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a b s t r a c t

Several applications of supervised learning involve the prediction of multiple continuous target
variables from a dataset. When the target variables exhibit statistical dependencies among them, a
multi-target regression (MTR) modelling permits to improve the predictive performance in comparison
to induce a separate model for each target. Apart from describing the dependencies among the
targets, the MTR methods could offer better performance and less overfitting than traditional single-
target (ST) methods. A group of MTR methods have addressed this demand, but there are still many
possibilities for further improvements. This paper presents a novel MTR method called Deep Structure
for Tracking Asynchronous Regressor Stacking (DSTARS), which overcomes some existing gaps in the
current solutions. DSTARS extends the Stacked Single-Target (SST) approach by combining multiple
stacked regressors into a deep structure. In this sense, it is able to boost the predictive performance
by successively improving the predictions for the targets. Besides, DSTARS exploits the dependency
of each target individually by tracking an asynchronous number of stacked regressors. Additionally,
our proposal explores the inter-targets dependencies by exposing and measuring them through a
nonlinear metric of variable importance. We compared DSTARS to SST, Ensemble of Regressor Chains
(ERC) and Multi-objective Random Forest (MORF). Also, the ST strategy with different algorithms was
used to compute independent regressions for each target. We used Random Forest (RF) and Support
Vector Machine (SVM) as base-learners to investigate the prediction capability of algorithms belonging
to different machine learning paradigms. The experiments carried out on eighteen diverse datasets
showed that the proposed method was significantly better than the other compared approaches.

1. Introduction

The achievement of a model which provides the best under-
standing of a given dataset towards predicting precise outcomes
from new data is highly desirable. Looking forward to fulfilling
this requirement, many single-target (ST) methods were pro-
posed [1–4]. These methods aim at predicting a single target,
response, or output y based on a set X of m input variables.

Recently, the interest in predicting simultaneously multiple
outputs related to the same explaining set of real-life problems is
increasing [5–11]. In these cases, the problems are called multi-
target (MT). MT brings an additional challenge since, besides
modelling the input to output dependencies, some relationships
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among the responses may exist. MT methods offer better perfor-
mance by exploring the inter-target influences and reducing the
overfitting in comparison to collections of ST models [5,7,12].

For definition, consider an input (description space) consist-
ing of tuples with primitive data types (only discrete or con-
tinuous values) in the form x = {x1, x2, . . . , xm}. Also, con-
sider a target or output space Y, with tuples in the form y =
{y1, y2, . . . , yd}, being d the number of the problem’s outputs. In
addition, take a set of examples E comprising elements from X
and Y, i.e., E = {(x(1), y(1)), . . . , (x(n), y(n))}, being n the number
of examples. Lastly, take into consideration a quality criterion
q that rewards prediction models which present high predictive
performance and low complexity [5]. A MT problem can be de-
fined as the task of finding a function h : x ↦→ y such that h
maximizes q. This prediction problem is solved upon the set of
known examples, E. The sought function h can either refer to a
single prediction model or a set thereof. Specifically, when the
elements of Y are continuous, with the possibility of being statis-
tically correlated, the related predictive problem is characterized
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as multi-target regression (MTR) [6–8,13,14], the focus of this
work.

Many real-life problems were reported as MTR tasks, including
the prediction of vegetation, soil, water and river flow properties,
the estimation of monthly online product sales, forecasting of
the future price of multiple products in supply management
chains and air-tickets in different companies, the prediction of
solar flares parameters, air pollutants concentration, wheat flour
quality, among others [7–9,12,15,16].

The state-of-the-art MTR methods present some limitations
regarding the explicit measurement and modelling of the target
dependencies, providing black-box solutions. None of the exist-
ing methods presupposes different levels of correlation among
the outputs. Indeed, most of the existing MTR solutions rely on
statically inserting target predictions as new input features or
randomly exploring the possible existing chains of influence [8,
13,17]. Lastly, to the best of our knowledge, the existing solutions
do not take into consideration the premise that some of the
targets may have no relationships with the others. In this case, an
effective MTR method should treat these uncorrelated outputs as
apart ST tasks.

In this work, our new proposal called DSTARS (Deep Structure
for Tracking Asynchronous Regressor Stacking) is compared with
the Single-target (ST) strategy, Stacked Single-target (SST) [8],
Ensemble of Regressor Chains (ERC) [8], and the Multi-objective
Random Forest (MORF) [5,18]. DSTARS was motivated by pre-
ceding approaches which stack targets’ predictions as additional
input features, but we focused on overcoming the presented gaps.

Our method employs multiple stacked regressors for each
target, and asynchronously tracks the ones who contributed to
reduce the prediction error. Each new added regressor uses ex-
tra input features which are derived from the previously added
predictors. DSTARS successively adds stacked regressors under
the hypothesis that the prediction error for the most dependent
targets will be gradually reduced as new and improved response
estimations are stacked as descriptive features. As a matter of
visualization, the multiple stacked predictors for each target can
be referred as layers of regression models (or regressor layers).
Thus, DSTARS can potentially create deep layers of regressors for
some targets, depending on the task. By employing a different
number of regressor layers for each response, DSTARS considers
the specific characteristics of each target individually. In other
words, a target can have different dependency levels (or none) in
relation to the other responses, and thus, it demands a particular
treatment. Lastly, DSTARS explicitly measures the dependency
among the targets by employing a variable importance measure.
In this work, we chose to employ a nonlinear importance measure
which is based on the Random Forest algorithm. In this sense,
the possibly nonlinear relationships among the targets can be
measured, and only the correlated targets will be subjected to
the stacking process; the non-correlated ones are modelled as
separated ST tasks.

This paper was built upon our previous work which was
presented in Mastelini et al. [19]. However, this research upgrades
and extends the previous one in the following main aspects:

• An expanded set of 18 benchmark datasets is employed in
the experiments;
• DSTARS now employs a nonlinear metric of variable impor-

tance to select which targets are subjected to the process of
stacking regressors;
• The target importance measurements are calculated with ST

predictions of the targets, which are taken in validation sets,
to offer more realistic measurements on the inter-response
relationships;
• The presentation of DSTARS, the experimental setup, and the

discussion of the results were expanded;

• The Multi-objective Random Forest (MORF) is also com-
pared;
• Detailed results regarding the obtained errors per target, and

the number of regressor layers that DSTARS generated for
each output in the evaluated datasets are also presented.
• The MTR methods are also compared regarding their run-

ning time;
• Supplementary materials are offered in the Appendices to

support and detail the experiments performed.

This paper is organized as follows: Section 2 explores existing
MTR methods, presenting in details the ones compared with
DSTARS. Section 3 presents the complete description of DSTARS.
The experimental setup is described in Section 4, followed by
the results and the analysis of them in Section 5. The conclu-
sions and future research directions are presented in Section 6.
Lastly, Appendices with additional detailed information about the
performed experiments are presented.

2. Related work

A first straightforward strategy to predict multiple outputs is
predicting each target variable separately, as a set of ST problems.
Although simple, in many cases, committed by weakly correlated
targets, this strategy outperformed some MTR methods [7,8,14].
Clearly, when each target is modelled separately, the targets
correlations are missed. Still, the ST strategy has been used as a
performance baseline in MTR works [6,8,13,14].

Differently, when a given machine learning algorithm is ap-
plied to deal with a MT problem at once, some adjusts in the
original modelling method must be performed in order to deal
with multiple targets. These modifications include changes in
the optimization function (SVMs) [20–22], or the node splitting
criteria (regression trees) [5,18].

As described by Borchani et al. [7], MTR tasks have been
conducted by two approaches: algorithm adaptation and problem
transformation. Kocev et al. [5] refer to the mentioned approaches
as global and local, respectively. The global or algorithm adap-
tation approach refers to adapting a ST regression algorithm to
deal with multiple outputs or even creating a new one to per-
form this task. In this case, the resulting method must deal with
all the underlying inter-target dependencies within the created
model, which can be very challenging. Diversely, the local or
problem transformation approach manipulates the training data
to explore the statistical dependencies among the outputs and
employ multiple ST regressors to predict the targets. Although
multiple predictors are employed, increasing the computational
costs, this strategy also increases the modularity and flexibility
of the solution.

Some global methods were proposed in past years [7], being
applied in several tasks [7,12,23–25]. In fact, the global-based
methods have achieved good prediction performances, bringing
the advantage of generating a unique model and, thus, con-
suming less resources. Among the global-based methods, the
Multi-objective Random Forest (MORF) has received increasing
attention. This method, proposed by Kocev et al. [5,18], was
explored in many works jointly with the ST for performance
comparison [6,8,13,14]. Taking into consideration its relevance,
MORF was also compared to DSTARS in our experiments, and it
is described in details in Section 2.3.

Local-based methods were also proposed to treat MTR prob-
lems as enhanced single output tasks, while exploring inter-
targets properties. Indeed, the use of more than one predictor to
solve a MTR problem leads to decrease the interpretability and
increase the computational costs of the generated solution [7].
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However, this kind of approach offers some advantages. As pre-
viously mentioned, the solution’s modularity and conceptual sim-
plicity are increased [7,8]. In addition, the possibility of using
any class of base learner, even a hybrid set, tends to result in
better predictive performance and enables the exploration of
particular characteristics of the dealt problems. A set local-based
methods were proposed in the past years, exploring different data
manipulation strategies [8,9,13,14,17,21,26].

Some of the recent methods have been adapted from multi-
label classification [7,8]. Spyromitros-Xioufis et al. [8] proposed
SST (Stacked Single-Target) and ERC (Ensemble of Regressor
Chains), which inspired some other methods, including ours.
Their idea is the application of targets’ approximations as explain-
ing features, as proposed in the Cascade Generalization [27]. As
done in their the proposal and extended to ours, this strategy will
be from here onward referred simply as stacking. SST and ERC are
compared to DSTARS, hence more details about them are exposed
in the Sections 2.1 and 2.2.

2.1. Stacked single-target

The SST method consists of training ST models and using
their outputs as additional prediction features. In this way, taking
into consideration an input set composed by m features, X, and
d continuous target variables, Y, SST uses the ST predictions
Ŷ, in the form ŷ = {ŷ1, ŷ2, . . . , ŷd}, as new inputs, forming
an augmented training set X′ with tuples in the form x′ =
{x1, x2, . . . , xm, ŷ1, ŷ2, . . . , ŷd}. The transformed data is used along
with Y to train another set of ST predictors, whose outcomes are
the final predictions.

