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1. Introduction

Learning statistical structures from mul
is a crucial problem in statistics and data
works (BNs) provide an elegant and effectiv
dependencies by using a graphical encoding of conditional inde-
pendencies within a set of random variables [1]. This enables a

information-theoretic scoring functions, common approach
either the Bayesian Information Criterion (BIC) by Schwarz
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Learning the structure of dependencies among multiple random variables is a problem of consi
theoretical and practical interest. Within the context of Bayesian Networks, a practical and surprisingly
successful solution to this learning problem is achieved by adopting score-functions optimisation
schema, augmented with multiple restarts to avoid local optima. Yet, the conditions under which such
strategies work well are poorly understood, and there are also some intrinsic limitations to learning
the directionality of the interaction among the variables. Following an early intuition of Friedman and
Koller, we propose to decouple the learning problem into two steps: first, we identify a partial ordering
Bayesian Networks
Bootstrap
Structural learning
Cancer genomics
among input variables which constrains the structural learning problem, and then propose an effective
bootstrap-based algorithm to simulate augmented data sets, and select the most important dependencies
among the variables. By using several synthetic data sets, we show that our algorithm yields better recov-
ery performance than the state of the art, increasing the chances of identifying a globally-optimal solu-
tion to the learning problem, and solving also well-known identifiability issues that affect the standard
approach. We use our new algorithm to infer statistical dependencies between cancer driver somatic
mutations detected by high-throughput genome sequencing data of multiple colorectal cancer patients.
In this way, we also show how the proposed methods can shade new insights about cancer initiation, and
progression.
Code: https://github.com/caravagn/Bootstrap-based-Learning

tiple joint observations
science. Bayesian Net-
e way of depicting such

necessarily leads to a multimodal objective function, which can
be highly problematic for maximum likelihood (ML) optimisation-
based and Bayesian methods alike. In practice, reasonable perfor-
mance can be achieved by greedy methods that search models
by their likelihood adjusted for a complexity term [6]. For
es are
or the
compact and intuitive modelling framework which is both highly Akaike Information Criterion (AIC) by Akaike [7,8]. For Bayesian

explanatory and predictive, and justifies the enduring popularity
of BNs in many fields of application [2].

Despite the undoubtable success of BNs, identifying the graph-
ical structure underpinning a BN from data remains a challenging
problem [3]. The number of possible graphs scales super-
exponentially with the number of nodes [4], effectively ruling
out direct search for BNs with more than a handful of nodes. Mar-
kov equivalence, the phenomenon by which two distinct graphs
can encode identical conditional independence structures [5],
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scoring functions, popular choices are the Bayesian Dirichlet
likelihood-equivalence score (BDE) [9] which combines the multino-
mial distribution with the Dirichlet prior for discrete-valued net-
works, or the Bayesian Gaussian equivalent (BGE) [10], which
combines the linear Gaussian distribution with the normal-
Wishart prior for Gaussian-valued networks, or the K2 score (K2)
[9], another particular case of the Bayesian Dirichlet score. All of
these approaches select network structures by a greedy optimisa-
tion process, either through (regularised) optimisation of the joint
parameter/ structure likelihood, or by optimising a collapsed like-
lihood where the explicit dependence on the conditional parame-
ters is marginalised under a conjugate prior distribution. As with
many non-convex optimisation problems, a schema with multiple
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initial conditions is often used to sample different solutions from
the multi-modal fitness landscape. Nevertheless, the conditions
under which they should return optimal structures are poorly
understood.

This paper presents a new approach to the optimisation prob-

likelihood estimates (MLE) of the conditional distributions3 [2].
We will make use also of weighted DAGs whose definition is

standard; wEðxi ! xjÞ will be the weight associated to edge
xi ! xj in a graph with edges E via function w : E ! R.

Baseline approach. In what follows we will aim at improving
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lem for BN structural learning. Our method relies on simulating
asymptotic conditions via a bootstrap procedure [11]. By boot-
strapping we can estimate the frequency of each edge in the model
(i.e., a conditional dependence xjy), but cannot solve the Markov
equivalence problem; to address that, we follow an early intuition
of Koller and Friedman and devise a data-driven strategy (again
based on bootstrap) to estimate a partial ordering on the set of
nodes, effectively playing the role of an informative prior over
graph structures [12,13]. Our approach therefore decouples the
tasks of restricting the search space to a suitable basin of attrac-
tion, and optimising within that basin. Extensive experimentation
on simulated data sets shows that the proposed algorithm outper-
forms several variants of regularised scores, and an experiment on
a cancer genomics application shows how the approach can lead to
insightful structure discovery on real life data science problems.

2. Background

In this paper we will adopt the following notation. With
D 2 Bn�m we denote the input data matrix with n variables and
m samples. For each row a variable xi is associated, with
X ¼ fx1; . . . ;xng. Domain B can be either continuous (R, in which
case we assume to be working with Gaussian conditionals) or dis-
crete multivariate (Z). We aim at computing a factorization of
p x1; . . . ;xnð Þ from D. We will make use of non-parametric bootstrap
techniques [11]: with D,khD1; . . . ;Dkiwe denote k non-parametric
bootstrap replicates Di 2 Bn�m of the input data D.

