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Abstract: Cavitation is often simulated using a mixture model, which considers the transport of an
active scalar, namely the vapor fraction αv. Source and sink terms of the transport equation of αv,
namely vaporization and condensation terms, rule the dynamics of the cavity and are described
through different models. These models contain empirical coefficients generally calibrated through
optimization processes. The purpose of this paper is to propose an analytical approach for the
calculation of the coefficients, based on the time scales of vaporization and condensation processes.
Four different models are compared considering as a test-case a two-dimensional flow around a
cylinder. Some relevant quantities are analyzed both for standard value of coefficients, as found
in the literature, and the coefficients calculated through the analytical approach. The study shows
that the analytical computation of the coefficients of the model substantially improve the results,
and the models considered give similar results, both in terms of cavitation regime and mean vapor
fraction produced.

Keywords: cavitation; coefficient calculation; homogeneous mixture models

1. Introduction

Cavitation is a complex phenomenon, occurring in several engineering devices when
flow pressure drops below the vapor pressure. Its own importance in naval and hydraulic
engineering is confirmed by growing numerical and experimental studies, aimed at un-
derstanding and reproducing a multiphase process that involves different temporal and
spatial scales. Examples of devices which may undergo cavitation are pressure pipes,
especially near fittings or corners, or near bottlenecks, where the flow accelerates, or in the
presence of a water hammer; cavitation is also common in hydraulic turbines and pumps
and, also, it may affect ship propellers, due to low pressure occurring above the blades and
in the presence of tip-vortex structures. Vapor phase formation generally affects the device
performance, and bubble inception is found to produce intense noise and may damage
solid surfaces. Once vapor is formed, it is transported by the flow through regions where
pressure re-establishes above the vapor pressure, thus producing condensation and bubble
implosion. This phase is of fundamental importance as well as the cavitation inception;
for this reason many theoretical and experimental studies focused on these two aspects,
considering the dynamics of a single bubble (see, among the others [1–3]). The implosion
of vapor bubbles is a non-linear process and produces large pressure peaks (of the order of
a hundred bars) in localized areas and micro-jets with velocity of the order of hundreds
meters per second [4]; these phenomena cause high frequency pressure perturbations and
micro-fractures on nearby structures [5], which are usually the blades of the propellers
or pump impellers, and they can lead, over time, to deterioration or even collapse of the
device. Furthermore, the high level of broad-band noise associated with cavitation is an
important issue which is gaining increasing attention, mostly for cruise ships which need
to minimize the noise for passengers welfare or to enter in protected areas [6].
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Several numerical approaches were developed to treat cavitating flows, each of them
suitable for the specific application and cavitation regime considered, e.g., homogeneous
cavitation, sheet cavitation or bubbly flows. Among others, the Eulerian front-tracking
techniques [7], and the Euler-Lagrangian methods [8], suitable for small-scale processes,
where a countable number of bubbles is present. More recently, the Eulerian-Lagrangian
method has been improved to treat multiscale processes characterized by the simultaneous
presence of bubbles and sheet cavitation (see the very recent paper [9]). For engineering
applications, homogeneous mixture methods are commonly employed, due to their practi-
cality and adaptability to large-scale cavitation cases. In these methods, the phases (liquid,
vapor, and possibly gas) are treated through the use of a scalar field α, indicating the phase
fraction, and they may be divided into two main categories: (i) barotropic models, where
a state equation is adopted as closing relation between the vapor/gas fraction and the
pressure (among other we refer to Dellannoy and Kueny, [10], Rebound et al., [11], Song
and He [12], Coutier-Delgosha et al., [13] and Qin et al. [14]); (ii) transport equation models,
where the phase fraction is governed by a non-linear partial differential equation, whose
form varies according to the model considered.

The latter relies on two source/sink terms, which are needed to model the phenomena
of vaporization and condensation: several models have been developed to parametrize
these processes as function of resolved variables; among them, we mention: the Merkle
et al. [15] model in which the source terms are related to the density variation, proportional
to the dynamic pressure; the Kunz et al. [16] model uses the same vaporization source term
as Merkle’s model and a simplified Ginzburg-Landau potential for the condensation one;
Senocak and Shyy [17] used the mass-momentum conservation equation at the interface to
evaluate the source terms as a function of known flow variables. Singhal et al. [18], Zwart
et al. [19], and Schnerr and Sauer 2001 [20] based the source terms on the simplification of
the Rayleigh-Plesset equation for the dynamic of a bubble; Saito et al. [21] evaluated the
source terms based on the theory of evaporation and condensation on a plane surface.

An important issue related to these models is the use of empirical coefficients, which
are needed since the terms describing the condensation/vaporization processes are simpli-
fied version of complex physical relationship (the most indicative is perhaps the Schnerr-
Sauer model, which considers only the terms of the Rayleigh-Plesset equation related to
the asymptotic growth of bubbles). The condensation/vaporization coefficients Cc and Cv
may be calibrated for the study of the specific problem such as the flow around a hydro-
foil [22] or a marine propeller [23]; usually calibration of the coefficients is performed using
optimization techniques [24], where the values of the coefficients are evaluated forcing the
solution to obtain optimal values of some mean quantities, such as the pressure coefficient
or thrust and torque coefficients, the latter in case of marine propellers.

