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Summary

This is both a replication of Eberhardt et al. (Review of Economics and Statistics,
2013, 95(2), 436–448) using different software, and a critical extension and diag-
nostic reassessment of the original results. The main findings of the paper are
confirmed and sometimes reinforced. We point out some inconsistencies, in par-
ticular in the calculation of standard errors for the common correlated effects
pooled model; we extend the diagnostic checks; lastly, in the spirit of the origi-
nal contribution, we show how local cross-sectional dependence diagnostics can
be used to provide a first assessment of the direction of spillovers. We provide
complete replication code in open source R.

1 INTRODUCTION

The principle of common correlated effects (CCE) augmentation of Pesaran provides a simple and powerful way of con-
trolling for common factors in panel regressions. While the original CCE paper (Pesaran, 2006) had already spanned a
large literature, Eberhardt, Helmers, and Strauss (2013; henceforth EHS) was among the first applications to make it into
a general-interest top journal.1 They applied standard and CCE methods to R&D-augmented production functions in an
unbalanced panel of up to 12 manufacturing subsectors in 10 OECD countries, observed over a maximum of 26 years,
showing how controlling for common effects and spillovers did away with the econometric significance of own R&D pro-
ductivity, and concluding that spillover effects of R&D dominated direct effects, thus highlighting the inadequacy of the
standard approach and setting an agenda for future work.

EHS estimated static and dynamic versions of the production function: yit = 𝛼ilit + 𝛽 ikit + 𝛾 irit + 𝜆it + 𝜓 i + 𝜖it,
where y, l, k and r are the logs of production and of the three inputs: labor (L), capital (K), and R&D (RD). The estimators
employed can be categorized in two ways: according to the hypotheses on the technology parameters (homogeneous or
heterogeneous: that is, assuming 𝛼i = 𝛼, 𝛽 i = 𝛽 and 𝛾 i = 𝛾 across all i or, respectively, leaving them free to vary);
and, analogously, according to those on the impact of unobservables, as summarized in EHS, Table 4. In particular, in the
pooled models with year dummies 𝜆it = 𝜆t is assumed homogeneous across i, whereas in the CCE models time common
factors ft enter the model through individual-specific, time-invariant factor loadings, so that 𝜆it = 𝜆i

′ft.
Together with CCE, EHS showcased most of the standard estimation methods for panels of time series and a wealth of

panel diagnostics. As panel time series econometrics is a relatively recent field and still under development, some aspects
of their approach, while state of the art at the time the paper appeared, lend themselves to criticism when seen with today's
eyes. Moreover, the lack of well-tested and user-friendly software is reflected in some inconsistencies, and in their use of
computational shortcuts which are not entirely justified. We replicate their results—and our suggested modifications—in
open source R (R Core Team, 2014) using user-level features, mainly from the “plm” package (Croissant & Millo, 2008).

The views expressed are solely the author's own and do not necessarily reflect those of his employer.
1The very first mention of CCE in a major journal pre-dates publication of the original contribution: Imbs, Mumtaz, Ravn, and Rey (2005) employed it
as a robustness check, both in the homogeneous and in the heterogeneous version (see their footnote 29).
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This paper and its online Appendix (provided as Supporting Information; henceforth OA) therefore double up as a review
of panel time series techniques in R (see also Millo, 2015).

Our replication, while generally upholding the results of EHS, is not completely successful. There are issues in EHS's
standard errors for the pooled models: those of the pooled (POLS), 2FE (fixed effects) and first difference (FD) models
do not account for clustering; those of the CCEP models, due to the peculiar estimation method employed, are seriously
underestimated, resulting in spurious significance; employing, respectively, clustered and nonparametric standard errors
yields consistent results across the different specifications. Some of the diagnostic tests, especially the CD test, are known
to be biased in the context of data such as that in EHS, so that they are compared and contrasted with results for tests
which do not suffer this shortcoming; as a result some puzzles regarding pooled models with favorable CD test statistics
are solved. Moreover, there are issues with applying the CCE approach to a dynamic specification that were not known
at the time EHS was published. In particular, the time dimension of the EHS data set is too short for dynamic CCE to be
reliable.2