We are interested in a Bayesian Network (BN, [2])M ¼ hE; hi over
variables X, with edges E#X�X and real-valued parameters h. In
our formulation E must induce a direct acyclic graph (DAG) over X,
that represents factorization

p x1; . . . ; xnð Þ ¼
Yn
xi¼1

p xijpið Þ p xijpið Þ ¼ hxi jpi
ð1Þ

where pi ¼ fxjjxj ! xi 2 Eg are xi’s parents, and hxi jpðxiÞ is a probabil-
ity density function. The BN log-likelihood of M is given by

LLðDjMÞ ¼ logp DjE; hð Þ: ð2Þ
The model selection task D!k

f;PM�, is to compute a BN

M� ¼ hE�; h�i by solving

M� ¼ arg max
M¼hE#P;hi

LLðDjMÞ � fðM;DÞ ð3Þ

where f is a regularization score [2] (e.g., BIC, AIC, BDE, BGE, K2,
etc.); notice that in this formulation we are implicitly assuming that
the graph induced by the selected edges E#P is acyclic, i.e., a DAG.2

This problem is NP-hard and, in general, one can compute a (local)
optimal solution to it [3]. In our definition the search-space is con-
strained by E#P. Without loss of generality, we assume M� to be
estimated by a hill-climbing procedure that starts from k random ini-
tial BNs, and returns the highest scoring model. When one uses
information-theoretic scoring functions, parameters are maximum-

2 This model selection problem is formally defined on the space of DAGs; therefore
E in Eq. (3) should be constrained to a valid DAG. The set P, from which the final
graph E#P is selected, can contain an arbitrary set of edges (i.e. also a set of edges
that induce cycles), and it is a requirement of the model-selection heuristic to ensure
that the selected edges E induce a DAG.
3 If M� is categorical with w values, then the multinomial estimate is
hML
xi¼xjpi¼y ¼ nðx;yÞPvw

xi¼v1
nðv i ;yÞ

;where nðxi; yÞ counts, from D, the number of observed
instances for an assignment of xi and y.

2

over the baseline approach, which we consider to be the f-
regularized selection with unconstrained search space and k initial
conditions

D!k
f;£M�:

This procedure is greedy, it starts from an initial condition M0 – e.g.,
a random DAG – and performs a one-edge change (deletion or inser-
tion of an edge) to exhaustively compute the neighbourhood M0 of
M0. Then, M̂ 2 M0 is the new best solution if it has score – according
to Eq. (3) – higher than M0 and is the maximum-scoring model in
the whole neighbourhood. The greedy search then proceed recur-
sively to examine M̂’s neighbourhood, and stops if the current solu-
tion is the highest scoring in all of its neighbourhood. Thus, this
search scans a set of solutions fMigI by maximising the discrete gra-
dient defined as

rMi ;M̂
¼ f ðM̂Þ � f ðMiÞ; M̂ 2 Mi ð4Þ

where f ðMÞ ¼ LLðDjMÞ � fðM;DÞ is the scoring function in Eq. (3).
Hill Climbing is known to be suboptimal, and can be improved

in several ways. For instance, instead of sampling k uncorrelated
initial conditions (random restarts), one can sample a model in
the neighbourhood of the last computed solution and proceed
through an iterated local search. To navigate iteratively the space
of solutions one can take into account structural-equivalence
classes, node orderings, and edge reversal moves; see [14–18]
and references therein. Other approaches can guarantee exact
Bayesian structure learning by applying either dynamic program-
ming [19,20] or integer linear programming, [21,22] nevertheless,
the number of valid solutions remains still potentially huge and
Markov equivalence still poses challenges. We refer to [23,24] for
recent reviews of approaches for structure learning of Bayesian
Networks. For simplicity, here we consider the baseline Hill Climb-
ing; it would be straightforward to improve our approach by
adopting other search or restart strategies proposed in the
literature.

In this paper we consider several common scores for BNs: the
BIC, AIC, BDE, BGE and K2. In the Main Text, we discuss results
obtained with the information-theoretic scores f 2 fBIC;AICg;BIC
is derived as the infinite samples approximation to the MLE of
the structure and the parameters of the model, and is consistent,
while AIC is not. In the Supplementaty Material, we present that
analogous results hold for Bayesian scoring functions
(f 2 fBDE;BGE;K2g).

Searching for the optimal network requires also to account for
the fact that different DAGs can induce the same distributions; this
is formalised through the notion of v-structures and likelihood
equivalence, which are structural properties of BNs introduced in
Section 3 (together with one example). Intuitively, if we denote
by KM the set of likelihood-equivalent models, even in the case of
infinite samples (m ! þ1) asymptotic convergence is up to Mar-
kov equivalence. This mean, in practice, that we can at best identify
one of the models in the equivalence class KMT

, not necessarily the
true one, and therefore the fitness landscape is multi-modal, each
mode being one of the elements of KMT

. For finite m, model-
selection is even more complicated. The landscape induced by
the likelihood function is rugged and there could iÞ be structures
scoring higher than the ones in KMT

, and iiÞ also higher than the
models in their neighbourhood (thus suggesting the importance
of testing also randomised restarts). Thus, such structures as well
as their equivalence classes would create further optima; we pre-



sent one example of this models in Section 3, and a portrait the
associated multi-modal landscape in Fig. 2. For this reason, besides
the problem of identifying the one true model MT within KMT

, a
greedy search is likely be trapped into local optima, and heuristics
use multiple initial conditions to minimize such an effect.

We term KM a Markov equivalence (or I-equivalence) class of BNs
with equivalent fitness value, but different structure. Thus, we can
not expect to identify MT among KMT

’s models by looking at
FM;fð�Þ, which leaves us with, at least, jKMT

j equivalent maxima.
Such class exists due to symmetries of the likelihood function that
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3. An example

We give an intuitive introduction to the concept of fitness land-
scape associated with this optimisation problem, and show its
computation on a real network.

Definition 3.1 (Fitness). Consider M � X�X the set of all possi-
ble non-reflexive edges over variables in setX. For a subsetP#M,
letFP;f : 2

M # Rþ be the fitness function of the state space 2P, data
D and regularization f and the BN M ¼ hE; hi to be defined by

FP;fðEÞ ¼
LLðDjMÞ � fðM;DÞ; if E#P; Eacyclic;
0 otherwise:

�
ð5Þ

Then,FP;fð�Þ defines the fitness landscapewhich we use to search for
a BN model MMLE ¼ hEMLE; hMLEi that best explains D in the sense of
Eq. (3).

