N 18.72 - 

Aristolochia rotunda L. 

subsp. rotunda 
N 1.37 - Lythrum salicaria L. N 34.25 - 

Armeria helodes 

F.Martini & Poldini 
PRE 1.83 HD 

Malus sylvestris (L.) 

Mill. 
N 0.91 - 

Arrhenatherum elatius 

(L.) P.Beauv. ex J.Presl 

& C.Presl 

N 8.22 - Medicago lupulina L. N 2.74 - 

Artemisia verlotiorum 

Lamotte 
A 0.46 - Medicago sativa L. A 2.74 - 

Artemisia vulgaris L. N 0.46 - Melica nutans L. N 0.46 - 

Arundo donax L. A 0.91 - 
Melittis melissophyllum 

L. 
N 2.28 - 

Asarum europaeum L. N 0.46 - 
Mentha aquatica L. 

subsp. aquatica 
N 6.39 - 

Asparagus tenuifolius 

Lam. 
N 9.59 - 

Mentha longifolia (L.) 

L. 
N 0.46 - 

Asperula cynanchica L. N 0.46 - Mentha spicata L. N 0.46 - 

Asplenium 

scolopendrium L. subsp. 

scolopendrium 

N 0.46 - Mercurialis perennis L. N 0.46 - 

Athyrium filix-foemina 

(L.) Roth 
N 2.28 - 

Molinia caerulea (L.) 

Moench (incl. Molinia 

arundinacea Schrank) 

N 14.61 - 

Avena barbata Pott. ex 

Link.  subsp. barbata 
N 3.65 - Morus alba L. A 1.37 - 

Avenula pubescens 

(Huds.) Dumort. subsp. 

pubescens 

N 0.46 - 

Myosotis ramosissima 

Rochel subsp. 

ramosissima 

N 0.46 - 

Bellis perennis L. N 3.65 - 
Myosotis scorpioides L. 

subsp. scorpioides 
N 1.37 - 

Bergenia crassifolia (L.) 

Fritsch 
A 0.46 - 

Nasturtium officinale 

R.Br. 
N 0.46 - 

Berula erecta (Huds.) 

Coville 
N 3.65 - 

Neottia ovata (L.) Bluff 

& Fingerh. 
PRE 3.65 NRL 

Betonica officinalis L. N 5.48 - Nuphar lutea (L.) Sm. PRE 0.46 RRL 

Bidens frondosa L. A 4.57 - Oenothera biennis L. A 1.83 - 

Blackstonia perfoliata 

(L.) Huds. 
N 0.91 - 

Oenothera glazioviana 

Micheli 
A 0.46 - 

Bolboschoenus 

maritimus (L.) Palla 
N 0.46 - Ononis spinosa L. N 2.74 - 

Brachypodium rupestre 

(Host) Roem. & Schult. 

subsp. rupestre 

N 11.87 - 

Oplismenus 

undulatifolius (Ard.) P. 

Beauv. 

PRE 0.46 NRL 
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Brachypodium 

sylvaticum (Huds.) 

P.Beauv. subsp. 

sylvaticum 

N 44.75 - 
Oreoselinum nigrum 

Delarbre 
N 1.37 - 

Briza media L. N 2.74 - Orobanche gracilis Sm. N 0.46 - 

Bromopsis erecta 

(Huds.) Fourr. 
N 5.48 - 

Oxalis articulata 

Savigny 
A 4.57 - 

Bromus hordeaceus L. N 7.76 - Oxalis corniculata L. N 6.39 - 

Bryonia dioica Jacq. N 1.37 - Oxalis stricta L. A 2.28 - 

Buphthalmum 

salicifolium L. 
N 3.65 - Parietaria officinalis L. N 5.02 - 

Calamagrostis epigejos 

(L.) Roth subsp. 

epigejos 

N 0.91 - Paris quadrifolia L. N 1.37 - 

Callitriche stagnalis 

Scop. 
N 0.46 - 

Parthenocissus 

quinquefolia (L.) 

Planch. 

A 2.28 - 

Caltha palustris L. PRE 2.28 RRL 
Paulownia tomentosa 

(Thunb.) Steud. 
A 0.46 - 

Calystegia sepium (L.) 