In this sense, SST explores the possible existing inter-target
dependencies by statically adding predictions for all targets as
new inputs. However, there are no guarantees that all targets
influence and are influenced by the others in all cases. In fact,
this method makes no distinction about the existing correlation
levels among the targets.

Regarding the computational complexity, consider b as the
cost of the chosen base regressor technique. The SST time com-
plexity is equal to O(2 d b), which is twice the number of models
employed by the ST strategy. Consequently, the ST time complex-
ity is O(d b).

2.2. Ensemble of regressor chains

The ERC method consists of using a set of randomly ordered
target groups, referred as chains, to build ST regressors sequen-
tially. For each chain, initially, an ST model is induced using the
first output variable of the sequence. New models are trained
following the regressor chain (RC) order and the stacking strat-
egy: each new regressor uses an augmented input dataset formed
by the combination of the original input variables and the past
models’ predictions. This process is repeated until the end of all
chain sequences. After training all models, new income values are
subjected to the set of RCs and their responses are the average
predicted values for each target.

Since the output predictions are composed of values from
different chains positions, multiple levels of combinations and
inter-dependence between targets are explored, albeit in an ex-
haustive approach influenced by randomness. Given the high
number of potential combinations among the outputs, ERC cre-
ates all possible target permutations if this number is less than
10 (when d ≤ 3), otherwise exactly ten random combinations
are selected.

Regarding the ERC cost, there are two possibilities. The first
scenario corresponds to use all the possible target permutations,
which results in a complexity of O(d2 (d−1)! b), since d regressors
are induced for each RC. Nevertheless, by following the ERC’s
authors recommendation of employing ten random combinations
when d > 3, the resulting time complexity is O(10 d b).

2.3. Multi-objective random forest

Traditionally, decision and regression trees aim at finding the
underlying relationship among the input features to explain a
single output variable. In regression tasks, for instance, the split
decisions are often made intending to minimize the variance of
the output data in the induced partitions [1]. When dealing with
multiple outputs, some different or adapted strategy must be
employed.

Blockeel et al. [28] proposed a framework for top-down in-
duction of predictive clustering trees (PCTs). In their approach,
each data partition begins to be seen as a cluster which holds
the cases separated by a decision made over a feature variable.
The root node represents the cluster that contains all the prob-
lem’s instances. The splits are made with the goal of maximizing
the homogeneity of the induced sub-clusters. For Multi-target
regression Trees (MTRT), the maximization of homogeneity is
defined as the reduction in output data variance [28]. Similarly,
the average value of the leaf clusters are the responses in these
tree structures.

Kocev et al. [18] employed the PCT framework to generate
ensembles of MTRT trees. The Bagging and Random Forest (RF)
strategies were evaluated, being the latter the best evaluated
one. The RF ensemble was called Multi-objective Random Forest
(MORF). In the following years, MORF was evaluated in multiple
MT problems [5,12], and it was frequently used as a comparison
in MTR works [6–8,13,14].

As discussed in Kocev et al. [5], the time complexity to build
MORF is O(k (m′N log2 n + dm′n log n)). In this expression, k rep-
resents the number of trees in the forest, m′ is the size of the
subset of features which are sampled for building each tree, d is
the number of targets, and n the number of training instances.

3. Deep structure for tracking asynchronous regressor stack-
ing

DSTARS explores the available data seeking to find the best
composition of stacked regression models to decrease the pre-
diction error. For convention, the amount of regressors used to
predict a single response is from here onward referred as the
number of regressor layers. In this sense, ST uses a single layer
of regressors for each target, considering only the original input
set as descriptors. On the other hand, SST is composed of two
regressor layers: the second layer employing the outputs of the
first one as additional features. The most suitable number of
regressor layers is computed by DSTARS, improving the predictive
performance for each target individually.

Our method can be divided into five steps: Data Partition, ST
Induction, Filtering, Tracking, and Modelling (Fig. 1). Firstly, the in-
put and output spaces are partitioned in f training and validation
groups (Step 1) towards reducing possible bias and overfitting
when searching for the best regressor layers composition. This is
performed by employing a consensus scheme to select whether
a specific layer integrates into the final predictive model. The
data partition is performed using a sampling strategy such as
cross-validation or bootstrap sampling. Step 2 is grounded on
creating a first layer of single-target regressors, since in a scenario
of independence among the targets, just a regressor layer would
be needed. Conversely, in a scenario of inter-dependent targets,
DSTARS takes advantage of those relationships by fashioning deep
regressor layers. This is explored in the next steps.

The Filtering phase (Step 3) measures how each target is influ-
enced by the others, calculating the correlation level among them
on different partitions, as defined in Step 1. This information en-
ables choosing whether a target’s prediction will be stacked when
predicting other responses in the next steps. The Tracking phase
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Fig. 1. General overview of the DSTARS method.

(Step 4) evaluates the number of regressor layers able to reduce
the prediction error for each target, exploring the training and
validation subsets, defined in Step 1. This phase is grounded on
hyperparameters ε and φ. The minimum expected error reduction
by adding a new regressor is defined by ε. The φ hyperparameter
is related to the minimum percentage of contribution from a
given layer in the total error reduction. The Filtering and Tracking
phases determine the structure of regressor layers that is used to
train the final DSTARS prediction model in the Modelling phase
(Step 5).

Algorithm 1 shows how the DSTARS’ steps interact with each
other, based on the hyperparameters: input and output sets (X
and Y), ε, φ and the sampling strategy (specified in Step 1).

Algorithm 1 Complete DSTARS procedure

1: function DSTARS(X, Y, φ, ε, sampling_strategy)
2: Separate X and Y using sampling_strategy in f

partitions
3: Induce regressors hp

t for each target t and partition (Xp, Yp),
p ∈ [1..f ]

4: Save the predictions for each partition:
Ŷp
= {ŷp1, ..., ŷ

p
t , ..., ŷ

p
d}

5: Compute the prediction error for each target and partition:
ept

6: Get the filtering information:
F ← Filtering(Y1..f , Ŷ1..f )

7: Search for the best regressor layer structure:
T ← Tracking(X1..f , Y1..f , Ŷ1..f , e1..f1..d, ε, φ)

8: Create the final prediction model:
M ← Modelling(X, Y, F , T )

9: return M
10: end function

We employ the Root Mean Squared Error (RMSE) to calculate
the regressors’ prediction error throughout the DSTARS phases.
RMSE is calculated according to Eq. (1), where n represents the
number of test instances, yi the true responses for the ith test
case in the evaluated target, and ŷi the predictions obtained for

the same example.

RMSE =

√1
n

n∑
i=1

(yi − ŷi)2 (1)

3.1. Filtering

The Filtering phase aims at determining the level of influence
of the targets among themselves. Herewith, only the responses
which are correlated to a given target are stacked as additional
features for it. Uncorrelated targets with the others generate
independent ST tasks. Previous researches employed the linear
correlation metric to measure how the targets influence each
other [14,17], but assuming only linear relationships is a non-
realistic proposition. Thus, DSTARS uses a nonlinear metric to
compute the target influence towards improving the description
of the task’s intrinsic characteristics.

Looking forward to fulfilling this requirement, the Random
Forest Variable Importance [2,29] was chosen. This metric, here
referred as RFimp, can handle both classification and regression
tasks. Besides, RFimp does not presuppose a linear relationship
between the explaining features and the evaluated response. De-
spite our choice, any preferred variable importance metric could
be employed to describe the inter-target relationships.

Although using the targets’ true values for calculating the
RFimp is possible, the result tends to be too optimistic and biased.
In practical applications, the obtained prediction error for a target
could be very high. Thus, the estimations for this response might
not present the same statistical dependencies as those measured
from the real observed values. For that reason, DSTARS measures
the RFimp between Ŷ and Y. DSTARS only stacks target predic-
tions with non-zero and positive RFimp considering all the f data
partitions. Thus, Ŷ represents the merged ST predictions over the
validation groups of the original output set Y.

Algorithm 2 presents the DSTARS Filtering function. This
function receives Ŷ and Y as inputs, and computes the RFimp of
each element in former set when explaining the targets in the
latter.
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Algorithm 2 DSTARS Filtering step

1: function Filtering(Ŷ, Y)
2: Let F be a d×d matrix to store the inter-target correlations
3: for each target yt in Y do
4: Train a RF regressor h using Ŷ and yt
5: Measure the RFimp values with h and save them in

F [t, 1..d]
6: end for
7: return F
8: end function

3.2. Tracking

The Tracking phase searches for the adequate number of re-
gressor layers using the previously defined training and validation
sets. Its central idea is to induce successive regressor layers and
account whether each created model was able to reduce the
prediction error. Each new regressor created for a target yt , t ∈
[1, 2, . . . , d], uses the input set X augmented with predictions
of the most accurate regressors created so far for all the targets
related to yt accordingly to F (obtained in the Filtering phase).
By the most accurate regressor, we mean the predictor related
to a regressor layer which was able to obtain the smallest error
for a target among all the evaluated models until that moment.
Initially, the best predictors are those defined at the beginning of
DSTARS (see Step 2 of Fig. 1).

We consider that a newly added regressor improves upon the
previous ones when it reduces the prediction error by at least a
minimum error improvement criterion ε. The exploratory process
stops when no gains greater than ε are observed in any targets.
Hence, ε could also be seen as a convergence criterion for DSTARS.
Note that a regressor layer might not decrease the error (in at
least ε) for a given target, but its successors could achieve this by
using improved stacked predictions. Our method asynchronously
selects the best current predictors for each target to compose an
additional set of features, i.e., the best predictions may come from
different regressor layers.

The combination of target and regressor layer that reduced
the error is accounted in each case when evaluating all the de-
fined data partitions. Normalizing these occurrences by the total
number of data partitions, we can apply a threshold φ to select
for each target only the regressor layers that brought improve-
ments in at least φ percent of the occurrences. After applying φ,
some regressor layers may be bypassed, creating a regressor layer
discontinuity. In this case, no model is created for that specific
regressor layer and target combination. The final regressor layers
for each target compose the final predictive model of DSTARS.

It is important to highlight the generally expected behaviour
for different ε and φ choices. Using greater values for ε leads
to explore fewer regressor layers during the Tracking since only
predictors which decrease the prediction errors in great extents
will be considered. This solution can be sub-optimal. On the other
hand, setting ε closer to zero enables gradual improvements to
be obtained, but could also lead to DSTARS overfitting in the
training data. Regarding φ, values close to 1 mean that only the
regressor layers selected in almost all data partition compose the
final DSTARS model. In fact, setting φ to 1 or a value very close to
it leads the final DSTARS models behaving very similar to the ST
or the SST method, or a hybrid of them. Likewise to ε, choosing φ
values close to zero enables more regressor layers to be used, but
also could lead to overfitting the solution to the training data.