So, in practice, a search that constraints the state space by P

spans through the subspace of DAGs induced by 2P #2M. Let us
denote the true model as the BN MT ¼ hET; hTi; ET 2 2P; for
m ! 1, the landscape’s MLE structure is ET, when f is a consistent
estimator (BIC does satisfy this property, if at least one of several
models contains the true distribution [25]). Unfortunately, the
MLE is not unique even for infinite sample size.

Proposition 3.2 (Likelihood equivalence [2], Fig. 2). For any BN

M ¼ hE; hi there exists KM ¼ fMi ¼ hEi; hiigI for some index set I, such
that FM;fðEiÞ ¼ FM;fðEjÞ for every Mi;Mj 2 KM.
Fig. 1. Exhaustive portrait of the fitness landscape F (Definition 3.1) for a random BN

scoring function uses BIC. Each node is a candidate BN, whose score is given by the colo
maximum of the optimization gradient in Eq. (4)S, which is followed by a greedy heuristic
differs by one edge. A basin of attraction is a set of initial conditions that lead to the s
highlighted in top right of the plot. In Fig. 2 we show the local optima, the true model a

3

are induced by v-structures.

Definition 3.3 (v-structure [5], Fig. 2). A triplet ðxi;xj;xkÞ is a v-
structure in a set of edges E if xi ! xk;xj ! xk 2 E but
xi ! xj;xj ! xi R E.

Example with a simple network. We begin with an example
that inspired the approach that we introduce in Section 4. Let us
consider a random BN M with n ¼ 4 discrete nodes
(X ¼ fx1; . . . ;x4g;B ¼ f0;1g), jpij � 2, and random conditional dis-
tributions h (parameters). Despite being small, models of this size
show a rich optimization’s landscape and allow for some visualiza-
tion. In fact, the number of DAGs with n nodes is super-exponential
in n. Precisely, it is computable as

GðnÞ ¼
Xn
k¼1

ð�1Þkþ1 n
k

� �
2kðn�kÞGðn� kÞ

as shown in [4]; in this case leads to GðnÞ ¼ 543 models. FromM, we
generate m ¼ 10000 samples and investigate the problem of identi-
fying M from such data.

With such a small network we can exhaustively construct the
fitness landscape F of the discrete optimization, and visualize
the gradient in Eq. (4) used to solve Eq. (3). The whole landscape
of the Hill Climbing with BIC scores is shown in Fig. 1, and shows
that:

ðiÞ there are several models with different structure but equiv-
alent BIC score;

ðiiÞ M’s BIC score is not the highest in this landscape, which has
13 optima;
with n ¼ 4 variables, random conditional distributions h and 10000 samples. The
r’s intensity (darker is better). In total, there are 543 BNs. Each edge represents the
s such as Hill Climbing. Here the neighbourhood of a model is the set of models that
ame solution. Here the true model is associated to a mid-size basin of attraction,
nd a way to re-shape F .



ðiiiÞ the basins of attractions can be fairly large, compared to M’s
one;

We expect the landscape to have multiple modes because of Mar-
kov equivalence classes (Definition 3.2), and because we are work-

multi-modal under the approximated poset, but one would hope
that the number of modes is reduced and the identification of
the true model made easier in the reduced search-space.

Algorithm 1: Model selection for BNs via the bootstrap

Fig. 2. The 13 optima of the fitness landscape shown in Fig. 1, with their BIC score. Notice the equivalence classes (discussed in Section 3) and the presence of optima with
equivalent score but different structure. The true, i.e., generative, model is not the highest ranked in F . If we create as poset P the transitive closure of the true model,
however, we observe that the landscape reduces to having a unique global optima. In fact, all the optima but the true one have at least one edge not included in P. For this P,
the landscape happens to be unimodal with a maximum at the true model; an experiment with 100 random networks shows that this happens with high probability.
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ing with finite m. Thus, a search in this landscape could likely be
trapped in optima that are not M.

We now focus on the intuition that searching for the model is
generally easier if one constrains the parent sets [2]. This is often
done by either setting a cutoff on jpij, i.e., limiting the number of
xi’s parents, or by specifying a partially ordered set (poset)
P#X�X such that xj can be one of xi’s parents only if
ðxj;xiÞ 2 P. Whatever the case, the algorithmic motivation seems
obvious as we drop the search’s combinatorial complexity by prun-
ing possible solutions. However, we are interested in investigating
how this affects the shape of the landscape F.

We consider the constraint to be given as a poset P (that, in
practice, one has to estimate from data). The search is then limited
to analyzing edges inP, soP is good if it shrinks the search to visit
solutions that are ‘‘closer” to M – thus, P has to include M’s edges.
In this example we create P by adding to M also its transitive
edges. In Fig. 2 we show that all the models (butM) that are optima
in F have at least one edge that is not allowed byP. So, they would
not be visited by a search constrained by this P.

We compute the fitness landscape under P;FP, and find it to
have a unique optimum (Fig. 2). For this poset,FP is unimodal with
a maximum at the true model. M’s basin of attraction in FP is lar-
ger than in F, as one might expect. This clearly suggests that we
are also enjoying a simplification of the ‘‘statistical part” of the
problem, which we observe with high probability (98 times out
of 100) in a sample of random networks. In two cases, we observed
two optima inFP (M and one of its subsets, data not shown). Thus,
greedy optimization of Eq. (3) in this setting would lead to the glob-
ally optimal solution M.

The above considerations are valid for the P derived as transi-
tive closure of M. In real cases, of course, we do not know M and
cannot trivially build this P. We can, however, try to approximate
P from D. In practical cases, of course, the landscape will still be
(Fig. 3.)
Steps marked with (H) can be implemented in different ways

(see Section 4.1–4.2).

Require: a dataset D over variables X, and two integers kp,
kb � 1;

1: let D,kp hD1; . . . ;Dkp i be kb bootstrap resamples from D, and
M � X�X be the set of non-reflexive edges over X.

