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Abstract

We extend the theory of lower and upper solutions to planar systems of ordinary differential equations
with separated boundary conditions, both in the well-ordered and in the non-well-ordered cases. We are
able to deal with general Sturm—Liouville boundary conditions in the well-ordered case, and we analyze
the Dirichlet problem in the non-well-ordered case. Our results apply in particular to scalar second order
differential equations, including those driven by the mean curvature operator. Higher dimensional systems
are also treated, with the same approach.

MSC: 34B15; 34B24

Keywords: Upper and lower solutions; Sturm—Liouville boundary value problems; Degree theory; Mean curvature
equation

1. Introduction

The method of lower and upper solutions has been developed for more than a century with
the aim of studying boundary value problems associated with ordinary and partial differential
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equations of different types. It has been employed in thousands of papers and it still is one of the
most useful tools for localizing solutions and providing information about their behavior.

Since 1893, Picard [24] introduced lower and upper solutions in order to prove the existence
of solutions for separated boundary value problems associated with scalar second order ordinary
differential equations. The theory was then developed by Scorza-Dragoni [25] and Nagumo [19]
in the thirties, thus reaching its modern form concerning classical solutions. It was then extended
to different types of ordinary differential equations [5,21], difference equations [4], and to some
type of partial differential equations: elliptic [1], parabolic [11], and special kinds of hyperbolic
equations like the transport equation [3] and the telegraph equation [23]. (The given references
are obviously not exhaustive.)

Let us describe a typical situation by considering the Dirichlet problem

)

x" =g, x,x"),
x(a)=A, x(b)=B.

A classical lower solution for this problem is a C 2_function « : [a, b] — R such that

a’(t) > g(t,a(t),a'(t)), foreveryt € l[a,b],
a(@) <A, ab)<B,

while a classical upper solution is a C*-function g : [a, b] — R such that

B’ () <g(t,B(t),B (), foreverytela,b],
Bla)>=A, pBb)=B.

In [19], the following theorem was proved.

Theorem 1. Assume the existence of a pair of classical lower/upper solutions «, B such that
o < B. Moreover, let ¢ : R — R be a continuous function such that

g, x, I =y, forevery(t,x,y)€la,b] x [u, M] xR,
with @ = mine, M = max 8, and
+00
[ =
——ds =+4o00.
@(s)
0
Then, problem (1) has a solution such that o < x < B.
The above theorem has been generalized in several directions (see e.g. [9] and the references
therein). In this paper we will extend it to planar systems in the spirit of [14,15], where the

periodic case was studied. To this aim, we will provide a definition of lower and upper solutions
for a system of the type

x'=f@,xy),  y=gxy), 2)



with general boundary conditions of Sturm-Liouville type; roughly speaking, the starting point
of the solution will lie on a straight line £g and the arrival point on another line £ 4.

When o < 8, we say that the lower and upper solutions are well-ordered. Without this as-
sumption the statement of Theorem | would not be true. For instance, there are no solutions of
the problem

x" = —n?x + sin(nr),
x(0)=0, x(m)=0

when n is a positive integer. However, when n > 2, the functions «(t) = csint and B(¢) =
—csint are a lower and an upper solution, respectively, taking ¢ > O sufficiently large; clearly,
o £ B. This is why, in order to recover the existence of solutions when « and 8 are not well-
ordered, some nonresonance assumptions with respect to the higher part of the spectrum of the
differential operator —x” with Dirichlet boundary conditions are usually imposed.

For simplicity, in the non-well-ordered case o £ 8 we will limit our analysis to nonlinearities
that are bounded perturbations of linear ones, and to homogeneous Dirichlet boundary conditions
x(0) =0 = x (o). It is well known that, if the associated linear system is non-resonant (i.e., it
only has the trivial zero solution), the existence of a solution is an immediate consequence of the
Schauder fixed point theorem. This is why we assume, on the contrary, that the associated linear
system is at resonance. However, we must avoid the interaction with the higher order eigenvalues,
as seen in the above example. So, we found it natural to choose in system (2) the functions

S x,y)=y+pt,x,y), glt,x,y)=—x+gq(t,x,y),

with p, g bounded. In this setting, we will be able to prove the existence of a solution. We believe
that there is still some work to be done in order to better understand this situation.

The paper is organized as follows.

In Section 2 we introduce the setting of our problem, together with the main definitions of
lower and upper solutions for a system like (2) with starting point on a line £5 and arrival point
onaline £ 4.

In Section 3 we provide our first existence results in the well-ordered case. The section is
divided in five subsections: in the first one we deal with the case when both lines £g and £4
are not vertical; in the second subsection, one of the two lines is allowed to be vertical, but not
both; in the third one, the case when both lines are vertical is settled. Then, some applications
are given, in particular for an equation involving the mean curvature operator.

In Section 4 we prove an existence result in the non-well-ordered case o £ B. We use the
ideas introduced and developed in the papers [2,10,16,17,22]: after having constructed an extra
lower solution & and an extra upper solution /3 such that & < min{a, 8} < max{a, B} < ,B the
existence follows by topological degree arguments. We also provide an example of application
when a condition of Landesman—Lazer type is assumed.

In Section 5 we suggest a possible extension of our results to higher dimensional systems of
the type

xXy= £t x, v)), Y=gt x1,...,xN),

with j =1,..., N. Some examples of applications are also suggested.
Finally, we postpone to the Appendix the proof of some technical claims stated in the text.



2. Setting of the problem

Let £5 and £ 4 be two lines in the plane, the “starting line”” and the “arrival line”, respectively.
Given a < b, we are interested in the two-point problem

P) x'=ft,x,y), y=gtxy),
(x(@),y(a) els, (x(b),yD)) €ly,
where f : [a, b] X R? - R and g:la,b] x R2 — R are continuous functions.

We denote the closed half-planes determined by £g and £4 as follows:

H ;r is the one above £ or, when £ is vertical, the one to the left of it;

Hg is the one below £ or, when £y is vertical, the one to the right of it;
H: is the one above £ 4 or, when £ 4 is vertical, the one to the right of it;

H , is the one below €4 or, when £ 4 is vertical, the one to the leff of it.
Notice that the notations differ for the two lines when they are vertical.

Definition 2. A continuously differentiable function « : [a, b] — R is said to be a lower solution
for problem (P) if there exists a continuously differentiable function y, : [a, b] — R such that,
for every ¢ € [a, D],

y<yut) = f(t,a(),y)<a (1), 3)
y>yut) = f(t,a(),y)>a @),
Vo) > g(t,a(t), yu (1)), )
and
(a(a), ya(@)) € HY,  (a(b), ya(b)) € Hy . ()

Definition 3. A continuously differentiable function S : [a, b] — R is said to be an upper solu-
tion for problem (P) if there exists a continuously differentiable function yg : [a, b] — R such
that, for every ¢ € [a, b],

y<yp®t) = f@,p@®),y)<p @), ©)
y>yp(t) = f@, B),y)>p @),
yp(t) < g(t, B(1), yp(1)), ©)
and
(B@),yp@) e Hy , (Bb),ysb)) € Hy . ®)

From (3) we have that

a () = f@,a),y, (), foreverytela,b], 9)



and y, (¢) is the only value for which this identity holds. Similarly, from (6) we have

B't)=f@, B@),ys(t)), foreverytela,b], (10)

and yg(t) is uniquely defined on [a, b] by this identity.

It is well known in the case of scalar second order equations that if a function is at the same
time a lower and an upper solution, then it is a solution. Let us write the analogous statement in
our situation.

Proposition 4. Let x : [a, b] — R be at the same time a lower and an upper solution for prob-
lem (P). Then, there exists a function y : [a, b] — R such that (x, y) is a solution of problem (P).