In the present study, we propose a new procedure for the calculation of the coefficients
Cc and Cv, which, actually, act as accelerators/decelerators of the vaporization and conden-
sation processes. We consider four models (Merkle, Schnerr-Sauer, Kunz, and Saito) and
we calculate the coefficients Cc and Cv analytically by comparing the characteristic time
needed for the transition from a predominantly liquid phase to a predominantly vapor
phase and vice versa. To test the calculated coefficients we consider a two-dimensional
laminar flow around a cylinder. We compare the results with those obtained with standard
values for the coefficients Cc and Cv, as found in the literature.

In Section 2, we describe the numerical model, together with a brief description of
the cavitation models that have been considered. In Section 3, we describe the procedure
adopted for the analytical evaluation of the coefficients Cc and Cv. In Section 4, we
introduce the case of study, while in Section 5 the results obtained considering the analytical-
based coefficients are reported and discussed, and compared to results obtained adopting
standard coefficients. Concluding remarks are in Section 6.
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2. The Multiphase Model for Flow Cavitation

We consider the homogeneous mixture model which considers the fluid as a mixture
of two incompressible and homogeneously distributed phases. The governing equations
which rule the dynamic of the mixture are the Navier-Stokes equations, together with the
transport equation of the vapor fraction:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂ρu
∂t

+∇ · (ρuu) = −∇p + µ∇2u (2)

∂αv

∂t
+∇ · (uαv) = ṁ+ − ṁ− (3)

ρ and µ are, respectively, the density and viscosity of the mixture

ρ = ρvαv + ρl(1− αv) (4)

µ = µvαv + µl(1− αv) (5)

where the subscripts l and v refer to liquid and vapor phases, respectively. p and u are the
pressure and velocity fields, respectively; Equation (1) is the continuity equation for the
mixture, Equation (2) is the momentun equation, and Equation (3) is the transport equation
for the vapor fraction αv that is defined as:

αv =
Vvapor

Vliquid + Vvapor
(6)

It should be noted that in Equation (2) the volume forces term was not considered,
which is equivalent to consider the hydrodynamic contribution only in the pressure term.
This simplification does not affect the cavitation process in case the flow field develops over
an horizontal plane. Hereafter the liquid volume fraction αl , defined as αl = 1− αv is also
used. An important issue related to the homogeneous mixture method is modelling of the
phase change, namely the vaporization and condensation processes, which are described
by the source terms ṁ+ and ṁ−, in the transport equation of αv (Equation (3)).

Several models were developed to rule the phase change mechanism; for the purpose
of the present study we consider four models, respectively, the Kunz model [16], the Merkle
model [15], the Saito model [21] and the Schnerr-Sauer model [20]. In the models, the
vaporization and condensation rates ṁ+ and ṁ− are expressed as a function of the vapor
fraction and pressure. Saito’s model was developed to solve problems in the presence
of compressible flows, thus requiring the solution of the energy equation as the terms of
vaporization and condensation depend on temperature. Since we solve a system without
the energy equation, we assume that the temperature Tg, in Saito model, can be considered
constant both in space and time. The different expressions for the source terms of Equation (
3) of the four models are shown in Table 1. Please note that all terms are written for the
non-conservative form of Equation (3).

In Table 1, the terms U∞ and t∞ are, respectively, the characteristic velocity and
time of the simulation, R is the gas constant and Rb is the radius of the bubbles that
is calculated runtime as function of α. Differences among the models are evident and
justified by the fact that they derive from different physical considerations. In particular,
we may note that except for the Schnerr-Sauer model, ṁ+ and ṁ− are polynomials of
the variable αl , of different degree and multiplied by different coefficients. This makes
the transport equation a non-linear partial differential equation. The constants Cv and Cc,
which represent vaporization and condensation coefficients, have standard literature values,
(see for example [22,25,26]). Alternatively, they may be calibrated through optimization
algorithms or direct comparison with results from specific experiments. They may be
considered a convenient although not physical-based procedure; in fact, the coefficients are
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calibrated according to the specific application, in order to obtain the target value for some
quantities. This procedure does not guarantee the general good performance of the model.
In the next section, we describe a method for the analytical computation of the coefficients
based on a physical-based approach.

Table 1. Source terms for the non-conservative form of the transport Equation (Equation (3)),
according to the cavitation models considered.

Model ṁ− ṁ+

Kunz Cc
ρ
ρl

α2
l (1−αl)

t∞

max(p−pv ,0)
|p−pv | Cv

ρ

ρ2
l

αl max(pv−p,0)
1
2 U2

∞t∞

Merkle Cc
ρ

ρl ρv

(1−αl)max(p−pv ,0)
1
2 U2

∞t∞
Cv

ρ

ρ2
v

αl max(pv−p,0)
1
2 U2

∞t∞

Saito Cc
ρ

ρlρv

α2
l (1−αl)

2 max(p−pv)√
2πRTg

Cv
ρ

ρ2
v

α2
l (1−αl)

2 max(pv−p)√
2πRTg

Schnerr-Sauer Cc
3αl(1−αl)

Rb

√
2
3

max(p−pv ,0)
ρl

Cv
3αl(1−αl)