2: compute the weighted consensus structure Pboot

Pboot ¼
[kp
i¼1

Ei jDi!1
f;MMi ¼ hEi; hii

n o
wPboot

ðxi ! xjÞ ¼
Xkp
w¼1

1Ew ðxi ! xjÞ; ð6Þ

where by Di!1
f;MMi we mean to learn the BN Mi from the

bootstrap sample Di using a single run, f-regularisation and
scanning all possible edges (M);

3: (I) remove loops from Pboot by solving

P ¼ arg max
P� #Pboot

P�acyclic

X
xi!xj2P

wPðxi ! xjÞ; ð7Þ

4: let D,kb hD1; . . . ;Dkb i, for any Di generate D̂i ¼ permðDiÞ; 5: compute 2kb BNs
under P

C ¼ fEijDi!1
f;PMi ¼ hEi; hiigCnull ¼ fEijD̂i!1

f;PMi ¼ hEi; hiig; ð8Þ

Note that here we use P to constrain the search space for each BN; 6: let
ri;j ¼ ½� � �1xðxi ! xjÞ � � �	x2C and rnull

i;j ¼ ½� � �1xðxi ! xjÞ � � �	x2Cnull
;

7: (I) to select xi ! xj, test H at level a with Multiple
Hypotheses Correction (MHC) and output the Bayesian
Network M ¼ hE; hMLEi where

(continued on next page)



E ¼ fxi ! xjjH : E½ri;j	– aE½rnull
i;j 	ghMLE ¼ argmax

h2H
log p DjE; hð Þ: ð9Þ can populate the models.4 Each models’ parameters (i.e., the condi-

tional probability tables) are dropped, and Pboot is instead aug-
mented with the non-parametric bootstrap scores via the set
indicator function 1XðyÞ ¼ 1 () y 2 X. This is just a way of counting
how often each edge is detected across the kp bootstrap resamples;

Fig. 3. Graphical representation of Algorithm 1. Left: first phase (construction of the poset P). Right: second phase (construction of the test under the poset P).
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4. Model selection for BNs via empirical Bayes

We present our method as Algorithm 1; the algorithm exploits a

combination of non-parametric bootstrap estimates, likelihood-fit
and hypothesis testing to infer a BN. The algorithm is conceptually

e choice of the regularization function f – e.g., BICwould select sparser models than
IC – regardless how good is our estimate of P (i.e., how likely is that P contains all
e true model edges). We term this the phenomenon ‘‘intrinsic bias” of the

egularizer.
divided in two phases (Fig. 3) that can be customized, as we discuss
in the next subsections.

Phase one: construction of the poset P. The first phase (steps
1–3) uses a bootstrap strategy to estimate an ordering P of the
model’s variables; this ordering constraints the factorization in
the second phase of the algorithm. The bootstrap is used in the fol-
lowing way. For kp times we sample with repetition a dataset of
equal size with respect to the input dataset D – i.e., this is a classic
non-parametric bootstrap scheme. For each bootstrap sample we
run the standard model selection strategy: i.e., we denote by
Di!1

f;MMi the learning of the model Mi from the bootstrap sample
Di using a single run (no restarts), f-regularisation and scanning
all possible edges (M) to create the model. This steps practically
creates kp models.

The union Pboot of all the kp models’ structures is obtained by
merging all the fits from the non-parametric bootstrap replicates.
This is a trivial graph union operation which, of course, does not
necessarily preserves the acyclic condition required by a BN. This
structure is called consensus as it contains the union of all the
models that are obtained by a standard regularized likelihood-fit
procedure. Notice that each model is obtained from one initial con-
dition, and without restrictions on the set of candidate edges that

4 In our implementation of the algorithm we use the default initial condition of
package bnlearn [26] to determine by hill-climbing the fit of each bootstrap resamples;
this is the empt model without edges. Of course, this initial condition can be
generated by using different strategies such as random sampling, or correlated initial
conditions.
5

thus wPboot
ð�Þ is proportional to the edges’ frequency across the kp

bootstrap models.
The graph induced byPboot is generally cyclic, and is weighted. In

step 3,we render it acyclic by selecting a suitable subset of its edges:
P#Pboot. This loop-breaking strategy is based on the idea of maxi-
mizing the scores of the edges inP, and ismotivated by the intuition
that true model edges should have higher bootstrap scores[12]. The
optimization problem that determines P, Eq. (7), can be solved in
different ways, as we discuss in Section 4.1.

Phase two: using P to construct a final model. The second
phase (steps 4–7) is the actual selection of the final output model.
In principle, we could just use the standard regularized likelihood-
fit procedure to select a model underP.5 Preliminary tests (data not
shown), however, have highlighted an intrinsic bias6 in the selected
ouput model, as a function of the regularizer f. We would like to
reduce to the minimal extent this effect, while enjoying the proper-
ties of f to minimize overfit. Thus, we exploit P to create an edge-
specific statistical test to detect true edges, and create the final out-
put model. Here, if P is a good approximation to the transitive clo-
sure of the true model (such as in the example of Section 3), then P
will direct the search to get better estimates for the test; therefore in
this case, an approximation is ‘‘good” if it contains all the true model
edges.

The test null hypothesis H0 is created from D, again by exploiting
a bootstrap procedure. We begin by creating (step 4) kb bootstrap

5 This would be equivalent to the model selection strategy adopted to process the
bootstrap samples, with P used as constraint for the set of edges that can be used to
populate the model.

6 Precisely, we observed that if we here proceed by selecting a model via
likelihood-fit, the variance in the estimated solution will be small and consistent with

th
A

th
r



resamples of D, as in step one of the algorithm; from each replicate

we generate a permutation matrix D̂i 2 Bn�m, with equivalent
empirical marginal distributions. The construction of the matrix
depends on the type of distributions that we are modelling; let

^

We propose two different strategies to solve the optimization
problem in Eq. (7) which are motivated by practical considerations.

