
Adaptive ensemble of self-adjusting nearest neighbor subspaces for
multi-label drifting data streams
⇑ Corresponding author.
E-mail address: acano@vcu.edu (A. Cano).
Gavin Alberghini a, Sylvio Barbon Junior b, Alberto Cano a,⇑
aDept. of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
bDept. of Engineering and Architecture, University of Trieste, Italy

a r t i c l e i n f o
Article history:
 Accepted 19 January 2022 

Keywords:
Multi-label stream
Ensemble learning
Data stream
Concept drift
a b s t r a c t

Multi-label data streams are sequences of multi-label instances arriving over time to a multi-label clas-
sifier. The properties of the stream may continuously change due to concept drift. Therefore, algorithms
must constantly adapt to the new data distributions. In this paper we propose a novel ensemble method
for multi-label drifting streams named Adaptive Ensemble of Self-Adjusting Nearest Neighbor Subspaces
(AESAKNNS). It leverages a self-adjusting kNN as a base classifier with the advantages of ensembles to
adapt to concept drift in the multi-label environment. To promote diverse knowledge within the ensem-
ble, each base classifier is given a unique subset of features and samples to train on. These samples are
distributed to classifiers in a probabilistic manner that follows a Poisson distribution as in online bagging.
Accompanying these mechanisms, a collection of ADWIN detectors monitor each classifier for the occur-
rence of a concept drift on the subspace. Upon detection, the algorithm automatically trains additional
classifiers in the background to attempt to capture new concepts on new subspaces of features. The
dynamic classifier selection chooses the most accurate classifiers from the active and background ensem-
bles to replace the current ensemble. Our experimental study compares the proposed approach with 30
other classifiers, including problem transformation, algorithm adaptation, kNNs, and ensembles on 30
diverse multi-label datasets and 12 performance metrics. Results, validated using non-parametric statis-
tical analysis, support the better performance of the AESAKNNS and highlight the contribution of its com-
ponents in improving the performance of the ensemble.
1. Introduction

Multi-label data stream mining merges two challenging tasks:
multi-label classification and online learning. Multi-label classifi-
cation is a generalization of the traditional classification task. In
multi-label classification, each example’s class contains multiple,
non-exclusive labels instead of a singular class value. Ensembles
are a widely popular method for the multi-label problem space
[1–3], and have received significant research contributions over
the last few years. The context of online learning, however, is
actively being studied [4–6]. Data contained in real-world applica-
tions is appearing more frequently over infinite, continuous, time-
evolving streams that present a unique set of difficult challenges
for machine learning tasks. There are two main obstacles that con-
tribute to the difficulty of data stream classification. These chal-
lenges include the requirement to utilize as few resources as
possible (time and memory), and concurrently maintaining a high
accuracy and robustness to concept drift. Online learning is based
on the idea of real time feedback and learning instance by instance.
This idea of how instances correlate to training and prediction time
introduces the other issue associated with data stream mining
called concept drift. Concept drift is the notion that overtime, data
distribution for specific target attributes can change. Therefore,
algorithms should adapt to changes in the data distribution
dynamically. Ensembles are popular for adapting to concept drift
since the algorithm may add/remove base classifiers to add/forget
concepts appearing/fading in the stream. Many researchers have
found that ensembles are highly competitive in the data stream
mining context [7–10].

This paper presents a novel ensemble method for multi-label
data stream classification named Adaptive Ensemble of Self-
Adjusting Nearest Neighbor Subspaces (AESAKNNS). It proposes
the idea of utilizing adaptive random subspaces to train base clas-
sifiers on unique and varying-size feature subspaces. Adaptive ran-
dom subspaces increases the diversity of the ensemble and helps
to adapt to concept drift by understanding the most relevant fea-
tures at a given time. Moreover, it employs online bagging to pro-
1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.01.075&domain=pdf
https://doi.org/10.1016/j.neucom.2022.01.075
mailto:acano@vcu.edu
https://doi.org/10.1016/j.neucom.2022.01.075
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


vide different instance subsets to the base classifiers, further
increasing their diversity. We leverage the MLSAkNN [11] as the

and the label being actively predicted, this method will detect it.
Unfortunately, this means that label correlation discovery is based

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

229

2

base classifier due to its adaptive nature. When combined with fea-
ture and instance subspaces, a diverse set of self-adjusted
MLSAkNNs demonstrate a robust performance and quick adapta-
tion to concept drift. We also propose to monitor the concept drift
on each of the feature subspaces. Upon warning of a drift,
AESAKNNS starts learning a new ensemble in the background
leveraging new, random feature subspaces. The dynamic classifier
selection chooses the most accurate classifiers from the active and
background ensembles to replace the current ensemble.
AESAKNNS utilizes the advantages of the MLSAkNN as a multi-
label base classifier, along with additional custom mechanisms
for ensembles that handle concept drift and performance in online
learning. The main contributions of this paper are as follows:

� AESAKNNS: an adaptive ensemble for multi-label drifting
streams using nearest neighbors on random feature and
instance subspaces.

� A methodology to increase the ensemble diversity by combin-
ing adaptive feature subspaces and online bagging.

� A self-adjusting nearest neighbor classifier as base model for
the ensemble.

� A background ensemble to adapt to concept drift and new fea-
ture subspaces upon detection of a warning using ADWIN.

� A thorough experimental study comparing AESAKNNS to other
state of the art models, including an in depth analysis of the
ensemble mechanisms and how they contribute to improve
the classification performance.

2. Multi-label stream classification

2.1. Multi-label data

A multi-label data stream is defined as a potentially unbounded
sequence < S1; S2; . . . ; Sn; . . . >, in which each element Sj is a collec-
tion of instances (batch scenario) or a single instance (online sce-
nario). Each instance is defined as ðx; yÞ where x represents the
instance features and y represents a set of labels simultaneously
associated with the instance. These labels are sometimes repre-
sented as a generic interpretation of multi-class data. Just as these
problem spaces are related, common methods in the literature for
multi-label learning involve either bringing a model from the
multi-class context into the multi-label context (Algorithm Adap-
tation), or transforming data into problems that can be solved via
more traditional methods (Problem Transformation). Problem
transformation focuses on the idea of changing multi-label exam-
ples into problems that can be solved using already established
methods. Label combination (LC), also known as label power set
(LP), methods transformmulti-dimensional label sets (y) into a sin-
gle class value towards converting the multi-label problem into a
multi-class problem. Some known issues with this method include
over training and its worst case computational complexity. Binary
Relevance (BR) is a problem transformation method that decom-
poses a d-dimensional label vector into d number of binary classi-
fication problems. This allows standard binary classifiers to be
used and predict the possibility of each label. There are some issues
raised by this strategy [12] stemming from the loss of any label
correlation when the problem is decomposed. Though there are
multiple mechanisms to combat the issue of lost label correlations
in literature [12]. Classifier Chains (CC) are a common means to
rectify the loss of label correlations associated with methods such
as binary relevance. The idea behind this method is to supply label
predictions as features to classifiers further down the chain. If a
correlation between labels exists between the provided labels
on the order of predicted labels in the classifier chain. Commonly,
several variations of the label order are trained at the same time
and the highest achieving CC is chosen. Algorithm adaption meth-
ods take the opposite approach and focus on making changes to
decision functions. This allows a previously single class model to
now operate in the multi-label context, including methods for fea-
ture selection [13]. One example algorithm adaption includes
MLkNN [14]. The MLkNN algorithm developed by Zhang et. al. per-
forms this adaptation by combining the kNN approach with Baye-
sian probabilities. The algorithm begins by calculating the nearest
neighbors of a given training instance. Then, using the gathered
neighbors, a membership counting vector and category vector
can be derived for label sets. Thus, the prediction requires the prior
and posterior probabilities, as well as the neighbors themselves,
which are all directly calculated from the training data.

2.2. Data streams

As mentioned prior, the online learning scenario deals with
instances arriving to a model over time. In this case, algorithms
must be able to not only learn from the data it has seen, but be able
to adjust to new knowledge as it arrives. A key data consideration
in this context includes Oza et al. [15] and their work with boosting
and bagging methods for the online problem space. In their work it
is shown that the binomial distribution of instances in batched
based bagging can be applied to the online scenario via a Poisson
(1) distribution. To carryout the online sampling, inbound
instances are learned k number of times where k is set according
to Poisson(1). This work has enabled many algorithms, especially
lazy learners, to make the leap from batch to online learning. Con-
cept drift is the term used to describe how the statistical properties
of target label set y change over time. Formally we define concept
drift as Ptðx; yÞ– PtþDðx; yÞ where Pðx; yÞ represents the joint distri-
bution between features and labels at time t. Some of the different
types of concept drift are detailed below:

� Sudden concept drift: The scenario in which there is an instant
change in the underlying data distribution at a particular time t.
Models built prior to the drift are immediately unreliable and
should be discarded.

� Incremental concept drift: The situation where there is steady
progression through multiple concepts over a time interval
ðt1; t2Þ. Each subsequent shift results in a different concept from
the original data distribution and closer to the target distribu-
tion. Models incrementally adapt to the drift.

� Gradual concept drift: The context in which incoming data is
alternating between two different concepts with a growing bias
toward the new data distribution over time. Models can gradu-
ally adapt to the drift.

� Recurring concept drift: The idea that a previously seen concept
can potentially reappear once or multiple times in the future
[16]. Models can be saved and restored when the recurring drift
reappears.

While all of the listed forms of concept drift focus on when and
how the drift appears, another important factor is to consider if
drift is contained within one concept. Real concept drift describes
a change that invalidates prior decision boundary knowledge of a
class. This would invalidate any prior knowledge of the concept
and require new knowledge to supplement the shift. Conversely,
virtual concept drift is a change that only affects the distribution
of data within a known concept but not the decision boundary
between them. Being able to differentiate between these two types
of drift helps avoid unnecessary changes to the current knowledge.



In [17], a feature selection scheme is developed specifically for the
multi-label streaming problem space. It leverages correlation

ods, the first being a dynamic k value that self-adjusts over time for
each label, adapting automatically to the best parameter settings in

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

230

3

degrees, relevance analysis, and redundancy analysis to derive
the best feature sets for correlated labels. Another issue associated
with data streams is that the proportion in which each class is
expressed varies throughout the duration of the stream. Many
supervised learning algorithms naively rely on the assumption of
equal class distributions. When data proportions are skewed, one
can expect to see poor predictive performance for minority classes.
In order to account for this difference in data, it becomes necessary
to adapt the learning. One such mechanism of adaption includes
random sampling methods such as over-sampling and under-
sampling [18,19]. The work of Tarekegn et al. [20] explores several
additional methods for combating the issue of class imbalance.
These methods include classifier adaption, ensemble methods,
and cost-sensitive. All of which apply some type of augmented
sampling or meta evaluations to dynamically adjust with the data.
As the additional dimension of multi-label data is applied to the
problem space, the need for more comprehensive solutions arise.