The Tracking function is presented in Algorithm 3. This func-
tion receives the data partitions combined with the ST predictions
and their respective errors, the threshold φ, the error convergence
criterion ε, and the previously defined filtering values F .

Algorithm 3 DSTARS Tracking step

1: function Tracking(X1..f , Y1..f , e1..f1..d, φ, ε, F )
2: Let T be a list of applicable regressor layers
3: Initialize T :

T [1, 1..d] ← f
4: for each (Xp,Yp, Ŷp) ∈ (X1..f ,Y1..f , Ŷ1..f ) do
5: Let l be the regressor layers count, starting with 2
6: while error decreases for some target do
7: for t ← 1 to d do
8: Let X′ be the input set Xp augmented with Ŷp

v

such that v ∈ [1..d] and F [t, v] > 0
9: Create regressor ht using X′ and yt

10: Compute the error for ht : ẽ
11: if ẽ+ ε < ept then
12: Update ept and Ŷp

t
13: Increment T [l, t] by one
14: end if
15: end for
16: Increment l by one
17: end while
18: end for
19: Normalize T by f

20: T =
{
True, T ≥ φ

False, T < φ

21: return T
22: end function

3.3. Modelling

The final DSTARS phase consists of inducing the regressor
layers which were defined in the Tracking over the original input
and output variables. The inter-target relations defined in the
Filtering phase are also employed to isolate the possible ST tasks
and to choose only the relevant responses to be stacked when es-
timating each target. Algorithm 4 presents the DSTARS Modelling
phase. The function receives the original input (X) and output
(Y) variables, the filtering (F ) and the regressor layer tracking (T )
information, which were defined in the previous DSTARS phases.

Algorithm 4 DSTARS Modelling step

1: function Modelling(X, Y, T , F )
2: Let L be the maximum number of regressor layers in T
3: Let M be an empty set to store the regression models
4: Let Ŷ be an empty matrix to store targets’ predictions
5: for l← 1 to L do
6: for t← 1 to d do
7: if T [l, t] = True then
8: Let X′ be the input set X augmented with Ŷv such

that v ∈ [1..d] and F [t, v] > 0
9: Induce regressor model hl

t using X′ and yt
10: Update Ŷ
11: Save hl

t in M
12: end if
13: end for
14: end for
15: return M
16: end function

Given a trained DSTARS model, new instances will be sequen-
tially subjected to the trained predictors following the regressor
layers order. Each predictor provides target estimations which
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Table 1
Name, amount of examples, number of input and output variables, and description of the datasets used in the experiments.
Dataset #Examples #Input #Outputs Description

atp1d 337 411 6 Minimum air ticket price in the following day for different
airline options and number of stops.

atp7d 296 411 6 Minimum air ticket price over the successive seven days day
for different airline options and number of stops.

oes97 334 263 16 Surveys concerning occupational employment that contains
the estimated number of employees in different jobs in 1997.

oes10 403 298 16 Surveys concerning occupational employment that contains
the estimated number of employees in different jobs in 2010.

rf1 9125 64 8 River flows after 48 h in the Mississippi River network.

rf2 9125 576 8 River flows after 48 h in the Mississippi River network with
precipitation forecast information included as input variables.

scm1d 9803 280 16 Prices of several products in the next day in a supply chain
management.

scm20d 8966 61 16 Mean price of different products over the next 20 days in a
supply chain management.

edm 154 16 2 Parameters of electrical discharge machining defined by a
human operator during .

sf1 323 10 3 Number of times common, moderate and severe solar flares
were observed in a 24 h interval.

sf2 1066 10 3 Number of times common, moderate and severe solar flares
were observed in a 24 h interval.

jura 359 15 3 Concentration of heavy metals in the top soil of Jura
(Switzerland).

wq 1060 16 14 Relative representation of plant and animal species in
Slovenian rivers.

enb 768 8 2 Heating and cooling load specifications for energy efficient
buildings.

slump 103 7 3 Slump, flow and compressive strength concrete characteristics
based on the quantity of concrete elements.

andro 49 30 6 Water quality parameters in Thermaikos Gulf of Thessaloniki,
Greece.

osales 639 413 12 Online monthly sales of a product during its first twelve
months.

scfp 1137 23 3 Number of views, clicks and comments on online issues.

will act as new input features to the subsequently stacked regres-
sors. In all cases, the last regressor layer for a target will provide
the final predictions.

3.4. Complexity analysis

The total time complexity of DSTARS relies on certain choices
which must be made before its execution. These aspects include
the sampling strategy employed to separate the data and the
hyperparameters φ and ε which must be set up. Regarding the
different DSTARS phases, the Filtering step has O(d r) time com-
plexity, where d represents the number of targets and r the
cost to calculate the chosen importance metric for one of the
responses. The Tracking step has a time complexity of O(f L d b),
where f represents the number of employed data partitions, L
the maximum number of regressors which were trained until
all targets converged, and b the time complexity of the cho-
sen regression technique. The modelling step has O(L d b) time
complexity.

Therefore, by putting L b in evidence for the Tracking and
Modelling phases, and also, separating the d term in all presented
costs, the total time complexity of our proposal is O(d [r+(L b) (f+
1)]). Thus, the number of targets and induced data partitions
greatly influence the final time complexity of DSTARS. Moreover,
the number of regressor layers obtained during the experiments,
presented in Section 5.6 and in the Appendix A, and also the
measured running time (Section 5.5) could offer more intuition

about the cost of inducing DSTARS models in real scenarios.
Last, these results could also give insights on the memory re-
quirements of DSTARS, since the memory complexities of the
local-based methods directly depend on the chosen regressor
techniques costs.

4. Experimental setup

This Section presents the benchmark datasets used to com-
pare DSTARS with other MTR methods, together with the em-
ployed base regression algorithms and software libraries. Lastly,
we present the evaluation metrics which were used to measure
the prediction performance of each evaluated MTR method. All
experiments were performed in the same 64-bit Linux machine
with Processor Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz with
two sockets of 14 cores and 128 GB of RAM.

4.1. Datasets

Eighteen MTR benchmark datasets,1 already used in former
studies [7,8,30] and widely explored in the research field, were
adopted in this work. The characteristics of these datasets are
registered in Table 1. The datasets comprehend diverse kind
of multi-variate regression problems and application areas, as

1 The datasets can be found in: http://mulan.sourceforge.net/datasets-mtr.
html.
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described in Table 1. All the datasets were re-scaled in the [0, 1]
range prior their manipulation by the MTR approaches.

4.2. Regression techniques

We employed two base regression techniques combined with
the compared local MTR methods: Support Vector Machine (SVM)
with the Radial Basis Function (RBF) kernel and Random Forest
(RF). All regression algorithms used in this work were imple-
mented in the R programming language,2 and used with their
standard hyperparameter settings. he only exception was MORF,
which was performed using the Clus Framework.3

4.2.1. Support vector machine
SVM is a classification and regression method that is part of

the general category of kernel-based methods [3]. SVMs aims at
finding the hyperplane which has the minimum possible distance
to the data, accordingly to a defined loss function. To model
nonlinear relationships among the input and output variables,
SVM employs a kernel space transformation, which is known for
kernel trick. In this kernel application, a nonlinear transformation
function is chosen to map the original data into a space of pos-
sibly greater dimension, where the regressor is able to solve the
transformed problem with a linear fitting function. Through the
mentioned kernel space transformation, this technique has the
flexibility to model varied data sources [3], increasing the input
dimensional space but also data separability. SVM was performed
through the e1071 R package.

4.2.2. Random forest
RF is a tree-based ensemble algorithm proposed by Breiman

[2], which builds multiple regression trees over the training data.
Each new tree is induced using subsets of the original input
set which are formed by sampling with repetition the problem
instances. This strategy to compose ensemble predictors is called
Bagging. Besides, when creating a new tree, only a subset of
the features are employed, being this group selected by random
sampling without replacement. The RF predictions for new cases
are formed by taking the average result over all trees in the
Forest [2]. The elements which were not selected by an individual
tree for training are called out-of-bag (OOB) cases. In this sense,
each tree in the forest has a set of OOB samples which can be
used to calculate an unbiased internal metric of out-of-bag error
(OOBE), and to assess the importance of each explaining variable.
The RF variable importance is a metric calculated by comparing
the difference on the OOBE before and after randomly permuting
the values of each of the features on the OOB cases [2,29]. We em-
ployed the ranger R package in our experiments for computing
the RF predictors.

4.3. DSTARS hyperparameters

During our experiments, we used 10-fold cross-validation as
the sample strategy setting of DSTARS. Aiming at verifying
whether would exists a default hyperparametrization, adequate
for most cases, we evaluated multiple possible settings for our
proposal using a grid search.

The error improvement hyperparameter, ε, assumed the val-
ues 10−2, 10−3 and 10−4. In addition, we computed DSTARS
models varying the φ hyperparameter in the [0, 1] interval with
a 0.1 step. Thus, all the possible φ threshold values for selecting
the regressor layers were explored, according to the chosen data
partition strategy. We discuss in Section 5.1 how the different
hyperparameter settings impacted the predictive performance of
DSTARS.

2 Available in: Multi-Target Regression Framework (R Language): https://
github.com/smastelini/mtr-toolkit.
3 Available in: https://dtai.cs.kuleuven.be/clus/.