Rb

√
2
3

max(pv−p,0)
ρl

3. Condensation/Vaporization Coefficients Set up

A typical outcome of using different cavitation models with standard literature co-
efficients is that the space-time distribution of the vapor phase may differ from case to
case. The results related to the standard coefficients are reported and discussed further
on, in Section 5. The proposed analytical computation of the multiplying factors Cc and
Cv may be considered as a normalization procedure. Indeed, we consider a reference time
scale, adopted to normalize the coefficients of the different models. The coefficients Cc and
Cv accelerate or decelerate the vaporization and condensation processes, thus choosing a
reference integral time scale is needed as a condition for the calculation of these coefficients.
The reference integral time scale Tre f we consider is obtained through the Schnerr-Sauer
model, by setting its coefficients Cc = Cv = 1. This aspect can be revised and improved,
for example by considering a reference time Tre f obtained from laboratory tests or taking
advantage of literature research. For example, in [9] the authors used a condensation
coefficient smaller than the vaporization one, because of different time scales of the two
processes. We calculate the coefficients Cc and Cv related to the three cavitation models
(Kunz, Merkle and Saito) such that the transition from α = 0.9 to α = 0.1 takes place in the
time interval Tre f . Doing that, the models are designed to provide the same vaporization
and condensation rate. The choice of two different time scales may better represent the
processes. This will be done in the upcoming future.

The time evolution of α given by the different source terms is first analyzed neglecting
the advective term and considering a constant pressure drop ∆p = p− pv = 1 Pa. First
we show the time evolution of α obtained with standard value of the coefficients (Table 2);
vaporization and condensation are, respectively, in the left panel and in the right panel of
Figure 1.

Table 2. Standard coefficients.

Model Cc Cv

Kunz 1000 1000
Merkle 80 1 ∗ 10−3

Saito 0.1 0.1
Schnerr-Sauer 1 1
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(I) condensation process (II) vaporization process

Figure 1. Condensation (left panel) and vaporization (right panel) processes, evaluated with standard coefficients.

The models exhibit substantially different behavior. It is worth noting the different
values of the local time derivative, at cavitation inception (looking at low values of α in the
left panel) and at incipient condensation phase (α ∼ 1 in the right panel); even more impor-
tant is the differences in the time interval needed for a complete change of phase (either
condensation or evaporation). To summarize, the standard values of the coefficient used
in the models produce different time scales for the complete condensation/vaporization
processes. It should be noted that we use a semi-log plot to better visualize all profiles.

To obtain the reference time Tre f needed for the coefficients normalization, we integrate
the transport equation of αv in case of |u| = 0 [m/s]. We define the time interval Tre f =
[t0, t1] such that α(t0) = α0 and α(t1) = α1, considering, α0 = 0.1 and α1 = 0.9.It is
important to point out that the choice of the interval [α0, α1] is somewhat arbitrary, and
further studies are needed to investigate how the integration interval may affect the results.
Moreover, different intervals for the two phases, vaporization and condensation, should be
tested, because the two processes may have different time scales.

We integrate the transport equation as follows:

Tre f =
∫ α1

α0

(
1

ṁ+ − ṁ−

)
dα (7)

Since in the mixture model the two terms ṁ+ and ṁ− are not simultaneously active
we can consider separately the computation of the reference time scale;

Tc,re f =
1

Cc

∫ α1

α0

1
mDest

dα (8)

Tv,re f =
1

Cv

∫ α1

α0

1
mProd

dα (9)

where we define the terms mDest and mProd such that

ṁ− = CcmDest (10)

ṁ+ = CvmProd (11)

Finally, the coefficients read as:
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Cc =

∫ α1
α0

1
mDest

dα

Tc,re f
(12)

Cv =

∫ α1
α0

1
mProd

dα

Tv,re f
(13)

Solving the integrals of Equations (12) and (13) we obtain the normalized values
for Cc and Cv, reported in Table 3. Please note that we consider a cavitation number
|p− pv|/

(
0.5ρlU2

∞
)
= 2 ∗ 10−3 given by the chosen pressure drop ∆p = |p− pv| = 1 [Pa].

In our study, the reference times Tc,re f , Tv,re f related to condensation and vaporization
processes are taken from the Schnerr-Sauer model. In particular, Equations (8) and (9)
are used to calculate the times Tc,re f and Tv,re f setting Cc = Cv = 1. The values of Tc,re f
and Tv,re f are then used in Equations (12) and (13) to calculate the new coefficients for the
other models.

Table 3. Analytical-based coefficients.

Model Cc Cv

Kunz 4.11 ∗ 104 2.91 ∗ 106

Merkle 3.33 ∗ 101 1.55 ∗ 10−3

Saito 3.75 ∗ 105 8.66
Schnerr-Sauer 1 1

The time evolution of the vapor fraction computed considering the normalized coeffi-
cients reported in Table 3 are depicted in Figure 2.

(I) condensation process (II) vaporization process

Figure 2. Condensation and vaporization processes with analytical-based coefficients.

It can be observed that although the target values α0 and α1 are reached at the same
time Tc,re f and Tv,re f , still the time evolution of α clearly depends on the characteristics of
the model. This makes clear the difficulty of obtaining complete homogeneity between the
various models.

4. Simulation Set up

As a test case, we consider a two-dimensional laminar flow around a cylinder. This
because in this case the choice of the coefficients and the results are not contaminated by



Energies 2021, 14, 6425 7 of 22

the presence of turbulence models and the effect of additional empirical parameters. A
sketch of the computational domain is shown in Figure 3 and details on the geometry
herein considered are collected in Table 4.

Figure 3. Schematic of the computational domain.

Table 4. Details on the computational domain considered.