Proof. If x is at the same time a lower and an upper solution for problem (P), from (9) and (10)
we deduce that the functions y, and yg given by Definitions 2 and 3 coincide. We set y = y, = yg
and notice that x'(¢t) = f(z, x(¢), y(t)), for every ¢ € [a, b]. Moreover, by (4) and (7), we have
that y'(¢) = g(¢, x(¢), y(¢)), for every t € [a, b]. Finally, from (5) and (8) we get (x(a), y(a)) €
£s and (x(b), y(b)) € £ 4, thus concluding the proof. O

We say that (o, B) is a well-ordered pair of lower/upper solutions of problem (P) if o and
B are respectively a lower and an upper solution of problem (P), and «(t) < B(¢) for every
t € la, b].
3. Well-ordered lower/upper solutions

In this section we always assume that (¢, 8) is a well-ordered pair of lower/upper solutions of
problem (P). We will distinguish the cases when both lines £5 and £4 are not vertical, and those
when one or both can be vertical.
3.1. The non-vertical case

We start assuming that both lines £ and £ 4 are not vertical. Their equations are

y=msx +qs, y=max+qa, (1D

respectively. Here is our first existence result.
Theorem 5. Assume the existence of a well-ordered pair («, B) of lower/upper solutions of prob-
lem (P), with the lines £s and {4 having equations (11). Set © = mina and M = max 8, with

u < M. Let there exist two continuously differentiable functions y+ : [, M] — R such that, for
everyt € [a,b] and x € [a(t), B(1)],

y—(x) <min{yq (), yg (1)} = max{ya (1), y(1)} < y4+(x), (12)

and

gt x, v () > f(1, x, v+ (0)) 4 (), (13)
glt,x,y—() < f(t.x, y—(0)y . (x). (14)



Assume moreover that

y-(x) <maé +qa <y4(x), foreveryx,§e[p, M]. (15)
Then, there exists a solution of problem (P) such that
a(t) <x(t) <B@)and y—_(x(t)) <y(t) <y+(x(t)), foreveryte€la,b]. (16)

Proof. We are going to consider an auxiliary problem obtained by modifying both the vector
field and the boundary conditions. In order to modify f and g, we define, for p <gq,

p, ifs<p,
¢ssp,qg)=1qs, ifp=<s=<gq, (17)
q, ifs>gq,

s—p, ifs<p,
e(s; p,q)=s—¢(s; p,q) =10, ifp<s=gq, (18)
s—q, ifs>gq.

Let D > 0 be such that
[yl <D, forevery x € [u. M], (19)
and define
Faox. ) =f (1.8 (x: a0, B0)) £ (y: =D, D)) +e(y; =D, D),

g(t,x,y) =g(t, ¢(xsa(n), BM)), ¢(y; —D, D)) +e(x;a@), B®).

We now modify the starting line. We introduce the polygonal line ‘ s as follows: if mg > 0, then
s = Lg; otherwise, if mg < 0, then

Us ={(x,y) e R?:y =mgZ(x; a(a), B(a)) +gs).

Similarly, we introduce the polygonal line ZA as follows: if m4 <0, then fA = {4; otherwise, if
ma > 0, then

Ca={(x,y) eR?:y =mac(x; a(b), B(b)) +qal.

We consider the problem

(F x/:f(tvx9y):v y/:g'(t,x,y), _
(x(a), y(@)) €ls, (x(b),yb))€ly.



We will prove that problem (13 ) has a solution, which satisfies (16). Hence, since the vector field
and the starting and arrival lines have been modified only outside the region identified by (16),
this solution of (P) is indeed a solution of (P). ~

Since we are going to prove the existence of a solution of (P) by the use of degree theory, we
need to construct a suitable homotopy.

We define, for every A € [0, 1], the polygonal lines Eg and Z//Xa as follows. If mg > 0, then O =
ZS = {g. Otherwise, if mg < 0, let Zg be the segment joining («(a), y,(a)) and (B(a), yg(a)),
possibly reduced to a single point, and let Ps = (xg, ys) be an intersection point of Zg with £g
(there could be more than one); we set

={0y eR 1y = (1= 1) (ms (x: (@), B@) +qs) +hys)

Similarly, if m4 < 0, then Zﬁ =7 4 = £4; otherwise, if m4 > 0, let Z4 be the segment joining
(a(b), yo (b)) and (B(b), yg(b)), and let P4 = (x4, y4) be an intersection point of Z4 with £4;
we choose

G={0 ) eR2 iy = (1 =) (mat (@) B +a) +Ava}

We now consider the problem

~ X'=flt,x,y), Y=§0xy),
(Pr) N A
(x(@), y(@) ets, (x®),y®)el,

with A € [0, 1]. Notice that (Py) coincides with (P).
Claim 1. All the solutions of (ﬁk) satisfy (16).

We postpone the proof of Claim 1 to Section A.1. ~

Assuming that Claim 1 holds true, let us consider the problem (P;). We are going to construct
a second homotopy which transforms it into a linear problem whose only solution is the trivial
one (x,y) =(0,0).

Using this time o € [0, 1] as the homotopy parameter, we consider the problem

X=(1-o)ft,x, ) +oy, yV=>0-0)gtx,y)+ox,

() {(X(a), y@) € Ly(0), (x(b), y(b)) € £} (0),

where the boundary conditions are constructed as follows. Recalling that the equation of the line
ZIS isy= méx + qé, with

. {ms, if ms > 0, o gs. itms>o0,
= qsz

0, ifmg <O, ys, ifmg <0,
we define ¢ g(a) as the line of equation

y=Y{ (x) :=m§x+(1—0)q§.



Similarly, we define Zl‘(o) as the line of equation

y=Y{(x) :=m114x+(1 —a)qfll.

Notice that (Qg) is the same as (131), while (Q1) is a linear problem whose only solution is the
trivial one.

Claim 2. There is a R > 0 such that every solution u = (x, y) of (Q,) satisfies ||u]c0c < R.

We postpone the proof of Claim 2 to Section A.2.
Let us introduce our functional setting for the problem (Q, ). We define the linear operator

L:C'(la,b],R?) — C(la,b],R?) xR x R, L(i) - <<;C,> Y@, y(b)) ,

and the nonlinear operator

Ny : C(la,b],R?) — C([a,b],R?) xR x R,

¥\, ([t O, YD o 3
No (y) = ((g (1, x(0), y(t))) s (xan. ¥y W’”) ’

where
fot,x,y) =1 —0)f(t.x,y)+0y, 8o(t,x,y)=(1—0)gt,x,y)+ox.
Setting u = (x, y), problem (Q,) is thus equivalent to
Lu=Ny,u.
By Mawhin’s Coincidence Degree [18] theory, the operator N, is L-completely continuous, and

by Claim 2 the degree Dy (L — N, Bg) is well defined and its value is independent of o € [0, 1].
Since (Q1) is linear and has only the trivial zero solution, we have that

Dr(L — Ny, BR) = DL(L — Ny, BR) = =£1.

We now repeat the same procedure for the problem i]g;\). By Claim 1, we can enlarge the radius
R, if necessary, so that any solution u = (x, y) of (P,) satisfies ||u]loc < R. Let us define

N : C([a, b], R?) — C([a, b],R?) x R x R,

~ (x\ [ (f.x®.y®O)) i N
o (y) "= ((gu, x(1), y(r))) P (@), Fy W’”) ’

where

msx +qs, ifmg >0,

F§(x) =
5 {(1—A)(msax;a(a),ﬂ(a))ws)+Ays, if ms <0,



and

5 max +qa, ifmyg <0,
Fi(x)= .
(1 =2 (mag (; 0(b), BB) +qa ) +2ya, i ma 0.
Problem (13}) is thus equivalent to

Lu:ﬁxu,

and we can conclude that the coincidence degree Dy (L — N »» Br) is well defined and indepen-
dent of A € [0, 1], hence, since N; = Ny,

Dr(L — No, Bg) = Dr.(L — Ny, Bg) = D1.(L — No, Bg) = 1.

Therefore problem (Fo), which is the same as (F), has a solution. By Claim 1, this solution
solves (P), since it satisfies (16). O

3.2. Some extensions of Theorem 5

We first provide a variant of Theorem 5, concerning the curves y..
Theorem 6. Assume the existence of a well-ordered pair (o, B) of lower/upper solutions of prob-
lem (P), with the lines £s and {4 having equations (11). Set © = mina and M = max 8, with

w < M. Let there exist two continuously differentiable functions V4 : [, M]— R such that, for
everyt € [a,b] and x € [a(t), B(1)],

7= () < min{ye (1), yp (1)} < max{yo (1), ys(1)} < 74 (x), (20)

and
gt x, 71 () < f(1, %, 74 ()7L (%), 2D
g(t,x, 7)) > f(t, x, 7-(0))7 . (x). (22)

Assume moreover that
Y-(x) <mgé +qs <V4(x), foreveryx, & €[n, M]. (23)
Then, there exists a solution of problem (P) such that
a() <x(t) < B(1) and Y—(x(1)) < y(t) < V4 (x(®)), foreveryt €la,b]. (24

Proof. The change of variables u(t) = u + M —x(a+ b —1), v(t) = y(a + b — t) transforms
problem (P) into

(ﬁ) u' = f(t, u,v), v =g, u,v),
((a),v(a) €ls, (u(b),v(b))€la,



where

ft,u,v)=fla+b—1t,u+M—u,v),
g’(t,u,v)z—g(a—}-b—t,,u—i—./\/l—u,v),

and
Us={(x,y) eR?: (u+ M —x,y) €la},
Ca={(x,y) eR*: (u+ M —x,y) els).
Setting
at)=p+M—Bla+b—1), yst)=ygla+b—1),
and

BOy=p+M—a@+b—1), ys)=ysla+b—1),
we have a well-ordered pair of lower/upper solutions (¢, 3 ) for problem (P). Setting

ye(x) =ye(n + M —x),

we recover the curves satisfying the assumptions of Theorem 5, which thus provides us the
conclusion. O

Remark 7. In Theorems 5 and 6 the curves y+ and 71 can also be chosen with a different
coupling. In Theorem 5 we had (y_ , y+), while in Theorem 6 we have taken (y_, 7). However,
we can also state another theorem with the coupling (y_, 7..), and a last theorem with (7_, y).
We will not write the statements, for briefness.