Table 2
aRRMSE results regarding all evaluated datasets, MTR methods and regressor
algorithms.
Dataset Regressor ST SST ERC DSTARS MORF

atp1d RF 0.3920 0.3904 0.3902 0.3902 0.4474SVM 0.4397 0.4402 0.4398 0.4404

atp7d RF 0.5164 0.5169 0.5178 0.5146 0.5593SVM 0.6404 0.6414 0.6410 0.6417

oes97 RF 0.5164 0.5135 0.5133 0.5147 0.5966SVM 0.6118 0.6123 0.6110 0.6110

oes10 RF 0.4070 0.4081 0.4070 0.4079 0.4641SVM 0.5464 0.5456 0.5451 0.5456

rf1 RF 0.0782 0.0582 0.0731 0.0561 0.1206SVM 0.1215 0.107 0.1151 0.1015

rf2 RF 0.0847 0.0784 0.0852 0.0821 0.4076SVM 0.1095 0.1064 0.1084 0.1067

scm1d RF 0.2871 0.2758 0.2823 0.2722 0.3741SVM 0.3309 0.3232 0.3258 0.3214

scm20d RF 0.3648 0.3313 0.3347 0.3129 0.5171SVM 0.3972 0.3522 0.3474 0.3316

edm RF 0.6721 0.6631 0.6661 0.6766 0.6791
SVM 0.7699 0.7714 0.7667 0.7829

sf1 RF 1.0051 1.128 1.0161 1.0047 0.8798
SVM 0.9390 0.9477 0.9250 0.9604

sf2 RF 0.8487 0.941 0.8617 0.8577 0.7689SVM 0.7825 0.7787 0.7827 0.7764

jura RF 0.6061 0.5974 0.5969 0.5908 0.7003SVM 0.6409 0.6413 0.6391 0.6410

wq RF 0.9066 0.9392 0.9059 0.9104 0.9271SVM 0.9630 0.9535 0.9581 0.9576

enb RF 0.1504 0.1173 0.1304 0.1149 0.2136SVM 0.2499 0.2173 0.2404 0.1678

slump RF 0.8365 0.8324 0.8222 0.8338 0.8169SVM 0.6924 0.6862 0.6819 0.6889

andro RF 0.7941 0.7349 0.7614 0.6584 0.7068SVM 1.1348 0.9243 1.0089 0.7899

osales RF 0.7577 0.7275 0.7332 0.7289 0.9516SVM 1.1726 1.1685 1.1702 1.1717

scfp RF 0.9263 0.9379 0.8778 0.9017 0.8459SVM 0.8242 0.8256 0.8151 0.8251

4.4. Evaluation metrics

Intending to evaluate the models constructed during the ex-
periments, four different metrics were used: Relative Root Mean
Squared Error (RRMSE), average Relative Root Mean Squared Er-
ror (aRRMSE), Relative Performance (RP), and the running time of
the evaluated approaches. Besides that, the MTR methods were
executed using the 10-fold cross-validation strategy.

The RRMSE (Relative Root Mean Squared Error) is obtained
from the squared error measured from a target, divided by the
squared error which is obtained when always predicting the
average value of this response. This last behaves like a baseline in
the metric, allowing to compute the improvement over a shallow
predictor. This metric has been used in various MTR works [7,
8,14] to compare non-homogeneous targets distributions. The
aRRMSE is computed by averaging the d targets’ RRMSE, as pre-
sented in Eq. (2). In the equation, ŷ and y represent, respectively,
the predicted values for a target y and its mean value, while Ntest
represents the number of test cases.

aRRMSE =
1
d

d∑
t=1

√∑Ntest
k=1 (y

k
t − ŷkt )2∑Ntest

k=1 (y
k
t − yt )2

(2)
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Fig. 2. Mean RPs achieved for each DSTARS’ (φ, ε) evaluated combination.

The Relative Performance (RP) compares the aRRMSE of ST
strategy with the aRRMSE of another local-based MTR method M ,
in our case, with SST, ERC, and DSTARS. In this sense, it can mea-
sure whether there was an increase (RP > 1) or a decrease (RP
< 1) relatively to the simple ST strategy [8]. The RP calculation is
presented in Eq. (3).

RP(M) =
aRRMSE(ST )
aRRMSE(M)

(3)

In addition, the presented error metrics support the com-
parison of possible method superiority through the application
of the Friedman statistical test and the Nemenyi post hoc test
with the Critical Difference (CD) diagram, as previously proposed
in [31]. We employed these tests to verify the possible statistical
differences among the compared MTR approaches, regarding their
predictive performance.

Relatively to the measured running time, only ST, SST, ERC,
and DSTARS were considered in our computations. Firstly, the
mentioned MTR methods belong to the same approach, problem
transformation, as previously presented in Section 2. Therefore,
it is expected that the global-based method (MORF) would be
faster than the local-based ones since it creates a single predictor
for all targets, instead of multiple ST regressors. However, our
primary motivation to only consider the local-based methods
was because all of them were implemented in the same pro-
gramming platform (R, an interpreted programming language),
whereas MORF was performed using the original Clus implemen-
tation (Java, a compiled programming language). Thus, it would
not be fair to compare methods implemented in such different
platforms concerning their running times. Anyhow, we measured
the running times when using RF as regressor averaged between
30 repetitions for each dataset and MTR approach.

5. Results and discussion

This section describes and discusses the obtained results when
comparing the performance of the five considered methods for
MTR problems (ST, SST, ERC, MORF and DSTARS). Firstly, we per-
form a tuning of DSTARS parameters, as described in Section 4.3,

aiming at observing the obtained errors and choosing a candi-
date to standard set of hyperparameters (φ, ε) for our proposal.
After, we compare the performance of our proposal using this
default configuration with the state-of-the-art solutions for MTR
problems. Following, we present a comparison of the local MTR
methods with the simpler ST approach. Statistical tests comparing
the performance of all compared methods are also presented. We
also expose the obtained running time for ST and the compared
local MTR methods. Lastly, we analyse aspects of the generated
DSTARS models, including the number of trained regressors and
the discontinuity in the generated regressor layers.

5.1. Tuning the DSTARS hyperparameters

We followed the approach defined in Section 4.3 to seek for a
set of hyperparameters (ε, φ) suitable for most of the cases. Thus,
if such a set exists, we could adopt it as a default for DSTARS,
using these parameters from here onward when comparing our
approach with the others. In this sense, we also could provide a
fair comparison, since no adjustment step was performed for the
other methods.

Therefore, we ran multiple experiments varying the values
of φ and ε accounting for the resulting aRRMSEs of each pa-
rameter combination. Our complete observations are presented
in Appendix A, where we summarized the error variation per
dataset and regression technique using line plots. To provide
global useful insights on how the φ and ε combinations impacted
in the obtained results, we comprised all the results by mean RP
of each hyperparameter set combination among all datasets and
regressors. This was done to enable us comparing different ranges
of error in the same analysis, presented in Fig. 2.

The ST baseline was employed to calculate the RPs, as indi-
cated in the figure. Firstly, we can see that the ε = 10−4 curve
was the best in almost all cases, except for φ = 0.0. The usage of
high ε originated the worst results, as seen in the curve ε = 10−2.
Indeed, stacking layers with lower ε criteria led the final DSTARS
model to better results.

Regarding φ values, the RPs’ peak was obtained with the value
0.4 leveraging the combination (φ, ε) = (0.4, 10−4) as default
parametrization for DSTARS, which is going to be used from here
onward in our discussions.

8
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Table 3
Obtained running time when comparing the MTR local methods in 30 repetitions with the RF regressor.
Dataset ST SST ERC DSTARS

atp1d 11.68 ± 5.79 24.62 ± 5.70 96.97 ± 5.34 569.79 ± 12.46
atp7d 11.41 ± 6.90 20.90 ± 6.87 74.09 ± 4.19 554.18 ± 11.75
oes97 24.32 ± 7.85 48.82 ± 6.78 216.62 ± 4.98 1837.15 ± 27.13
oes10 28.40 ± 6.20 60.55 ± 7.24 278.94 ± 2.78 2441.68 ± 25.74
rf1 76.67 ± 8.01 152.49 ± 10.74 726.13 ± 9.00 6719.74 ± 23.50
rf2 140.11 ± 11.69 288.05 ± 8.85 1465.91 ± 4.85 10400.98 ± 49.32
scm1d 417.35 ± 7.29 914.05 ± 7.95 4974.27 ± 10.05 68387.79 ± 473.61
scm20d 163.87 ± 4.84 377.17 ± 7.67 1997.11 ± 4.51 56131.47 ± 388.84
edm 0.97 ± 0.89 2.32 ± 1.89 1.95 ± 0.81 31.51 ± 5.78
sf1 1.27 ± 1.05 2.67 ± 2.06 5.16 ± 1.14 35.83 ± 4.15
sf2 1.59 ± 1.03 3.32 ± 2.92 6.39 ± 1.32 57.45 ± 6.60
jura 1.67 ± 2.12 4.09 ± 2.95 7.05 ± 1.17 89.21 ± 10.58
wq 11.99 ± 4.56 22.47 ± 8.42 114.87 ± 2.48 681.00 ± 11.17
enb 2.13 ± 2.33 2.10 ± 0.73 2.98 ± 2.66 58.89 ± 5.38
slump 1.45 ± 1.26 2.24 ± 1.10 5.85 ± 1.75 64.15 ± 5.56
andro 2.93 ± 2.61 4.20 ± 1.48 20.27 ± 1.52 197.2 ± 8.31
osales 19.32 ± 3.61 41.84 ± 2.44 221.3 ± 3.48 2253.88 ± 14.71
scfp 2.65 ± 2.27 4.25 ± 3.49 8.60 ± 1.39 106.56 ± 9.72

Fig. 3. Comparison of the local MTR methods with ST regarding the RP metric.

5.2. Analysis of prediction error

Table 2 presents the obtained aRRMSE values considering ST
and all the compared MTR methods, regression algorithms and
datasets. In this table, for each regressor-dataset combination,
the method with the smallest aRRMSE is highlighted in bold.
Similarly, the smallest prediction error obtained for each dataset
is underlined. Considering the 18 datasets and the two regression
algorithms, 36 results were reported for each MTR local method.
The MORF execution resulted in 18 aRRMSE values since this MTR
method belongs to the global category and thus, it is not paired
with a regressor technique.

Considering only the local-based methods, the ST strategy
reached the smallest aRRMSEs in 3 out of 36 combinations; mean-
while, the SST method was the best choice in 6 out of 36 cases.
ERC achieved the best results in 12 cases. Lastly, DSTARS obtained
the smallest aRRMSE values in 15 out of 36 combinations. There
was one case where DSTARS tied with ERC when using RF as
regressor (dataset atp1d).

Regarding only the smallest aRRMSE results per dataset, de-
spite the regressor technique employed by the local-based meth-
ods, ST was not ranked as the best choice in any cases. The SST
method obtained the smallest errors in three cases (rf2, edm,
osales). SST reached these best results when paired with the RF

regressor. ERC achieved the smallest aRRMSE values in 6 out of 18
cases, using RF as regressor in four datasets (atp1d, oes97, oes10,
and wq), and employing SVMs in the remaining cases (slump and
scfp). MORF was the best MTR method in 2 datasets (sf1 and sf2).
Lastly, DSTARS resulted in the smallest aRRMSEs in 8 out of 18
cases, all of them using RF as regression technique.

Observing the regressors that were chosen for the local-based
methods, the RF technique achieved the best results in 15
datasets (taking into account the tie between ERC and DSTARS)
and SVM was the best regressor in 2 cases. In this sense, RF
was the best regressor overall. Also, considering that the MORF
algorithm corresponds to a multi-output version of the tradi-
tional RF technique, it would be possible to fairly compare this
method with the local-based methods, as long as they use the RF
regressor.

