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A B S T R A C T

Software Defined Networking (SDN) simplifies network management and significantly reduces operational
costs. SDN removes the control plane from forwarding devices (e.g., routers and switches) and centralizes
this plane in a controller, enabling the management of the network forwarding decisions by programming
the control plane with a high-level language. However, its centralized architecture may be compromised by
flooding attacks, such as Distributed Denial of Service (DDoS) and portscan. Facing this challenge, we propose
an Intrusion Detection System (IDS) based on online clustering to detect attacks in an evolving SDN network
taking advantage of the entropy of source and destination IP addresses and ports. Our proposal is focused
on avoiding the demand for labeling and previous knowledge to provide a practical and accurate method
to address real-life online scenarios. Moreover, our proposal paves the way for a comprehensive analysis
by projecting the cluster’s structure over the feature space, providing insights on intensity, seasonality, and
attack type. Our experiments were carried out with the DenStream algorithm in several databases attacked by
DDoS and portscan with different intensities, durations, and overlapping patterns. When comparing DenStream
performance to Half-Space-Trees, an accurate online one-class classification algorithm for anomaly detection,
it was possible to expose the capacity of our unsupervised proposal, overcoming the one-class solution, and
reaching f-measure rates above 99.60%.
1. Introduction

In the last decade, computer networks have been expanded dramat-
ically in terms of usage and complexity to support emerging technolo-
gies. New architectures and devices have become more common, such
as cloud computing, virtualization, and the Internet of Things (IoT).
Along with the widespread adoption of emerging technologies, new
security issues have also emerged, forcing these technologies to tackle
new forms of exploitation to provide reliable and resilient network
environments (Aldribi, Traoré, Moa, & Nwamuo, 2020; Gamage &
Samarabandu, 2020).

Network anomalies can occur from hardware or software issues, a
hardware fault may overwhelm critical devices affecting the network
functioning, and a misconfiguration of network resources opens a gap
for vulnerability exploitation (Proença, Zarpelão, & Mendes, 2005).
Intruders can take advantage by exploiting all these possibilities, such
as manufacturing backdoors for malware or other penetrative purposes,
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hardware tampering with invasive operations, and launching zero-day
attacks. In this manner, security threats remain a challenge for network
managers, even more with the vast amounts of sensitive information
transmitted through resource-constrained devices and over the Internet
without any encryption, using heterogeneous technologies and com-
munication protocols (Aldweesh, Derhab, & Emam, 2020; Liu, Quan,
Cheng, Zhang, & Yu, 2019).

Detecting anomalous behavior in networks with constant changes
in their temporal data has been gaining prominence among the in-
dustry and the scientific community (Calikus, Nowaczyk, Sant’Anna, &
Dikmen, 2020; Kopp, Pevnỳ, & Holeňa, 2020). This kind of detection
is a fundamental requirement for providing prompt alert and suitable
problem mitigation towards supporting available, reliable, and resilient
network services (Sharma, Pilli, Mazumdar, & Gera, 2020; Thakkar &
Lohiya, 2020; Yamansavascilar, Baktir, Ozgovde, & Ersoy, 2020). In
this context, Software Defined Networking (SDN) has been used to
 Accepted 11 November 2021
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create a dynamic, flexible, and autonomous environment with secure
mechanisms to protect network assets, switches, routers, servers, and
other devices (De Assis et al., 2018; Sahay, Meng, & Jensen, 2019).

Due to its intrinsic characteristics, SDN has become compelling
or managing Local Area Networks (LANs) infrastructures, as well as
onverged and hyper-converged data centers (Barakabitze, Ahmad, Mi-
umbi, & Hines, 2020; Yurekten & Demirci, 2021). SDN centralizes the
network management into a programmable controller, decoupling the
data and control planes and communicating with the network devices
to instruct them on handling the traffic. However, the centralized
design provided by the SDN is a convenient target for Distributed
Denial of Service (DDoS) attacks (Carvalho, Abrão, de Souza Mendes,
& Proença, 2018; Correa Chica, Imbachi, & Botero Vega, 2020; Singh
& Bhandari, 2020; Ujjan et al., 2020; Yi, Wang, Huang, & Zhao, 2020).