We now extend Theorem 5 to the case when the equations of £g and £ 4 are

X =xg, y=max+qa, (25)
respectively. Here is the precise statement.

Theorem 8. Assume the existence of a well-ordered pair (o, B) of lower/upper solutions of prob-
lem (P), with the lines L5 and {4 having equations (25). Set © = mine and M = max §,
with < M. Let there exist two continuously differentiable functions vy : [, M] — R such
that (12), (13) and (14) hold, for every t € [a, b] and x € [« (t), B(t)]. Assume moreover that (15)
holds. Then, there exists a solution of problem (P) satisfying (16).

Proof. It is almost exactly the same as the proof of Theorem 5, the only difference lying in the
definition of the vertical line ¢ é(o), whose equation now is x = (1 —o)xg. O
10



Now also Theorem 6 can be extended to the case when the equations of g and £4 are

y=msx +4qs, x=1xa, (26)
respectively. Here is our existence result.

Theorem 9. Assume the existence of a well-ordered pair («, B) of lower/upper solutions of prob-
lem (P), with the lines €5 and €4 having equations (26). Set © = mine and M = max §,
with uw < M. Let there exist two continuously differentiable functions yx : [, M] — R such
that (20), (21) and (22) hold, for every t € [a, b] and x € [« (t), B(t)]. Assume moreover that (23)
holds. Then, there exists a solution of problem (P) satisfying (24).

Proof. By the change of variables in the proof of Theorem 6, the assumptions of Theorem 8 are
verified, and the result follows. O

As a consequence of the above results, we have the following.

Corollary 10. Assume the existence of a well-ordered pair (a, 8) of lower/upper solutions of
problem (P), where £g and £ 5 are not both vertical lines. Set 4 = mino and M = max 8, with
< M. Let the following assumptions hold:

(A1) there are a constant d > 0 and two continuous functions fy : [d,+oo[— R and f_ :
1 — 00, —d] — R such that

{yZd = Jx»=/H0)>0, for every (t,x) € [a, b] x [u, M];

yi_d = f(tvxvy)ff—(y)<07

(A2) there is a positive continuous function ¢ : [0, +00[ — R such that

g, x, I <e(yD,  forevery(t,x,y) €la,b] x [u, M] x R;
(A3) the above functions are such that
+00

—d
/ Fo) 4 oo S
¢ () S olish

Then, there exists a solution of problem (P) such that « <x < f.

Proof. The existence of the curves y+ and yi follows from [14, Lemma 15] (see also [15,
Theorem 3.1]), so that one of the previous theorems apply. O

3.3. Both vertical lines
We now consider the case when both lines £ and £4 are vertical, having equations

r=xs.  x—xa. @7)

11



respectively. Here is our result.

Theorem 11. Assume the existence of a well-ordered pair («, B) of lower/upper solutions of
problem (P), with the lines £s and £ 5 having equations (27). Set @ = mina and M = max §,
with u < M. Let there exist four continuously differentiable functions y+, v+ : [u, M] — R
such that (12), (13), (14) and (20), (21), (22) hold, for every t € [a, b] and x € [a(t), B(1)].
Assume moreover that, for every t € [a,b] and x € [x4, xs],

XA — XS

yEminfr .70} =[xy 20 (28)
yEmaxly-(.7-@) = ftry) <S> (29)
Then, there exists a solution of problem (P) such that
a(t) <x(1) < B(). (30)
and
min{y_ (x(1)), 7-(x(0)} < y(t) < max{y; (1)), P4 (@)} @31

foreveryt € [a, b].

Proqf. Following the lines of the proof of Theorem 5, we introduce problem (13) with ZS ={g
and £4 = £ 4, with (19) replaced by

max{|y+(x)|, [7£ )|} <D, foreveryx € [u, M]. (32)

It is not necessary in this situation to modify problem (}3) by introducing the family of problems
(Py.), and Claim 1 is replaced by the following.

Claim 3. All the solutions of (ﬁ) satisfy (30) and (31), for every ¢ € [a, b].

The proof of this claim is provided in Section A.3. We then introduce the family of problems
(Qs), where Eé(c) and Ek (o) have equations x = (1 — o)xg and x = (1 — 0)x4, respectively,
and similarly prove the a priori bound given by Claim 2. The topological degree argument com-
pletes the proof. O

3.4. Some corollaries, in the well-ordered case

As a consequence of Theorems 5, 8, 9 and 11 we have the following result, which extends [9,
Theorem II,1.3] where the case f(t, x, y) = y was considered.

Corollary 12. Assume the existence of a well-ordered pair (a, 8) of lower/upper solutions of
problem (P), where {g and L4 can be any two lines in the plane. Set © = mina and M =
max 8, with u < M. Let the assumptions Al, A2 and A3 of Corollary 10 hold, with the further
requirement that

12



M — _
liminf £, (y) > B dimsup fo(y) < & (33)
y—> 400 b—a

— V00 b—
Then, there exists a solution of problem (P) such that ¢ < x < .
Proof. As observed in the proof of Corollary 10, the existence of the curves y+ and Y follows

from [14, Lemma 15] (see also [15, Theorem 3.1]). On the other hand, assumption (33) guaran-
tees that (28) and (29) hold. The result then follows from Corollary 10 and Theorem 11. O

Let us provide a simpler version of the above result in the particular case when the starting
and arrival lines are of the type

y=mgx, withmg>0, and y=mygx, withmy <0, (34)

possibly including the cases when one or both are vertical, which will be identified assuming
mg=-+000rmy = —00.

Corollary 13. Assume the existence of two constants o, B, with o < 0 < B, such that

ft,a,y)y>0, f(@,B,y)y>0, foreverytela,blandy#0,

and

gt,a,0)<0<g(t,B,0), foreverytela,b].

Moreover, let there exist two constants v > 0, ¢ > 0 and a positive continuous function ¢ :
[0, +00[— R such that

f@x W

liminf >c, uniformlyin (t,x) € [a, b] X [«a, B],
y—=+o0 |y|r

lg(t, x, I <@(yl), forevery(t,x,y)€la,b] x[a,B] xR,
and

+00

S}"
ds =+00.
1/ @(s)

Then, there exists a solution of problem (P), when £s and €4 are given by (34), including the
cases mg = +00 or mg = —00, such that o <x < 8.

Proof. The constant functions o and g are a well-ordered pair of lower/upper solutions, with
corresponding functions y, (f) = yg(¢) = 0. Then, we can apply Corollary 12 to conclude. O



As an illustrative example of application, we propose the following:

X' =F(@t,x,y) |y y,
Y =x3+Gt,x, )|yl y +e),
x(a)=0=x(b),

where g and r are nonnegative constants with g < r + 1, all functions e, F', G being continuous,
with

F(t,x,y)2¢c>0, G, x, )| <C,
for every (t, x, y) € [a, b] x R2. One easily verifies that all the assumptions of Corollary 13 are
satisfied, taking the constants ¢ < 0 < g, with || and 8 sufficiently large. Hence, our problem
has a solution.

3.5. The mean curvature equation

Consider now a problem of the type

(39
x(a)=xs, x(b)=xa,

:(mx’))’ =h(t,x.x'),

where ¢ : R —] — 1, 1[ is an increasing odd homeomorphism. Problem (35) is equivalent to
problem (P), with both vertical lines £g and £ 4, taking

fe.x,=¢""(, gt x,y)=h(tx.¢7' ().
Notice however that these functions are now only defined on [a, b] x Rx ] —1, 1[.

Corollary 14. Assume the existence of a well-ordered pair (a, B) of lower/upper solutions of
problem (40), with y , yg : la, bl — 1 — 1, 1[. Let there exist a constant C > 0 such that

|h(t,x,2)| <C, for every (t, x,z) € [a, b] x ]Rz, (36)
and
|xa — xs|
¢(ﬁ)+C(b—a)<l. (37)

Then, there exists at least one solution of problem (40) such that o < x < f.

Proof. For any c €]0, 1[ we define the functions f.: R — R and g. : [a, b] X R?2 - R as

o (=) +y+e, ify<-—c,
fe={¢"10), if [yl <c,
¢_l(c)+y—c, ify>c,

14



gt,x,—c), ify<-—c,
get,x,y)=1q¢g(t. x,y), if|y|=<c,
g(taxvc)’ ify>c7

and we consider the problem

(33)
x(a)=xs, x(b)=x4.