Considering only the decision tree ensembles, as previously
stated, SST reached the smallest errors in three cases. ERC re-
sulted in the best results in four datasets. MORF generated the
smallest errors in four datasets. Lastly, DSTARS was the best
method in eight cases. It is worth mentioning that when not
considering SVM, the best MTR ranking changes for the datasets
slump and scfp, also altering the overall best MTR methods order.
Detailed results for the obtained prediction errors can be found
in Appendix B.1 (Table B.5).
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Fig. 4. The Friedman and the post hoc Nemenyi tests results (with α = 0.05) when comparing the RRMSE per target of all the evaluated MTR methods and regressors.

5.3. Comparison of the local MTR methods and the ST strategy

Both the ST strategy and the local MTR methods employ
traditional regression techniques to deal with MTR problems.
However, the local methods manipulate the input space to model
the existing inter-target dependencies. In this sense, we analysed
whether the more complex MTR methods were able to overcome
the more straightforward ST strategy on the evaluated cases.
Hence, we employed the RP metric to identify the possible gains.

Fig. 3 presents heatmaps comparing the Relative Performance
(RP) of all evaluated local MTR methods over all datasets. The top
chart presents the RP results for RF, the middle one for SVM, while
the bottom figure shows the metric values averaged among the
two evaluated regressors.

Firstly, we can observe that in most of the cases the MTR
methods performed better than the ST approach. So, the em-
ployment of MTR methods enabled the modelling of inter-target
relationships, making possible the obtained gains. In the worst
cases, such as sf1 and sf2, almost all MTR methods generated RPs
very close to 1, which means there were no notable gains over
the ST strategy. In these cases, the additional complexity brought
by the MTR variants did not result in any advantage. On the other
hand, cases like andro, enb, and rf1 resulted in prominent gains
for almost all local MTR methods. It is worthwhile to mention that
DSTARS was able to surpass the ST approach even in the sf1 and
sf2 datasets.

Regarding the performance of the individual regression tech-
niques, the MTR methods when coupled with RF were able to
generate more predictive gains than with SVMs. The authors
would like to stress that no tuning was performed for the regres-
sors, as we used their default hyperparameters as implemented
in the employed software packages (please refer to Section 4.2).
Such adjusts could lead to differences in the prediction errors
considering only the regression techniques. However, in the ob-
served scenarios, RF was better than SVM and should be pointed
out as the best performer.

Last, observing the aggregated results for both regressors (bot-
tom chart of Fig. 3), it is possible to see that ERC and DSTARS
surpassed the ST approach in all cases. The same was not true
for SST. Notwithstanding, our proposal was better than ERC by
generating more noticeable gains, as again can be seen in datasets
andro, enb and rf1, for instance.

5.4. Statistical tests

We performed a set of statistical tests to assess whether the
compared MTR methods statistically differed among themselves
regarding predictive performance. The Friedman test was first

performed to verify possible significant differences (with α =

0.05) between the compared approaches. When the obtained
p-values were smaller than the significance level, the Nemenyi
post hoc was performed to rank the different compared methods.
Accordingly to this test, when two methods are not statistically
different regarding predictive performance, their ranking differ-
ences are smaller than a CD value. In this set of evaluations
we considered the errors obtained by target variable (RRMSE) to
compare the MTR approaches.

The first study, presented in Fig. 4, observed all MTR methods
and regressors. DSTARS appeared in the first position followed
by ERC, SST, and ST, all of them employing RF as regression
technique. No significative statistical differences were observed
among DSTARS, ERC, and SST in this comparison, but the ST strat-
egy was significantly worse than the local-based MTR methods.
The cases where SVM was employed as regression technique, in
turn, were significantly worse than the ST-RF combination. In this
second group of performers, DSTARS again appeared in the first
position, being followed this time by SST, ERC, MORF, and the ST
approach. Note that SST performed slightly better than ERC when
using SVM.

The next comparison exposed the obtained mean RRMSE val-
ues when joining the RF and SVM results for each target. MORF
was not considered in this comparison since it is a global-based
approach. As shown in Fig. 5 DSTARS was significantly better than
the other local methods. The second group was composed of ERC
and SST. Lastly, ST was significantly worse than the other MTR
methods in this comparison.

The last statistical comparison with RRMSE of targets was
based on ensemble tree techniques: MORF and local-based MTR
methods with the RF regressor, as presented in Fig. 6. DSTARS
was the best MTR method, surpassing the other methods by
a statistically significant margin. SST and ERC presented very
similar ranks, having the first one a slight advantage. Again, the
employment of a set of RF regressors significantly surpassed the
ensemble of multi-output trees. In fact, MORF was even worse
than using the ST approach with RF, as previously observed.

5.5. Running times of the evaluated local MTR methods

The running time was measured for each local MTR method
with the RF regressor. MORF was not considered since it is imple-
mented in a different platform. All the methods were performed
30 times and the obtained mean and standard deviation of the
execution time are reported in Table 3.

As expected and supported by the asymptotic complexity
analysis, the fastest MTR approach was the ST strategy. SST
was ranked as the second fastest local MTR in almost all the
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Fig. 5. The Friedman and the post hoc Nemenyi tests results (with α = 0.05) when comparing the overall RRMSE per target with only the local-based MTR methods.

Fig. 6. The Friedman and the post hoc Nemenyi tests results (with α = 0.05) when comparing the RRMSE per target with MORF and local-based MTR methods
based on RF regressor.

cases (with exception of edm), since it creates twice as many
models as ST. ERC was the third fastest method and DSTARS the
slowest one. The smallest prediction error of DSTARS presents the
trade-off of several operations for describing and modelling the
dependencies among the targets. The training costs of DSTARS
could be minimized by changing the sampling approach to a more
lightweight one. For instance, an internal 5-fold cross-validation
could be employed, instead of using a 10-fold cross-validation
approach. To further reduce the costs, a single bootstrap sampling
or a holdout approach could be also be employed. Nevertheless,
once DSTARS is trained, its prediction time overhead (by using
multiple regressors) is negligible when compared to the other
methods.

5.6. DSTARS: generated models analysis

As discussed previously, the hyperparameter configuration
(φ, ε) = (0.4, 10−4) was selected as default setting for DSTARS.
This choice directly impacts on the number of generated models,
as well as on the regressor layers structure for each target. Table 4
illustrates the average number of stacked layers in conjunction
with the average number of regressor layers discontinuities.

In the majority of cases, DSTARS employed on average less
than five regressor layers per target, considering both RF and
SVM. An apparent exception was the dataset scm20d and the
RF regressor, where an increased number of regressor layers was

employed. It is noteworthy that in the same problem, when con-
sidering SVM as regressor, fewer layers were employed. Indeed,
the number of regression models employed by our method is
intimately linked with the choice of the regression technique. This
is because the iterative process of Tracking is grounded on the
observed errors for the specific regressor chosen. An analysis on
how the method performs when using a mixed set of regression
techniques, maybe one per target, is an interesting venue for
further researches. Such analysis is corroborated by the results
discussed in Section 5.2, where different regressors and MTR
approaches obtained the best results depending on the evaluated
dataset.

Additionally, Table 4 also presents the average number of re-
gressor layers discontinuities. On average, they were more often
with RF than with SVM, but rare cases resulted in discontinuities.
Interestingly, the case where more discontinuities were observed
on average was again the scm20d with RF as the regressor. An
analysis of how the obtained errors and unique characteristics
of the dealt problems relate to the number of regressor layer
discontinuities is also an interesting field for further studies,
despite being out-of-the-scope of this study.

Concerning how DSTARS considered the inter-target relations
during its construction, we present charts representing the mea-
sured RFimp values for all datasets and regression techniques in
Appendix B.2, as a supplementary material. For all the cases, we
highlight, for each target, the responses that were not stacked as
additional inputs for it. Lastly, the reader is also encouraged to
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Table 4
Average number of regressor layers and the average amount of layer
discontinuity observed in the DSTARS models.
Dataset Layers Discontinuities

RF SVM RF SVM

atp1d 2.9 1.5 0.3 0.0
atp7d 3.0 1.8 0.2 0.0
oes97 2.5 1.5 0.3 0.0
oes10 2.6 1.5 0.3 0.0
rf1 2.5 4.2 0.0 0.1
rf2 2.2 2.2 0.0 0.0
scm1d 5.4 3.0 0.7 0.0
scm20d 13.5 4.6 2.1 0.0
edm 2.2 3.1 0.0 0.0
sf1 1.1 1.6 0.0 0.0
sf2 1.6 2.1 0.0 0.0
jura 3.3 2.0 0.1 0.0
wq 1.1 2.7 0.0 0.1
enb 2.6 5.9 0.0 0.0
slump 3.0 1.6 0.0 0.0
andro 4.0 7.1 0.4 0.1
osales 4.3 1.5 0.5 0.0
scfp 2.1 3.1 0.0 0.0

consult Appendix B.3 for detailed results regarding the number of
generated regressor layers and layer discontinuities for DSTARS.
There, the observations for each target variable are presented for
all datasets and regression techniques.

6. Conclusion

In this paper, state-of-the-art solutions for MTR problems
were compared to our new MTR local method, called DSTARS.
This new method relies on successive stacked regressor layers
to minimize the error for each target, individually. The final
DSTARS model comprehends a different number of predictors for
each target, which are dynamically and asynchronously defined
according to the inter-target dependencies. These dependencies
determine whether a target will be subjected to the deep or
shallow stacking procedure.

The results showed that DSTARS generated significative
smaller RRMSE than the other methods, overcoming the state-
of-art algorithms. As future work, we will evaluate DSTARS on
other real-life problems, towards the hypothesis that the worst
case for DSTARS is to generate ST or SST models in the condition
of low statistical dependence among the targets, i.e., our method
can mimic the previously mentioned methods by using a fewer
number of stacked regressors for each target. We also aim at
adapting our method to other multi-output prediction problems,
such as multi-label and multi-target classification, and hierarchi-
cal classification and regression. Finally, another possible future
research direction is the application of local MTR strategies on
data stream mining.
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Appendix A. Tuning results for DSTARS’ hyperparameters

This appendix presents our observations on the aRRMSE vari-
ation when varying the ε and φ parameters of DSTARS, as de-
scribed in Section 4.3. As previously discussed in Section 5.1
and presented here, our tuning experiments have shown that
the combination (φ, ε) = (0.4, 10−4) can be pointed out as
a satisfactory choice in most of the cases. Therefore, the au-
thors suggest this combination as the standard parametrization
for DSTARS when using a 10-fold cross-validation as sampling
strategy (Please refer to Algorithm 1).