Characteristic Symbol Value Dimension

Diameter D 1 (m)
Domain length total 32 (m)

Domain upstream length 7 (m)
Domain width 15 (m)

We use an unstructured grid, composed of structured blocks, with several cells of
about 260,000. The spatial discretization is homogeneous except for a stretching in the
radial direction, close to the cylinder. A detail of the mesh is reported in Figure 4.

Figure 4. Near body mesh used for the simulations.

Adjustable time steps are used for the different simulations, in order to keep the
Courant number constant. In particular, when considering the Merkle and Kunz models
it was necessary to decrease the value of the Courant number, to avoid numerical insta-
bility [27]. We consider Co = 0.3 for Merkle and Kunz models, Co = 0.9 for Saito and
Schnerr-Sauer models.
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Uniform velocity U∞ and zero pressure gradient are imposed at the inlet section,
while constant pressure and zero gradient for velocity are set at the outlet of the domain.
On the cylinder, a no-slip condition is imposed for the velocity field together with a zero
pressure gradient condition. Symmetry conditions are imposed at the lateral boundaries.
The description of boundary conditions we used are collected in Table 5.

Table 5. Boundary conditions for the simulation of the two-dimensional laminar flow around the
cylinder.

Boundary αl u p

Inlet uniform 0.99 uniform (1, 0) m/s zero gradient
Outlet zero gradient zero gradient uniform 2650 Pa

Cylinder zero gradient uniform 0 m/s zero gradient
Lateral boundaries zero gradient zero gradient zero gradient

All simulations are performed in the laminar regime at Reynolds Re = DU∞/ν = 200,
based on the cylinder diameter D = 1 m and the uniform inlet velocity U∞ = 1 m/s.
At this value of Re, a Von Karman vortex sheet is observable characterized by a value of
Strouhal number approx 0.2 [28]. The cavitation index is σ = (p0 − pv)/

/
(0.5ρlU2

∞
)
= 0.7,

where p0 is the imposed output pressure; this corresponds to one of the cases analyzed
in [26]. Table 6 summarizes the physical quantities considered in all simulations.

Table 6. Fluid data considered in simulations.

Characteristic Symbol Value Dimension

Reynolds number Re 200 (-)
Cavitation index σ 0.7 (-)
Liquid density ρl 1000 (kg/m3)

Liquid kinematic viscosity νl 0.005 (m2/s)
Vapor density ρv 0.023 (kg/m3)

Vapor kinematic viscosity νv 2.374 (m2/s)
Vapor pressure pv 2300 (Pa)
Input velocity U∞ 1 (m/s)

Output pressure p0 2650 (Pa)

Other parameters and coefficients which characterize the cavitation models (see
Table 1 for the source terms description) are collected in Table 7.

Table 7. Set up of parameters contained in the cavitation models.

Characteristic Symbol Value Dimension

Velocity U∞ 1 (m/s)
Reference time t∞ 1 (s)

Gas costant R 461.6 (J/(Kg K))
Temperature Tg 300 (K)

Free nuclei density n 1.6 ∗ 1013 (1/m3)
Free nuclei diameter dnuc 2 ∗ 10−6 (m)

The simulations were performed using a serial version of the code, which requires
approximately 6 h of computer time for the simulation of 100 seconds using the Schnerr-
Sauer model.

Simulations were performed using OpenFOAM’s interPhaseChangeFoam solver,
which uses PIMPLE algorithm; time derivatives are evaluated using an explicit Euler
scheme while various numerical schemes are used for the spatial derivatives, linear upwind
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scheme is used for the velocity divergence and a Gauss-Van Leer scheme is used for the
liquid volume fraction divergence; non-orthogonal correction is considered within the
Gauss linear scheme for the computation of the laplacian.

5. Results

In this section, we compare the results of the simulations of the laminar flow around
the cylinder, obtained considering first the standard coefficients reported in Table 2 and,
successively, the coefficients reported in Table 3 computed through the analytical procedure
described in Section 3; we compare our results also with those of the laminar case at
Re = 200 of the numerical study of [26].

We classify the cavitation types observed in our numerical experiments in three
regimes:

• Cyclic regime, occurring when the cavity periodically detaches from the body at the
shedding frequency;

• Fixed regime, occurring when the cavity at the rear of the cylinder is stable and small
vapor spots occasionally detach;

• Transitional regime, occurring when both previous regimes occur alternatively.

In [26], the authors observed both the first and the third regime. In particular, the
cyclic regime was observed at σ = 1.0 and the transitional regime at σ = 0.7 and 0.5. The
latter regime is characterized by a low-frequency cavity detachment, in addition to the
shedding frequency. On the other hand, a flow around bluff bodies exhibits also the fixed
regime [29,30]. In our simulations, we rarely observe the cavity that forms behind the
cylinder to be completely attached to the body. However, it remains stable over time in
correspondence of the recirculation areas behind the cylinder.

5.1. Standard Coefficients

Figure 5 shows snapshots of αl for the simulation carried out with the Kunz model
with the standard coefficients, reported in Table 2. During the simulation two alternating
scenarios are identified; the first one is the detached cavitation, as depicted in Figure 5a,
characterized by two vapor zones that oscillate downstream of the cylinder; the second
scenario is the formation and collapse of an attached cavity at the rear of the cylinder, as
depicted in Figure 5b–h where it is also noticeable the advection of vapor spots downstream,
within the vortex cores. This scenario begins with the detachment of cavities from the
cylinder (Figure 5b), they are advected downstream while new vapor forms near the
cylinder (Figure 5c,d). The new cavities merge into a single cavity at the rear of the cylinder
(Figure 5e,f). The cavity slowly condenses maintaining the position near the cylinder but
reducing its extension (Figure 5f,g) until occurrence of complete collapse and the stable
detached cavitation is recovered (Figure 5i).