2 COMPUTING STANDARD ERRORS FOR CCEP ESTIMATES

According to Pesaran (2006, Eqs. 15, 27, 65) CCEP estimates (𝛽CCEP) are computed applying ordinary least squares (OLS) to
data transformed by projecting them onto the matrix of cross-sectional averages and deterministic components. Since this
last estimator has few user-friendly implementations, EHS use a workaround: they obtain 𝛽CCEP using standard regression
software by adding the interaction terms between cross-sectional averages and individual dummies. The problem with
this procedure is that it will not produce the correct standard errors.3

Pesaran (2006) gives two main methods to estimate the variance of CCEP coefficients. The nonparametric estimator
in Equation 67, based on the empirical covariance of the individual CCE estimates 𝛽CCE,i, is appropriate (Pesaran, 2006,
Th. 3) for the case of heterogeneous parameters 𝛽 i. For the special case of homogeneity (𝛽 i = 𝛽), and for T∕N → 0 as
N and T diverge jointly, a sandwich estimator is justified (Th. 4, see Eq. 74).4 In particular, the Newey–West procedure is
suggested (Eqs. 50–52). Pesaran (2006, p 988) advocates the use of the nonparametric estimator, which is consistent under
a wider set of assumptions (most notably, in “longer” panels) and performs well in simulations. The EHS data, where
N = 119 and T = 11 − 26, are problematic from the viewpoint of the sandwich estimators; they rather comply with the
assumptions underlying the nonparametric version.

Bootstrapping has also been recommended (Sarafidis & Wansbeek, 2012), in particular cluster-bootstrapping, whereby
entire cross-sectional units are resampled in order to preserve within-individual correlation properties (see Cameron,
Gelbach, & Miller, 2008; henceforth CGM).5 It should nevertheless be noted that cluster-bootstrapping in general complies
with the assumptions underlying the parametric clustering/sandwich estimator,6 which it can be expected to outperform
as regards finite-sample properties; in the EHS case, where the number of clusters is sizable, it is more likely to share the
sandwich estimator's weaknesses than it is to yield significant improvements. In Table 1 we compare SEs from all the
methods mentioned above; as expected, cluster bootstrapping methods and sandwich estimators produce similar results,
leading to qualitatively identical conclusions.

Controlling for clustering, both homogeneous models accounting for individual heterogeneity (2FE, FD) now again
have SEs of magnitude comparable to that of the CCEP, provided the latter are computed according to Pesaran (2006).
The main economic result is that own R&D expenditure is consistently insignificant when controlling for individual
heterogeneity. This reconciles the findings of EHS, Table 5, with those of the dynamic and/or heterogeneous models in
EHS, Tables 6–8. Table 2 is our modified version of EHS, Table 5.

2While the former two points are addressed below, providing alternative results, there seems to be no solution available for this last issue: The discussion
is expanded upon in the OA. We thank an anonymous reviewer for helping us single out the relevant contributions of this relatively large replication
exercise, and for suggesting the last point.
3It is also potentially prone to computational problems because of the proliferation of regressors. On this point, see the OA.
4This can be computed applying the standard methods for robust coefficient covariance estimation in panels (see Millo, 2017a, for a computationally
oriented review) to the projected data and residuals.
5Computationally, cluster-bootstrapped CCEP SEs can be easily obtained through the same transformation framework as for the sandwich estimator:
With reference to the classification in CGM, once the model is expressed as pooled OLS on transformed data it is easy to resample either (�̃�i , x̃i)pairs (pairs
bootstrap) or transformed residuals ẽi (wild bootstrap) to obtain a bootstrap sample of parameter estimates 𝛽∗ from which in turn var(𝛽) is estimated;
asymptotic refinement for both methods, translating into better finite-sample properties especially in the case of a small number of clusters, can be
gained along the same lines by directly bootstrapping (robust) t tests (t-bootstrap) which, unlike the 𝛽∗s, are pivotal statistics (CGM, III).
6An exception is the residual-se method, which assumes i.i.d. clusters and is therefore actually more restrictive than the sandwich estimator (CGM,
p. 418).
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TABLE 1 Original (EHS) versus alternative standard errors for the CCEP model
from Table 5 in EHS, with corresponding significance diagnostics

ln L ln K ln RD

EHS 0.027 0*** 0.036 0*** 0.017 0***
Nonparametric 0.088 0*** 0.161 0.07148 0.068 0.21526
HC (cluster by firm) 0.045 0*** 0.077 0.00017*** 0.033 0.01023**
Newey–West 0.031 0*** 0.045 0*** 0.02 0.00003***
Driscoll–Kraay 0.042 0*** 0.076 0.00015*** 0.019 0.00001***
Wild bootstrap 0.045 0*** 0.077 0.00018*** 0.034 0.01285**
Pairs bootstrap 0.047 0*** 0.078 0.00021*** 0.035 0.01473**
Wild t-bootstrap (HC) 0*** 0.002*** 0.020**
Pairs t-bootstrap (HC) 0*** 0*** 0.016**