Fig. A.7 presents the changes in aRRMSE when varying φ and
ε for both the considered regression algorithms (RF and SVM).

Appendix B. Detailed experiments results

B.1. Observed prediction errors per target

In this appendix we present the obtained errors concerning
each target of the evaluated datasets, for all evaluated MTR meth-
ods and regressors. The reported metric is the RRMSE. The best
results per regression technique are highlighted in bold, while the
smallest error obtained by target (independently of the regression
technique) is underlined. This analysis is presented in Table B.5.
We considered the hyperparameter set (φ, ε) = (0.4, 10−4) as
standard configuration for DSTARS, as discussed in Section 5.1.

B.2. RF importance during the DSTARS filtering phase

This section presents the RFimp measured for each dataset
and regressor combination when performing DSTARS. Anytime
a negative importance value was observed it was set to zero.
The obtained importance values were organized as heatmaps,
where each row represent a target and the columns the RFimp
values measured for it, as described in Section 3.1. Given that the
RFimp calculation consists in training a RF model and measuring
how the input features impact in the OOBE after being randomly
permuted, we scaled the observed values between [0, 1].

Fig. B.8 presents the RFimp observations. Considering that the
RFimp values were averaged among the iterations of the 10-
fold cross-validation employed to evaluate the MTR methods, we
marked with an ‘‘*’’ the target combinations where the RFimp
was smaller or equal to zero at least once. Note that responses
with RFimp smaller or equal to zero are not added as additional
features for the corresponding target.

B.3. Observed number of regressor layers and discontinuities

Table B.6 presents the number of regressor layers employed
by DSTARS for each target, as well as, the number of observed
layer discontinuities. The presented results are averaged among
all the cross-validation folds that were used to evaluate the MTR
methods. For that reason the number of regressor layers and
observed layer discontinuities are in their majority real numbers.
In addition, in all the cases, the hyperparameter set (φ, ε) =
(0.4, 10−4) was employed as standard configuration for DSTARS.
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Fig. A.7. Variation of aRRMSE in all evaluated datasets by varying the values of φ. Curves for multiple ε are reported in the same charts. Both RF and SVM were
considered.
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Fig. A.7. (continued).
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Fig. A.7. (continued).
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Table B.5
Complete RRMSE results regarding all datasets, MTR methods and regressors. The best results per regressor are highlighted in bold. The smallest errors obtained in
each case are underlined. The hyperparameters (φ, ε) = (0.4, 10−4) were considered for DSTARS.
Dataset

Target
RF SVM MORF

ST SST ERC DSTARS ST SST ERC DSTARS

atp1d 0.3920 0.3904 0.3902 0.3902 0.4397 0.4402 0.4398 0.4404 0.4615
ALLminpA 0.4767 0.4788 0.4766 0.4788 0.5435 0.5444 0.5438 0.5448 0.4763
ALLminp0 0.4259 0.4320 0.4273 0.4241 0.4589 0.4594 0.4592 0.4598 0.5229
aDLminpA 0.4139 0.4082 0.4111 0.4102 0.4336 0.4342 0.4338 0.4341 0.4601
aCOminpA 0.3091 0.3097 0.3090 0.3107 0.3619 0.3627 0.3621 0.3625 0.4001
aFLminpA 0.4358 0.4267 0.4295 0.4308 0.4856 0.4862 0.4857 0.4867 0.5043
aUAminpA 0.2905 0.2869 0.2880 0.2863 0.3543 0.3544 0.3544 0.3547 0.4051

atp7d 0.5164 0.5169 0.5178 0.5146 0.6404 0.6414 0.6410 0.6417 0.5794
ALLminpA 0.5864 0.5942 0.5914 0.5969 0.7735 0.7693 0.7720 0.7694 0.6408
ALLminp0 0.6199 0.6151 0.6201 0.6072 0.6906 0.6920 0.6917 0.6904 0.6457
aDLminpA 0.5130 0.5036 0.5059 0.4996 0.5833 0.5835 0.5837 0.5849 0.5387
aCOminpA 0.3931 0.3869 0.3936 0.3880 0.4988 0.5029 0.5008 0.5034 0.4818
aFLminpA 0.6108 0.6246 0.6185 0.6164 0.7953 0.7966 0.7955 0.7981 0.6913
aUAminpA 0.3751 0.3771 0.3773 0.3792 0.5008 0.5041 0.5022 0.5041 0.4779

oes97 0.5164 0.5135 0.5133 0.5147 0.6118 0.6123 0.6110 0.6110 0.6080
58028 0.2737 0.2663 0.2685 0.2703 0.4175 0.4157 0.4159 0.4157 0.3484
15014 0.3877 0.3841 0.3856 0.3814 0.4837 0.4833 0.4829 0.4835 0.5551
32511 0.7751 0.7722 0.7686 0.7781 0.8506 0.8549 0.8504 0.8506 0.7830
15017 0.3306 0.3283 0.3291 0.3301 0.4112 0.4077 0.4093 0.4077 0.4717
98502 0.6827 0.6816 0.6814 0.6811 0.8021 0.8008 0.8011 0.8017 0.8001
92965 0.6193 0.6216 0.6169 0.6162 0.6873 0.6885 0.6885 0.6890 0.7931
32314 0.5442 0.5317 0.5379 0.5377 0.5993 0.5988 0.5974 0.5990 0.6968
13008 0.3072 0.3056 0.3070 0.3058 0.4680 0.4642 0.4663 0.4642 0.3685
21114 0.2619 0.2528 0.2573 0.2562 0.4160 0.4123 0.4131 0.4123 0.3068
85110 0.5896 0.5862 0.5861 0.5878 0.6456 0.6504 0.6476 0.6456 0.7176
27311 0.6335 0.6312 0.6281 0.6292 0.7113 0.7132 0.7118 0.7113 0.7944
98902 0.4620 0.4625 0.4624 0.4642 0.5414 0.5421 0.5411 0.5414 0.5276
65032 0.5475 0.5465 0.5456 0.5436 0.6295 0.6305 0.6291 0.6296 0.5320
92998 0.7167 0.7214 0.7145 0.7230 0.7643 0.7665 0.7627 0.7643 0.8240
27108 0.5782 0.5733 0.5750 0.5798 0.6837 0.6860 0.6833 0.6836 0.6033
53905 0.5535 0.5510 0.5489 0.5504 0.6770 0.6824 0.6754 0.6770 0.6060

oes10 0.4070 0.4081 0.4070 0.4079 0.5464 0.5456 0.5451 0.5456 0.4914
513021 0.3843 0.3816 0.3871 0.3887 0.5493 0.5495 0.5486 0.5493 0.4382
292071 0.3894 0.3947 0.3894 0.3889 0.5443 0.5409 0.5415 0.5413 0.3567
392021 0.3742 0.3737 0.3735 0.3743 0.5582 0.5590 0.5578 0.5591 0.4463
151131 0.4804 0.4816 0.4788 0.4743 0.6073 0.6083 0.6073 0.6073 0.5373
151141 0.3804 0.3780 0.3805 0.3768 0.6094 0.6090 0.6080 0.6094 0.5365
291069 0.6260 0.6145 0.6177 0.6255 0.6439 0.6466 0.6427 0.6439 0.7180
119032 0.3100 0.3169 0.3115 0.3099 0.5560 0.5535 0.5540 0.5544 0.4271
432011 0.3514 0.3482 0.3519 0.3558 0.5072 0.5053 0.5055 0.5056 0.4015
419022 0.5999 0.6065 0.5998 0.6093 0.6676 0.6675 0.6657 0.6681 0.6982
292037 0.3548 0.3587 0.3544 0.3535 0.4938 0.4914 0.4918 0.4915 0.3781
519061 0.4298 0.4368 0.4319 0.4335 0.5470 0.5472 0.5462 0.5467 0.5727
291051 0.2254 0.2273 0.2253 0.2263 0.4016 0.3989 0.4004 0.3989 0.2799
172141 0.4856 0.4908 0.4867 0.4856 0.5902 0.5901 0.5889 0.5902 0.7695
431011 0.2344 0.2294 0.2280 0.2292 0.4494 0.4475 0.4481 0.4476 0.2775
291127 0.4831 0.4802 0.4842 0.4854 0.5674 0.5670 0.5666 0.5675 0.5265
412021 0.4033 0.4111 0.4106 0.4091 0.4489 0.4483 0.4485 0.4486 0.4981

rf1 0.0782 0.0582 0.0731 0.0561 0.1215 0.1070 0.1151 0.1015 0.1206
CHSI2 0.0150 0.0127 0.0135 0.0119 0.0781 0.0740 0.0740 0.0742 0.0340
NASI2 0.4841 0.3399 0.4495 0.3248 0.2852 0.2370 0.2677 0.2368 0.6877
EADM7 0.0182 0.0141 0.0157 0.0137 0.0909 0.0847 0.0857 0.0830 0.0364
SCLM7 0.0190 0.0153 0.0180 0.0148 0.1048 0.0914 0.0988 0.0894 0.0500
CLKM7 0.0225 0.0209 0.0220 0.0209 0.0910 0.0846 0.0885 0.0812 0.0302
VALI2 0.0261 0.0237 0.0254 0.0236 0.1526 0.1210 0.1381 0.0869 0.0355
NAPM7 0.0242 0.0237 0.0241 0.0242 0.0746 0.0741 0.0743 0.0741 0.0608
DLDI4 0.0167 0.0151 0.0163 0.0149 0.0948 0.0891 0.0933 0.0865 0.0298

rf2 0.0847 0.0784 0.0852 0.0821 0.1095 0.1064 0.1084 0.1067 0.4076
CHSI2 0.0180 0.0157 0.0166 0.0156 0.0812 0.0797 0.0796 0.0798 0.3285
NASI2 0.5151 0.4774 0.5252 0.5070 0.2491 0.2456 0.2485 0.2490 0.6641
EADM7 0.0207 0.0179 0.0191 0.0178 0.0839 0.0824 0.0824 0.0824 0.3319
SCLM7 0.0224 0.0200 0.0216 0.0198 0.0893 0.0877 0.0884 0.0878 0.3421
CLKM7 0.0249 0.0239 0.0245 0.0239 0.0842 0.0827 0.0830 0.0827 0.3765
VALI2 0.0288 0.0269 0.0279 0.0269 0.0959 0.0888 0.0944 0.0881 0.3938
NAPM7 0.0277 0.0267 0.0273 0.0269 0.0934 0.0924 0.0929 0.0924 0.3909
DLDI4 0.0202 0.0187 0.0194 0.0186 0.0990 0.0923 0.0983 0.0916 0.4326