{X/ =), Y =gtx,y),

It is easy to see that, when c is sufficiently near to 1, all the assumptions of Corollary 12 hold, so
that problem (38) has a solution (x, y) such that o < x < . We now show that, if ¢ satisfies

¢(%)+C(b—a)<c<1, (39)

then |y(#)| < ¢ for every ¢, implying that (x, y) is indeed a solution of problem (35). By La-
grange’s Mean Value Theorem, there is a & € ]Ja, b[ such that

XA — XS

X ) ==

By (39), since ¢( % ) < ¢, we have x/(£) = ¢~ (y(£)) and hence, using also (36),

t

o1 =@+ [ yoas
§

t
<00 @)1+ [ gcloixs) 36 ds
§

|xa — xsl
=o(Thog ) rCo-a e
thus ending the proof. O

Remark 15. If x4 = xg, condition (37) becomes

2

—da

2C </)\\1 =
b

Note that A is the first eigenvalue of the minus 1-Laplace operator —(sgn(x’))’ with homoge-
neous Dirichlet boundary conditions on [a, b], see [6].

Corollary 14 applies in particular to the Dirichlet problem associated with the mean curvature
equation

15



x/ !
— ) =h(,x, 4 ,
<\/1 +(x/)2> (t:6. ) (40)

x(a)=xs, x(b)=x4.

It can be worth noticing that, if the function £ in (40) is constant, say A(¢, x,z) = C > 0, then a
solution of the differential equation (¢ (x”))’ = C is such that

Ct+ K

J1I—(Ct+K)?

x'(t) =
for some constant K € R, hence

Ct+K

xb)—x@) = | ————
J J1—(Cr+k)?

1
- E(‘/l —(Ca+K?=V1=(Cb+K)7?).

The function K +— % <\/1 —(Ca+K)2—/1—(Ch+ K)2) is strictly increasing on its domain
[-1—Ca, 1 — Cb], taking values in [—c, c], where

Ez\/b;a(Z—C(b—a)).

Then, a necessary and sufficient condition for the existence of a solution of (40) with i (¢, x, x') =
C>0is

lxa —xsl <¢c,
which is equivalent to

_lxa — xs]
g XA — XSl

2
b—a<—. 41
b—a TPTASC (41

The same is true if A(¢, x, x") = —C, with C > 0. On the other hand, condition (37) is equivalent
to

_ lxa — xs] 1
AT i bh—a<—.
¢ b—a a C

The comparison with (41) naturally leads to the question whether our condition (37) could be
improved. We propose this as an open problem.

Remark 16. The result in Corollary 14 should be compared with [20, Theorem 1.2], where the
existence of a bounded variation solution was proved for the mean curvature equation. It was
also shown in [20, Example 1.2] that, if i (z, x, x') = —C with C > 3:1, then the problem does
not have any bounded variation solution.
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4. Non-well-ordered lower/upper solutions

In this section we study the case when the lower and upper solutions are such that o £ 8. For
simplicity, we only deal with the following homogeneous Dirichlet problem

X =y+ptx), Y=—x+qxy)),

(Ppir) 2(0) = 0= (1),

where p : [0,7] x R — R is a locally Lipschitz continuous function and ¢ : [0, 7] % R? —
R is continuous, both functions being uniformly bounded. We will discuss in Section 4.2 the
possibility of letting the function p depend also on y.

We denote by ¢;(¢) the function sin#, which is the first (positive) eigenfunction of the au-
tonomous problem x” + x = 0 corresponding to the case p = ¢ = 0. For any continuous function
¢ : [0, 7] - R, we will write ¢ > 0 if there exists an € > 0 such that

o(t) > €p(t), foreverytel0,n],

and we write ¢ > ¥ (or ¥ K @) if ¢ — ¢ > 0.
We will need the following two lemmas.

Lemma 17. For any continuous function ¢ : [0, 1] — R, the sets
reCyonD o<}, {xeCo0, 7)) x K¢}
are open in Cé([O, 7])={x e C'([0,7]): x(0) =0 =x(7)}.
Proof. Let us prove the first one, the second being similar. If ¢ < x, there is an € > 0 such that
o(t) +ep(t) <x(), foreverytelO,r].

It is easily seen that there is a § > 0 such that, for any continuously differentiable function v :
[0,7] - R,

Wl + 1Y oo <8 = Y] <K 3€01. (42)
Then, if ¥ € C'([0, ]) is such that
¥ = xlloo 4+ 1¥ = x"[loo < 8,
by (42) we have that

o(t) + yepi (t) <X (1),

showing that ¢ <K X. O
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Lemma 18. Let ¢ : [0, 7] — R be a continuously differentiable function. If

max{p(0), ¢(71)} <0,
then there exists a C > 0 such that ¢ < Cyy. If, on the contrary,

min{e(0), ¢(7)} = 0,
then there exists a C > 0 such that ¢ > —Cg;.
Proof. Take C; > max{|¢’(0)|, |¢’(7)|}. Then, there is a § > 0 such that

o(t) < Cre1(t), foreverytel0,8[U]lr —46,n[.
On the other hand, there is a C> > 0 such that
o(t) < Crpy(t), foreverytels,m —4].
Taking C = max{C1, C>} we have the conclusion. 0O
4.1. The existence result
Let us state our result in the non-well-ordered case.

Theorem 19. Assume the existence of a non-well-ordered pair («, B) of lower/upper solutions of
problem (Pp;;,), where p(t, x) is a locally Lipschitz continuous function, q(t, x, y) is continuous,

and both functions are uniformly bounded. Then there exists a solution of problem (Pp;,) such
that

akx and xK£B.
Proof. For every r > 1, let ¢, : R — [0, 1] be a continuously differentiable function such that
¢r(s)=1 if|s|=r, ¢r(s)=0 ifs[=2r,
for every s € R. We introduce the modified problems

/

(P) x/=y+pr(l,x), y=—x+4r(t’xv}7),
: x(0)=0=x(7),

where

prt,x) =¢,(x)p(t. x),

1 1
4r (1., 5) =~ x + (Db (a1, %, ) = ~x).
g ' 18



Moreover, we write poo(f, x) = p(t, x) and g (¢, X, y) = q(¢, x, y). We will need the following
a priori bound for the solutions of (P;).

Claim 4. There exists R > 1 such that, if u = (x, y) is a solution of problem (P,) satisfying
o< x and x <€ B, with r € [R, 0], then ||u||so < R.

We postpone the proof of this claim to Section A.4. By Claim 4, in particular, if « is a solution
of (P,) satisfying @ <€ x and x <€ B, with r > R, then it is a solution of (Pp;,).
Let » > R also satisfy

r > max{l|leellco, | Blloo, I¥alloos V8 lloc} (43)

so that o and B are lower/upper solutions of (P;), as well.
By Lemma 18, we can fix a constant C > 0 such that o« < C¢; and g > —Cgj. Let us now
introduce the function w, : [0, 7] — R, defined as

2r cos ((t -7) %)
w [r=1 ,
COS <7 T)

which will be used in the following lemma in order to construct some new lower and upper
solutions.

w(t) =

Lemma 20. The functions o, By : [0, 1] — R defined by
o (1) = =(Co1(t) + w, (1)), Br(t) = Coi(t) + w, (1),
are a lower and an upper solution of problem (P,), respectively. Moreover,

o LB and a <P

Proof. First notice that
Y r—1
wy (t) + — wr(t) =0, foreverytel0,n].

We set yo, =, and yg, = B,. Since B,(t) > 2r for every t € [0, 7] and p,(t,x) =0 when
x > 2r, conditions (6) and (8) are easily verified. Moreover,

—1 1
¥ (0 = Co (1) + w] (6) = =Cor (1) = ——w, (1) = =B, (1) + —w, (1)
1
<~ (04— (1) = =B, (0) + a1, B, (1), 35, (1),

so that (7) holds, too. A similar argument can be applied for «,. The last assertion in the statement
of the lemma follows immediately from the choice of the constant C. O
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Let us now introduce our functional setting for the problem (P.). We use the notation
C%1([0, ]) for the space of Lipschitz continuous real functions, and define the space

Cy ' (10, 7]) = {x € C} (10, 7]y : x" € C%1([0, 7]},

the linear operator

L:Cy'([0,7]) x €' ([0, 7]) — €' ([0, 7]) x C ([0, 7)), L<x> = (x _,y),
y y

and the nonlinear operator

N, : ([0, 7]) x C ([0, 7]) — €% ([0, 7]) x C([0, 7)),

N, (x)(;) _ ( pr(t,x(1)) >
y —x(t) +q, (@, x(t), (1))

Lemma 21. The operator L is invertible, with a continuous inverse

L7': % ([0, 7]) x C([0, 7)) — Cy7' ([0, 7]) x C ([0, 7]),

and problem (P;) is equivalent to
u= L_lNru ,
where u = (x,y) € Cé([O, ]) x C([0, ]). Moreover, the operator

LN, 1 Cy (10, 7]) x €10, x]) = C3(10, 1) x C([0, 7])
is completely continuous.