Note. Nonparametric: as in Pesaran 2006, Th. 3; HC, NW and DK: sandwich estimates as in
Pesaran 2006, Th. 4, with the meat calculated by the respective methods; bootstrap (M = 999):
pairs or wild bootstrap estimates, clustered by firm, as defined in CGM; t-bootstrap: pairs or wild
resampling of cluster-robust t-statistics. For each variable: column 1, standard error; column 2,
p-value for the t-test. Asterisks indicate significance at: ***1%; **5%; *10%.

TABLE 2 Static homogeneous models, selected results from
modified EHS, Table 5

POLS 2FE FD CCEP

ln L 0.464 0.608 0.646 0.562
(11.8399)*** (5.567)*** (16.543)*** (6.379)***

ln K 0.465 0.487 0.262 0.289
(11.294)*** (3.057)*** (2.771)*** (1.802)*

ln RD 0.096 0.063 0.045 0.084
(6.704)*** (1.351) (1.447) (1.239)

CRS 0.068* 0.338 0.674 0.675

Note. POLS, pooled OLS with time FEs; 2FE, two-way fixed effects; FD,
first differences with time FEs; CCEP, pooled common correlated effects.
t-statistics in parentheses, constructed from clustered (POLS, 2FE, FD),
respectively nonparametric (CCEP) standard errors. Asterisks indicate
significance at: ***1%; **5%; *10%. CRS, Wald test for H0 of constant
returns to scale (p-values).

3 CCE, DETERMINISTICS, AND CROSS-SECTIONAL DEPENDENCE
TESTING

CCEP models are a generalization of time fixed-effects ones, which last assume 𝜆i = 1∀i (see above). Therefore, augment-
ing a CCEP specification with time dummies (as in EHS, Table 5, column 5) is redundant from a theoretical viewpoint,
while in practice it leads to exact collinearity between the time dummies and the cross-sectional averages of response and
regressors. Deterministic trends are instead a legitimate addition to CCE models (Pesaran, 2006, Remark 2).

Adding deterministics to the models can also have noteworthy side effects on cross-sectional dependence diagnostics. In
particular, the CD test has no power when E(𝜆) = 0 or, equivalently, when the estimated model contains time fixed effects
or the data have been cross-sectionally demeaned (Sarafidis & Wansbeek, 2012). Therefore the CD test cannot detect
cross-sectional dependence in pooled models with either time or two-way fixed effects (EHS, Tables 5 and 6). In this sense,
the addition of cross-sectional averages in the CCEP estimator has the same effect as adding time dummies: it too does
away with the power of the CD test. In a situation where substantially cross-sectional dependent data have been centered
on zero by data transformation or—similarly—model augmentation, the average (pairwise) cross-correlation coefficient
̄̂𝜌 will be near zero and the CD test statistic correspondingly small,7 whereas the average absolute cross-correlation coef-
ficient | ̄̂𝜌| will be large; the difference between these two statistics can be telling in this respect. As for deterministic

7For example, compare the statistics in Holly, Pesaran, and Yamagata (2010, Tables 7 and 9) with the results in their Section 5.5 (see also Baltagi & Li,
2014, Tables 4, 5, and A5–7).
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TABLE 3 Comparison of cross-section and spatial
dependence diagnostics for the models in EHS, Table 5

POLS 2FE FD CCEP

Global CD −1.570 −1.464 −1.598 2.588
0.116 0.143 0.110 0.010

̄̂𝜌 −0.004 −0.005 −0.005 0.005
| ̄̂𝜌| 0.503 0.502 0.218 0.263
Frees rank test 21.959 22.575 −8.308 −2.013