1. (confidence heuristic). An approximate solution to the problem
can be obtained by a greedy heuristics that breaks loops accord-
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piðxjÞ and p̂iðxjÞ be the empirical marginals of xj in Di and Di. If xj

is discrete multivariate we require piðxjÞ ¼ p̂iðxjÞ. If xj is continu-
ous, we require the expectation and variance to be equivalent.
We achieve this with a shuffling approach: we independently per-
mute Di’s row vectors – in the algorithm denoted by function

permð�Þ. The joint distributions in each D̂i are random, so for each
pair ðxi; xjÞ we have a null model of their statistical independence
normalized for their marginal distributions. At this point we have
a pair of 2kb datasets, half of them are bootstrap resamples, and
the other half are matched permutation datasets. We can now fit
a model for each on of these datasets; in this case we use the same
fitting strategy adopted in the first step of the algorithm, but con-
straining the edges to include in the mode by using the poste P.
The obtained 2kb models are split into two groups depending on
the data we used to generate them (non-permuted versus per-
muted); the two groups are called C and Cnull (the models from
the null hypothesis), and the edges are counted as in the step

one of the algorithm. Thus, if we fit a model on Di and D̂i (step 5)
we expect that an edge that represents a true dependency will tend
to be more often present in C, rather than in Cnull.

Steps 6 and 7 performmultiple hypothesis testing for edges’ selec-
tion.We use themodels computed in step 5 as a proxy to test for the
dependencies. The vectorsri;j andrnull

i;j store howmany times xi ! xj

is detected in C and Cnull, respectively, so each ri;j is a sample of a
Binomial random variable over kb trials. Then, we can carry out a
Binomial test (or, if kb is large, a 2-sided T-test) with confidence a
and corrected for multiple testing. We will include every accepted
edge xi ! xj in the final output model M, augmented with the MLE

of its parameters (estimated fromthe original datasetD). Notice that
M is acyclic as, by construction,P is acyclic.

Complexity analysis. Our procedure has cost dominated by the
computation of the bootstrap estimates and likelihood-fits. In par-
ticular, for any single run of fits by hill-climbing, the same perfor-
mance and scalability of standard hill-climbing implementations is
to be expected (for that run). However, we note that our algorithm
has a design that allows for a simple parallel implementation to
compute each estimate (i.e., bootstrap resample and its
likelihood-fit). This seems particularly advantageous considering
the steady drop for the cost of parallel hardware such as high-
performance clusters and graphical processing units. Once all esti-
mates are computed, the cost of loop-breaking is proportional to
the adopted heuristics, and the cost of multiple hypothesis testing
is standard.

4.1. Removing loops from Pboot

The problem of determining a DAG (here P) from a directed

graph with cycles (here Pboot) is well-known in graph theory
[27]. This problem consists in detecting a set of edges which, when

6

removed from the input graph, leave a DAG – this set of edges is
called feedback edge set.

In Algorithm 1 edges in P will constrain the search space, so it
seems reasonable to remove as few of them as possible. Since the
input graph is weighted by the non-parametric bootstrap coeffi-
cients, we can also interpret the cost of removing one edge as pro-
portional to its weight. Thus, we need to figure out the
minimum-cost edges to remove, which corresponds to the mini-
mum feedback edge set formulation of the problem. In general, this
problem is NP-hard and several approximate solutions have been
devised (see, e.g., [28]).
ing to their weight wPboot
. The approach is rather intuitive: one

orders all the edges in Pboot based on their weight – lower scor-
ing edges are considered first. Edges are then scanned in order
according to their score and removed if they cause any loop in
Pboot. This approach is, in general, sub-optimal.
The algorithmic complexity of the method depends first on
sorting the edges and on the subsequent loop detection. Given
a number of a edges in Pboot, they can be sorted with a sorting
algorithm, e.g., quicksort [29], with a worst case complexity of
Oða2Þ (average complexity for quicksort Oða log aÞ). Then, for
each ordered edge, we evaluate loops, e.g., either by depth-
first search or breadth-first search (complexity Oðnþ aÞ, with
n being the number of vertices[30]). This leads to a total com-
plexity of Oða2Þ + Oðnþ aÞ in the worst case for removing the
loops.

2. (agony). In [31], Gupte et al. define a measure of the hierarchy
existing in a directed graph. Given a directed graph G ¼ ðV ; EÞ,
let us consider a ranking function r : V ! N for the nodes in
G, such that rðuÞ < rðvÞ expresses the fact that node u is ‘‘high-
er” in the hierarchy than v. If rðuÞ < rðvÞ, then edge u ! v is
expected and does not cause any ‘‘agony”. On the contrary, if
rðuÞ P rðvÞ edge u ! v would cause agony.
We here remark that any DAG induces a partial order over its
nodes, and, hence, it has always zero agony: the nodes of a
DAG form a perfect hierarchy. Although the number of possible
rankings of a directed graph is exponential, Gupte et al. provide
a polynomial-time algorithm for finding a ranking of minimum
agony. In a more recent work, Tatti et al. [32] provide a fast
algorithm for computing the agony of a directed graph. With
a being the number of edges of G, the algorithm has a theoret-
ical bound of Oða2Þ time.
Therefore, we can compute a ranking over Pboot at minimum
agony, i.e., a ranking of the nodes with small number of incon-
sistencies in the bootstrap resampling, thus which maximizes
the overall confidence. With such a ranking, we can solve Eq.
(7) by removing from Pboot any edge which is inducing agony.

Proposition 4.1. The poset P built by agony is a superset of the one
computed by confidence heuristic. See Fig. 4.

4.2. Multiple hypothesis testing
Correction for Multiple Hypotheses Testing (MHC) can be done in
two ways: one could correct for false discovery rate (FDR, e.g.,
Benjamini-Hochberg) or family-wise error rate (FWER, e.g., Holm-
Bonferroni). The two strategies have different motivation: FWER

corrects for the probability of at least one false positive, while
FDR for the proportion of false positives among the rejected null
hypotheses. Thus, FWER is a stricter correction than FDR.