R. Br. 
N 12.33 - 

Pentanema hirtum (L.) 

D. Gut.Larr., Santos-

Vicente, Anderb., E. 

Rico & M.M. Mart.Ort. 

N 0.46 - 

Campanula glomerata 

L. 
N 1.37 - 

Pentanema salicinum 

(L.) D.Gut.Larr., 

Santos-Vicente, 

Anderb., E.Rico & 

M.M.Mart.Ort. 

N 1.83 - 

Carex acutiformis Ehrh. N 5.48 - 
Persicaria lapathifolia 

(L.) Delarbre 
N 0.46 - 

Carex caryophyllea 

Latourr. 
N 0.46 - 

Persicaria maculosa 

Gray 
N 9.13 - 

Carex davalliana Sm. N 0.46 - Phalaris arundinacea L. N 0.91 - 

Carex distans L. N 7.31 - Phleum pratense L. N 0.46 - 

Carex divulsa Stokes N 6.39 - 
Phragmites australis 

(Cav.) Trin. ex Steud. 
N 33.33 - 

Carex elata All. subsp. 

elata 
N 2.28 - 

Phyllostachys aurea 

Carrière ex Rivière & 

C.Rivière 

A 0.46 - 

Carex flacca Schreb. N 22.83 - Picris hieracioides L. N 1.37 - 

Carex flava L. N 0.46 - 
Pilosella officinarum 

Vaill. 
N 0.46 - 

Carex hirta L. N 12.79 - 
Pilosella piloselloides 

(Vill.) Soják 
N 0.46 - 

Carex hostiana DC. N 0.46 - Pimpinella saxifraga L. N 0.46 - 

Carex lepidocarpa 

Tausch subsp. 

lepidocarpa 

N 0.46 - Pinus pinaster Aiton N 0.46 - 

Carex montana L. N 0.46 - Plantago altissima L. PRE 0.91 NRL 

Carex otrubae Podp. N 4.57 - Plantago lanceolata L. N 15.98 - 

Carex pairae 

F.W.Schultz 
N 1.37 - Plantago major L. N 0.91 - 

Carex pallescens L. N 0.46 - Plantago media L. N 0.46 - 

Carex panicea L. N 1.37 - 
Platanthera bifolia (L.) 

Rchb. 
PRE 0.46 NRL 

Carex pendula Huds. N 31.51 - 
Platanus hispanica 

Miller ex Münchh. 
A 28.77 - 

Carex pseudocyperus L. N 2.28 - Poa annua L. N 4.11 - 

Carex remota L. N 12.79 - Poa compressa L. N 0.91 - 

Carex riparia Curtis N 2.28 - 
Poa palustris L. subsp. 

palustris 
N 0.46 - 

Carex spicata Huds. N 3.20 - Poa pratensis L. N 4.57 - 

Carex sylvatica Huds. N 2.74 - Poa sylvicola Guss. N 19.18 - 
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Carex tomentosa L. N 0.46 - 
Polygala comosa 

Schkuhr 
N 1.37 - 

Carex umbrosa Host 

subsp. umbrosa 
N 0.46 - Polygala vulgaris L. N 0.46 - 

Carex vesicaria L. N 3.65 - 
Polygonatum 

multiflorum (L.) All. 
N 11.87 - 

Carex viridula Michx. N 1.83 - 
Polygonatum odoratum 

(Miller) Druce 
N 0.46 - 

Carpinus betulus L. N 16.44 - Populus alba L. N 2.74 - 

Celtis australis L. subsp. 

australis 
N 0.46 - 

Populus nigra L.  subsp. 

nigra 
N 18.72 - 

Centaurea jacea L. 

subsp. forojulensis 

(Poldini) Greuter 

PRE 5.02 NRL Populus tremula L. N 0.46 - 

Centaurea nigrescens 

Willd. 
N 1.37 - Potamogeton natans L. N 0.46 - 

Centaurea scabiosa L. N 0.91 - 
Potentilla erecta (L.) 

Räuschel 
N 11.42 - 

Centaurium erythraea 

Rafn 
N 4.57 - 

Potentilla indica 

(Jacks.) Th.Wolf 
A 14.61 - 

Centaurium pulchellum 

(Sw.) Druce subsp. 

pulchellum 

N 0.46 - Potentilla reptans L. N 39.73 - 

Cerastium 

brachypetalum 

Desportes & Pers. 