Proof. If (x,y) € Cy'' ([0, 7]) x C'([0, 7)) satisfies L(x, y) = (0, 0), then (x, y) is constantly
equal to (0, 0). Hence, given (h, k) € CO%1([0, 1) x C([0, 7r]), the problem

X' =y+h), Y =k@)),
x(0)=0=x(m),

has a unique solution (x, y) € Cé’l([O,n]) x C1([0, 1), and the function (h, k) — (x,y) is
continuous.

Problem (P,) is equivalent to Lu = Nyu, with u = (x, y) € Cy’' ([0, 7]) x C'([0, ). Then,
it is also equivalent to u = L™ N,u, with u = (x, y) € C} ([0, 7]) x C ([0, 7]).

The operator N, is continuous and transforms bounded sets of Cé([O, 7]) x C([0, ]) into
bounded sets of C%1([0, 7]) x C([0, 7]). Hence, L~! N, is continuous and transforms bounded
sets in Cé([O, w]) x C([0, ]) into bounded sets in C(l)’l([O, 1) x C1([0, w]). The conclusion
follows, since the space Cé‘l([O,n]) x CH[0, 7)) is compactly imbedded into Cé([O,n]) X
c(o,x]. O
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Let us focus our attention on the three well-ordered pairs of lower/upper solutions (¢, ),
(o, Br), and (o, B). Since problem (P,) satisfies hypotheses Al, A2, and A3 in Corollary 10,
by [14, Lemma 15] we can find some curves y+ and 7. (the same for all the pairs) such that, for
every t € [0, ] and x € [, (), B, (¢)], the conditions (13), (14), (21), (22) hold, together with

y—(x) < min{yy (1), ya, (), yp(t), yp, ()}
< max{yq(t), yo, (), yg(t), y, (1)} < y+(x),
Y- (x) <min{yy (1), Yo, (), yp (1), yp, (1)}
<max{yy (1), ya, (1), yp(t), yp, (1)} < V3 (x).

By Lemma 17, the sets

VIZV(ar7ﬂrv V:I:»?:I:)’ szv(ar7ﬂ7 y:l:v?:l:)7 V3=V(a7ﬂrv V:I:»?:I:),
with the notation
Vg, ¥, v 7) = | (6, 3) € CRI0, 7D x CQ0. 7D 0 < ¥ <

min{y_ (x(t)), 7 (x(£))} < y(¢) < max{ys+ (x (1)), P (x ()},
for every ¢t € [0, JT]},

are open in C} ([0, ]) x C([0, 7]).
Still denoting by (¢, ¥) one of the three pairs («;, 8;), (@, B;), and (&, B), we modify prob-
lem (P,). Set

gr(t’xv )’) =—X +Qr(t7xv)’),
and define
Po.y (t,x) = pr(t, C(x; (1), Y (1)),
8oyt x,y) =g (t,(x; 0(), ¥ (1), y) +e(x; (), ¥ (1)),

with ¢(-;-,-) and e(-; -, -) asin (17), (18), so to obtain

X' =y+ Poyt,x), ¥V =8yt x,y),

(Poy) {x(O) —0=x(7).

It can be verified that (¢, ¥) is a well-ordered pair of lower/upper solutions of (F(p,,/,), for any of
the three choices of (¢, ¥). Define the associated nonlinear operator

Ny : C(10, 1) x C([0, 7]) — C%1([0, 7]) x C ([0, 7]),

~  (x P,y (t, x(1)) )
N, = .
ov <y> ® (é’w,w(t, x(t), y(1)) s



Indeed, if x € C} ([0, 1), then jy y (-, x()) € C%'([0, 7]). Problem (P,,y) is then equivalent to
u= L_lﬁwpu,
where u = (x, y) € Cé([O, ]) x C([0, w]). Moreover, the operator
L™ 'N,y : CL(10, 71) x €10, 7]) = CL(10, 7]) x € ([0, 71)

is completely continuous (see Lemma 21).
An analggue of Claim 3 in the proof of Theorem 11 holds, i.e., every solution u = (x, y) of
problem (Py y ) satisfies

o) <x(t) <Y¥(), 44)
and

min{y— (x(1)), Y- (x(1))} < y(t) < max{y4 (x (1)), V4 (x (1))}, (45)

for every ¢ € [0, 7]. Moreover, for any sufficiently large p > 0, denoting by B, the open ball in
C(% ([0, #]) x C([0, r]), centered at the origin, with radius p, it can be proved that

dps(I =L 'Ngy , By =1,

where dr s denotes the Leray—Schauder degree. Let us fix a p > 0 with this property, such that
V(p, ¥, v+, V+) € By.

Lemma 22. [f there are no solutions of (P,) on the boundary of V(¢, ¥, y+, Y+), then

drs(I —L7'N, , Vg, ¥, ya, 7)) = 1. (46)

Proof. Notice that, on the set V(¢, ¥, y+, ¥+), the two problems (P,) and (ﬁw//) coincide.
Since all the solutions of problem (ﬁwlf) satisfy (44) and (45), they belong to the closure of
V(@, ¥, y+, Y+). So, if there are no solutions on the boundary of V(¢, ¥, v+, ¥+ ), by the excision
property of the degree,

dps(I =L "Nyy , V(@ ¥,y 7)) =drs(I — L™'Ny y , By) =1.

Since IVW/, = N, on V(¢, ¥, y+, Y+), we have that

drs(I = L7'Ny , Vg, ¥, v, 7)) =drs( — L™'Ny.y , Vg, ¥, v, 7)) =1,

and the lemma is thus proved. O
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Now we prove that there are no solutions of (P,) on dV;. Let u = (x, y) be a solution of
(P,) belonging to the closure of V. We then have that both «,(f) < x(¢) < B,(¢) and (45) hold,
for every t € [0, w]. Assume by contradiction that x <€ B,. Since x(0) =0 < 2r = ,(0) and
x(m) =0 < 2r = B, (), there must be a 1y € |0, [ such that x(¢9) = B, (t9) > 2r. Then,

x'(t0) =B, (to) and  x"(10) < B/ (10) .

Moreover, there is a neighborhood Uy of ¢ in ]O, [ on which x () > 2r, so that, being p, (¢, x) =
Oand g,(t,x,y) = %x for |x| > 2r, we have

r 1 r
x(t), andhence x"(t)= x(1),
r r

X(=yw, Y@=

for every ¢ € Up. On the other hand,

1 —
B (1) = —w,(t0) = Cy1 (10)

1— C
= Br(to) — —@1(t0)
r r
1—r .
x(t) =x"(to) ,

1—r
< ——B(to) =
’
a contradiction. Hence, x < ;. Similarly one proves that o, < x.
If there is a solution (x, y) of (P,) in 0V, then we have x < B, while x < 8 still holds. Since «
and B are non-well-ordered, then x (#p) < B(fp) < «(#p) for a certain 7o € [0, 7], implying o K x.
The theorem is thus proved in this case. A similar argument leads to the conclusion assuming the

existence of a solution in 9)3.
Finally, if there are no solutions of (P,) in 3V, U 9V3, then, by Lemma 22,

dL(I — LN,V \W) -
=dp(I = L7'N, V) = (di = L7'N, Vo) +d( = L7'N, Va)) = =1,
Hence, there is a solution in V; \ V; U V3, and the proof is thus completed. O
4.2. Remarks and further developments
The following proposition better clarifies the conclusion of Theorem 19.
Proposition 23. Let o, B : [0, 7] — R be two continuously differentiable functions satisfying
a(0) <0< B(0), a(r) <0< B(r).
If moreover there is a ty € 10, [ such that «(ty) > B(ty), then the set

{x € CA([0, 7)) : @ g x and x & B}
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coincides with the closure in C(l) ([0, ]) of the set

{x e C(l)([O, w]):3t,0 €0, 7] :x(t) <a(ty), x(t) > B(t2)}.

Proof. Let us denote by A the first set, and by B the second one. We want to prove that A = B.
Let us first show that B C A. Let x € B, and assume by contradiction that o < x. Let (x,), be
a sequence in Cé([O, m]) such that o £ x,,, x,, £ B8, and x, — x in Cé([O, m]). By Lemma 17,
o K xp, for n sufficiently large, contradicting @ £ x,,. In the same way one can see that x <€ S,
as well. Hence, B C A.

In order to prove that A C B, fix x € A. We consider three cases.

Case 1: B(tp) < x(t9) < a(tp). Then, x € B, and we have finished.