(continued on next page)
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Table B.5 (continued).
Dataset

Target
RF SVM MORF

ST SST ERC DSTARS ST SST ERC DSTARS

scm1d 0.2871 0.2758 0.2823 0.2722 0.3309 0.3232 0.3258 0.3214 0.3741
LBL 0.2483 0.2415 0.2462 0.2396 0.3054 0.2994 0.3011 0.2978 0.3275
MTLp2 0.2691 0.2624 0.2664 0.2604 0.3041 0.2981 0.3002 0.2967 0.3463
MTLp3 0.2748 0.2646 0.2690 0.2623 0.3135 0.3072 0.3085 0.3059 0.3430
MTLp4 0.2840 0.2730 0.2797 0.2691 0.3186 0.3118 0.3151 0.3105 0.3616
MTLp5 0.2901 0.2702 0.2813 0.2643 0.3441 0.3307 0.3352 0.3271 0.4002
MTLp6 0.3062 0.2861 0.2947 0.2791 0.3520 0.3410 0.3434 0.3366 0.4197
MTLp7 0.2947 0.2747 0.2868 0.2677 0.3348 0.3202 0.3269 0.3166 0.4094
MTLp8 0.3023 0.2820 0.2897 0.2757 0.3424 0.3275 0.3304 0.3238 0.4190
MTLp9 0.2777 0.2676 0.2752 0.2655 0.3189 0.3127 0.3153 0.3112 0.3565
MTLp10 0.2943 0.2852 0.2911 0.2823 0.3334 0.3262 0.3289 0.3241 0.3667
MTLp11 0.2921 0.2835 0.2890 0.2805 0.3241 0.3185 0.3207 0.3179 0.3680
MTLp12 0.3096 0.3018 0.3063 0.2988 0.3417 0.3352 0.3368 0.3346 0.3840
MTLp13 0.2805 0.2734 0.2786 0.2714 0.3466 0.3416 0.3436 0.3408 0.3651
MTLp14 0.3083 0.3002 0.3068 0.2983 0.3640 0.3590 0.3611 0.3570 0.3827
MTLp15 0.2785 0.2707 0.2757 0.2670 0.3184 0.3137 0.3152 0.3136 0.3630
MTLp16 0.2829 0.2758 0.2808 0.2732 0.3330 0.3285 0.3304 0.3284 0.3731

scm20d 0.3648 0.3313 0.3347 0.3129 0.3972 0.3522 0.3474 0.3316 0.5171
LBL 0.3253 0.2991 0.3051 0.2881 0.3403 0.3062 0.3088 0.2954 0.4680
MTLp2A 0.3334 0.3047 0.3026 0.2964 0.3501 0.3166 0.3127 0.3069 0.4730
MTLp3A 0.3414 0.3114 0.3129 0.2976 0.3634 0.3277 0.3225 0.3097 0.4827
MTLp4A 0.3507 0.3217 0.3222 0.3025 0.3792 0.3411 0.3356 0.3272 0.4967
MTLp5A 0.3748 0.3382 0.3436 0.3159 0.4272 0.3709 0.3640 0.3366 0.5457
MTLp6A 0.3780 0.3383 0.3364 0.3125 0.4230 0.3670 0.3512 0.3393 0.5452
MTLp7A 0.3728 0.3315 0.3377 0.3052 0.4233 0.3621 0.3631 0.3289 0.5384
MTLp8A 0.3796 0.3371 0.3371 0.3097 0.4297 0.3617 0.3478 0.3307 0.5444
MTLp9A 0.3580 0.3268 0.3301 0.3138 0.3895 0.3482 0.3432 0.3295 0.5059
MTLp10A 0.3769 0.3457 0.3495 0.3299 0.4104 0.3657 0.3625 0.3482 0.5201
MTLp11A 0.3724 0.3394 0.3445 0.3211 0.4019 0.3571 0.3585 0.3356 0.5206
MTLp12A 0.3886 0.3565 0.3630 0.3442 0.4262 0.3809 0.3758 0.3609 0.5395
MTLp13A 0.3680 0.3362 0.3434 0.3208 0.3973 0.3560 0.3512 0.3364 0.5204
MTLp14A 0.3868 0.3533 0.3609 0.3361 0.4165 0.3796 0.3771 0.3641 0.5306
MTLp15A 0.3584 0.3257 0.3336 0.3046 0.3874 0.3448 0.3450 0.3218 0.5160
MTLp16A 0.3717 0.3350 0.3331 0.3084 0.3903 0.3497 0.3400 0.3343 0.5260

edm 0.6721 0.6631 0.6661 0.6766 0.7699 0.7714 0.7667 0.7829 0.6929
DFlow 0.6191 0.5579 0.6054 0.5820 0.7003 0.7256 0.7038 0.7400 0.6732
DGap 0.7250 0.7682 0.7268 0.7711 0.8395 0.8172 0.8296 0.8258 0.7126

sf1 1.0051 1.1280 1.0161 1.0047 0.9390 0.9477 0.9250 0.9604 0.8833
c.class 1.0842 1.2316 1.1016 1.0813 1.0053 1.0019 0.9932 1.0277 1.0259
m.class 1.0988 1.2367 1.1145 1.0986 1.0838 1.0980 1.0531 1.1257 0.9635
x.class 0.8322 0.9156 0.8321 0.8340 0.7279 0.7434 0.7285 0.7279 0.6605

sf2 0.8487 0.9410 0.8617 0.8577 0.7825 0.7787 0.7827 0.7764 0.7850
c.class 0.9881 1.0944 1.0042 0.9927 1.0067 0.9924 1.0098 0.9926 0.9388
m.class 1.1009 1.3221 1.1583 1.1146 0.9119 0.9150 0.9103 0.9124 0.9771
x.class 0.4570 0.4065 0.4226 0.4657 0.4291 0.4287 0.4281 0.4243 0.4390

jura 0.6061 0.5974 0.5969 0.5908 0.6409 0.6413 0.6391 0.6410 0.7296
Cd 0.7056 0.7011 0.7018 0.6981 0.7103 0.7052 0.7059 0.7082 0.7644
Co 0.5272 0.5289 0.5245 0.5219 0.5918 0.5965 0.5939 0.5925 0.6601
Cu 0.5856 0.5623 0.5645 0.5524 0.6208 0.6221 0.6175 0.6225 0.7643

wq 0.9066 0.9392 0.9059 0.9104 0.9630 0.9535 0.9581 0.9576 0.9348
25400 0.9154 0.9638 0.9175 0.9175 0.9892 0.9835 0.9830 0.9878 0.9667
29600 0.9972 1.0631 0.9915 0.9953 1.0549 1.0487 1.0526 1.0553 1.0006
30400 0.9672 0.9908 0.9590 0.9731 0.9879 0.9852 0.9842 0.9946 0.9757
33400 0.9018 0.9111 0.8935 0.9067 0.9394 0.9067 0.9345 0.9134 0.9295
17300 0.8989 0.9270 0.9054 0.8985 0.9396 0.9371 0.9391 0.9382 0.9463
19400 0.8385 0.8858 0.8394 0.8390 0.8879 0.9024 0.8863 0.8975 0.8714
34500 0.9706 1.0108 0.9630 0.9785 1.0076 0.9940 1.0009 1.0031 0.9679
38100 0.9147 0.9435 0.9185 0.9258 0.9773 0.9795 0.9685 0.9800 0.9294
49700 0.7856 0.8067 0.7934 0.7959 0.8446 0.8362 0.8397 0.8428 0.8546
50390 0.8814 0.9147 0.8836 0.8795 0.9811 0.9423 0.9747 0.9400 0.9515
55800 0.9109 0.9466 0.9078 0.9112 0.9878 0.9838 0.9801 0.9934 0.9339
57500 0.9166 0.9413 0.9163 0.9294 0.9627 0.9473 0.9557 0.9545 0.9183
59300 0.9409 0.9668 0.9374 0.9420 1.0299 1.0057 1.0209 1.0120 0.9733
37880 0.8527 0.8770 0.8569 0.8537 0.8924 0.8964 0.8929 0.8942 0.8686

enb 0.1504 0.1173 0.1304 0.1149 0.2499 0.2173 0.2404 0.1678 0.2899
Y1 0.1094 0.0519 0.0772 0.0518 0.2226 0.1866 0.2120 0.1312 0.2798
Y2 0.1914 0.1828 0.1837 0.1780 0.2772 0.2479 0.2687 0.2043 0.3000

slump 0.8365 0.8324 0.8222 0.8338 0.6924 0.6862 0.6819 0.6889 0.8419
slump 1.0444 1.0475 0.9899 1.0392 0.9295 0.8797 0.8868 0.8902 0.9609
flow 0.8806 0.9011 0.8809 0.9152 0.8718 0.8761 0.8612 0.9006 0.8275
cpr_str 0.5846 0.5488 0.5959 0.5471 0.2759 0.3027 0.2976 0.2759 0.7374

(continued on next page)
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Table B.5 (continued).
Dataset