N 1.83 - 
Poterium sanguisorba 

L. 
N 0.91 - 

Cerastium holosteoides 

Fr. 
N 0.46 - Primula vulgaris Huds. N 7.76 - 

Cervaria rivini Gaertn. N 2.28 - 
Prunella grandiflora 

(L.) Scholler 
N 0.91 - 

Chamaeiris graminea 

(L.) Medik. 
N 0.46 - 

Prunella laciniata (L.) 

L. 
N 0.91 - 

Chelidonium majus L. N 0.46 - Prunella vulgaris L. N 2.28 - 

Chenopodium album L. N 1.37 - Prunus avium L. N 5.48 - 

Chrysopogon gryllus 

(L.) Trin. 
N 3.65 - Prunus cerasifera Ehrh. A 0.91 - 

Cichorium intybus L. N 2.74 - Prunus domestica L. A 3.20 - 

Circaea lutetiana L. N 3.65 - Prunus mahaleb L. N 0.46 - 

Cirsium arvense (L.) 

Scop. 
N 4.57 - 

Prunus padus L. subsp. 

padus 
N 3.65 - 

Cirsium canum (L.) All. PRE 0.46 NRL Prunus serotina Ehrh. A 1.37 - 

Cirsium oleraceum (L.) 

Scop. 
N 1.83 - Prunus spinosa L. N 13.70 - 

Cirsium palustre (L.) 

Scop. 
N 3.65 - 

Pulicaria dysenterica 

(L.) Bernh. 
N 0.46 - 

Cirsium vulgare (Savi) 

Ten. 
N 3.20 - 

Pulmonaria officinalis 

L. 
N 5.94 - 

Cladium mariscus (L.) 

Pohl 
N 12.33 - 

Pyracantha coccinea M. 

Roem. 
N 0.46 - 

Clematis recta L. N 2.74 - Pyrus communis L. N 1.83 - 

Clematis vitalba L. N 17.35 - Quercus robur L. N 53.42 - 

Clematis viticella L. N 10.96 - Ranunculus acris L. N 9.59 - 

Clinopodium vulgare L. N 1.83 - 
Ranunculus auricomus 

L. aggr. 
N 4.57 - 

Colchicum autumnale 

L. 
N 2.74 - Ranunculus bulbosus L. N 1.83 - 

Convolvulus arvensis L. N 5.02 - 

Ranunculus 

polyanthemophyllus 

W.Koch & H.E.Hess 

N 1.37 - 

Cornus mas L. N 3.20 - Ranunculus repens L. N 0.91 - 

Cornus sanguinea L. N 54.34 - 
Ranunculus sardous 

Crantz 
N 0.91 - 
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Corylus avellana L. N 36.99 - 
Raphanus raphanistrum 

L. 
N 0.46 - 

Crataegus laevigata 

(Poir.) DC. 
N 5.48 - Rhamnus cathartica L. N 7.31 - 

Crataegus monogyna 

Jacq. 
N 20.55 - Robinia pseudoacacia L. A 15.53 - 

Crepis capillaris (L.) 

Wallr. 
N 1.37 - Rosa canina aggr. N 11.87 - 

Crepis foetida subsp. 

rhoeadifolia (M. Bieb.) 

Čelak. 

A 1.37 - Rubus caesius L. N 63.47 - 

Crepis taraxacifolia 

Thuill. 
N 2.74 - Rubus ulmifolius Schott N 57.08 - 

Crocus vernus (L.) Hill N 0.91 - Rudbeckia laciniata L. A 0.46 - 

Cruciata glabra (L.) 

C.Bauhin ex Opiz 
N 1.37 - 

Rumex acetosa L. 

subsp. acetosa 
N 1.37 - 

Cynodon dactylon (L.) 