2.3. Nearest neighbors for multi-label data streams

For our paper, we look at several additional adaptations of the
kNN algorithm to the multi-label data stream problem. In the work
by Roseberry et al. [21] they proposed MLSAMkNN, a multi-label
kNN algorithm that leverages majority voting along among indi-
vidual labels with a self-adjusting short and long term memory
structure (STM and LTM). The key benefits of this system’s memory
mechanism is twofold. The prior being that the short termmemory
has the ability to adapt to rapid changes in concept. The latter
being that reoccurring patterns in data can be stored in the long
term memory and recalled as needed. In order to insure the STM
and LTM do not contradict each other, a cleaning procedure is
defined. This cleaning procedure leverages a threshold for each
label that compares a set of instances A to the current content of
the STM. If there are a number of inconsistent labels observed, then
those in conflict within the LTM are removed. Conversely, when
the STM is shrunk, the excess data is cleaned and transferred to
the LTM, at which point it is continually cleaned as new instances
fill the STM. One drawback of this design is the necessity to keep
memory consumption low. To alleviate this issue, the authors
implemented a kmeans++ compression algorithm to reduce the
amount of data in the LTM as it becomes necessary. In their follow-
ing work [22], they propose MLSAMPkNN. This algorithm leverages
an adaptive window akin to the short term memory of MLSAMkNN
as well as a punitive system for removing erroneous data. Tradi-
tionally, a fixed size sliding window allows old instances to be
removed and new instances to enter at a fixed rate. This allows
for gradual shifts in concept to be captured as data slowly adjusts
within the window. However, the authors of this paper implement
a sliding window of flexible size. The advantage of this flexibility is
that the window can be evaluated at different intervals and resized
accordingly to match abrupt concept drift. In addition to the win-
dow, a punitive system is used to identify and remove potentially
erroneous instances. After a prediction is made for an incoming
instance, the labels for each of the nearest neighbors is checked
against the true label set of the inbound instance. It a neighbor pro-
vides a label that is not identified as the true label of the inbound
instance, an error is accrued. This mechanism helps to constrain
memory and computational requirements by eliminating instances
from the window. It also complements the nature of the self
adjusting window by removing older instances as they begin to
produce errors due to drift. Finally, in [11], the authors proposed
MLSAkNN as a direct improvement of the MLSAMPkNN algorithm.
The focus of MLSAkNN is to provide self adapting configurations to
the multi-label problem space. It does so through two major meth-
real-time. This is carried out by continually evaluating different ks
for each label. After the currently selected k is used to evaluate an
instance, it is then compared against other k values. The second
mechanism is an adaptation of the MLSAMPkNN punitive for use
within each label space. In the updated version each instance
now has a label mask that informs the algorithm if the instance
should be included in the neighbor calculation for a particular
label.

2.4. Ensemble learning

Ensemble learning is a popular methodology of classification in
machine learning. Ensembles are collections of classifiers that rep-
resent diverse knowledge on the problem space. These classifiers
work together in order to create combined knowledge scenarios
where predictions are more accurate and robust. This learning
method requires that both the classifiers within the ensemble con-
tain novel information about the problem space and that they are
powerful enough to contribute to predictions in a positive way. In
this paper, we are focused on two topic areas of ensemble learning:
(i) ensembles that work on real time drifting data streams, and (ii):
ensembles for multi-label data and their applicability for stream-
ing settings.

2.4.1. Ensembles for data streams
Over recent years of research, ensemble learning has been iden-

tified as an effective method for data streammining. Adaptive Ran-
dom Forests [5] is a traditional ensemble method with high
popularity. This algorithm focuses on adaptive example re-
sampling to generate forests in the online setting. Tree algorithms
traditionally rely on the ability to repeatedly scan a static dataset
to perform split decisions. In the online setting the data is dynamic,
which requires split decisions to come from real time metrics. The
Adaptive Random Forests algorithm leverages Hoeffding Trees to
overcome this limitation. Also leveraging the use of drift detection
methods in order to replace the existing classifiers as concepts
change. Some advantages of this model include the ability to build
trees in parallel without sacrificing predictive performance. As well
as maintaining a decoupled relationship to aggregation and con-
cept drift detection.

In the work of Sun et al. [10] ensembles were leveraged to allow
for tracking of multiple concepts present in the data. Each compo-
nent classifier utilized a one-versus-all approach in order to asso-
ciate examples with a particular class. Each class based model is
implemented as a binary classifier that is able to output the poste-
rior probability, which can be represented using Baysean theory.
When training, the models update their posterior probabilities
with each inbound instance. The authors include dynamic sam-
pling in order to represent the minority classes among the shifting
data. Throughout the data stream, the ensemble identifies three
possible concept states: the emergence of a class, the disappear-
ance of a class, and the emergence of a previously disappearance
class. The benefit of this ensemble mechanism is the adaption to
concept drift through consideration of when to apply knowledge.

Museba et al. [23] recently proposed an adaptive ensemble for
non-stationary data streams. Their algorithm maintains a collec-
tion of classifiers that are evaluated on accuracy and diversity. As
the ensemble is introduced to new concepts, new classifiers are
created in order to capture the knowledge. Passive methods to
limit the ensemble size are introduced, including hyper parameters
that define the criteria to remove a classifier from the collection.
On data drift detection, all of the learners in the collection are
reset. These modules enable the algorithm to adapt to the non-
stationary data over time, improving performance in this context.



Another algorithm that leverages meta-analysis is the algorithm
proposed in Cano et al. [7,8]. The ensemble mechanisms proposed

benefits in the multi-label context as seen for traditional classifica-
tion problems. In the multi-label problem space, ensembles are

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

231

4

highlight how diversity, while beneficial to data streaming prob-
lems, does not translate directly to boosts in performance. In order
to effectively utilize different component classifiers, an adaptive
confidence threshold was established. This threshold allowed for
shifting criteria definitions for the participation of component clas-
sifiers based on the state of the data. Specifically, as the ensemble
predicts correctly, the threshold is relaxed and additional classi-
fiers can participate in the voting. Consequently, as incorrect pre-
dictions happen the threshold is increased and only more
confident predictions are allowed to influence the voting. An inher-
ent draw back of their design is that highly confident, but incorrect
classifications carry heavy weight in driving the system. However,
diversity within ensembles helps to mitigate overconfident and
inaccurate predictions. The important aspect of online learning
algorithms is the ability to adapt to the evolving data stream.
Ensemble methods allow for meta evaluations of several classifiers
to detect changes in performance and predict the arrival of concept
drift. Through the application of boosting methods new component
classifiers capture additional knowledge from new concepts
through training on the drifted data. These reasons explain why
ensemble methods perform better in the data stream mining con-
text, because they are able to adjust to non-stationary data
dynamically.

2.4.2. Ensembles for multi-label data
There are two major avenues for dealing with multi-label data:

problem transformation and algorithm adaptation. Ensembles
have been widely adopted in recent years as a means for imple-
menting problem transformation methods [24–27]. When used
for binary relevance, ensembles are leveraged to provide an inde-
pendent classifier per label. The advantage of this approach is that
any binary classification algorithm is usable in this context. In the
LP problem domain, ensembles are used to distribute a large multi-
class representation among multiple classifiers. This allows for
label dependencies to remain intact, however, data in this problem
space only represents a fraction of the total label combination
power set. Without mitigation strategies, the large set of possible
classes can be detrimental to predictive and computing
performance.

One such strategy is proposed in Gatto et al. [28], where Jaccard
indexes are used to map the label space into hybridized partitions.
This helps to combine the benefits of binary and label power set
methods by allowing label dissimilarity to drive the decision on
assuming label dependencies. In a similar study [29] combinatorial
optimization is utilized to determine the optimum k-subsets of
labels to utilize against LP classifiers. Two version of this algorithm
were proposed, one with disjoint label sets and another with over-
lapping. By reducing the number of label combinations to consider
the time and memory performance of classification algorithms can
improve. Additionally, if label set predictions can accurately deter-
mine dependent labels, the performance of dependency seeking
algorithms can increase as well.

Classifier chain ensembles express binary classification with
different label chain orders to improve the chance of discovering
the true label dependency. In the work of Senge et al. [30] some
of the core obstacles of classifier chains are considered. Classifier
chains are particularly susceptible to attribute noise when trained
on true label values. The authors propose to alternatively train the
model on predicted labels instead of true values to alleviate this
issue. They also pursue a nested stacking approach where several
meta classifiers learn on the combined outputs of binary predic-
tions for a subset of labels.

In contrast to the problem translation use case, ensembles are
also popular for algorithm adaption [2,3]. They provide similar
often effective measures to mitigate class imbalance. If even a sin-
gle label experiences severe class imbalance, it must be addressed
or the multi-label prediction will fail. There are several recent
papers in both the research and practical fields that deal with class
imbalance for multi-label data [31].

In the work of Zhang et al. [31], the authors drive to design a
learning strategy that explores both label correlations and class
imbalance simultaneously. Each class label utilizes a binary learner
along with a set of K coupling multi-class learners. The multi-class
learners attempt to discover correlations among K number of label
pairs while the binary classifier helps mitigate class imbalance. A
predictive model for each label is then aggregated from the confi-
dences of the induced classifiers. Finally, the generated models are
leveraged for the final prediction. The benefit of this approach is
the mitigation of class imbalance while still leveraging binary
and multi-class problem spaces.

In the work of Wu et al. [32], they propose a multi-label tree
ensemble algorithm that is meant to exploit the dependencies
between labels by learning them as hierarchical trees that reflect
the intrinsic label dependency of the data. Each internal node looks
to partition the data into smaller subspaces of similarly labeled
instances. The labels used to partition the data are then passed
to children nodes that further examine the label space. While each
tree may be able to partition the entire dataset, over fitting is a
likely scenario. The authors then propose to combine multiple
trees into an ensemble in order to reduce the risk of overfitting
by providing trees with different data. This also improves the
scaleability of their algorithm. In the work of Wei et al. [33] a prob-
abilistic label tree is proposed for the multi-label streaming con-
text. The algorithm leverages both tree structures and binary
classification nodes to interpret data that is broken up by partially
observed labels. They also implement update procedures that will
detect new labels by passing instances down the full tree and
updating the corresponding binary classifiers.

The ideas proposed by Huang et al. [34] include methods for
combating common issues with problem transformation methods.
They propose a method of learning unique features based on each
class label. Their work reached the same conclusion as Zhang and
Li [35] and demonstrated that individual labels have their own rep-
resentative features. This idea helps to guide meta-based ensemble
methods to better understand relevant features for individual
labels in data.

2.4.3. Ensembles for multi-label data streams
When dealing with multi-label data streams, we must under-

stand the issues of both multi-label data and data streams. Detailed
in the work of Zheng et al. [36], class imbalance is a significant
problem for data streams. They discuss how existing methods for
combating class imbalance rely on static proportions of imbalance
over time, which is unrealistic for practical applications. The
important consideration being that throughout a stream data pro-
portions are constantly shifting. To compensate for the dynamic
problems of concept drift, classifiers should ideally be able to
incorporate mechanisms to handle changing class representations
together with concept drift.