The simulation carried out with the Merkle model (Figure 6) depicts a cavity dynamics
comparable to that obtained with the Kunz model, except for the cavity size, which is
in general larger than that found with the Kunz model (Figure 6a); the formation of
the attached cavity is visible in Figure 6c,d and it appears larger than the one shown in
Figure 5e–g.

Figure 7 shows snapshots of the simulation performed with the Saito model, consid-
ering the standard coefficients. In this case, the cyclic regime is clear. Indeed, the regular
formation of attached cavity is ruled by the vortex shedding, which is nearly unaffected by
the small amount of cavitation produced by the model.

Figure 8 shows snapshots of the quantity αl for the simulation performed with the
Schnerr-Sauer model. The results show an alternating vapor formation downstream of
the cylinder as depicted in the snapshots Figure 8a–c, and the occurrence of extended
vaporization at the rear of the body (Figure 8d–i). Figure 8d–f show the development of
the attached cavity which occurs starting from the cylinder unlike the simulations with
the Kunz (Figure 5) and Merkle (Figures 6) models, where the cavity was formed in the
vortex cores. Figure 8g–i show that the vapor cavity at the rear of the cylinder obtained
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with the Schnerr-Sauer model is more stable and remains attached to the cylinder for a
longer period if compared to the other models.

(a) tD/U∞ = 43. (b) tD/U∞ = 59. (c) tD/U∞ = 61.

(d) tD/U∞ = 65. (e) tD/U∞ = 68. (f) tD/U∞ = 70.

(g) tD/U∞ = 72. (h) tD/U∞ = 78. (i) tD/U∞ = 83.

Figure 5. Contour plot of instantaneous liquid fraction obtained with Kunz model and considering standard coefficients.

(a) tD/U∞ = 81. (b) tD/U∞ = 83. (c) tD/U∞ = 85.

(d) tD/U∞ = 89. (e) tD/U∞ = 94. (f) tD/U∞ = 95.

Figure 6. Contour plot of instantaneous liquid fraction, results obtained with Merkle model and considering standard
coefficients.
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(a) tD/U∞ = 62. (b) tD/U∞ = 65. (c) tD/U∞ = 68.

Figure 7. Contour plot of instantaneous liquid fraction, results obtained with Saito model and considering standard
coefficients.

(a) tD/U∞ = 76. (b) tD/U∞ = 78. (c) tD/U∞ = 81.

(d) tD/U∞ = 32. (e) tD/U∞ = 33. (f) tD/U∞ = 34.

(g) tD/U∞ = 50. (h) tD/U∞ = 54. (i) tD/U∞ = 57.

Figure 8. Contour plot of instantaneous liquid fraction, results obtained with SchnerrSauer model and considering standard
coefficients.

In Figure 9, contours of time-averaged αl are depicted. No particular differences are
detected in the shape of the mean cavity. However, the Saito model and, a minor extent the
Kunz model, produce a smaller amount of vapor compared to the other models.

Figure 10 contains the mean vapor fraction plotted along the centerline, downstream
the cylinder. The minimum of αl obtained with the Saito model is about αl,min = 0.86.
On the other hand, the Saito model produces a longer attached cavity. This means that,
unlike the other models, the low condensation rate allows the flow to carry downstream
the small amount of vapor produced by the model. This behavior is expected, since the
vaporization and condensation rates of the Saito model maintain in time a very low value
(see the αl growth and decreasing in time, depicted in Figures 1). The results obtained with
Merkle and Schnerr-Sauer models are comparable, due to their similar vaporization and
condensation rates. Finally, the Kunz model stands in the middle between the Saito and
the others. Indeed, it does not produce a considerable amount of vapor.
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Figure 11 shows the profile of 〈u′u′〉/U2
∞ evaluated along the centerline, downstream

the cylinder, being u′ = u− 〈u〉 the fluctuation of the stream-wise velocity component
with respect to a time-averaged value (the symbol 〈·〉 denotes an averaging operation).
All models show the same behavior, characterized by a single peak located roughly at
the same position, except for the Saito model which presents a peak slightly closer to
the cylinder. This is consistent with what observed in [26], since a cyclic regime exhibits
a vortex shedding similar to the single-phase case, in which the re-attachment point
(where 〈u′u′〉/U2

∞ is maximum) is closer to the cylinder with respect to the cavitating
case. Furthermore, at the rear of the cylinder 〈u′u′〉/U2

∞ is similar for all models except
for the Saito one, which has a lower initial slope. This difference can be explained by the
cyclic cavitation regime, in which cavitation has little influence on the vortex shedding,
and occurs mainly in the vortex core; in the parametric study of [26] it is noted that as
σ decreases from σ = 1 to σ = 0.5 the space derivative of 〈u′u′〉/U2

∞ near the cylinder
increases, and the value of the peak changes from a value of about 0.035 to 0.1 with a peak
position ranging from 3D to 7.5D; while for values of σ = 0.7 the authors find that the peak
is at a position of 4.5 D with a maximum value of about 〈u′u′〉/U2

∞ = 0.07. The results
shown in Figure 11 are consistent with the cavitation regimes depicted in the snapshots
of the contour of αl . Indeed the Saito model, which is the only one that exhibits a cyclic
regime, is the one with a lower peak, which is also closer to the cylinder, with respect to the
other models. Conversely, the Schnerr-Sauer model, which is the one that which produces
the most stable attached cavity is the one that has the peak with the highest value.