Target
RF SVM MORF

ST SST ERC DSTARS ST SST ERC DSTARS

andro 0.7941 0.7349 0.7614 0.6584 1.1348 0.9243 1.0089 0.7899 0.7704
Target 0.4058 0.3783 0.3897 0.3652 0.3603 0.3176 0.3295 0.2859 0.5313
Target_2 2.2973 2.1807 2.1899 1.7572 4.1015 3.1101 3.5032 2.3970 0.7786
Target_3 0.4339 0.3633 0.4152 0.3634 0.5497 0.4384 0.4979 0.4137 0.8027
Target_4 0.4338 0.3713 0.4078 0.3660 0.5340 0.4256 0.4721 0.3962 0.7828
Target_5 0.5904 0.5592 0.5897 0.5587 0.6281 0.6276 0.6222 0.6206 0.9027
Target_6 0.6037 0.5566 0.5761 0.5398 0.6354 0.6262 0.6284 0.6262 0.8245

osales 0.7577 0.7275 0.7332 0.7289 1.1726 1.1685 1.1702 1.1717 0.9680
M1 0.7019 0.6739 0.6778 0.6522 1.6880 1.6850 1.6864 1.6880 0.9876
M2 0.7578 0.7206 0.7253 0.7161 1.6460 1.6390 1.6427 1.6417 0.9709
M3 0.7814 0.7514 0.7537 0.7390 0.9752 0.9717 0.9734 0.9745 0.9681
M4 0.7510 0.7055 0.7117 0.6920 1.1845 1.1801 1.1815 1.1837 0.9725
M5 0.7949 0.7422 0.7599 0.7753 1.3686 1.3658 1.3671 1.3686 0.9790
M6 0.7299 0.7046 0.7132 0.7121 0.9761 0.9721 0.9740 0.9752 0.9605
M7 0.7682 0.7403 0.7449 0.7519 0.9872 0.9838 0.9848 0.9866 0.9779
M8 0.7542 0.7374 0.7405 0.7387 1.0623 1.0585 1.0601 1.0617 0.9569
M9 0.7552 0.7256 0.7345 0.7318 1.1696 1.1662 1.1680 1.1687 0.9609
M10 0.7570 0.7339 0.7411 0.7341 1.1674 1.1611 1.1634 1.1658 0.9647
M11 0.7512 0.7328 0.7300 0.7355 0.8856 0.8821 0.8824 0.8848 0.9556
M12 0.7894 0.7617 0.7660 0.7682 0.9605 0.9566 0.9579 0.9605 0.9610

scfp 0.9263 0.9379 0.8778 0.9017 0.8242 0.8256 0.8151 0.8251 0.8620
views 0.8228 0.7799 0.7817 0.7914 0.7596 0.7377 0.7462 0.7258 0.8262
votes 0.7335 0.7501 0.7214 0.7571 0.7304 0.7224 0.7233 0.7185 0.7276
comments 1.2226 1.2836 1.1304 1.1565 0.9826 1.0167 0.9758 1.0309 1.0322
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Fig. B.8. Observed values of RFimp considering all datasets, regression techniques and the iterations of the 10-fold cross-validation employed to compare the MTR
methods. Rows represent the targets and columns the normalized RFimp measured for them. The targets combinations which had RFimp ≤ 0 in at least one fold
are marked with an ‘‘*’’.
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Fig. B.8. (continued).
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Fig. B.8. (continued).
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Fig. B.8. (continued).
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Fig. B.8. (continued).
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Table B.6
Number of regressor layers and discontinuities for DSTARS considering all targets,
evaluated datasets, and the hyperparameter set (φ, ε) = (0.4, 10−4).
Dataset
Target

Layers Discontinuities

RF SVM RF SVM

atp1d 2.9 1.5 0.3 0.0
ALLminpA 2.6 1.3 0.4 0.0
ALLminp0 2.9 1.7 0.2 0.0
aDLminpA 3.4 1.2 0.3 0.0
aCOminpA 3.1 1.4 0.2 0.0
aFLminpA 2.4 1.6 0.1 0.0
aUAminpA 2.9 1.6 0.3 0.0

atp7d 3.0 1.8 0.2 0.0
ALLminpA 3.2 2.1 0.1 0.0
ALLminp0 3.3 1.1 0.4 0.0
aDLminpA 3.2 1.8 0.2 0.0
aCOminpA 2.9 2.0 0.2 0.0
aFLminpA 2.5 1.7 0.1 0.0
aUAminpA 2.6 2.0 0.1 0.0

oes97 2.5 1.5 0.3 0.0
58028 2.5 2.0 0.3 0.0
15014 2.4 1.4 0.1 0.0
32511 2.5 1.0 0.3 0.0
15017 2.7 2.0 0.6 0.0
98502 1.8 2.8 0.1 0.0
92965 2.2 1.5 0.1 0.0
32314 2.5 1.9 0.2 0.0
13008 2.8 2.0 0.6 0.0
21114 2.1 2.0 0.2 0.0
85110 2.7 1.0 0.4 0.0
27311 2.9 1.0 0.3 0.0
98902 2.8 1.0 0.2 0.0
65032 3.2 1.1 0.3 0.0
92998 2.3 1.0 0.4 0.0
27108 1.9 1.2 0.4 0.0
53905 2.4 1.0 0.4 0.0

oes10 2.6 1.5 0.3 0.0
513021 2.8 1.0 0.3 0.0
292071 2.5 2.0 0.4 0.0
392021 2.6 1.4 0.3 0.0
151131 2.4 1.0 0.5 0.0
151141 2.1 1.0 0.1 0.0
291069 2.7 1.0 0.3 0.0
119032 2.1 1.6 0.2 0.0
432011 2.8 1.9 0.4 0.0
419022 2.1 1.5 0.1 0.0
292037 2.4 2.0 0.5 0.0
519061 2.6 1.3 0.2 0.0
291051 2.5 2.0 0.1 0.0
172141 2.9 1.0 0.4 0.0
431011 2.7 1.9 0.5 0.0
291127 3.5 1.4 0.6 0.0
412021 2.3 1.5 0.1 0.0

rf1 2.5 4.2 0.0 0.1
CHSI2 3.1 2.8 0.0 0.0
NASI2 2.2 2.1 0.0 0.0
EADM7 3.0 4.4 0.1 0.0
SCLM7 2.8 4.5 0.1 0.0
CLKM7 2.0 5.6 0.0 0.6
VALI2 2.1 7.0 0.0 0.0
NAPM7 2.0 2.0 0.0 0.0
DLDI4 2.4 5.0 0.0 0.0

rf2 2.2 2.2 0.0 0.0
CHSI2 2.6 2.0 0.0 0.0
NASI2 1.8 1.1 0.0 0.0
EADM7 2.4 2.0 0.0 0.0
SCLM7 2.6 2.0 0.1 0.0
CLKM7 2.0 2.0 0.0 0.0
VALI2 2.1 3.0 0.0 0.0
NAPM7 2.4 2.0 0.0 0.0
DLDI4 2.0 3.4 0.0 0.0

scm1d 5.4 3.0 0.7 0.0
LBL 4.2 3.5 0.4 0.0

(continued on next page)
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Table B.6 (continued).
Dataset
Target

Layers Discontinuities

RF SVM RF SVM

MTLp2 5.1 3.0 0.8 0.0
MTLp3 4.9 3.1 0.6 0.0
MTLp4 6.0 3.0 1.1 0.0
MTLp5 7.5 3.2 1.2 0.0
MTLp6 6.0 3.8 0.4 0.0
MTLp7 5.7 3.0 0.2 0.0
MTLp8 6.4 3.0 1.1 0.0
MTLp9 4.7 3.0 0.5 0.0
MTLp10 4.7 3.1 0.4 0.0
MTLp11 5.0 2.8 0.7 0.0
MTLp12 5.0 2.7 0.6 0.0
MTLp13 5.1 2.8 0.7 0.0
MTLp14 4.6 3.0 0.6 0.0
MTLp15 5.2 2.6 0.3 0.0
MTLp16 5.6 2.6 1.2 0.0

scm20d 13.5 4.6 2.1 0.0
LBL 14.5 4.8 3.6 0.0
MTLp2A 11.1 4.0 1.9 0.1
MTLp3A 15.3 5.1 3.4 0.0
MTLp4A 14.0 4.7 1.5 0.0
MTLp5A 15.0 5.9 2.0 0.0
MTLp6A 13.0 4.9 1.2 0.0
MTLp7A 14.6 5.2 2.2 0.0
MTLp8A 14.7 4.0 2.8 0.0
MTLp9A 11.2 4.8 1.1 0.0
MTLp10A 13.7 4.2 2.1 0.0
MTLp11A 12.4 4.8 1.9 0.0
MTLp12A 12.3 4.0 2.2 0.0
MTLp13A 13.2 4.8 1.7 0.0
MTLp14A 13.5 4.0 2.7 0.0
MTLp15A 14.0 4.4 2.3 0.0
MTLp16A 14.0 3.6 1.7 0.0

edm 2.2 3.1 0.0 0.0
DFlow 2.8 2.8 0.0 0.0
DGap 1.5 3.4 0.0 0.0
sf1 1.1 1.6 0.0 0.0
c.class 1.0 1.8 0.0 0.0
m.class 1.0 1.9 0.0 0.0
x.class 1.2 1.0 0.0 0.0

sf2 1.6 2.1 0.0 0.0
c.class 1.1 3.0 0.0 0.0
m.class 1.0 1.2 0.0 0.0
x.class 2.6 2.0 0.0 0.0

jura 3.3 2.0 0.1 0.0
Cd 3.2 2.4 0.2 0.0
Co 3.0 1.4 0.0 0.1
Cu 3.7 2.1 0.2 0.0

wq 1.1 2.7 0.0 0.1
25400 1.0 2.4 0.0 0.0
29600 1.0 2.3 0.0 0.0
30400 1.1 2.6 0.0 0.0
33400 1.2 3.9 0.0 0.0
17300 1.0 2.1 0.0 0.0
19400 1.0 1.5 0.0 0.0
34500 1.2 3.8 0.1 0.0
38100 1.1 2.1 0.0 0.0
49700 1.3 2.6 0.0 0.1
50390 1.0 4.1 0.0 0.5
55800 1.0 2.4 0.0 0.0
57500 1.2 3.3 0.0 0.2
59300 1.1 3.0 0.0 0.1
37880 1.1 1.5 0.0 0.0

enb 2.6 5.9 0.0 0.0
Y1 3.1 6.2 0.0 0.0
Y2 2.0 5.6 0.0 0.0

slump 3.0 1.6 0.0 0.0
slump 2.5 2.1 0.0 0.0
flow 2.7 1.8 0.1 0.0
cpr_str 3.9 1.0 0.0 0.0

andro 4.0 7.1 0.4 0.1
Target 5.1 7.1 0.6 0.2

(continued on next page)
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Table B.6 (continued).
Dataset
Target

Layers Discontinuities

RF SVM RF SVM

Target_2 3.5 8.2 0.3 0.0
Target_3 3.5 7.4 0.1 0.0
Target_4 3.5 7.2 0.2 0.0
Target_5 3.9 6.6 0.2 0.1
Target_6 4.3 5.8 0.7 0.1

osales 4.3 1.5 0.5 0.0
M1 4.9 1.0 0.3 0.0
M2 5.9 1.8 0.9 0.0
M3 3.9 1.8 0.1 0.0
M4 5.0 1.4 0.4 0.0
M5 4.8 1.0 0.4 0.0
M6 3.5 1.7 0.3 0.0
M7 6.0 1.7 1.7 0.0
M8 4.6 1.5 0.7 0.0
M9 4.1 1.7 0.5 0.0
M10 3.0 1.7 0.1 0.0
M11 3.9 1.9 0.5 0.0
M12 2.5 1.0 0.1 0.0

scfp 2.1 3.1 0.0 0.0
views 2.1 3.8 0.0 0.0
votes 2.1 3.1 0.0 0.0
comments 2.1 2.5 0.0 0.0
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