The continued work of Zhang et al. [37] depicts a re-sampling
ensemble framework to combat this issue. Their method depicts
both static and dynamic classifiers that learn from the data using
circular caches of instances. Once the cache of instances is filled
from the data stream a new block of data is recognized and a cor-
responding dynamic classifier is created. This classifier iterates
through the training data while calculating reinforcement weights
for minority classes and recent instances. Additionally the algo-
rithmmaintains a resampling buffer to maintain relevant instances



to use for sampling procedures. This helps to keep old concepts
from creeping into the active ensemble through resampling.

tance is measured from the micro cluster to the nearest known
concept. If the distance is greater than the standard deviation of

3. Adaptive Ensemble of Self-Adjusting Nearest Neighbor
Subspaces

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248
Sun et al. [38] establish in their work an ensemble algorithm
supported by Jensen-Shannon concept drift detection. This detec-
tion method uses a comparison measure between two windows
of instances to detect changes in the underlying data distribution.
Their algorithm also leverages infrequent label pruning as a
method to improve classification performance by exploiting highly
observed label dependencies. This can be beneficial to computing
resources by limiting the potential problem space. However,
minority classes are possibly under represented or forfeit entirely
based on the pruning method.

In another study, Sousa et al. [39] reveal an experimental anal-
ysis of two rule-based algorithms that leverage label subset rules
to form decision boundaries. These rules increase the performance
of the algorithm by limiting the problem space of each prediction
and adapting to changes in the data. The novelty for this algorithm
is in the fact rules are generated on subsets of labels instead of a
single or all labels, again exploiting potential label dependencies.

As an alternate approach to supervised learning, Costa et al. [40]
purpose an unsupervised algorithm for multi-label classification
streams that utilizes an offline and online strategy. Their method
applies runs k-means clustering to identify the possible labels,
then the euclidean distance of inbound instances are used to derive
class predictions and discover new concepts. In their later work,
[41] they apply a pruned set transformation method to their algo-
rithm. The pruned sets increase correlation of the existing concepts
and aides the computational complexity of their algorithm. Con-
currently, the authors looked to develop a new method for novelty
detection [42] through the MINAS-BR algorithm. The novelty
detection algorithm creates and evaluates micro-clusters as
inbound data falls outside of existing concepts. A euclidean dis-
232
distances between examples and the centroid, then a new concept
is created.

In the work of Cerri et al. [43], an unsupervised method for
multi-label stream classification is proposed. The algorithm uses
both an offline and online component, consisting of a number of
self organizing maps (SOMs) in the offline phase, and kNN based
selection of neurons in the online phase. The online portion of
the algorithm is configured to update the SOMs as new instances
arrive off the stream. The authors continue their work in [44]
where they add additional mechanism for concept drift and utilize
Bayesian probability rules to better control the adaptability of the
algorithm. It is worth noting that the required offline training to
generate SOMs is a drawback when comparing this to other
algorithms.

Our proposed algorithm AESAKNNS is designed to meet the
challenges of this problem domain via adaptive, multi-label com-
ponent classifiers and intelligently designed ensemble methods.
This section introduces the Adaptive Ensemble of Self-Adjusting
Nearest Neighbor Subspaces (AESAKNNS) as a front running algo-
rithm for multi-label data stream mining. The pseudo-code is pre-
sented in Alg. 1 and the flowchart is depicted in Fig. 1. We will
describe the motivation, architecture, and components of the
ensemble in the following.
5



Algorithm1: Adaptive Ensemble of Self-Adjusting Nearest Neighbor Subspaces.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

233

6



As shown before, there are many advantages of ensemble learn-
ing for both the data streaming and multi-label problem domains.

3.1. MLSAkNN as a base classifier

3.2. Online bagging and instance subsets

Fig. 1. Flowchart of Adaptive Ensemble of Self-Adjusting Nearest Neighbor Subspaces.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

234

7

AESAKNNS leverages the Multi-Label Self-Adapting kNN
(MLSAkNN) [11] classifier that is individually capable of adjusting
for concept drift and other changes in multi-label data. MLSAkNN
self-adjusts the k neighbors value over time. However, it is well
known the sensitivity of the k neighbors and the feature space
organization on the distance calculation. A change in the feature
subspace composition has a strong influence in the selection of
the k neighbors and thus on the predictions. Similarly, the different
instance subsets presented to each of the base classifiers also influ-
ence the predictions. This feature and instance space heterogeneity
motivates our proposal to employ adaptive random subspaces and
online bagging on the training of the base classifiers to increase
their diversity. This allows for the ensemble to avoid the traditional
pitfalls of problem transformation methods. Moreover, since each
MLSAkNN base learner is trained on different subsets of features
and instances, each classifier contains potentially novel and diverse
information on the problem. Contrary to other random subspaces
approaches, such as Adaptive Random Forests [5] which employs
a fixed-size subset of features (all base classifiers have the same
constant number of input features and they are invariant), we pro-
pose varying-size adaptive random subspaces (all base classifiers
have a different number of input features and the subsets of fea-
tures change over time). AESAKNNS employs a number of method-
ologies to combat concept drift, including a collection of ADWIN
detectors that watch each base classifier. This mechanism serves
to warn the ensemble that a concept drift was detected on the par-
ticular feature subspace. On detection of concept drift the ensem-
ble immediately resets the learning on active classifiers, to
potentially capture the new concept with existing feature spaces.
However, after drift detection, AESAKNNS will simultaneously ini-
tialize a set of background classifiers on new subsets of features.
The background ensemble is not included in the prediction but will
train in tandem with the active ensemble over a duration of
instances defined as the window size w. Once the background
ensemble has trained on w instances, AESAKNNS analyzes the
Hamming score and subset accuracy of all classifiers from both
ensembles. The best performing base classifiers are then selected
to occupy the new primary ensemble and the background classifier
is cleared. This way, the most relevant features and concepts are
constantly being evaluated and replaced to reflect the current data
in the stream as in dynamic classifier selection.
MLSAkNN is a multi-label algorithm designed by Roseberry
et al. [11]. It is an adaption of traditional kNN for the multi-label
streaming environment. In order to adapt to concept drift, the algo-
rithm includes a variable size window, whose size expands and
contracts based on the current drift detection. This allows the algo-
rithm to dynamically choose which parts of the instance stream
are important and remove old instances in case of concept drift.
MLSAkNN also utilizes a punitive system to attempt removing
instances that contribute heavily to errors. Due to the nature of
multi-label data, the punitive system can choose to penalize
instances for each label individually. This allows for data adaption
that is tailored to each label stream and beneficial for overall per-
formance. Finally, MLSAkNN employs an adaptive k value for
selecting the quantity of nearest neighbors. The adaptive k exists
for each label, providing a more autonomous algorithm without
the need for manual parameter tuning. MLSAkNN is a very suitable
base classifier for our ensemble approach where instances pre-
sented to the classifiers are subject to adaptive feature subspace
projections and online bagging. This way, we increase the diversity
of the classifiers both in the feature and instance space, leading to
better predictions than individual classifiers on homogeneous
instance and feature spaces.
Bagging is the process of training a set of weak learners in par-
allel to unique collections of instance subsets with oversampling.
In our case, we utilize an online bagging following a PoissonðkÞ dis-
tribution with k ¼ 1 in order to distribute examples to different
weak learners in the ensemble. Poissonð1Þ represents the converg-
ing binomial distribution of examples as the number of instances
grows very large. This method applies additional weight to
instances for specific learners, allowing us to sample with replace-
ment from our data stream. Online bagging has been successfully
used in Leveraging Bagging [45], Adaptive Random Forest [5],
and Kappa Updated Ensemble [8]. Online bagging increases the
diversity of the instance set presented to the base classifiers, and
in the case of MLSAkNN it directly affects the neighborhood selec-
tion of the k closest instances. Online bagging is applied in lines 21
and 38 of Alg. 1 to update the active and background ensembles



base classifiers respectively. Similarly, it can be observed in the
flowchart in Fig. 1 before the update of the base classifiers.

ent objectives in the multi-label classification, starting by ensuring
that new concepts are being detected and added to the ensemble,

Taxonomy of algorithms used in the experiments.

Family Ref Acronym Algorithm

BR + Single [48] NB Naive Bayes
BR + Single [49] HT Hoeffding Tree
BR + Single [50] AHT Adapting Hoeffding Option Tree
BR + Single [51] SCD Single Classifier Drift
BR + Ensemble [45] LB Leveraging Bag
BR + Ensemble [15] OB Oza Bag
BR + Ensemble [48] OBA Oza Bag Adwin
BR + Ensemble [15] OBO Oza Boost
BR + Ensemble [48] OBOA Oza Boost Adwin
BR + Ensemble [52] OCB Online Coordinated Boosting
BR + Ensemble [53] DWM Dynamic Weighted Majority
BR + Ensemble [54] AUE Accuracy Updated Ensemble
BR + Ensemble [5] ARF Adaptive Random Forest
BR + kNN [55] kNN kNN
BR + kNN [56] kNNP kNN PAW
BR + kNN [56] kNNPA kNN PAW ADWIN
BR + kNN [57] SAMkNN Self-Adjusting Memory kNN
AA + Incremental [58] BRU Binary Relevance Updateable
AA + Incremental [58] CCU Classifier Chains Updateable
AA + Incremental [58] PSU Pruned Sets Updateable
AA + Incremental [58] RTU Ranking Threshold Updateable
AA + Incremental [59] MLHT Multilabel Hoeffding Tree
AA + Incremental [60] AMR Adaptive Model Rules
AA + Ensemble [58] BML Bagging ML Updateable
AA + Ensemble [61] OBML Oza Bag ML
AA + Ensemble [61] OBAML Oza Bag Adwin ML
AA + kNN [14] MLkNN ML kNN
AA + kNN [21] MLSAMkNN ML Self-Adjusting Memory kNN
AA + kNN [22] MLSAMPkNN ML Self-Adjusting Memory

Punitive kNN
AA + kNN [11] MLSAkNN ML Self-Adjusting kNN
AA + Ensemble

+ kNN
– AESAKNNS Adaptive Ensemble of SAkNN

Subspaces

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

235

8

3.3. Adaptive random feature subspaces

An important aspect of supervised learning is the ability to
identify relevant features that impact predictions. In the multi-
label context, this is true for each individual label and groups of
labels, but not all of the attributes are relevant for all of the labels.
Therefore, it is a good idea to specialize the base classifiers on
heterogeneous feature subspaces. We leverage the diversity of
each classifier to solve this issue. Each base classifier within the
ensemble is given a unique subset of features to consider. Tradi-
tional approaches such as Adaptive Random Forest [5] employ a
fixed-size subspace that remains invariant for the whole of the
streams. This constrains the algorithm’s ability to adapt to better
feature subspaces over time. Our contribution here is to dynami-
cally change the size and composition of the feature subspace over
time. This way, we allow each of the base classifiers in the ensem-
ble to adapt to bigger or smaller feature subspaces. Every time we
learn a new ensemble in the background the base classifiers will
explore a new random subspace of features of varying sizes. The
subspace size is modeled using a normal distribution with a mean
70% of the number of features. Therefore, during evaluations of the
ensemble, classifiers with poor performance are discarded in favor
of others with better performance in other feature subspaces.
Because new classifiers are constantly being created and evaluated
throughout the duration of the data stream, AESAKNNS has the
means to adapt to changes in relevant features over time effec-
tively. This adds to the overall diversity of the ensemble and helps
to boost overall performance. Lines 7 and 31 of Alg. 1 show the def-
inition of the random feature subspaces.