Case 2: x(tp) < B(tp). Then, x(ty) < a(ty). Moreover, since x < B, there is a 7 € [0, ] such
that x(7) = B(7). If 7 € ]0, [, it is possible to C'-perturb x so to obtain a X which satisfies
X(tg) < a(ty) and x(z) > B(f). If = 0, then necessarily x’(0) = 8’(0) and it is possible to
C!-perturb x so to obtain a X which satisfies % (1) < (o) and %(t) > B(t) for t > 0 near 0.
Similarly, if 7 = 7, then necessarily x’(r) = p’(7r) and it is possible to C!-perturb x so to obtain
a X which satisfies x () < a(f9) and x(t) > B(¢) for t < 7 near m. So, in any case, x can be
C!-approximated by some function % € B, hence x € B.

Case 3: x(#p) > (o). It is analogous to Case 2.

We have thus proved that A C B, hence the conclusion. [
Notice that if p(t, x) = p(x) is continuously differentiable, setting
y(x) =—p'(x), h(t,x,w)=q(t,x,w—p(x)),
the differential system in problem (Pp;,) becomes a Liénard equation
X' +yx)x +x=hx,x).

A more general system can be considered if we ask some more regularity on the function ¢.
We can deal with the Dirichlet problem

* x/:y—'—p(tsxsy)s )’/Z_x‘f‘q(l,%)’),
(PDir)
x(0)=0=x(m).

Corollary 24. Assume the existence of a non-well-ordered pair («, 8) of lower/upper solutions
of problem (P},;,), where p(t,x,y) and q(t,x,y) are locally Lipschitz continuous uniformly
bounded functions. Then there exists a solution of problem (P, ) such that

akx and x¥§B.

Proof. The only difference with the proof of Theorem 19 is that, in this case, the functional
setting would involve the linear operator
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L:CY 10,71 x €10, 71) — €O1([0, 7y x O1([0, 7]y , LC) — <x y_/y>

and the nonlinear operator
N : C3([0, 7]) x C1([0, 7]) — 1[0, x]) x €1 ([0, 7)),
N(x>(t) _ ( pt, x(1), (1) )
y —x(t) +q(t, x(1), y(1))
‘We omit the details, for briefness. O

4.3. Two examples of applications

In this section, we will provide two examples in which non-well-ordered lower and upper
solutions can be constructed. They are inspired by [16].

Example 1. We consider the problem

x'=y+ptx,y),
Yy ==x+qt x,y)+h(), 47)
x(0)=0=x(m),

where the functions p, g are locally Lipschitz continuous, and / is continuous.
Proposition 25. Assume that p has a compact support, q is uniformly bounded,
q(t,x,y)x <0, forevery(t,x,y)€[0, 7] XRZ, 48)

and

T

fh(t)sintdt:O.

0

Then, there exists a solution of problem (47).

Proof. Let w(¢) be the unique solution of

w’ +w=~h(@),
w0)=0=w(r).

By the change of variables u = x — w(t), v =y — w’(¢), problem (47) becomes

u'=v+p(t,u,v),
V=—u+q(t,u,v), 49)
u0)=0=u(r),
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where

plt,u,v)=pt,u+wt),v+w @), Gt u,v)=qg¢t u+w@),v+w ().

Notice that the functions p, g are locally Lipschitz continuous. Since p has compact support,
there exists R > 0 such that

p(t,u,v)=0, when u’®+v>> R%

As a consequence, there is a constant P > 0 for which

|p(t,u,v)| <P, forevery (t,u,v)€[0,7] X R?.

Let us check that, for k > O sufficiently large, the functions «(¢) = ksint and 8(t) = —ksint are
lower/upper solutions for problem (49), respectively, with corresponding functions v, (1) = &’ ()
and vg(r) = B/(¢). (Here we use the notations v, and vg instead of y, and yg.)

We first check (3). Assume, for some ¢ € [0, 7], that v < v, (¢). If either a(t) > R, or 0 <
a(t) < R and |v| > R, then p(t, x(t), v) =0, hence

v+ Pt a(t),v) <ve(t) =a'(t).

Assume now 0 <« (¢) < R and |v| < R. Taking k > V2(R + P), we have

J2

v+ﬁ(t,a(t),v)<R+P§k7.

Moreover, recalling that 0 < «(f) < R, it is sint < % < */75, hence cost > 4 (since —R <v <
V2

vy (t) = k cost, the case cost < —72 is forbidden), and we have

2
k% <kcost=a'(t).

We have thus verified that, if v < v, (¢), then v + p(f, a (), v) < &’(¢). In a similar way we can
see that, if v > v, (1), then v + p(t, a(f), v) > o’ (¢). We thus proved (3). Moreover, taking k so
large to ensure that ksinz 4+ w(z) > 0 for every ¢ € [0, 7], using (48) we have

v, (t) = —ksint = —a(r)

> —a(t) +q(t, () + wt), va (1) + w'(1) = —a®) + G, a ), va (1),

hence (4) holds. This proves that « is a lower solution for problem (49). Similarly one proves
that B is an upper solution. Corollary 24 can then be applied, to conclude the proof. O
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Example 2. Let us now consider the problem

X' =y+pltx,y),
y==x4+qt x), (50)
x(0)=0=x(m),

where the functions p, g are locally Lipschitz continuous. We will assume here a Landesman—
Lazer condition.

Proposition 26. Assume that p has a compact support, q is uniformly bounded, and that

T T

/liminfq(t,x) sintdt >0 > /limsupq(t,x)sintdt. (1))
X—>—00 x——+00

0

Then, there exists a solution of problem (50).

Proof. Let us construct a nonnegative lower solution «. First of all, being g bounded, there is a
QO > 0 such that

lg(t,x)|<Q, forevery (¢,x)e[0, 7] xR.

Asin [16] (see also [12, Proposition 3.1]), there are a constant s; > 0 and a function € L! 0, )
such that

q(t,s) <n(), foreverys > sy,

and

e

/n(l)sintdt <0.

0

Let § > 0 be such that

g

fn(t) sint dt < / (n(t) — Q)sintdt,

0 [0,8]U[mr —6,7]

and define the function 7 € L' (0, 7r) as

~ n)y, ifteld, = —94[,
n() = .
0, ifte[0,8]U[r —4,m].

Notice that
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b4

/'ﬁ(r)sintdr <0.
0

Let w(¢) be the unique solution of

b/

~ 2 ~ . .
w' +w=7@)— —(/n(r)smtdr) sint ,
b2
0
w0)=0=w(m).

Let us check that, if £ > 0 is sufficiently large, the function «(f) = w(¢) + ksint is a lower
solution of problem (50), such that @ >> 0, with corresponding function y, () = o/ (¢). Using a
similar reasoning as in the proof of Proposition 25, it can be seen that condition (3) holds true.
Moreover,

i

/ ~ 2 ~ . .
Vo () = —a(t) + () — ;(/ n(t) smrdr) sint
0
> —a(t) +7().

In order to obtain (4), we need to show that g (¢, a(¢)) < 7(¢), for every r € [0, 7]. If r € [0, 5] U
[ —§, ], this is an immediate consequence of the choice of the constant Q and the definition of
7). If r €18,  — §[, taking k > O sufficiently large we have that a(¢) > s1, hence g (¢, a(t)) <

n(t) =7().
A similar construction can be made so to find an upper solution g < 0. Corollary 24 then
applies, and the proof is completed. O

Remark 27. We recall that, when p is identically equal to zero and ¢(¢, -) is strictly decreasing,
the Landesman—Lazer condition (51) is necessary and sufficient for the existence of a solution to
problem (50). Indeed, after noticing that the differential system is in this case equivalent to the
scalar second order equation x” + x = ¢(¢, x), assuming the existence of a solution x(¢) such
that x(0) = 0 = x(sr), multiplying the equation by sin¢ and integrating we get

T

/q(t,x(t))sintdtzo.

0

Since, for every ¢ €10, [,
lim g¢(t,x)sint > q(t, x(¢))sint > lim ¢(¢,x)sint,
X—>—00 xX—>+00

by the Monotone Convergence Theorem these functions are integrable, and hence

b/ b/

/ lim q(t,x)sintdt>0>/ lim q(t,x)sinzdzt.
xX—>—00 x——+00
0 0
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Remark 28. It would be interesting to provide new applications of our approach to the study of
ocean gyres, in the spirit of the recent results obtained by Chu and Marynets [8], based on the
theory developed in [7].

5. Higher order systems

Let us start by considering a system of N second order scalar differential equations with
Dirichlet boundary conditions,

x" =gt x),
x(a) =xs, x(b) =xa,

(Spir)
where g : [a, b] x RN — R¥ is a continuous function. We use the notation
x5=(xf,...,x§,) GRN, XA =(x1A,...,x1‘e) eRN.

Here is our definition of a well-ordered pair of lower and upper solutions, in this case.