(a) Kunz model. (b) Merkle model.

(c) Saito model. (d) Schnerr-Sauer model.

Figure 9. Contour plot of time-averaged liquid fraction, results obtained considering standard coefficients.



Energies 2021, 14, 6425 13 of 22

Figure 10. Mean liquid fraction downstream the cylinder along the centerline, results obtained
considering standard coefficients.

Figure 11. Variance of stream-wise velocity component downstream the cylinder along the centerline,
results obtained considering standard coefficients.

Figure 12 shows the spectra of the lift coefficient time-history, which gives important
information about the frequency of the vortex release. In the present case, broad-band
spectra appear and they differ from model to model. This is not surprising, since the
dynamics of the cavity behind the cylinder affects the flow field. We note that both the
Kunz and Saito models exhibit a well defined main peak at St = f D/U∞ ∼ 0.15, which is
smaller than the value obtained in the single-phase regime; the Merkle and Schnerr-Sauer
models give higher values of St for the peak of CL and broad-band spectra are evident
that may be due to pressure fluctuations in the presence of the attached cavity. Given the
previous observations (especially about the profile of the time-averaged αl depicted in
Figure 10) this is reasonable, in the sense that the low amount of vapor produced by the
Kunz and Saito models, slightly affects the oscillatory pattern behind the cylinder.

In Figure 13, we report the mean pressure field evaluated over the cylinder surface,
related to the four models. We compare our results to those reported in [26]. In Figure 13
we refer to the local σ, which is defined as σloc = (〈p〉 − pv)/

(
0.5ρlU2

∞
)

as function of θ,
defined as angular coordinate of the cylinder surface, where θ = 0 and θ = 180 are the
leading edge and the trailing edge, respectively. It appears that in our simulations the
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incipient cavitation point is shifted a little further upstream than in the reference case [26].
It is also noted that the pressure value upstream of the cylinder is slightly different among
the various cases and with respect to the reference value. This may be due to the different
pressure boundary conditions adopted, with respect to [26], where the authors imposed the
free-stream pressure on all far-field boundaries, while in our case the pressure is imposed
at the outlet. In our simulations, we observe significant pressure fluctuations making σloc
positive, just a little further downstream of the incipient cavitation point. The pressure
fluctuations are found to be associated with the collapse of vapor spots and to the variation
of the cavity shape.

Figure 12. Lift coefficient, results obtained considering standard coefficients (Table 2).

Figure 13. Time averaged local σ on the cylinder surface, results obtained considering standard
coefficients (Table 2).

To quantify the differences observed among the models, we consider the length of
the attached cavity, the length of the vortex formation and the vortex shedding frequency.
The length of the attached cavity is defined as the position along the centerline where the
vapor fraction exceeds the threshold value αl = 0.95. The length of the vortex formation is
defined as the position along the centerline where 〈u′u′〉/U2

∞ reaches the maximum value.
The vortex shedding frequency is defined as the frequency associated with the main peak,
considering the spectrum of the lift coefficient CL. All quantities are evaluated considering
the results of Figures 10–12. In [26], the authors found that for σ = 0.7, the minimum value
of the mean liquid fraction is about 0.8 with an attached cavity length of about 5 D.In our
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study, we find that the length of attached cavity varies within the range [4.1 D, 6.3 D] being
the minimum of mean liquid fraction αl,max in the range [0.45, 0.85]. The variance exhibits
peaks in the range

(
〈u′u′〉/U2

∞
)

max ∈ [0.06, 0.17] , located at distances varying from 4.7 D
to 5.2 D.

In Table 8, we report the length of the attached cavity, the vortex formation length and
the vortex shedding frequency, related to the four models.

Table 8. Length of attached cavity, vortex formation length and non-dimensional vortex shadding frequency. Results
obtained considering standard coefficients.

Model Mean Length of Attached Cavity Vortex Formation Length Vortex Shadding Frequency

Kunz 4.17 D 5.20 D 0.149
Merkle 4.63 D 5.15 D 0.240
Saito 6.24 D 4.68 D 0.134

Schnerr-Sauer 5.98 D 4.93 D 0.165

To summarize, results show that although the time-averaged liquid fraction does not
exhibit noticeable differences among models, the snapshots and the other quantities above
reported reveal a substantially different behavior of the cavitation. The Saito model is
characterized by low values of vapor fraction which do not affect the flow field, rather
they are affected by it, being transported downstream. This is identified as a cyclic regime.
The Schnerr-Sauer model seems to be the one that has the most stable attached cavitation
alternating with periods of detached cavitation, exhibiting a well defined transitional
regime. Merkle and Kunz models behave similarly, having a predominant detached
cavitation, with some phases of attached cavitation but very unstable and of short duration.

It should be noted that especially the spatial distribution of the mean liquid fraction
and the variance of the stream-wise velocity component obtained with the Saito model are
closer to the results obtained numerically in [26] who used the same method in conjunction
with a compressible-flow solver.