3.4. Concept drift detection using ADWIN

ADWIN [46] is an adaptive windowing algorithm that detects
changes in data distributions over a certain number of examples.
Changes are determined by examining the statistical properties
for two sub portions of a given window and determining if there
is a significant difference in mean measurements. Many algorithms
and detection methods in the literature follow this implementation
strategy [5,46,45]. In AESAKNNS, ADWIN is used as the primary
source of explicit drift detection on each of the base classifiers that
operate on different subsets of features of the stream. This way,
ADWIN will warn about potential changes of the data distribution
that may not necessarily affect all of the stream but only to subsets
of features and labels. Upon detection of a drift the base classifier
on that feature subset is reset and it triggers the learning a new
background ensemble. ADWIN is employed in lines 12–19 of Alg. 1.

3.5. Background ensemble to adapt to concept drift

Upon drift detection using ADWIN on any of the classifiers, a
new ensemble is initialized in the background. This new ensemble
is trained in parallel with the currently active one. The base classi-
fier on the feature space that triggered the drift is reset. However,
our contribution here is that the new background ensemble will
learn new base classifiers on new varying-size feature subspaces,
potentially detecting new more relevant features after the drift.
The differences in feature space and instance distribution will lead
to different knowledge products after a predefined duration. After
this period, a comparison is performed between the active and
background ensemble where only the best performing classifiers
are selected for the new active ensemble. The criterion to select
the best performing classifiers is a linear combination of the subset
accuracy and the Hamming score. These two metrics aim at differ-
maintaining still relevant knowledge, and removing outdated base
classifiers with old concepts. This replacement strategy to keep the
fittest base classifiers while removing weakest ones helps to
quickly adapt to concept drift. Lines 28–34 of Alg. 1 show the back-
ground ensemble initialization, lines 35–43 show the background
ensemble update, and lines 44–47 show the ensemble
replacement.

4. Experimental study

This section presents the experimental study and comparison
with works in the state of the art. The experiments are designed
to answer the following research questions:

� RQ1: Can AESAKNNS demonstrate competitive performance
compared to state of the art classification methods for multi-
label data streams?

� RQ2: Is AESAKNNS a competitive ensemble when compared
strictly to other ensemble algorithms?

� RQ3: Is AESAKNNS competitive against other kNN adaptations
for multi-label data streams?

� RQ4: How does each of the AESAKNNS contributions help to
improve the classification performance?

4.1. Experimental setup

4.1.1. Algorithms
Table 1 presents a taxonomy of the multi-label algorithms used

in our experimental study, including Binary Relevance (BR) and
Algorithm Adaptation (AA) methods. All algorithms are imple-
mented in Java and publicly available in MOA [47]. The source code

Table 1



of our AESAKNNS is publicly available at https://
github.com/canoalberto/AESAKNNS to facilitate the reproducibility

Example-based metrics evaluate the difference between the
actual and predicted labelsets, averaged over n instances. For a true

Table 2
Datasets and their characteristics.

Dataset Instances Features Labels Cardinality Density

Birds 645 260 19 1.01 0.05
Virus 207 749 6 1.22 0.20
Flags 194 19 7 3.39 0.48
Scene 2,407 294 6 1.07 0.18
Enron 1,702 1,001 53 4.27 0.08
Genbase 662 1,186 27 1.25 0.05
Medical 978 1,449 45 1.25 0.03
Water-qual 1,060 16 14 5.07 0.36
Corel-5 k 5,000 499 374 3.52 0.01
Eukaryote 7,766 440 22 1.15 0.05
Plant 978 440 12 1.08 0.09
Reuters 6,000 500 103 0.11 0.01
Mediamill 43,907 120 101 4.38 0.04
Ohsumed 13,929 1,002 23 0.81 0.04
CAL-500 502 68 174 26.04 0.15
Yelp 10,806 671 5 1.64 0.33
Slashdot 3,782 1,079 22 1.18 0.05
Human 3,106 440 14 1.19 0.08
Langlog 1,460 1,004 75 15.94 0.21
Gnegative 1,392 440 8 1.05 0.13
CHD 555 49 6 2.58 0.43
Stackex 1,675 585 227 2.41 0.01
Corel-16 k 13,766 500 153 2.86 0.02
Imdb 120,919 1,001 28 1.00 0.04
Nuswide-C 269,648 129 81 1.87 0.02
Nuswide-B 269,648 501 81 1.87 0.02
Yahoo-soc 14,512 31,802 27 1.67 0.06
Eurlex 19,348 5,000 201 2.21 0.01
Hypersphere 100,000 100 10 2.31 0.23
Hypercube 100,000 100 10 1.00 0.10

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248
of the research. The table presents all of the models that were run
during experimentation, along with the families they belong to.
Within the exhaustive list of 30 classifiers, particular importance
are the ensemble and kNN families of algorithms. Ensemble meth-
ods have several options for enhancing performance and combat-
ing concept drift, and all are run using 10 base classifiers. No
individual hyperparameter optimization was conducted for any
algorithm as we believe algorithms should exhibit a robust perfor-
mance off the shelf. All algorithms were compared across the same
12 multi-label prequential metrics, which will be discussed in
Section 4.1.3.

4.1.2. Datasets

Multi-label datasets used in our experiments cover a wide
range of properties. We evaluate the performance of the algorithms
on 30 datasets of up to 269.648 k instances, 31.8 k features, and
374 labels. The data properties of each individual dataset are
shown in Table 2. These measures include the number of instances,
features, and labels. Other measures include cardinality, which
measures the average amount of labels per instance, and density,
calculated as cardinality divided by the number of labels. The
lower the density the more sparse positive labels are through the
dataset.

4.1.3. Metrics

Due to the incremental nature of data streams, traditional

236

9

methodologies for evaluation such as cross-validation are unus-
able. This gives rise to the use of prequential evaluations to mea-
sure model performance [62]. When calculating subset accuracy
and Hamming score for AESAKNNS, we must account for the total
and partial correctness of the multi-label prediction. In order to do
so, we utilize the following definitions over n instances and L labels
[2].
labelset Yi ¼ fyi1 . . . yiLg and a predicted labelset Zi ¼ fzi1 . . . ziLg, the
example-based metrics are:

Subset Accuracy ¼ 1
n

Xn

i¼0

1 jYi ¼ Zi

Hamming Score ¼ 1
nL

Xn

i¼0

XL

l¼0

1 jyil ¼ zil

Example� based Accuracy ¼ 1
n

Xn

i¼0

jYi\Zi j
jYi[Zi j

Example� based Precision ¼ 1
n

Xn

i¼0

jYi\Zi j
jZi j

Example� based Recall ¼ 1
n

Xn

i¼0

jYi\Zi j
jYi j

Example� based F1 ¼ 1
n

Xn

i¼0

2�jYi\Zi j
jYi jþjZi j

Label-based metrics are averaged over all labels and are best
defined using the number of true positives, true negatives and false
negatives for each label l. Formally, true positives
tpl ¼

Pn
i¼01jyil ¼ zil ¼ 1, false positives tnl ¼

Pn
i¼01jyil ¼ 0; zil ¼ 1,

and false negatives fnl ¼
Pn

i¼01jyil ¼ 1; zil ¼ 0. Macro-averaged
metrics are calculated and then averaged over all labels, as:

Macro� averaged Precision ¼ 1
L

XL

l¼0

tpl
tplþfpl

Macro� averaged Recall ¼ 1
L

XL

l¼0

tpl
tplþfnl

Micro-averaged metrics are averaged over all labels and
instances, formally:

Micro� averaged Precision ¼

XL

l¼0

tpl

XL

l¼0

tplþ
XL

l¼0

fpl

Micro� averaged Recall ¼

XL

l¼0

tpl

XL

l¼0

tplþ
XL

l¼0

fnl

As precision can often be optimized at the expense of recall, and
vice versa, the F1 is preferred to balance the two. Like the example-
based F1, the micro- and macro-averaged F1 are computed by tak-
ing the harmonic mean of the precision and recall. Subset accuracy
represents the exact match for all of the labels in the labelset, a
very strict metric and preferred to best compare algorithms. Ham-
ming score calculates the successful predictions per instance and
label, i.e., the symmetric difference, however, it suffers from high
imbalance.

4.2. Overall comparison with all classifiers on all metrics

The first experiment evaluates and compares the overall perfor-
mance of the 30 algorithms on the 30 datasets for all of the 12 met-
rics to address RQ1. Table 3 collects the results in a compact table,
showing the average metric values for all the datasets, along with
the rank of the algorithm according to Friedman (the lower the
rank, the better). Based on this, one can observe that AESAKNNS
was the top performing model for 9 of the 12 metrics, with signif-
icant differences between AESAKNNS’s performance and the sec-

https://github.com/canoalberto/AESAKNNS
https://github.com/canoalberto/AESAKNNS


ond best algorithm in many of the metrics. For example, subset
accuracy is 3 points better (10% improvement) for AESAKNNS com-

a ¼ 0:01. Algorithms outside the interval of the critical distance
are said to perform statistically worse than the control method.

Table 3
Performance of 12 metrics for all algorithms across all 30 datasets and ranks.