0.000 0.000 0.000 0.000
CD(1), sector 8.631 8.677 2.910 3.937

0.000 0.000 0.004 0.000
CD(1), country 24.584 22.579 16.409 20.092

0.000 0.000 0.000 0.000
RW, sector 0.002 0.002 0.008 0.026
RW, country 0.002 0.002 0.002 0.002

Note. Global CD is Pesaran (2015) test; ̄̂𝜌 is the mean of pair-
wise correlation coefficients; | ̄̂𝜌| the mean of their absolute values;
Frees (1995) is the rank test for cross-sectional dependence; CD(1)
sector and, respectively, country are the local CDp tests (Pesaran,
2004) when defining neighborhood as sharing either the same
industrial sector or the same country. RW, again sector or country,
is Millo's (2017b) randomization test for spatial correlation robust
to common factors (symmetric pseudo-p-values from 999 random
draws are reported, hence 0.002 is the minimum). p-values in
italics.

trends, omitting them from a specification can result in serial error correlation, which in turn biases the CD test (violating
Assumption 1 in Pesaran, 2015): The (otherwise harmless) addition of a trend can therefore help avoid false positives.

As a first step towards reassessing cross-sectional dependence in EHS's models, we compare ̄̂𝜌with | ̄̂𝜌|. Then we perform
the rank-based sibling of the CD test—the Frees test (Frees, 1995), which does not share its weakness. The ̄̂𝜌 is near zero
for all models, which, as expected, affects the power of the CD test. By contrast, | ̄̂𝜌|, although bigger for POLS and 2FE, is
of sizable magnitude for all models, hinting at substantial cross-sectional dependence, which is actually detected by the
Frees test. Unlike EHS, we conclude that cross-sectional dependence is present in all models (see Table 3).

The latter can, a priori, be of either global (pervasive, factor-type) or local (decaying, spatial-type) nature. Note that
the CCEP estimator is designed to control for common factor dependence, and it is consistent in the presence of spatial
dependence. It is therefore no wonder, and no problem, that cross-sectional dependence be left in the CCEP residuals
(𝜖CCEP), as long as it is due to local correlation and not to a pervasive factor structure.8 We check by applying the exponent of
cross-sectional dependence (Bailey, Kapetanios, & Pesaran, 2016) to 𝜖 CCEP. �̊� is estimated at 0.616 (95% CI: 0.574–0.658):
The evidence of pervasive factors in the residuals is weak, if any.9 The residual spatial dependence is instead discussed in
the following.

4 SPATIAL DEPENDENCE AND THE DIRECTION OF SPILLOVERS

In light of the conclusions of EHS on the importance of identifying the direction of spillovers from R&D, we assess the
degree of local cross-sectional dependence between “neighboring” observations with respect to two naturally defined
“proximity” dimensions in the EHS data: country and industry. As a first step, we apply the local, or spatial, CDp test
(Pesaran, 2004, Section 7); the null hypothesis of independence is consistently rejected for either definition of space, and
across all specifications. Nevertheless, global dependence can cause the CDp test to reject as well (Holly et al., 2010;

8We thank an anonymous reviewer for raising this point.
9Strictly speaking, ̂̊𝛼 in excess of 0.5 is not fully compatible with weak dependence. Yet, �̊� is not estimable if lower than 0.5, and is usually overestimated
in this region (Bailey et al., 2016): Hence we conclude that a factor structure is really not relevant. The values reported are relative to the bias-corrected
version of �̊� (Bailey et al., 2016, Eq. 13), allowing for persistent factors but no spatial correlation. All other versions are presented in the OA; results are
largely similar.
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Millo, 2017b; Moscone & Tosetti, 2010); therefore the latter can be safely used only if controlling for common factors.
Moreover, neither the CD nor the CDp test tolerates serial correlation, which seems present in all static models from
EHS. Factor-robust testing procedures are compared and discussed at length in Millo (2017b), where a new test (RW)
based on randomizing the proximity matrix is proposed, which is both factor robust and—interestingly, in view of the
above concerns—also insensitive to serial correlation. Unlike the CDp, the RW test can be safely applied to any of the
specifications considered by EHS. Cross-section and spatial dependence diagnostics are reported in Table 3.

From the evidence presented, we conclude that all models have locally correlated residuals within single countries, and,
although the evidence is weaker, also within industrial sectors.
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