5.2. Analytical-Based Coefficients

We now discuss the results of the simulations performed considering the coefficients
Cc and Cv calculated as described in Section 3. We emphasize that, since the Schnerr-
Sauer model was taken as a reference to compute time scales Tc,re f and Tv,re f , results and
observations concerning the Schnerr-Sauer simulation are the same reported in the previous
Section 5.1.

Snapshots of the liquid vapor fraction αl obtained with the Kunz model with calculated
coefficients are depicted in Figure 14. We observe a transitional regime with a predominant
detached cavitation (Figure 14a–c). It is worth noting that, with the calculated coefficients,
after the detachment of the vapor zones an attached cavity originates directly from the
cylinder (Figure 14d) and extends downstream (Figure 14e,f) for a short period but fails in
developing a stable attached cavity at the rear of the cylinder.

In Figure 15 we show snapshots of the liquid fraction obtained with the Merkle model,
considering calculated coefficients (Table 3). Both detached (Figure 15a–c) and attached
cavitation (Figure 15d–f) are visible. In this case, the vapor spots appear narrower than
those observed in Figure 6 obtained with the standard coefficients, producing a different
profile of the mean αl along the centerline, as it will be shown in the following. Regions of
attached cavities are still visible, albeit of smaller extension and for a shorter period, but
generated from the cylinder itself, and extending downstream (Figure 15d–f); the shape of
cavitation is very similar to that obtained with the Kunz model with calculated coefficients.

Figure 16 shows snapshots of αl from the simulation performed with Saito’s model
with the calculated coefficients, reported in Table 3. The new coefficient set up makes the
cavity dynamics of Saito model similar to that observed with the other models, in particular
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with that of Schnerr-Sauer one. Indeed, the cyclic regime disappears, and both detached
and attached cavitation occur (see, respectively, Figures 16a–c and Figures 16d–f).

(a) tD/U∞ = 43. (b) tD/U∞ = 44. (c) tD/U∞ = 45.

(d) tD/U∞ = 82. (e) tD/U∞ = 84. (f) tD/U∞ = 85.

Figure 14. Contour plot of instantaneous liquid fraction, results obtained with Kunz model and considering analytical-based
coefficients (Table 3).

(a) tD/U∞ = 93. (b) tD/U∞ = 95. (c) tD/U∞ = 97.

(d) tD/U∞ = 80. (e) tD/U∞ = 82. (f) tD/U∞ = 84.

Figure 15. Contour plot of instantaneous liquid fraction, results obtained with Merkle model and considering analytical-
based coefficients (Table 3).

In Figure 17, the time-averaged liquid fraction αl is depicted. We note that the behavior
of the cavitation is similar for all models; the main difference with respect to the standard-
coefficients case is observed for the Saito model which, as expected, in this case exhibits a
more intense vapor phase.

Figure 18 shows the mean liquid fraction evaluated along the centerline, downstream
the cylinder. The models of Merkle and Kunz behave similarly to each other. Conversely,
the models of Saito and Schnerr-Sauer produce more vapor fraction than the others. The
difference is due to the cavitation regime reproduced by the models; in the case of Kunz
and Merkle it is transitional with a strong prevalence of the detached component mainly
distributed on the sides with respect to the centerline; the Saito and Schnerr-Sauer models
produce a transitional regime but with a more stable cavity which occupies the central area
at the rear of the cylinder and a higher percentage of mean vapor.
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(a) tD/U∞ = 64. (b) tD/U∞ = 66. (c) tD/U∞ = 68.

(d) tD/U∞ = 90. (e) tD/U∞ = 92. (f) tD/U∞ = 95.

Figure 16. Contour plot of instantaneous liquid fraction, results obtained with Saito model and considering analytical-based
coefficients (Table 3).

(a) Kunz model. (b) Merkle model.

(c) Saito model. (d) Schnerr-Sauer model.

Figure 17. Contour of time-averaged liquid fraction, results obtained considering analytical-based coefficients.

Figure 19 shows the variance of the stream-wise component of the velocity 〈u′u′〉/U2
∞.

The figure shows that with the new coefficients, the Saito model tends to give results
more similar to those of the other models. As observed in [26], when cavitation moves
from a cyclic regime to a transitional one, the peak of 〈u′u′〉/U2

∞ moves downstream and
their value increases, coherently with the cavitation regime observed. The variance has
practically the same behavior for all models in the area immediately downstream the
cylinder and is characterized by a linear increase. For this quantity we note that the Kunz
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model produces a peak a bit more downstream then the other models, although it behaves
similarly to the Schnerr-Sauer model in the far-field.

Figure 18. Mean liquid fraction downstream the cylinder along the centerline, results obtained
considering analytical-based coefficients.

Figure 19. Variance of stream-wise velocity component downstream the cylinder along the centerline,
with analytical-based coefficients.

Figure 20 shows the spectra of the lift coefficients. All models exhibit a broad-band
behavior, making the computation of the Strouhal number not straightforward. The
Schnerr-Sauer model has the main peak not coincident with those of the others, while
all the other models has practically the same value for the vortex shedding frequency.
The values observed are consistent with literature, since the Strouhal number for the
single-phase case is St = 0.2, and it decreases as the cavitation number decreases.