Algorithm Su. Acc H. Sco Ex. Acc Ex. Pre Ex. Rec Ex. F1 Mi. Pre Mi. Rec Mi. F1 Ma. Pre Ma. Rec Ma. F1 Rank

NB 0.139 0.833 0.230 0.311 0.421 0.312 0.389 0.419 0.303 0.198 0.302 0.198 21.17
HT 0.209 0.914 0.292 0.525 0.330 0.374 0.596 0.319 0.370 0.230 0.179 0.179 19.13
AHT 0.220 0.916 0.302 0.538 0.339 0.384 0.607 0.328 0.379 0.240 0.182 0.186 15.96
SCD 0.212 0.875 0.304 0.416 0.442 0.380 0.490 0.435 0.374 0.278 0.284 0.247 14.75
LB 0.272 0.815 0.377 0.530 0.552 0.473 0.489 0.540 0.433 0.262 0.366 0.248 9.58
OB 0.202 0.827 0.289 0.499 0.415 0.383 0.465 0.408 0.351 0.219 0.281 0.194 18.83
OBA 0.224 0.832 0.312 0.520 0.438 0.406 0.480 0.427 0.373 0.245 0.291 0.213 14.58
OBO 0.120 0.728 0.250 0.339 0.553 0.344 0.318 0.547 0.328 0.251 0.416 0.269 16.58
OBOA 0.026 0.649 0.176 0.211 0.596 0.271 0.202 0.588 0.260 0.197 0.439 0.240 20.75
OCB 0.309 0.929 0.415 0.613 0.460 0.505 0.634 0.445 0.494 0.336 0.265 0.282 5.50
DWM 0.196 0.886 0.291 0.428 0.443 0.373 0.488 0.434 0.361 0.231 0.275 0.215 16.96
AUE 0.052 0.543 0.158 0.270 0.565 0.244 0.225 0.571 0.209 0.139 0.510 0.166 22.50
ARF 0.298 0.863 0.407 0.576 0.544 0.507 0.553 0.529 0.477 0.326 0.342 0.283 7.17
kNN 0.238 0.912 0.322 0.496 0.365 0.395 0.545 0.353 0.391 0.237 0.182 0.186 15.38
kNNP 0.240 0.914 0.321 0.505 0.361 0.394 0.558 0.348 0.390 0.249 0.178 0.187 14.83
kNNPA 0.259 0.918 0.348 0.529 0.392 0.424 0.582 0.377 0.418 0.268 0.193 0.203 11.33
SAMkNN 0.263 0.923 0.343 0.594 0.376 0.424 0.664 0.359 0.415 0.313 0.183 0.207 10.25
BRU 0.212 0.913 0.300 0.493 0.343 0.383 0.515 0.331 0.373 0.198 0.184 0.174 19.33
CCU 0.227 0.914 0.308 0.506 0.346 0.391 0.538 0.332 0.382 0.204 0.185 0.177 16.71
PSU 0.161 0.879 0.233 0.300 0.274 0.279 0.310 0.255 0.270 0.102 0.134 0.109 26.63
RTU 0.165 0.892 0.156 0.279 0.157 0.174 0.467 0.151 0.171 0.156 0.098 0.100 27.75
MLHT 0.160 0.879 0.232 0.299 0.273 0.278 0.308 0.254 0.269 0.102 0.134 0.109 27.21
AMR 0.139 0.833 0.230 0.312 0.421 0.312 0.391 0.419 0.303 0.197 0.301 0.198 21.08
BML 0.221 0.915 0.306 0.537 0.347 0.389 0.565 0.334 0.379 0.243 0.180 0.183 15.67
OBML 0.160 0.880 0.231 0.306 0.271 0.280 0.314 0.251 0.268 0.095 0.127 0.102 27.42
OBAML 0.223 0.893 0.286 0.393 0.324 0.339 0.405 0.304 0.326 0.148 0.153 0.136 23.25
MLkNN 0.230 0.914 0.304 0.547 0.337 0.378 0.605 0.324 0.375 0.248 0.167 0.181 16.50
MLSAMkNN 0.316 0.925 0.404 0.587 0.443 0.482 0.620 0.427 0.475 0.318 0.225 0.245 7.46
MLSAMPkNN 0.338 0.924 0.435 0.573 0.480 0.514 0.587 0.461 0.504 0.316 0.248 0.267 6.33
MLSAkNN 0.352 0.937 0.466 0.622 0.522 0.552 0.628 0.504 0.541 0.367 0.313 0.326 3.42
AESAKNNS 0.389 0.940 0.504 0.683 0.552 0.593 0.702 0.536 0.583 0.429 0.323 0.351 2.00

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248
pared to the second best MLSAkNN. This shows that the ensemble
strategy and the original contributions with the feature subspaces,
instance subsets, and background ensembles lead to a significant
improvement compared to the single base classifier. While
AESAKNNS’s recall values may not be the best, the F1 metric, which
balances precision and recall, clearly favors AESAKNNS as a well
rounded classifier. The following best-performing ensemble classi-
fiers are Online Coordinate boosting (OCB) and Adaptive Random
Forest (ARF). Complete results for all classifiers on all individual
datasets on all metrics are available as supplementary material
on the Github repository at https://github.com/canoalberto/
AESAKNNS.

Fig. 2 show the Bonferroni-Dunn statistical test for all algo-
rithms on the subset accuracy as the most representative metric.
The figure illustrates the rank of the algorithms according to the
subset accuracy metric and the critical distance for significance
Fig. 2. Bonferroni-Dunn for subs

237
4.3. Ensembles comparison

The second experiment evaluates specifically the performance
of ensemble classifiers to address RQ2. Table 4 presents subset
accuracy measures for all ensemble algorithms against all datasets.
Complete results are available on the Github at https://
github.com/canoalberto/AESAKNNS for all datasets and metrics.
AESAKNNS outperforms all of the ensemble methods and obtains
the best subset accuracy for 18 of the 30 datasets, providing the
highest average accuracy and the best rank. The second best
ensemble on average subset accuracy is Online Coordinate boost-
ing (OCB), but there is an 8-points difference with our proposed
method, whereas the second best according to the rank is Adaptive
Random Forest (ARF). On the other hand, the worst performing
ensembles are Oza Boost Adwin and Accuracy Updated Ensemble.
et accuracy on all classifiers. 10

https://github.com/canoalberto/AESAKNNS
https://github.com/canoalberto/AESAKNNS
https://github.com/canoalberto/AESAKNNS
https://github.com/canoalberto/AESAKNNS


Figs. 3–5, show the Bonferroni-Dunn test for ensemble algo-
rithms on the subset accuracy, Hamming score, and example-

rithms and the critical distance for a ¼ 0:01. According to the test,
it cannot be said that there are statistically significant differences

Table 4
Subset accuracy for all ensemble classifiers on each dataset.

Dataset LB OB OBA OBO OBOA OCB DWM AUE ARF BML OBML OBAML AESAKNNS

Birds 0.418 0.440 0.440 0.192 0.185 0.421 0.364 0.071 0.458 0.425 0.451 0.451 0.454
Virus 0.304 0.146 0.146 0.254 0.128 0.395 0.217 0.000 0.315 0.350 0.259 0.259 0.671
Flags 0.103 0.115 0.115 0.080 0.080 0.114 0.104 0.009 0.118 0.105 0.129 0.129 0.123
Scene 0.662 0.349 0.515 0.517 0.045 0.837 0.497 0.062 0.795 0.357 0.343 0.493 0.875
Enron 0.032 0.036 0.031 0.003 0.001 0.067 0.034 0.001 0.055 0.083 0.088 0.109 0.095
Genbase 0.744 0.365 0.365 0.016 0.016 0.765 0.234 0.121 0.452 0.370 0.262 0.238 0.918
Medical 0.475 0.276 0.276 0.000 0.000 0.262 0.001 0.197 0.503 0.285 0.148 0.148 0.353
Water-qual 0.017 0.005 0.006 0.002 0.002 0.010 0.002 0.001 0.019 0.004 0.007 0.012 0.027
Corel-5 k 0.021 0.007 0.008 0.000 0.000 0.032 0.000 0.000 0.040 0.009 0.009 0.023 0.055
Eukaryote 0.626 0.406 0.505 0.345 0.000 0.703 0.431 0.195 0.686 0.406 0.162 0.752 0.813
Plant 0.317 0.229 0.248 0.119 0.000 0.726 0.238 0.028 0.430 0.236 0.314 0.539 0.762
Reuters 0.080 0.065 0.065 0.000 0.000 0.052 0.012 0.036 0.147 0.081 0.211 0.191 0.240
Mediamill 0.117 0.069 0.063 0.029 0.000 0.095 0.003 0.055 0.146 0.071 0.053 0.083 0.190
Ohsumed 0.138 0.152 0.152 0.123 0.016 0.132 0.127 0.042 0.179 0.124 0.162 0.157 0.680
CAL-500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Yelp 0.533 0.340 0.459 0.461 0.022 0.446 0.402 0.166 0.631 0.347 0.238 0.413 0.665
Slashdot 0.026 0.102 0.102 0.000 0.000 0.061 0.029 0.058 0.096 0.011 0.130 0.137 0.143
Human 0.510 0.197 0.300 0.376 0.038 0.636 0.364 0.054 0.536 0.198 0.207 0.648 0.751
Langlog 0.025 0.027 0.027 0.000 0.000 0.146 0.154 0.007 0.146 0.139 0.138 0.139 0.178
Gnegative 0.630 0.581 0.597 0.242 0.000 0.887 0.605 0.180 0.735 0.602 0.416 0.416 0.896
CHD 0.184 0.156 0.156 0.129 0.124 0.145 0.106 0.006 0.171 0.155 0.143 0.143 0.229
Stackex 0.007 0.016 0.016 0.000 0.000 0.020 0.012 0.006 0.004 0.002 0.028 0.011 0.014
Corel-16 k 0.058 0.013 0.014 0.034 0.000 0.087 0.001 0.001 0.101 0.022 0.021 0.075 0.122
Imdb 0.012 0.003 0.007 0.013 0.003 0.030 0.012 0.000 0.029 0.021 0.108 0.110 0.093
Nuswide-C 0.263 0.240 0.250 0.198 0.100 0.213 0.176 0.221 0.269 0.240 0.133 0.249 0.240
Nuswide-B 0.226 0.226 0.225 0.197 0.013 0.211 0.227 0.004 0.254 0.220 0.118 0.248 0.239
Yahoo-soc 0.004 0.020 0.006 0.000 0.000 0.102 0.027 0.002 0.002 0.144 0.282 0.282 0.186
Eurlex-sm 0.000 0.000 0.000 0.000 0.000 0.073 0.001 0.000 0.000 0.158 0.141 0.135 0.118
Hypersphe 0.622 0.472 0.628 0.182 0.000 0.611 0.493 0.014 0.622 0.464 0.029 0.029 0.529
Hypercube 0.997 0.994 0.998 0.080 0.000 0.999 0.995 0.030 0.998 0.993 0.068 0.068 0.999

Average 0.272 0.202 0.224 0.120 0.026 0.309 0.196 0.052 0.298 0.221 0.160 0.223 0.389

Rank 5.68 7.68 6.55 9.98 12.23 4.77 8.27 11.19 3.84 6.89 6.85 5.00 2.06

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248
based F1 respectively. The figures illustrate the rank of the algo-
Fig. 3. Bonferroni-Dunn for sub

Fig. 4. Bonferroni-Dunn for Ham

238
when comparing AESAKNNS with Adaptive Random Forest (ARF)
set accuracy on ensembles.

ming score on ensembles. 11



and Online Coordinated Boosting (OCB) for the three metrics. How-
ever, statistically significant differences exist for with rest of the

4.4. Nearest neighbors comparison

Fig. 5. Bonferroni-Dunn for Hamming score on example-based F1.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248
ensembles.
Table 5 shows the p-values reported for the Wilcoxon signed-

rank test on the main performance metrics: subset accuracy, Ham-
ming score, example-based F1, micro-F1, and macro-F1, where p-
values < 0:01 indicate statistically significant differences between
AESAKNNS and the compared method (pairwise comparison test).
The smaller the p-value, the higher confidence. There are statisti-
cally significant differences concerning all the ensembles for all
the metrics, except for the macro-F1 with the Adaptive Random
Forest classifer.