Given these premises, it is possible to define a rule of thumb. If
one has reason to believe thatP is ‘‘close” to the true model, i.e.,P
has few false positives, then a less stringent correction such as FDR
could be appropriate. Otherwise, a FWER approach might be
preferred.

Multiple hypotheses testing is also influenced by the number of
tests that we carry out. We perform jPj tests, and hence FWER

scales as a=jPj. The theoretical bound on jPj is the size of the big-
gest direct acyclic graphs over n nodes



jPj 6
Xn
i¼0

n� i

!
� n ¼ nðnþ 1Þ � 2n

2
6 jPbootj ¼ Oðn2Þ: ð10Þ

Thus, the size of Pboot is a bound to the number of tests. In general,
because of the regularization term in the model fit of Eq. (6), one

The aim of the test is to assess which configuration of poset and
hypotheses testing performs best for Algorithm 1, and compare
its performance against Hill Climbing. We generated random net-
works (structures and parameters) with different densities – i.e.,
number of edges with respect to number of variables – and various

Fig. 4. Performance with synthetic data for binary variables with f ¼ BIC. In top panel we show precision (PPV) and recall (TPR) for BNs with n nodes, density d, and m
samples perturbed at noise rate m. We compare Hill Climbing with k ¼ f0;200g (D!k

f;MM) against Algorithm 1 with kp ¼ kb ¼ 100. 100 BNs for each parameter configuration
are generated. The trends suggest a similar PPV but better TPR for Algorithm 1 in all settings. The performance with the confidence P seems independent of multiple
hypotheses correction, which instead impacts on the performance with the agony P (FDR 0:2). Other tests carried out for n ¼ 10; d ¼ f0:4;0:6g;m ¼ f50;100g, continuous
variables and Bayesian scores confirm these trends (Supplementary Figs. S8–S11). In the bottom-left panel we show the density of the inferred models for different values of
d, highlighting the intrinsic tendency of the plain regularization to low d� . In the bottom-right panel we measure the overlap between the posetsP built by confidence or agony,
providing evidence to support Proposition 4.1.
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expects jPbootj 
 n2.

5. Case studies

We performed extensive comparisons of our approach to the
baseline Hill Climbing by generating synthetic data. Then, we
tested the algorithm against a well-known BN benchmark, and
against real cancer genomics data. We provide R implementation
of all the methods mentioned in this manuscript, as well as sources
to replicate all our findings (Supplementary Data). For Hill Climb-
ing, we used the bnlearn package [26].

5.1. Tests with synthetic data

We carried out an extensive performance test that we recapitu-
late here and in the Supplementary Material. A summary of all the
considered configurations is provided in Supplementary Table S1.

7 Correlated restarts improve Hill Climbing solutions (data not shown). However,
for a fair comparison with Algorithm 1 we should have then correlated the initial
solutions used to compute P. To avoid including a further layer of complexity to all
the procedures, we rather not do that.
7

number of variables. From those BNs and a random (uniform)
probability associated with each edge, we generated several data-
sets and perturbed them with different rates of false positives and
negatives (noise). For each model inferred, we computed standard
scores of precision (positive predictive value, PPV) and recall (true
positives rate TPR).

Results for discrete networks with the f ¼ BIC are shown in
Fig. 4. For continuous networks (Gaussian) with also f ¼ AIC in
Supplementary Fig. S8. Analogous tests for Bayesian scoring func-
tions are in Supplementary Figs. S9 (f ¼ BDE), S10 (f ¼ K2) and
S11 (f ¼ BGE). The comparison suggests that Algorithm 1 has a
similar ability to retrieve true edges of Hill Climbing, PPV, but also
a tendency to retrieve models with more edges, TPR. Thus, in all
settings Algorithm 1 seems to improve remarkably over the base-
line approach. The comparison suggests also that edge-selection by
hypotheses testing seems less biased towards returning sparse
models than a procedure based only on regularization. However,
both approaches seem to converge towards fixed densities of the
inferred model, with Algorithm 1 giving almost twice as many
edges as Hill Climbing.

The effect of k independent initial conditions for the Hill Climb-
ing procedure does not seem to provide noteworthy improve-



ments.7 Similarly, strategies for MHC do not seem to increase the
performance in a particular way. For agony, a stringent correction –
FWER – seems too reduce TPR, while FDR does not seem to affect
the scores. MHC does not seem to have any effect on the confidence

poset. Interestingly, the comparison provides evidence that the agony

cancer cells to grow and proliferate out of control [36]. Mutations
occur by chance, i.e., as a random process, and are inherited
through divisions of cancer cells. The subset of mutations that trig-
ger cancer growth by allowing a clone to expand, are called drivers
[37]. Drivers, together with epigenetic alterations, orchestrate can-
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poset is a superset of the confidence one, as the percentage of edges of
the latter missing from the former approaches almost 0. Other tests
with these data suggest a minor improvement of performance if we
use 1000 bootstrap resamples, or different configurations of the
parameters (data not shown). It is worth also to observe that, con-
cerning the second bootstrap to create the null models, no major
changes where detected for larger kb; so in practice kb ¼ 100 could
be considered as a suitable value across multiple application
domains.

5.2. The alarm network

We consider the standard alarm network [33] benchmark, as
provided in the bnlearn package [26]. alarm has n ¼ 37 variables
connected through 46 edges, for a total of 509 parameters.

In Fig. 5 we show the result of model selection for large samples
size and f ¼ BIC. The comparison is performed against Hill Climb-
ing with k ¼ 0 and k ¼ 200, whereas Algorithm 1 is executed with
kp ¼ kb ¼ 100. For large m, most setting seem to achieve the same
performance; for lower m, highest PPV and TPR are achieved by
Algorithm 1 (confidence, FWER). For this model, the use of multiple
initial conditions for the Hill Climbing procedure reduces TPR; this
is due to the number of spurious edges estimated, as the number of
true positives is the same for k ¼ 0 and k ¼ 200. The models
inferred by Algorithm 1 are strictly contained, and the confidence
poset has higher scores than the agony one.