Figure 21 shows the mean pressure over the cylinder; the analytical evaluation of
the coefficients leads to more similar values of pressure both in the upstream stagnation
point and in the downstream region, where all models give pressure values in between the
Schnerr-Sauer model and the literature value [26]. Furthermore, in this case we observe
the presence of spots of positive value of the mean σloc, for θ ∈ [80, 120]; for this quantity
as well, we note that the models with the coefficients calculated analytically have a more
consistent behavior.
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Figure 20. Lift coefficient spectrum with analytical-based coefficients.

Figure 21. Time averaged local σ on the cylinder surface considering analytical-based coefficients.

For all simulations, the length of the attached cavity, the length of vortex formation
and the vortex shedding frequency were evaluated from the data shown, respectively, in
Figures 18–20. The quantities are collected in Table 9.

Table 9. Results of length of attached cavity, vortex formation length and non-dimensional vortex shedding frequency with
analytical-based coefficients.

Model Mean Length of Attached Cavity Vortex Formation Length Vortex Shadding Frequency

Kunz 4.96 D 5.60 D 0.194
Merkle 4.66 D 5.07 D 0.195
Saito 5.10 D 5.01 D 0.195

Schnerr-Sauer 5.98 D 4.93 D 0.165

As a final analysis, in order to quantify the differences among the results given by the
models before and after computation of the coefficients, we calculate the variance between
the results for the three quantities, and the values obtained are gathered in Table 10.
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Table 10. Variances for the results of length of attached cavity, vortex formation length and vortex shedding frequency for
standard and analytical-based coefficients.

Length of Attached Cavity Vortex Formation Length Vortex Shadding Frequency

Standard coefficients 0.766 0.042 1.64 ∗ 10−3

Analytical-based coefficients 0.241 0.069 1.66 ∗ 10−4

The variance of the length of vortex formation undergoes a slight deterioration after
the direct calculation of the coefficients. On the other hand, for the length of the attached
cavity, and the mean vapor fraction downstream of the cylinder, it can be observed that
after computation of the coefficients, the models behave much more similarly, as it can be
seen from the comparison between Figures 9 and 17. It is noted that the variance between
the results decreases by almost 70% once the coefficients are calculated directly using the
procedure suggested in the present paper. Moreover, we note that with the new coefficients
all models exhibit a broad-band behavior for the spectra of the lift coefficient and the vortex
shedding frequency evaluated appears much more similar among the models, which leads
to a variance that is one order of magnitude lower than that obtained for the standard
coefficients.

The results shown above indicate that the analytical evaluation of the coefficients of
the model improve the quality of the results. This is mainly evident for the Saito model. The
Kunz and Merkle models behave very similarly and exhibit differences with the Schnerr-
Sauer model. This may be due to the derivative of α (see right panel of Figure 2) which
changes dramatically from the Kunz and Merkle models to the Saito and Schnerr-Sauer
models. Finally, we performed a grid-sensitivity test, considering a grid coarser than that
discussed in the present Section. The analysis (herein not described in detail) shows that
the analytical evaluation of the coefficients provides some improvement in the results
even in the presence of a coarse mesh, although better results are obtained with a good
quality mesh.

6. Concluding Remarks /Summary

In this study, we propose a novel analytical approach to calculate the coefficients
of cavitation models, based on the reference time needed for vaporization/condensation
processes, from a volume fraction α0 to a value α1, in a archetypal situation characterized
by a constant pressure field and neglecting advective transport. This approach was then
tested for four different models (Kunz, Merkle, Saito, and Schnerr-Sauer) considering the
two-dimensional laminar flow around a circular cylinder. The simulations were performed
both with standard literature coefficients and with the new values calculated using this new
approach. The results were analyzed and compared on the basis of the consistency for the
various models and with respect to a literature case [26] as regards various characteristics
and physical quantities of the simulations; in particular, for each model, we first evaluated
the cavitation regime reproduced and successively we have calculated the mean pressure
over the cylinder, the length of the attached cavity, the length of vortex formation and
the vortex shedding frequency. It was noticed that, as a result of the analytical evaluation
of the coefficients, for some models there is a considerable improvement of the results
regarding the cavitation regime and the reference quantities above reported, in particular
for the Saito model; specifically the Saito model used with the standard coefficients was
found to predict a cyclic regime instead of the transitional one reproduced by the other
models; the same model, with the analytically calculated coefficients predicts a transitional
regime with a more stable attached cavity, likewise the Schnerr-Sauer model, which in
our study has been taken as a reference for the evaluation of the reference times for
condensation/vaporization. Regarding the Kunz and Merkle models, it was found that
after the analytical evaluation of the coefficients the two models behave similarly to each
other, even if they behave differently from the Schnerr-Sauer model, in that they fail to
develop the stable cavity attached on the rear of the cylinder. Specifically an attached cavity
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tries to form in contact with the cylinder but it rapidly disappears. On the other hand,
the use of standard values of the coefficients leads to development of a cavitation region
at the rear of the cylinder, from the vapor present in the vortices and collapsing shortly
after. Overall, this preliminary study shows that the use of analytically based coefficients
significantly improves the performance of some models, while for others the improvement
was not so evident; this may be due to different reasons: among them, the range of values
for the volume fraction used to calculate the coefficients, the fact that the condensation and
evaporation time scales are assumed to be the same, and, finally, the fact that the reference
model herein used (Schnerr-Sauer model) is already a simplified model derived from the
more complete and physical-based Rayleigh-Plesset equation. Currently we are carrying
out additional analysis on this matter, which will be the subject of a future paper.
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