Fig. 6 illustrates the Bayesian sign test on the subset accuracy
and example-based F1 as the most representative metrics. This test
returns probabilities that one model will outperform the other
based on measured performance. The top region indicates practical
equivalence, while the lower right portion denotes better perfor-
mance for AESAKNNS and the remaining side for the opposing
algorithm. We can see that AESAKNNS outperforms Adaptive Ran-
dom Forest at almost every evaluation and Online Coordinated
Boosting every time.

Figs. 7–10, help to visualize why AESAKNNS is rating well across
these various tests and metrics. Here we see how subset accuracy
and example-based F1 vary with the processing of the online
instances over time (prequential metrics), adapting to concept drift
and changing properties of the stream. Notice how AESAKNNS is
the first to adapt and maintains the highest subset accuracy and
F1 for the most prolonged duration. This can contribute to an
explanation as to why we see such performance gains with our
method. First, we adapt early. As soon as drifts are detected,
changes are made, and metrics for meta evaluations begin to be
gathered. Second, our ensemble strongly promotes diversity of
instance and feature spaces, and contains competent classifiers
for longer amounts of time due to frequent evaluations and
updates. In short, our method is more adaptable and recovers fas-
ter to changes in data concepts.

Table 5
Wilcoxon signed test: AESAKNNS vs ensembles (p-values).
Algorithm Su. Acc H. Sco Ex. F1 Mi. F1 Ma. F1

LB 3.92E-05 4.46E-05 2.22E-05 8.20E-06 2.64E-04
OB 1.24E-06 7.47E-06 3.49E-06 1.06E-06 1.42E-05
OBA 7.82E-06 2.04E-05 5.12E-06 1.44E-06 3.16E-05
OBO 9.13E-07 8.67E-07 8.67E-07 8.67E-07 6.91E-04
OBOA 9.13E-07 8.67E-07 8.67E-07 8.67E-07 5.57E-04
OCB 7.13E-06 1.11E-04 3.85E-06 3.85E-06 2.45E-04
DWM 9.13E-07 9.60E-07 1.18E-06 1.30E-06 9.86E-06
AUE 9.13E-07 8.67E-07 1.30E-06 8.67E-07 4.09E-05
ARF 2.36E-04 3.32E-04 5.18E-04 4.46E-05 1.22E-02
BML 2.74E-06 3.30E-05 1.59E-06 1.06E-06 1.94E-06
OBML 3.60E-05 2.61E-06 2.36E-06 1.94E-06 8.67E-07
OBAML 2.96E-04 4.23E-06 1.76E-06 1.76E-06 8.67E-07

239

12
The third experimental study aims at providing an in-depth
evaluation and comparison of classifiers based on nearest neigh-
bors to address RQ3. Table 6 presents the subset accuracy for the
nearest neighbors methods on all datasets. Complete results are
available for all datasets and metrics on the Github at https://
github.com/canoalberto/AESAKNNS. We observe that AESAKNNS
outperforms the kNN family of algorithms on 17 out of the 30 data-
sets. It is also shown to have the most competitive average accu-
racy and the best rank. Showing that at a minimum AESAKNNS is
a top running contender not only for ensemble algorithms but also
adapted kNN algorithms. AESAKNNS shows significantly better
performance than MLSAkNN, demonstrating the advantages of
the ensemble approach and its methodologies for adaptation to
concept drift using adaptive feature subspaces and online bagging.

Figs. 11–13, show the Bonferroni-Dunn for subset accuracy,
Hamming score, and example-based F1. The test indicates it cannot
find significant statistical differences exist between AESAKNNS and
MLSAkNN, MLSAMPkNN, and MLSAMkNN based on subset accu-
racy and F1, which means that a significant statistical difference
exists for the remaining kNN methods. The test shows the signifi-
cant advantage of the ensemble approach compared to single
classifiers.

Table 7 presents the Wilcoxon test between AESAKNNS and the
nearest neighbors methods. It reveals something more interesting
in the kNN family compared to the ensemble test. While most val-
ues in the table confirm with confidence that there are statistically
significant differences, we see that MLSAkNN maintains relatively
low p-values except for the macro-averaged F1. As the base classi-
fier of AESAKNNS, it is understandable that these values would be
the most similar. It serves as an important reflection to note that
the p-values for MLSAkNN should help establish the statistical dif-
ference of AESAKNNS based on only the ensemble mechanisms.

Fig. 14 shows the Bayesian analysis for subset accuracy and
example-based F1, and compares probabilities of outperformance
between AESAKNNS and MLSAkNN as well as AESAKNNS and
MLSAMPkNN. The big takeaway from this test is to reveal that
AESAKNNS is either outperforming or equivalent to the opposing
algorithms. However, it is notable that by simply existing in the
same family of algorithms it is easier to achieve statistical indiffer-
ence. This is even more noticeable for the MLSAkNN, also acting as
the base classifier for AESAKNNS. These figures also reveal more
support for the opposing algorithms than the ARF and OCB models,
however, the volume of supporting points for this is minimal.
Therefore, this test supports the better performance of the our
diverse ensemble approach.

Figs. 15–18 compare nearest neighbor approaches showing the
prequential subset accuracy and example-based F1 on four data-
sets with the increasing number of processed instances. AESAKNNS

https://github.com/canoalberto/AESAKNNS
https://github.com/canoalberto/AESAKNNS


maintains the best performance over the most prolonged interval
of instances. It is interesting to highlight the performance in

4.5. Contributions of AESAKNNS

Fig. 6. Bayesian sign test on top ensembles (AESAKNNS vs ARF and OCB).

Fig. 7. Ensembles comparison: prequential subset accuracy and F1 on Corel-16 k.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

240

13
Figs. 15,16, where AEKANNS does not experience a significant drop
in the metrics while kNNPA, MLkNN, and kNN do. Moreover, in
Fig. 18 we observe four main concept drifts which result in four
significant drops in the metrics. However, AEKANNS experiences
a smaller drop and is able to maintain the highest accuracy and
F1 during the drift, while quickly recovering and adapting to the
new concept.
The fourth experiment performs an ablation study and aims at
evaluating how each of the main four contributions of AESAKNNS
help to improve the classification and by what margin. Figs. 19–
22, show the prequential subset accuracy and example-based F1
over time for four example datasets. It illustrates the performance
of AESAKNNS and four variants of the algorithm without each of
these contributions: no background ensemble, no adaptive feature



subspaces, no online bagging, and a single classifier. The perfor-
mance for the Eukaryote and Human datasets are very similar for

gle classifier. On the other hand, the differences are smaller (the
points in the figures are located closer to the rope - top of the tri-

5. Conclusions and future work

Fig. 8. Ensembles comparison: prequential subset accuracy and F1 on Human.

Fig. 9. Ensembles comparison: prequential subset accuracy and F1 on Ohsumed.

Fig. 10. Ensembles comparison: prequential subset accuracy and F1 on Yelp.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

241

14
all the variants. Still, AESAKNNS shows the best overall subset
accuracy and particularly F1, whereas the no online bagging and
the single classifier variants exhibit a slightly worse performance.
On the other hand, differences are significantly more remarkable
for the Ohsumed and Scence datasets. There is a significant differ-
ence between the single classifier and the no online bagging model,
especially for the Oshumed dataset. These results clearly show the
advantages of the combination of the proposed strategies that alto-
gether make AESAKNNS a robust ensemble.

Figs. 23,24 show the results of the Bayesian sign test of
AESAKNNS vs each of the four variants without a key component,
based on the subset accuracy and example-based F1, respectively.
The test is very meaningful in reporting significant differences in
the contribution of the online bagging and the ensemble vs the sin-
angle), yet in favor of AESAKNNS (located on the right hand side of
the triangle) for the background ensemble and the feature sub-
spaces. This means that there is room for improvement in the
selection of the feature subspaces and the training of the back-
ground ensemble to build even more competitive ensembles.
This paper introduced AESAKNNS, an adaptive ensemble of self-
adjusting nearest neighbor subspaces for multi-label data streams.
The ensemble employed the MLSAkNN base classifier to naturally
adapt to concept drift. We proposed adaptive random subspaces
and online bagging to increase the diversity of the base classifiers



Fig. 12. Bonferroni-Dunn for Hamming score on nearest neighbors.

Fig. 11. Bonferroni-Dunn for subset accuracy on nearest neighbors.

Table 6
Subset accuracy for all nearest neighbor classifiers on each dataset.

Dataset kNN kNNP kNNPA SAMkNN MLkNN MLSAMkNN MLSAMPkNN MLSAkNN AESAKNNS

Birds 0.479 0.481 0.481 0.468 0.473 0.475 0.468 0.454 0.454
Virus 0.483 0.468 0.468 0.477 0.533 0.553 0.566 0.632 0.671
Flags 0.116 0.109 0.109 0.041 0.087 0.075 0.068 0.130 0.123
Scene 0.544 0.649 0.648 0.679 0.529 0.828 0.846 0.846 0.874
Enron 0.089 0.095 0.086 0.087 0.072 0.098 0.101 0.095 0.095
Genbase 0.762 0.750 0.750 0.209 0.754 0.883 0.879 0.912 0.918
Medical 0.328 0.315 0.315 0.243 0.370 0.381 0.418 0.366 0.353
Water-qual 0.013 0.018 0.017 0.020 0.013 0.016 0.021 0.057 0.026
Corel-5 k 0.004 0.001 0.005 0.004 0.005 0.022 0.035 0.046 0.055
Eukaryote 0.343 0.284 0.448 0.625 0.299 0.698 0.717 0.739 0.813
Plant 0.147 0.155 0.161 0.332 0.192 0.417 0.566 0.616 0.762
Reuters 0.180 0.189 0.189 0.136 0.166 0.191 0.249 0.239 0.240
Mediamill 0.102 0.107 0.105 0.146 0.087 0.145 0.160 0.152 0.189
Ohsumed 0.007 0.005 0.005 0.011 0.014 0.026 0.032 0.033 0.680
CAL-500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Yelp 0.199 0.226 0.407 0.517 0.153 0.503 0.567 0.625 0.665
Slashdot 0.140 0.139 0.139 0.066 0.069 0.189 0.205 0.189 0.143
Human 0.197 0.197 0.328 0.498 0.119 0.579 0.645 0.668 0.751
Langlog 0.179 0.179 0.179 0.148 0.147 0.159 0.188 0.176 0.178
Gnegative 0.521 0.534 0.592 0.726 0.579 0.754 0.823 0.842 0.896
CHD 0.148 0.166 0.166 0.120 0.112 0.153 0.140 0.231 0.229
Stackex 0.011 0.007 0.007 0.013 0.007 0.010 0.014 0.013 0.014
Corel-16 k 0.011 0.006 0.020 0.024 0.009 0.070 0.087 0.117 0.122
Imdb 0.034 0.031 0.031 0.017 0.003 0.045 0.066 0.072 0.093
Nuswide-C 0.229 0.236 0.238 0.266 0.232 0.255 0.247 0.251 0.240
Nuswide-B 0.157 0.162 0.157 0.259 0.222 0.260 0.242 0.249 0.239
Yahoo-soc 0.121 0.126 0.112 0.155 0.095 0.118 0.148 0.143 0.185
Eurlex-sm 0.070 0.087 0.083 0.072 0.057 0.043 0.130 0.133 0.118
Hypersphe 0.518 0.480 0.527 0.524 0.513 0.522 0.510 0.523 0.529
Hypercube 0.995 0.992 0.996 0.998 0.998 0.998 0.997 0.996 0.999

Average 0.238 0.240 0.259 0.263 0.230 0.315 0.338 0.351 0.389

Rank 6.47 6.50 6.13 5.70 7.17 4.37 3.33 3.00 2.33

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

242

15



Fig. 13. Bonferroni-Dunn for example-based F1 on nearest neighbors.