Pers. 
N 0.46 - Rumex acetosella L. N 0.46 - 

Cynosurus cristatus L. N 0.46 - 
Rumex conglomeratus 

Murray 
N 2.74 - 

Cyperus esculentus L. A 0.46 - Rumex crispus L. N 5.48 - 

Cyperus longus L. N 0.46 - Rumex obtusifolius L. N 2.74 - 

Dactylis glomerata L. N 25.11 - Ruscus aculeatus L. PRE 8.68 HD 

Danthonia decumbens 

(L.) DC. 
N 0.91 - Salix alba L. N 45.21 - 

Daphne mezereum L. N 0.46 - Salix babylonica L. A 0.46 - 

Daucus carota L. N 11.87 - Salix cinerea L. N 36.99 - 

Deschampsia cespitosa 

(L.) P.Beauv. 
N 3.65 - Salix purpurea L. N 6.39 - 

Dianthus hyssopifolius 

L. 
N 0.46 - 

Salvia pratensis L. 

subsp. pratensis 
N 1.37 - 

Dioscorea communis 

(L.) Caddick & Wilkin 
N 23.29 - Sambucus ebulus L. N 0.46 - 

Dipsacus fullonum L. N 0.91 - Sambucus nigra L. N 18.72 - 

Drosera rotundifolia L. PRE 0.46 RRL Samolus valerandi L. N 0.91 - 

Dryopteris filix-mas 

aggr. 
N 3.20 - 

Sanguisorba officinalis 

L. 
N 5.02 - 

Echinochloa crus-galli 

(L.) P.Beauv. 
N 0.46 - Scabiosa triandra L. N 3.65 - 

Elymus repens (L.) 

Gould subsp. repens 
N 1.83 - 

Schoenoplectus lacustris 

(L.) Palla 
N 0.91 - 

Epilobium hirsutum L. N 2.74 - Schoenus nigricans L. N 9.13 - 

Epilobium parviflorum 

Schreb. 
N 1.37 - 

Scirpoides holoschoenus 

(L.) Soják 
N 10.50 - 

Epilobium tetragonum 

L. 
N 0.91 - Scrophularia canina L. N 0.46 - 

Epipactis palustris (L.) 

Crantz 
PRE 1.37 NRL Scrophularia nodosa L. N 0.91 - 

Equisetum arvense L. N 10.96 - 

Scrophularia umbrosa 

Dumort. subsp. 

umbrosa 

N 0.91 - 

Equisetum palustre L. N 9.13 - 
Sechium edule (Jacq.) 

Sw. 
A 0.46 - 

Equisetum 

ramosissimum Desf. 
N 5.48 - 

Senecio fontanicola 

Grulich & Hodálová 
PRE 2.74 NRL 

Equisetum telmateia 

Ehrh. 
N 22.37 - 

Serratula tinctoria L. 

subsp. tinctoria 
N 3.20 - 

Erigeron annuus (L.) 

Pers. 
A 10.50 - Sesleria uliginosa Opiz PRE 1.37 NRL 

Erigeron canadensis L. A 0.46 - 
Setaria pumila (Poir.) 

Roem. & Schult. 
N 0.91 - 

Erucastrum palustre 

(Pirona) Vis. 
PRE 0.91 HD 

Silene baccifera (L.) 

Durande 
N 0.46 - 
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Euonymus europaea L. N 10.50 - Silene latifolia Poir. N 0.46 - 

Eupatorium 

cannabinum L. 
N 13.70 - 

Silene vulgaris 

(Moench) Garcke 
N 0.91 - 

Euphorbia 

amygdaloides L. 
N 1.37 - 

Silphiodaucus 

prutenicus (L.) Spalik, 

Wojew., Banasiak, 

Piwczyński & Reduron 

N 0.46 - 

Euphorbia cyparissias 

L. 
N 0.46 - Solanum dulcamara L. N 5.02 - 

Euphorbia dulcis L. N 3.65 - Solidago canadensis L. A 0.46 - 

Euphorbia illirica Lam. PRE 0.46 R Solidago gigantea Aiton A 4.57 - 

Euphorbia nutans Lag. A 0.91 - Sonchus oleraceus L. N 0.46 - 

Euphorbia palustris L. N 0.46 - 
Sorbus torminalis (L.) 

Crantz 
N 0.46 - 

Euphorbia peplus L. N 0.46 - 
Sorghum halepense (L.) 