Definition 29. Given two C2-functions «, B:la,b] — RV, we say that («, B) is a well-ordered
pair of lower/upper solutions of problem (Sp;,) if, forevery j € {1,..., N} and ¢ € [a, b],

aj(t) < B,

aj(a) <x} <Bjla), «;jb)<x} <Bjb),

and, for every x € [TN_,[@m (1), Bu (D],

Ol;-/(t) zgj(t,xl, ...,Xj_l,aj(t),xj_,_l,...,xN),
”
,Bj(t) ng(l‘,xl,...,Xj_l,ﬂj(l),Xj+1,...,XN).

A similar situation has been studied in [13] for the periodic problem. Let us state, for example,
the analogue of [13, Theorem 2].

Theorem 30. If there exists a well-ordered pair of lower/upper solutions (o, B), then prob-
lem (Spir) has a solution x(t) such that

aj(t) <x;(t)<Bjt), foreveryje{l,...,N}andt€]la,b]. (52)

Instead of providing the proof of this result, let us generalize it, considering the problem

x;zfj(tyxjayj)7
(Shir)  {Yi=git.x1,....xn),  j=1...,N,
S A
xj(a)zxj , xj(b)zxj ,

where the functions f; : [a, b] x R?2 — R and gj:la,b] x RN — R are continuous. The defini-
tion of a well-ordered pair of lower and upper solutions now becomes the following.
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Definition 31. Given two C!-functions «, B:la,b] — RV, we say that («, B) is a well-ordered
pair of lower/upper solutions of problem (S’l")l.r) if, forevery j € {1,..., N} and ¢ € [a, D],

aj(t) < B;@),

@j(@) <x <Bj@), a;jb)<xi <B;jb),

and there exist two C!-functions ve, yﬁ : [a, b] = RY such that, for every j € {l,...,N} and
t €la,bl],
s<yj.‘(t) = fj(t,otj(t),s)<a;.(t), 53)
s>yi@) = [filt.aj),s)>a}(),
s<yl® = [0 80,5 < Bi®), s
s>yl = [ B0, > B0,
and, for every x € ]_[fzzl[am(t), B (D],
(y;’-‘)/(t) > gj(t,xl, . ..,Xj_l,aj(t),xj'+1, ey XN, (55)
ON(0) = gjxn i B0 xj ) (56)

Let us prove the following generalization of Theorem 30.

Theorem 32. Assume the existence of a well-ordered pair («, B) of lower/upper solutions of
problem (S}'_‘)”), and that, for every j=1,..., N,

lim f(t,&,5) = —0o0, lim f;(t,&,5) =400, (57
§—>—00 §s—>400

uniformly for (t,§) € [a, b] x [mina;, max B;]. Then, there exists a solution of problem (S;‘)ir)
such that

aj(t) <xj() <), (58)
forevery je{l,...,N}andt € [a,b].

Proof. We can easily adapt the proof of Corollary 10 to this context and, like in [14, Lemma 15],
recover the curves yz ;, f/\i,j such that, for every ¢ € [a, b] and x € ]_[j[aj @®),B; (1],

y () <min{y%(0), ¥ (1)} < max{y?(), 37 (O} < vy (x)).
7o) < min{y% (1), Y7 (0} < max{y? (1), 37 (1)} < Py (x)).

and



[t xj v ) v < gjt,x) < fi(t. xj, y—(x))) v (x)).
[i(txj . 7= ()7 (x)) < g1, x) < f(t, x5, Vi (x))) VL (x)) .

Moreover, using (57), these curves can be chosen so that

xA—)CS
yj Zmin{y, (), Ve (D) = fi0x5,5) > =,
xA—)CS
yj S max{y- (), P 0P} = filtx, ) < =+

Following the main ideas of the proof of Theorem 11, after taking a constant D such that

lye,jllc <D, 1V%,jllc <D, forevery jefl,...,N},
we can introduce the modified problem
X = filt 5.y,

(gEir) y;=§j(t,X1,..-,xN), j=1,...,N,
xj(a) =x]$, x;(b) =x}f‘,

where

fit.xj,y) = fj(f, ¢(xjs (), Bj(®), t(yj; =D, D)) +e(yj; =D, D),
gt i) =g5(1, c(riean @, Hi0), o L (evsan @, By®) )+
+e(xj;aj), Bi®).
An analogue of Claim 3 holds, working separately on every pair of coordinates (x;, y;) while

considering the remaining components as parameters. Hence, we can prove that all the solutions
of (87,;,) satisfy (58) and

min{y_ ; (x; (1)), Y= (x; ()} < y; () <max{y,,;(x;(0), V4 (x; ()}, (59)

for every j € {l,..., N} and ¢ € [a, b]. In such a way, following the lines of the proof of Theo-
rem 11, one easily concludes. O

As an example of application, we consider the Dirichlet-Neumann problem

(1)) +y1(t, x1, x2, X7, x5)x] — [x117 7Ly = pi (8, x1, %2, X7, x5)
(2 (x))) + ya(t, x1, x2, X7, x5)xy — %2172 Loy = pa(t, x1, %2, X, x5)
x1(a)=0=x1(b),
x5(a) =0=1x,(b),

(60)
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ruled by some increasing homeomorphisms ¢, ¢> : R — R, with ¢1(0) = ¢2(0) = 0. Here,
01,0, are positive constants, the functions yi, y2, p1, p2 : la, b] X R* — R are continuous,
and pp, pp are also bounded. Choosing the constant functions a(t) = (—||p1llcc, —IlP2]lc0)
and B(t) = (| p1llocs | P2lloo), With corresponding functions y,(t) = yg(t) = (0, 0), we see that
(o, B) is a well-ordered pair of lower and upper solutions of problem (60), which then has a
solution (x1, x2) such that

Xt <lIptllc  and  |x2(5)| < [[p2llec, foreverys € [a,b].

Concerning the non-well-ordered case, we could similarly deal with a system like

Xi=yj+pit,xj,yj),
(S%ir) y}‘:_xj—i_qj(t’xly'”va)’ j=1,...,N.
x;(0) =0=x;(m).

However, in this case, we should introduce some strict lower and upper solutions, so to be able
to apply the arguments in [13]. We will investigate this subject elsewhere.
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Appendix A. Proof of the claims

In this final section we provide the proofs of Claims 1-4 introduced in the previous sections
in order to obtain Theorems 5, 11, and 19.

A.1. Proof of Claim 1

Let us define the following regions
ANe={(t,x,y) 1t €la,b], x> @), y > yg(t)},
Ase={(t,x,y) : t€la,b], x> B), y <yg(®)},

Asw ={(t,x,y) : t€la,b], x <a(t), y <y ()},
Ayw ={{t,x,y) 1 tela,bl, x <a(t), y>y.()}.

Lemma 33. Let u = (x, y) be a solution of

X'=ftx,y), Y =8§txy. (61)

Then, for any tg € [a, b],
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(to, u(to)) € Asg
(to, u(t0)) € Anw
(to, u(t0)) € ANE

(to, u(t9)) € Asw

(t,u(t)) € Agg foreveryt € |a, to],
(t,u(t)) € Ayw foreveryt € la,ty],

=
=
= (t,u(t)) € ANg foreveryt € [19, b],
= (t,u(t)) € Asw for everyt € [ty, b].

Proof. From (3), (4), (6), and (7) we get, for every ¢ € [a, b],

ft,x,y) <a/(t), ifx<a@)andy < y(r),
ft,x,y)>a'(t), ifx<a()andy> yu();

fx,y) <p@, ifx=p@)andy<yp(),
[ x, ) >p'@), ifx=p@)andy > ys);

g, x,ya(1) < yo (1), ifx <a(t),
8t x, yp() > yp(t), ifx>B().

The proof can be obtained as an immediate consequence of the previous estimates.

Lemma 34. Let u = (x, y) be a solution of (61). If, for any ty € [a, b],

x(10) <a(fo) and  y(to) = ya(t0),

then there exists § > 0 such that

t()?éa,te]to_g,to[ = (tvu(t))EANWa

toF#b,telto, o+ = (t,u)) € Asw.
Similarly, if, for any to € [a, b],

x(to) > B(to) and  y(to) = yp(to),

then there exists § > 0 such that

t07éa7t€]t0_57t0[ = (t,u(t))GASE,

to#b,t€lto, o+ = (r,u(?)) € AnE.
Proof. The proof is an immediate consequence of (64). O

Lemma 35. For each A € [0, 1], all the solutions of(ﬁk) satisfy

a(t) <x(t) <B(t), foreverytela,b].