Table 7
Wilcoxon signed test: AESAKNNS vs nearest neighbors (p-values).

Algorithm Su. Acc H. Sco Ex. F1 Mi. F1 Ma. F1

kNN 3.33E-06 1.03E-04 1.44E-06 1.59E-06 8.67E-07
kNNP 4.03E-06 1.16E-04 1.18E-06 1.18E-06 8.67E-07
kNNPA 3.33E-06 1.31E-04 1.30E-06 1.30E-06 8.67E-07
SAMkNN 9.42E-06 4.99E-04 8.67E-07 1.44E-06 2.14E-06
MLkNN 4.44E-06 1.31E-04 1.06E-06 1.18E-06 9.60E-07
MLSAMkNN 1.36E-04 9.45E-05 4.23E-06 4.66E-06 4.66E-06
MLSAMPkNN 2.75E-03 1.76E-06 3.03E-05 1.86E-05 4.27E-05
MLSAkNN 1.54E-02 2.06E-03 2.36E-02 9.52E-03 4.55E-01

Fig. 14. Bayesian sign test on top nearest neighbors (AESAKNNS vs MLSAMPkNN and MLSAkNN).

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

243

16



Fig. 16. kNN comparison: prequential subset accuracy and F1 on Human.

Fig. 17. kNN comparison: prequential subset accuracy and F1 on Scene.

Fig. 15. kNN comparison: prequential subset accuracy and F1 on Eukaryote.

Fig. 18. kNN comparison: prequential subset accuracy and F1 on Yelp.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

244

17



Fig. 20. AESAKNNS contributions: prequential subset accuracy and F1 on Human.

Fig. 19. AESAKNNS contributions: prequential subset accuracy and F1 on Eukaryote.

Fig. 21. AESAKNNS contributions: prequential subset accuracy and F1 on Ohsumed.

Fig. 22. AESAKNNS contributions: prequential subset accuracy and F1 on Scene.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

245

18



Fig. 24. Bayesian sign test: example-based F1 on AESAKNNS four main contributions.

Fig. 23. Bayesian sign test: subset accuracy on AESAKNNS four main contributions.

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248

246

19



in the ensemble. We proposed to monitor concept drift on the sub-
spaces using a collection of ADWIN detectors to build a background

[11] M. Roseberry, B. Krawczyk, Y. Djenouri, A. Cano, Self-adjusting k nearest
neighbors for continual learning from multi-label drifting data streams,

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248
ensemble on new varying-size feature subspaces. These combined
mechanisms allowed AESAKNNS to be highly adaptive to concept
drift and overcome other various multi-label data difficulties. We
presented a thorough experimental study to evaluate how compet-
itive AESAKNNS is against 30 different models across 30 datasets
and 12 multi-label metrics. Achieving top performance for 9 out
of 12 metrics. We analyzed how AESAKNNS compares to other
ensemble and nearest neighbor algorithms and confirmed through
statistical analyses that AESAKNNS is well rounded classifier.
Moreover, we provided a detailed analysis on the performance
impact of each of the contributions of our method.

As future work, there are more adaptive mechanisms that could
potentially benefit AESAKNNS. This could include adaptive win-
dowing and additional hyperparameter adjustment, dynamic
ensemble sizing to increase the amount of knowledge gained dur-
ing meta evaluations, and combining feature, instance, and label
subspaces to create more diverse and specialized base classifiers.

CRediT authorship contribution statement
Gavin Alberghini: Formal analysis, Investigation, Resources,
Writing - original draft. Sylvio Barbon Junior: Resources, Writing
- review & editing. Alberto Cano: Conceptualization, Methodology,
Software, Supervision, Writing - original draft.

Declaration of Competing Interest
The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements
This research was partially supported by the 2018 VCU Presi-
dential Research Quest Fund and an Amazon AWS Machine Learn-
ing Research award. High Performance Computing resources
provided by the High Performance Research Computing (HPRC)
Core Facility at Virginia Commonwealth University were used for
conducting the research reported in this work.

References
247

20
[1] W. Liu, H. Wang, X. Shen, I. Tsang, The emerging trends of multi-label learning,
IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

[2] J.M. Moyano, E.L. Gibaja, K.J. Cios, S. Ventura, Review of ensembles of multi-
label classifiers: models, experimental study and prospects, Information
Fusion 44 (2018) 33–45.

[3] V.-L. Nguyen, E. Hüllermeier, M. Rapp, E.L. Mencía, J. Fürnkranz, On aggregation
in ensembles of multilabel classifiers, in: International Conference on
Discovery Science, 2020, pp. 533–547..

[4] E. Gibaja, S. Ventura, Multi-label learning: a review of the state of the art and
ongoing research, Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 4 (6) (2014) 411–444.

[5] H.M. Gomes, A. Bifet, J. Read, J.P. Barddal, F. Enembreck, B. Pfharinger, G.
Holmes, T. Abdessalem, Adaptive random forests for evolving data stream
classification, Machine Learning 106 (9) (2017) 1469–1495.

[6] I.A. Lawal, S.A. Abdulkarim, Adaptive SVM for data stream classification, South
African Computer Journal 29 (1) (2017) 27–42.

[7] B. Krawczyk, A. Cano, Online ensemble learning with abstaining classifiers for
drifting and noisy data streams, Applied Soft Computing 68 (2018) 677–692.

[8] A. Cano, B. Krawczyk, Kappa Updated Ensemble for Drifting Data Stream
Mining, Machine Learning 109 (1) (2020) 175–218.

[9] B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, M. Woźniak, Ensemble
learning for data stream analysis: A survey, Information Fusion 37 (2017) 132–
156.

[10] Y. Sun, K. Tang, L.L. Minku, S. Wang, X. Yao, Online ensemble learning of data
streams with gradually evolved classes, IEEE Transactions on Knowledge and
Data Engineering 28 (6) (2016) 1532–1545.
Neurocomputing 442 (2021) 10–25.
[12] M.-L. Zhang, Y.-K. Li, X.-Y. Liu, X. Geng, Binary relevance for multi-label

learning: an overview, Frontiers of Computer Science 12 (2) (2018) 191–202.
[13] J. Liu, Y. Li, W. Weng, J. Zhang, B. Chen, S. Wu, Feature selection for multi-label

learning with streaming label, Neurocomputing 387 (2020) 268–278.
[14] M.-L. Zhang, Z.-H. Zhou, ML-KNN: A lazy learning approach to multi-label

learning, Pattern recognition 40 (7) (2007) 2038–2048.
[15] N.C. Oza, S.J. Russell, Online bagging and boosting, in: International Workshop

on Artificial Intelligence and Statistics, 2001, pp. 229–236..
[16] J. Gama, P. Kosina, Recurrent concepts in data streams classification,

Knowledge and Information Systems 40 (3) (2014) 489–507.
[17] D. You, Y. Wang, J. Xiao, Y. Lin, M. Pan, Z. Chen, L. Shen, X. Wu, Online multi-

label streaming feature selection with label correlation, IEEE Transactions on
Knowledge and Data Engineering (2021).

[18] A. Fernández, S. Garcia, F. Herrera, N.V. Chawla, SMOTE for learning from
imbalanced data: progress and challenges, marking the 15-year anniversary,
Journal of Artificial Intelligence Research 61 (2018) 863–905.

[19] C. Drummond, R.C. Holte, et al., C4.5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling, in: Workshop on learning from
imbalanced datasets, Vol. 11, 2003, pp. 1–8..

[20] A. Tarekegn, M. Giacobini, K. Michalak, A review of methods for imbalanced
multi-label classification, Pattern Recognition 107965 (2021).

[21] M. Roseberry, A. Cano, Multi-label knn classifier with self adjusting memory
for drifting data streams, in: International Workshop on Learning with
Imbalanced Domains: Theory and Applications, 2018, pp. 23–37..

[22] M. Roseberry, B. Krawczyk, A. Cano, Multi-label punitive knn with self-
adjusting memory for drifting data streams, ACM Transactions on Knowledge
Discovery from Data 13 (6) (2019) 1–31.

[23] T. Museba, F. Nelwamondo, K. Ouahada, An adaptive heterogeneous online
learning ensemble classifier for nonstationary environments, Computational
Intelligence and Neuroscience 2021 (2021).

[24] E. Montanes, R. Senge, J. Barranquero, J.R. Quevedo, J.J. del Coz, E. Hüllermeier,
Dependent binary relevance models for multi-label classification, Pattern
Recognition 47 (3) (2014) 1494–1508.

[25] A. Rivolli, J. Read, C. Soares, B. Pfahringer, A.C. de Carvalho, An empirical
analysis of binary transformation strategies and base algorithms for multi-
label learning, Machine Learning 109 (8) (2020) 1509–1563.

[26] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-label
classification, Machine learning 85 (3) (2011) 333.

[27] L. Rokach, A. Schclar, E. Itach, Ensemble methods for multi-label classification,
Expert Systems with Applications 41 (16) (2014) 7507–7523.

[28] E.C. Gatto, M. Ferrandin, R. Cerri, Exploring label correlations for partitioning
the label space in multi-label classification, in, International Joint Conference
on Neural Networks (IJCNN) (2021) 1–8.

[29] R. Wang, S. Kwong, X. Wang, Y. Jia, Active k-labelsets ensemble for multi-label
classification, Pattern Recognition 109 (2021) 107583.

[30] R. Senge, J.J. del Coz, E. Hüllermeier, Rectifying classifier chains for multi-label
classification, arXiv preprint arXiv:1906.02915 (2019)..