Pers. 
A 4.11 - 

Euphorbia platyphyllos 

L. 
N 0.91 - 

Sparganium neglectum 

Beeby 
N 0.46 - 

Euphorbia verrucosa L. N 3.65 - Stachys palustris L. N 0.91 - 

Festuca heterophylla 

Lam. 
N 0.46 - Stachys sylvatica L. N 0.46 - 

Festuca rubra L. N 10.96 - 
Stellaria aquatica (L.) 

Scop. 
N 0.46 - 

Ficaria verna Huds. N 0.91 - 
Stellaria holostea L. 

subsp. holostea 
N 0.46 - 

Ficus carica L. N 1.83 - 
Succisa pratensis 

Moench 
N 0.46 - 

Filipendula ulmaria (L.) 

Maxim. 
N 15.07 - Symphytum officinale L. N 9.59 - 

Filipendula vulgaris 

Moench 
N 6.85 - 

Symphytum tuberosum 

L. subsp. angustifolium 

(A.Kern.) Nyman 

N 2.74 - 

Fragaria vesca L. N 10.50 - 
Taraxacum sect. 

Taraxacum 
N 16.89 - 

Frangula alnus Mill. 

subsp. alnus 
N 19.63 - 

Thalictrum 

aquilegiifolium L. 

subsp. aquilegiifolium 

N 3.20 - 

Fraxinus angustifolia 

Vahl subsp. oxycarpa 

(M.Bieb. ex Willd.) 

Franco & Rocha 

Afonso 

N 18.72 - Thalictrum lucidum L. N 5.02 - 

Fraxinus excelsior L. 

subsp. excelsior 
N 9.59 - Thymus pulegioides L. N 2.28 - 

Fraxinus ornus L. 

subsp. ornus 
N 9.13 - 

Tofieldia calyculata (L.) 

Wahlenb. 
N 0.46 - 

Galega officinalis L. A 0.46 - 
Torilis arvensis (Huds.) 

Link 
N 2.28 - 

Galeopsis pubescens 

Besser 
N 0.46 - 

Trachycarpus fortunei 

(Hooker) Wendl. 
A 4.57 - 

Galium aparine L. N 2.74 - 
Tragopogon dubius 

Scop. 
N 1.37 - 

Galium laevigatum L. N 1.37 - 
Tragopogon orientalis 

L. 
N 6.39 - 

Galium mollugo L. N 12.79 - 
Trifolium campestre 

Schreb. 
N 3.20 - 

Galium palustre L. N 3.20 - 
Trifolium fragiferum L. 

subsp. fragiferum 
N 0.46 - 

Galium verum L. N 9.59 - 
Trifolium montanum L. 

subsp. montanum 
N 1.37 - 

Genista tinctoria L N 3.20 - Trifolium pratense L. N 10.96 - 

Geranium dissectum L. N 4.11 - Trifolium repens L. N 5.94 - 

Geranium nodosum L. N 0.46 - Trifolium rubens L. N 1.83 - 
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Geranium pusillum L. N 1.83 - 

Trigonella alba 

(Medik.) Coulot & 

Rabaute 

N 0.91 - 

Geum urbanum L. N 20.09 - 

Trisetaria flavescens 

(L.) Baumg. subsp. 

flavescens 

N 0.46 - 

Gladiolus illyricus 

W.D.J.Koch 
N 0.46 - Tussilago farfara L. N 0.46 - 

Gladiolus palustris 

Gaudin 
PRE 4.57 HD Ulmus minor Miller N 25.11 - 

Glechoma hederacea L. N 12.79 - Urtica dioica L. N 17.81 - 

Gleditsia triacanthos L. A 0.46 - Utricularia vulgaris L. N 0.46 - 

Gratiola officinalis L. N 0.91 - Valeriana dioica L. N 1.37 - 

Gymnadenia conopsea 

(L.) R.Br. 
PRE 0.91 NRL Valeriana officinalis L. N 29.68 - 

Hedera helix L. N 51.14 - Verbena officinalis L. N 9.13 - 

Helianthemum 

nummularium (L.) Mill. 
N 0.91 - Veronica arvensis L. N 1.37 - 

Helminthotheca 

echioides (L.) Holub 
N 1.37 - Veronica beccabunga L. N 0.46 - 

Heracleum sphondylium 

L. subsp. sphondylium 
N 0.91 - 

Veronica chamaedrys L. 