For this particular network we investigated also the effect of
different sample size m, and the p-value for the statistical test on
the performance of the algorithms. In Fig. 6 we show boxplots
obtained from 100 datasets generated with different sample sizes.
Results suggest minor changes in the performance with m P 103,
and generalize the findings of Fig. 5. Log–log plots show a consis-
tent gap in the p-value statistics for the two models computed
by Algorithm 1 shown in Fig. 5. This is a phenomenon that we
observed in all synthetic tests for sufficiently large m (data not-
shown), and that suggests the correctness of the statistical test in
Algorithm 1.

Analysis of the variation of the performance as a function of the
p-values’ cutoff – for p < 0:05; p < 10�2 and p < 10�3 with
m ¼ 100 – shows small increase in PPV for lower p-values, but
not meaningful changes in TPR scores (Supplementary Fig. S12).

As a final remark, we note that with this dataset standard Hill
Climbing without multiple restarts seems to achieve a better per-
formance, compared to a search where multiple restarts are per-
formed (see Fig. 6). This behaviour might suggest the presence of
a non-trivial relation underlying the ruggedness of the fitness land-
scape of the optimisation problem, and the role of restarts com-
puted from correlated solutions. This kind of relation might
require the development of more advanced resampling strategies,
which could be approached leveraging on a bootstrap-based
framework.

5.3. Modeling cancer evolution from genomic data

Cancers progress by accumulating genetic mutations that allow

7 Correlated restarts improve Hill Climbing solutions (data not shown). However,
for a fair comparison with Algorithm 1 we should have then correlated the initial
solutions used to compute P. To avoid including a further layer of complexity to all
the procedures, we rather not do that.
8

cer initiation and development with accumulation and activation
patterns differing between individuals [38]. This huge genotypic
diversity – termed tumor heterogeneity – is thought to lead to the
emergence of drug-resistance mechanisms and failure of treat-
ments [39].

Major efforts are ongoing to decipher the causes and conse-
quences of tumor heterogenity, and its relation to tumor progres-
sion (see, e.g., [40], and references therein). Here, we consider
the problem of inferring a probabilistic model of cancer progression
that recapitulates the temporal ordering, i.e., qualitative clocks, of
the mutations that accumulate during cancer evolution [41]. We
do this by scanning snapshots of cancer genomes collected via
biopsy samples of several primary tumors; all the patients are
untreated and diagnosed with the same cancer type (e.g.,
colorectal).

In this model-selection problem variables are n somatic muta-
tions detected by DNA sequencing – e.g., single-nucleotide muta-
tions or chromosomal re-arrangements – annotated across m
independent samples. Thus, a sample is an n-dimensional binary
vector: B ¼ f0;1g, and xi ¼ 0 if the i-th lesion is not detected in
the patient’s cancer genome. We aim at inferring a model that
accounts for the accumulation of the input variables during tumor
evolution in different patients.

BNs do not encode explicitly this ‘‘cumulative” feature; how-
ever, they were recently combined with Suppes’ theory of proba-
bilistic causation [42], which allows to describe cumulative
phenomena. Suppes-Bayes Causal Networks (SBCNs, [43]) are BNs
whose edges satisfy Suppes’ axioms for probabilistic causation,
which mirror an expected ‘‘trend of selection” among the lesions,
which is at the base of a Darwinian interpretation of cancer evolu-
tion [36]. Suppes’ conditions take the form of inequalities over
pairs of variables that are evaluated before model-selection via a
non-parametric bootstrap procedure. The model-selection’s land-
scape is then pruned of the edges that do not satisfy such condi-
tions; thus, we can frame this as a poset

PSuppes ¼ fxi ! xjjpðxiÞ > pðxjÞ ^ pðxjjxiÞ > pðxjj – gxiÞg ð11Þ
that we estimate from D, along the lines of [44]. The parameters h of
a SBCN will encode these conditions implicitly, rendering them
suitable to model cumulative diseases such as cancer or other dis-
eases [43].

We will use data from [34], which collected and pre-processed
high-quality genomics profiles from The Cancer Genome Atlas8

(TCGA). We consider a dataset of m ¼ 152 samples and n ¼ 54 vari-
ables, which refers to colorectal cancer patients with clinical
Microsatellite Stable Status9 (MSS). The input data for MSS tumors
consists in mutations (mut, mostly missense etc.) and copy numbers
(amp, high-level amplifications; del, homozygous deletions) detected
in 21 genes of 5 pathways that likely drive colon cancer progression
[45]. 20 out of 54 variables are obtained as non-linear combinations
of mutations and copy numbers in the original genes. For instance,

xg � xpik3ca:mut _ xigf2:amp _ xerbb2:amp _ xerbb2:mut _ ðxpten:mut � xpten:delÞ

is a variable xg associated to the combination (in disjunctive _ and
exclusive � form) of the events associated to the driver genes of the

8 https://cancergenome.nih.gov/.
9 The study in [34] analyses also highly Microsatellite Instable tumors. Unfortu-

nately, that subtype’s data are associated to a very small dataset of m ¼ 27 samples,
and thus we here focus only on Microsatellite Stable tumors, a common subtype
classification of such tumors.

https://cancergenome.nih.gov/


PI3K pathway PIK3CA, IGF2, ERBB2 and PTEN. These new variables are called
formulas (see [34] for a full list) and are included in D before assess-
ment of Suppes’ conditions for two reasons. They capture the
inter-patient heterogenity observed across the TCGA cohort (i.e., as