[31] M.-L. Zhang, Y.-K. Li, H. Yang, X.-Y. Liu, Towards class-imbalance aware multi-
label learning, IEEE Transactions on, Cybernetics (2020).

[32] Q. Wu, M. Tan, H. Song, J. Chen, M.K. Ng, ML-FOREST: A multi-label tree
ensemble method for multi-label classification, IEEE transactions on
knowledge and data engineering 28 (10) (2016) 2665–2680.

[33] T. Wei, J.-X. Shi, Y.-F. Li, Probabilistic label tree for streaming multi-label
learning, in, in: 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2021, pp. 1801–1811.

[34] J. Huang, F. Qin, X. Zheng, Z. Cheng, Z. Yuan, W. Zhang, Q. Huang, Improving
multi-label classification with missing labels by learning label-specific
features, Information Sciences 492 (2019) 124–146.

[35] C. Zhang, Z. Li, Multi-label learning with label-specific features via weighting
and label entropy guided clustering ensemble, Neurocomputing 419 (2021)
59–69.

[36] X. Zheng, P. Li, Z. Chu, X. Hu, A survey on multi-label data stream classification,
IEEE Access 8 (2019) 1249–1275.

[37] H. Zhang, W. Liu, S. Wang, J. Shan, Q. Liu, Resample-based ensemble
framework for drifting imbalanced data streams, IEEE Access 7 (2019)
65103–65115.

[38] Y. Sun, H. Shao, S. Wang, Efficient ensemble classification for multi-label data
streams with concept drift, Information 10 (5) (2019) 158.

[39] R. Sousa, J. Gama, Multi-label classification from high-speed data streams with
adaptive model rules and random rules, Progress in Artificial Intelligence 7 (3)
(2018) 177–187.

[40] J.C. Júnior, E. Faria, J. Silva, R. Cerri, Label powerset for multi-label data streams
classification with concept drift, in: in: 5th Symposium on Knowledge
Discovery, Mining and Learning, 2017, pp. 97–104.

[41] J.D.C. Júnior, E.R. Faria, J.A. Silva, J. Gama, R. Cerri, Pruned sets for multi-label
stream classification without true labels, in: International Joint Conference on
Neural Networks, 2019, pp. 1–8..

[42] J.D.C. Júnior, E.R. Faria, J.A. Silva, J. Gama, R. Cerri, Novelty detection for multi-
label stream classification, 8th Brazilian Conference on Intelligent Systems
(2019) 144–149.

[43] R. Cerri, J.D.C. Júnior, E.R. d. F. Paiva, J.M.P. da Gama, Multi-label stream
classification with self-organizing maps, arXiv preprint arXiv:2004.09397
(2020)..

http://refhub.elsevier.com/S0925-2312(22)00098-4/h0005
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0005
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0010
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0010
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0010
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0020
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0020
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0020
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0025
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0025
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0025
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0030
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0030
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0035
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0035
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0040
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0040
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0045
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0045
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0045
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0050
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0050
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0050
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0055
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0055
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0055
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0060
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0060
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0065
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0065
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0070
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0070
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0080
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0080
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0085
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0085
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0085
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0090
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0090
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0090
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0100
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0100
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0110
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0110
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0110
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0115
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0115
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0115
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0120
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0120
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0120
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0125
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0125
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0125
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0130
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0130
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0135
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0135
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0140
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0140
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0140
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0145
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0145
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0155
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0155
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0160
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0160
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0160
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0165
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0165
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0165
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0165
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0170
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0170
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0170
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0175
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0175
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0175
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0180
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0180
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0185
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0185
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0185
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0190
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0190
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0195
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0195
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0195
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0200
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0200
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0200
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0200
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0210
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0210
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0210


[44] R. Cerri, J.D.C. Júnior, E.R. Faria, J. Gama, A new self-organizing map based
algorithm for multi-label stream classification, in: 36th Annual ACM

Gavin Alberghini is a software application development
engineer at MITRE. He received the M.Sc. degree in

G. Alberghini, S. Barbon Junior and A. Cano Neurocomputing 481 (2022) 228–248
Symposium on Applied Computing, 2021, pp. 418–426.
[45] A. Bifet, G. Holmes, B. Pfahringer, Leveraging bagging for evolving data

streams, in: European Conference on Machine Learning and Knowledge
Discovery in Databases, 2010, pp. 135–150.

[46] A. Bifet, R. Gavalda, Learning from time-changing data with adaptive
windowing, in: SIAM international conference on data mining, 2007, pp.
443–448.

[47] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: massive online analysis,
Journal of Machine Learning Research 11 (2010) 1601–1604.

[48] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavalda, New ensemble
methods for evolving data streams, in: ACM SIGKDD international conference
on Knowledge discovery and data mining, 2009, pp. 139–148.

[49] P. Domingos, G. Hulten, Mining high-speed data streams, in: ACM SIGKDD
international conference on Knowledge discovery and data mining, 2000, pp.
71–80.

[50] B. Pfahringer, G. Holmes, R. Kirkby, New options for hoeffding trees, in:
Australasian Joint Conference on Artificial Intelligence, 2007, pp. 90–99..

[51] M. Baena-Garcia, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda, R. Morales-
Bueno, Early drift detection method, in: International Workshop on
Knowledge Discovery from Data Streams, Vol. 6, 2006, pp. 77–86..

[52] R. Pelossof, M. Jones, I. Vovsha, C. Rudin, Online coordinate boosting, in:
International Conference on Computer Vision Workshops, 2009, pp. 1354–
1361.

[53] J.Z. Kolter, M.A. Maloof, Dynamic weighted majority: An ensemble method for
drifting concepts, Journal of Machine Learning Research 8 (2007) 2755–2790.

[54] D. Brzezinski, J. Stefanowski, Reacting to different types of concept drift: The
accuracy updated ensemble algorithm, IEEE Transactions on Neural Networks
and Learning Systems 25 (1) (2013) 81–94.

[55] P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes, B. Pfahringer, J.
Read, Stream data mining using the moa framework, in: International
Conference on Database Systems for Advanced Applications, 2012, pp. 309–
313.

[56] A. Bifet, B. Pfahringer, J. Read, G. Holmes, Efficient data stream classification via
probabilistic adaptive windows, in: ACM symposium on applied computing,
2013, pp. 801–806.

[57] V. Losing, B. Hammer, H. Wersing, Knn classifier with self adjusting memory
for heterogeneous concept drift, in: IEEE International Conference on Data
Mining, 2016, pp. 291–300.

[58] J. Read, P. Reutemann, B. Pfahringer, G. Holmes, MEKA: A multi-label/multi-
target extension toWeka, Journal of Machine Learning Research 17 (21) (2016)
1–5.

[59] J. Read, A. Bifet, G. Holmes, B. Pfahringer, Streaming multi-label classification,
in: Workshop on Applications of Pattern Analysis, 2011, pp. 19–25..

[60] R. Sousa, J. Gama, Online multi-label classification with adaptive model rules,
in: Conference of the Spanish Association for Artificial Intelligence, 2016, pp.
58–67.

[61] J. Read, A. Bifet, G. Holmes, B. Pfahringer, Scalable and efficient multi-label
classification for evolving data streams, Machine Learning 88 (1–2) (2012)
243–272.

[62] J. Gama, P.P. Rodrigues, R. Sebastiao, Evaluating algorithms that learn from
data streams, in: ACM symposium on Applied Computing, 2009, pp. 1496–
1500..
248
from the Virginia Commonwealth University, USA in
2021 and 2020, respectively. His interests are data sci-
ence and machine learning.

Sylvio Barbon Junior, PhD, is Associate Professor at
Department of Engineering and Architecture at
Computer Science and B.Sc. degree in Computer Science
University of Trieste (UNITS), Italy. He received his BSc
degree in Computer Science in 2005, his MSc degree in
Computational Physics from the University of Sao Paulo
(2007), a degree in Computational Engineering in 2008,
and a PhD degree (2011) from IFSC/USP similar to his
MSc degree. In 2017, he was a visiting researcher at the
University of Modena and Reggio Emilia (Italy), working
on multispectral analysis and machine learning. In
2021, as visiting professor at the Universita Degli Studi
Di Milano (Italy), he focused on data stream and process

mining. He is currently a professor in postgraduate and graduate programs. His
research interests include digital signal processing, pattern recognition, and
machine learning.

Alberto Cano, PhD, is an Associate Professor with the

Department of Computer Science, Virginia Common-
wealth University, USA, where he heads the High-
Performance Data Mining Lab. He obtained his BSc
degrees in Computer Engineering and in Computer
Science from the University of Cordoba, Spain, in 2008
and 2010, respectively, and his MSc and PhD degrees in
Intelligent Systems and Computer Science from the
University of Granada, Spain, in 2011 and 2014
respectively. His research is focused on machine learn-
ing, data mining, general-purpose computing on
graphics processing units, Apache Spark, and evolu-

tionary computation. He has published over 50 articles in high-impact factor
journals, 50 contributions to international conferences, two book chapters, and one
book in the areas of machine learning, data mining, and parallel, distributed, and
GPU computing. His research is supported by an Amazon AWS Machine Learning
award and the VCU Presidential Research Quest Fund. Dr. Cano is Associate Editor of
IEEE Access and PeerJ Computer Science.
21

http://refhub.elsevier.com/S0925-2312(22)00098-4/h0220
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0220
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0220
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0220
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0225
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0225
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0225
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0225
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0230
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0230
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0230
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0230
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0235
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0235
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0240
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0240
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0240
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0240
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0245
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0245
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0245
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0245
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0260
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0260
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0260
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0260
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0265
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0265
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0270
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0270
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0270
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0275
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0275
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0275
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0275
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0275
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0280
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0280
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0280
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0280
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0285
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0285
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0285
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0285
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0290
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0290
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0290
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0300
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0300
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0300
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0300
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0305
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0305
http://refhub.elsevier.com/S0925-2312(22)00098-4/h0305

	Adaptive ensemble of self-adjusting nearest neighbor subspaces for multi-label drifting data streams
	1 Introduction
	2 Multi-label stream classification
	2.1 Multi-label data
	2.2 Data streams
	2.3 Nearest neighbors for multi-label data streams
	2.4 Ensemble learning
	2.4.1 Ensembles for data streams
	2.4.2 Ensembles for multi-label data
	2.4.3 Ensembles for multi-label data streams


	3 Adaptive Ensemble of Self-Adjusting Nearest Neighbor Subspaces
	3.1 MLSAkNN as a base classifier
	3.2 Online bagging and instance subsets
	3.3 Adaptive random feature subspaces
	3.4 Concept drift detection using ADWIN
	3.5 Background ensemble to adapt to concept drift

	4 Experimental study
	4.1 Experimental setup
	4.1.1 Algorithms
	4.1.2 Datasets
	4.1.3 Metrics

	4.2 Overall comparison with all classifiers on all metrics
	4.3 Ensembles comparison
	4.4 Nearest neighbors comparison
	4.5 Contributions of AESAKNNS

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References