subsp. chamaedrys 
N 0.46 - 

Holcus lanatus L. N 22.83 - Veronica officinalis L. N 0.46 - 

Houttuynia cordata 

Thunb. 
A 0.46 - Veronica persica Poir. A 3.65 - 

Humulus lupulus L. N 26.94 - Veronica serpyllifolia L. N 0.46 - 

Hypericum perforatum 

L. 
N 10.50 - Viburnum lantana L. N 10.50 - 

Hypericum tetrapterum 

Fr. 
N 0.91 - Viburnum opulus L. N 24.66 - 

Hypochaeris maculata 

L. 
N 0.91 - Vicia cracca L. N 0.46 - 

Hypochaeris radicata L. N 0.91 - Vicia sativa L. N 1.83 - 

Impatiens glandulifera 

Royle 
A 0.46 - Vicia tenuifolia Roth N 0.46 - 

Jacobaea vulgaris 

Gaertn. 
N 0.46 - Vicia villosa Roth N 1.37 - 

Juglans nigra L. A 1.83 - 
Vinca major L. subsp. 

major 
N 1.37 - 

Juglans regia L. A 12.33 - Vinca minor L. N 0.46 - 

Juncus articulatus L. 

subsp. articulatus 
N 6.85 - 

Vincetoxicum 

hirundinaria Medik. 
N 8.22 - 

Juncus compressus 

Jacq. 
N 0.91 - Viola hirta L. N 2.74 - 

Juncus conglomeratus 

L. 
N 0.91 - Viola odorata L. N 4.57 - 

Juncus effusus L. 

subsp. effusus 
N 1.83 - 

Viola reichenbachiana 

Jord. ex Boreau 
N 9.13 - 

Juncus inflexus L. 

subsp. inflexus 
N 0.46 - Viola riviniana Rchb. N 0.46 - 

Juncus subnodulosus 

Schrank 
N 0.46 - Vitis vinifera L. N 2.74 - 

Knautia illyrica Beck N 1.83 - 

Xanthoselinum venetum 

(Spreng.) Soldano & 

Banfi 

N 1.37 - 

Knautia ressmannii 

(Pacher) Briq. 
PRE 1.37 E     

  



 

132 

 

Supplementary materials to Chapter 3 

(a) Observed vs estimated species richness (b) Observed vs estimated species richness scaled by 0.4 

 

 
Figure S4.1: Regression between observed taxonomic and estimated spectral species richness unscaled (a) and scaled by 0.4 (b). 
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Figure S4.2: Regression between observed taxonomic Shannon index and estimated spectral Shannon index. 
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Figure S4.3: Regression between observed taxonomic Bray-Curtis dissimilarity index and estimated spectral 

Bray-Curtis dissimilarity index. 
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QNDVI1 ~ s(ShannonLU) QNDVI5 ~ s(ShannonLU) QNDVIInf ~ s(ShannonLU) 

   

QNDVI1 ~ RatioAN QNDVI5 ~ RatioAN QNDVIInf ~ RatioAN 

   

Qmulti1 ~ s(ShannonLU) Qmulti5 ~ s(ShannonLU) QmultiInf ~ s(ShannonLU) 
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Qmulti1 ~ RatioAN Qmulti5 ~ RatioAN QmultiInf ~ RatioAN 

   

Figure S4.4: Relationships between spectral heterogeneity (Q), land use diversity (ShannonLU; smooth term), and alien to native species richness ratio (RatioAN; linear 

term), resulting from the six GAMs. Rao’s Q values derived from the NDVI time series (QNDVI) and the multispectral single image (Qmulti) and the weight for the distance 

matrix was set to 1, 5 and infinite. 
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Figure S4.5: tb-RDA ordination based on Hellinger pre-transformed species composition matrix, with site 

grouped per habitat and displaying the following variables: focal species richness (N.Foc), native species 

richness (N.Nat), Rao’s Q index, calculated from the 10 bands of the Sentinel 2 image of 03 June 2019 with 

the weight for the distance matrix set to infinite (QmultiINF), and ratio of alien to native species richness 

(RatioAN), Shannon index on land use diversity (ShannonLU). 
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