(62)

(63)

(64)

(65)
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Proof. Recalling that (x(a), yy(a)) € H ;’ and (B(a), yg(a)) € Hg , and applying Lemmas 33
and 34, we can prove that, for every A € [0, 1],

(x(a), y(@) € l, x(a) <a(@) = (a.x(a),y(@) €Asw. x(a)<ala)
= (t,x(),y()) € Agw forevery f €]a, b],

(x(a), y(@) € £, x(a) > Bla) = (a,x(a),y(@) € Ayp., x(a)> P(a)
= (t,x(),y@)) € Ayg forevery t €]a, b].

Similarly, since (@ (b), yo (b)) € H, and (B(D), ys(b)) € HZ then, for every A € [0, 1],

(x(), y(B) € by, x(b) <a(b) = (b.x(b),y(])) € Ayw, x(b)<a(b)
= (t,x(t),y()) € Ayw forevery t € [a, D[,
(x(D), y(b)) € by, x(b) > B(b) = (b.x(b),y(D)) € Asg. x(b)> B(D)
= (t,x(t),y(t)) € Asg forevery t € [a, D[ .

The only reasonable conclusion is that «(a) < x(a) < B(a) and a(b) < x(b) < B(b). Indeed, if
x(a) < a(a) then (¢, x(t), y(¢)) € Asw for every ¢t € ]a, b]. In particular (b, x(b), y(b)) € Asw
and so x(b) < a(b). Since (x(b), y(b)) € Zﬁ we get (b, x(b), y(b)) € Anw, too. We get a con-
tradiction since Asw N Ayw = <. A similar argument rules out the other three cases.

With a similar reasoning, the validity of Lemmas 33 and 34 forbids the existence of #y € ]a, b[
such that x(#9) < a(tg) or x(t9) > B(tp). O

Lemma 36. For each A € [0, 1], all the solutions of (ﬁx) satisfy

Y- (1) <y() <y+(x(1)), foreverytela,b]. (66)

Proof. By Lemma 35 we know that «(#) < x(¢t) < B(¢) for every ¢ € [a, b]. Hence, (66) can be
rephrased as

(t,x(t),y(t)) eV, foreveryte€la,b],
where
V={t.x,y) ela, bl x R* 1a(t) <x < (1), y-() <y < y+(0)}.
Assumption (15) ensures that
y_(x) < Fﬁ(x) <y4(x), forevery x €[u, M].
In particular, (b, x(b), y(b)) € V. By contradiction, assume the existence of g € [a, b[ such that

y(to) = Y+ (x(2p)). Then, defining G4+ () = y(t) — y4+(x(¢)), since G (t9) > 0 > G (b) we can
find 11 € [tg, b[ such that G4 (#;) =0 and G+ (¢) < 0 in a right neighborhood of #;. Computing



G (1) =y (1) — yi (x(11)x" (1)
= g(t1, x(t), v+ (x (1)) — v @) F (1, x (1), v (x (1))
=g(tr, x(t), v+ (x (1)) — ¥y (x(t) £ (11, x (1), y4 (x(11))) > 0, (67)

we get a contradiction. The existence of a certain ty € [a, b[ such that y(zy) < y_(x(#p)) analo-
gously leads to a contradiction. 0O

Lemmas 35 and 36 complete the proof of Claim 1.
A.2. Proof of Claim 2

System (Q.) can be rewritten as

00) =y+A-0)folt,x,y), Y =x+A—0)gt x,y),
’ (x(@@), y(@) € Li(o), (x(b),yb)) € lh(0),

where fp(t,x,y) = f(t, x,y)—yand gp(t,x,y) = g(t, x,y) — x are bounded functions.

We argue by contradiction and assume the existence of two sequences (0,), in [0, 1] and
(Un)n = (Xp, Yp)p In Cl(a,b), IR2), with limy, ||u, ||cc = 400, where u,, is a solution of (Qg,).
We set wy, = u,/||unlloo- Then, w, = (§,, v,) solves

E=v+ -0y fout & V),
V'=E4+(1—0,)grn(t. & V),
lunlloo (€ (@), v(a)) € £(0),
lunlloo (& (B), V(b)) € £} (o),

(63)

where

Jon(t, 8, 0) = Jo (2, Elunllco, vlinlloo) ,

lln |loo

gb‘n(LS’U): gb(taEHMnHOOvU”L‘nHOO)

2 ll o

Since w, € C'([a, b], R?) is such that lwn|loo = 1 for every n, we can deduce that the sequence
(lw), lso)n is bounded. Hence, by a compactness argument there are & € [0, 1] and w = (£, D) €
C(la, b], RZ), with ||w|ls = 1, such that, up to a subsequence,

limo, =0, lim|w, —Wwl|e =0.
n n

Since fp, — 0 and gp, — O uniformly, then, passing to the limit as n — 400, we see that
w = (&, ) solves

£'=0, U =E. (69)
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Let us now focus our attention on the boundary conditions the function w = (£, ©) must
satisfy. We have

un (@) = A= YS (lun llookn (@) = mg&n(@) + b= (1 = 0u)gs,

llunlloo

Un(b) = = Y3 (lunllockn (0)) = my &, (b) + = (1 — 00)q 5 »

llunllco

so that, passing to the limit as n — +o00,

O(a) =miE(@), ob)=mlE®D).

Recalling that mls > 0, and so é(a)f)(u) > 0, since w # 0 solves (69) we conclude that
E()0(t) > O forevery t € ]a, b]. Similarly, since m!, <0 we get&(t)0(t) <0 foreveryt € [a, b[.
We get a contradiction.

A.3. Proof of Claim 3

Since a(a) < min{xs, x4} < max{xg, x4} < B(a) and a(b) < min{xg, x4} < max{xg, x4} <
B(b), recalling the validity of Lemmas 33 and 34 also in the present situation, we can show that
all the solutions of (P) satisfy (30) for every ¢ € [a, b]. We are going now to prove the validity
of (31) for every ¢ € [a, b], too.

We argue by contradiction and we assume the existence of a solution of (F), such that y(#p) >
max{y+(x(t)), Y+ (x(fp))}, for a certain g € [a, b]. Recalling the procedure adopted in order to
get the contradicting estimate in (67), we can prove that

y() >y (x(t)), foreveryt € [ty,b],
y() = yy(x()), foreverytela, 1],

thus obtaining

y() = min{y, (x(1)), ¥4 (x(1))}, foreveryt € [a,b]. (70)

We can find an interval [t1, 2] < [a, b] with the following property: x(¢1) = xg, x(t2) = x4, and
min{xg, x4} < x(¢) < max{xg, x4} for every ¢ € [t1, 2]. Recalling the definition of f, with D as
in (32), and the hypothesis (28), since (70) holds, we get

X XS

4=
b—a ’

X'(t) = ft,x(@), y(t) > (71)

for every t € [t1, 12]. If xg = x4 then x'(¢) > 0 when x(¢) = x4 = x5 thus giving a contradiction.
Otherwise, the interval [#1, #2] is not trivial, and, integrating in this interval, we get

(xA—xs)<1—t2_t1>>O. (72)

—da

If x4 < xg we get a contradiction, so we need to consider the remaining case x4 > xg. The
case [t1, 1] = [a, b] is forbidden by (72). Moreover, from (71), we get x'(t) > 0 when x(¢) €
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[xs,x4], so that #{ = a and x(#) > x4 in a right neighborhood of #,. So, since x(b) = x4, we
have necessarily the existence of 13 € ]tp, b] such that x(13) = x4 and x’(#3) < 0 providing a
contradiction also in this case.

We have thus proved that y(r) < max{ys (x(¢)), 7. (x(¢))}, for every ¢ € [a, b]. Analogously
one proves that y(¢) > min{y_ (x(¢)), 7— (x(¢))}, for every ¢ € [a, b].

A.4. Proof of Claim 4

By contradiction, assume that there exist a sequence of numbers r, > n and some solu-
tions u, = (x,,y,) of problems (P.) such that o« & x,, x, &« B, and |u,|lcc > n. Define
Vp = Xp/llttnlloo and wy, = yp/||unllco- Then, (v,, wy) solves

U;,zwn+mpr,l(t7xn), w;z:_vn'i‘qu(tsxn,yn)y
v, (0) =0=v, (7).

Since both r, — +o00 and ||u,|lco — 400, by a standard compactness argument there is a sub-
sequence, still denoted by (v,,, wy,), such that, for some (v, w) € CL(0, 7] x C([0, =), we
have that v, — v and w, — w in C1([0, 7]), and (T, W) solves

Since ||(V, W)|loc = 1, it has to be either (v, w) = (g1, ¢}), or (U, w) = —(¢1, ¢]). Assume that
(v, w) = (¢1,¢}). By Lemma 18, there exists C > 0 such that o < Cg;. Since v, — ¢ in
c! ([0, r]), for n large enough it has to be v, > %(pl and

xXn = lltnllooVn > 3 unloo@r > Co1 > @,

a contradiction. A similar contradiction is reached if (v, w) = —(¢1, ¢}), thus completing the
proof.
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