Climbing constrainted by PSuppes and with one initial condition
(Fig. 4 in [34]). In Fig. 7 we show the model obtained with
kp ¼ kb ¼ 100 and the same PSuppes estimated in [34] via Wilcoxon
test (p < 0:05Þ after the marginal and conditional distributions are
assessed with k bootstrap resamples. In the test construction

Fig. 5. Model selection for the alarm network with m ¼ 105 samples, and f ¼ BIC. We compare Hill Climbing with k ¼ 0 and k ¼ 200 (D!k
f;MM) against Algorithm 1 with

kp ¼ kb ¼ 100. The left model of each pair is alarm, the right isM. Edges are classified by color, depending which kind of false positive or negative they represent, and precision
and recall scores are annotated. Algorithm 1 (confidence, FWER) achieves the best scores with Hill Climbing with k ¼ 0; for k ¼ 200 the Hill Climbing solution shows overfit.
The models inferred by Algorithm 1 are strictly contained, and the confidence poset has higher scores than the agony poset.

Fig. 6. For different sample size m we generated 100 datasets to generalize the comparison of Fig. 5. The boxplots show the distributions of PPV and TPR for the alarm

network with m samples. The log–log plots show the gap of the p-value statistics for the two models computed by Algorithm 1 and shown in Fig. 5.
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biological ‘‘priors”). They limit the confounding effects of attempt-
ing inferences from hetergenous populations (i.e., as statistical
‘‘priors”).

We execute only the second part of our algorithm, i.e., the test,
and compare the inferred model against the one obtained by Hill
p

(p < 0:01Þ, we also use 100 correlated restarts of the Hill Climbing
to get better estimates for C.

We observe how our model is capable of capturing a lot of
known features of MSS tumors as described in the seminal work



of [35]. In fact, we find APC as the main gene starting the progres-
sion followed by KRAS. Afterward, we observe multiple branches,
yet involving genes from the PI3K (i.e., PIK3CA) and TGFb (i.e.,
SMAD2 and SMAD4) pathways, which are suggested to be later
events during tumorigenesis of MSS tumors. While TP53 is not

this tumor type shows considerable heterogeneity across different
patients [46], and evidences of TP53 as an early event in this can-
cer’s progression have been found [47].

Fig. 7. We estimated a model of progression of colorectal cancer (CRC) from a set of MSS tumors studied in [34]. Before inference, a set of boolean formulae is computed and
added to the input data as new variables. These represent non-linear combinations of mutations and copy numbers alterations (CNAs) in the original genes, as computed in
[34]. In top, we show the graphical notation of a formula that involves the genes activating the PI3K pathway; the intuition of a formula is to capture a functional module that
is disrupted by mutations/CNAs differently across all patients. The model is then obtained with kp ¼ kb ¼ 100 and the same PSuppes estimated in [34] via Wilcoxon test
(p < 0:05Þ, after the marginal and conditional distributions are assessed with kp bootstrap resamples. In the test construction (p < 0:01), we also use 100 correlated restarts of
the Hill Climbing to get better estimates for C. The linear progression model is due to Fearon and Vogelstein [35].
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inferred to be a late event in the progression, we still find the
P53 pathway to be involved in advanced tumors with ATM being
one of the final nodes in one branch of the model. We remark that
6. Conclusions

In this paper we consider the identification of a factorization of
a BN without hidden variables. This model-selection task is central



to problems in statistics that require the learning of a joint distri-
bution made compact by retaining only the relevant conditional
dependencies in the data.

A common approach to it consists of a heuristic search over the
space of factorizations, the result being the computation of the

[2] Daphne Koller, Nir Friedman, Probabilistic Graphical Models: Principles and
Techniques, MIT press, 2009.
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MLE of the structure and the parameters of the model, or of a mar-
ginalised likelihood over the structures. Surprisingly, the simple
Hill-Climbing search strategy augmented with a regularized score
function, provides satisfactory baseline performance [6].

Here, we derive an algorithm based on bootstrap and multiple
hypothesis testing that, compared to baseline greedy optimization,
achieves consistently better model estimates. This result can stim-
ulate further studies on the theoretical relation between the log-
likelihood function of a BN and greedy optimization, and attempts
also at unifying two streams of research in BN model-selection.

On one side, we draw inspiration from the seminal works by
Friedman et al. which investigated whether we can assess ‘‘if the
existence of an edge between two nodes is warranted”, or if we ‘‘can
say something of the ordering of two variables” [12]. Precisely, Fried-
man et al. answered to these questions by showing that high-
confidence estimates on certain structural features, when assessed
by a non-parametric bootstrap strategy, can be ‘‘indicative of the
existence of these features in the generative model”.

On the other side, we follow the suggestion by Teyssier and
Koeller on the well-known fact that the best network consistent
with a given node ordering can be found very efficiently [13]. Teys-
sier and Koeller consider BNs of bounded in-degree, and ‘‘propose a
search not over the space of structures, but over the space of orderings,
selecting for each ordering the best network consistent with it”. Their
motivation is driven by algorithmic an argument: ‘‘[the orderings’]
search space is much smaller, makes more global search steps, has a
lower branching factor, and avoids costly acyclicity checks”.

Here, we connect the two observations in one framework. We
first estimate orderings via non-parametric bootstrap, combined
with greedy estimation of the model in each resample. Then, after
rendering the model acyclic, we use it to select one final model that
is consistent with the orderings. Our approach improves regardless
of the information-theoretic or Bayesian scoring function adopted.
To this extent, we use the orderings as an empirical Bayes prior
over model structures, and compute the maximum a posteriori esti-
mate of the model. The parameters are then the MLE estimates for
the selected structure. Our result is based on a refinement of the
original observation by Teyssier and Koller: when we know the
ordering, besides improving complexity we enjoy a systematic
reduction in the ‘‘statistical” complexity in the problem of identify-
ing true dependencies. We postulate this after observing that with
the best possible ordering – i.e., a transitive closure of the genera-
tive model – the fitness landscape becomes unimodal.
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