An Intrusion Detection System (IDS) is a system designed to au-
tomate the intrusion detection process and help identify abnormal
behavior, leading to the discovery and identification of actual at-
tacks (Abdulqadder, Zhou, Zou, Aziz, & Akber, 2020; Gamage & Sama-
rabandu, 2020; Sovilj, Budnarain, Sanner, Salmon, & Rao, 2020). An
IDS can be divided into host-based (HIDS) or network-based (NIDS);
the former recognizes any unusual patterns in the hosts, the latter
recognizes these patterns in the network, protecting against possi-
ble intrusions (Masdari & Khezri, 2020). NIDS can be divided into
signature-based and profile-based; the signature-based approaches use
the signature of the attacks to detect them in the network traffic.
Several new attacks frequently emerge, requiring a continuous updating
of these signatures, a drawback of this approach. On the other hand,
profile-based is driven by network history data, predicting under the
assumption that a typical behavior deviation from the actual one
indicates an attack. One of the advantages of this approach is detect-
ing unknown attacks just by analyzing the expected behavior of the
network (Gamage & Samarabandu, 2020; Novaes, Carvalho, Lloret, &
Proença, 2020).

Different IDS approaches have been proposed to detect anomalies,
handling the increasing number of security threats and a massive vol-
ume of network data (Jin, Lu, Qin, Cheng, & Mao, 2020; Pena, Barbon,
Rodrigues, & Proença, 2014; Sahay et al., 2019; Singh & Behal, 2020).
Nonetheless, many approaches demand labeled samples to create a
detector module or use costly tuning strategies to achieve desirable
outcomes. Both are very prohibitive when dealing with current network
speed and complexity (Carvalho et al., 2018).

Dealing with data streams requires algorithms capable of perform-
ing fast, and incremental processing of data objects to address time
and memory limitations (Kim & Park, 2020; Lopes, Santana, da Costa,
Zarpelão, & Barbon, 2020). Stream sensors are numerous and operate
at high speed, allowing few opportunities for human intervention, let
alone for experts (Ahmad, Lavin, Purdy, & Agha, 2017). In networks,
due to the high diversity and volume of traffic, manual labeling is
not viable. Thus, online clustering algorithms have been developed
to tackle the challenges of detecting attacks without prior knowl-
edge about the data and suitable predictive performance in an online
fashion.

In this work, we propose a network-based IDS grounded on the
usage of an unsupervised stream algorithm to detect attacks and pro-
tect SDN environments. The SDN architecture allows our IDS to be
a standalone solution that uses the SDN programmability to increase
network monitoring and security. Our approach acts online, updating
itself, and profiles the network traffic according to the environment
shifts. In this manner, the IDS is frequently adapted and can be ready
to detect network anomalies while processing one traffic observation at
a time.

We selected DenStream clustering as the unsupervised stream ker-
nel using various datasets with different attack configurations. Den-
Stream (Cao, Estert, Qian, & Zhou, 2006) is one of the most promising
and successful algorithms applied in different stream applications (Li,
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2019). Furthermore, it (Wankhade, Hasan, & Thool, 2013) described
that DenStream requires less processing time and space and can also
handle concept drifts. Concept Drift refers to a change in the whole
distribution of the problem at a certain point in time, which poses a
challenge for the traditional IDS solutions (Babüroğlu, Durmuşoğlu, &
Dereli, 2021; Wang & Jones, 2017).

Our IDS was evaluated in terms of detection performance, delay
in recognizing an attack, and insights about each infection behav-
ior. To create a critical comparison, we consider the proposed IDS
performance with the Half-Space-Trees (HS-Trees) (Tan, Ting, & Liu,
2011), a well-known one-class stream classification algorithm. The
main contributions of this work are:

• The usage of unsupervised online anomaly detection to match
real-life scenarios;

• Comprehensive support of anomalies based on massive experi-
mentation based on multiple simultaneous attacks with several
intensities, duration, and overlapping;

• Analysis of response delay to detect portscan and DDoS attacks
under several scenarios.

The remainder of this paper is organized as follows. Section 2
discusses related work. In Section 3, we present the system design prin-
ciples. Section 4 details the test scenarios and how the experimentation
is carried out. Section 5 describes the results and performance of the
system. Finally, Section 6 concludes the paper.

2. Related work

Many works already use stream mining techniques to perform
anomaly detection. Mulinka and Casas (2018) demonstrated the fea-
sibility of using stream mining techniques compared to their respective
batch versions. The authors compared kNN, Hoeffding Adaptive Trees
(HAT), Adaptive Random Forests (ARF), and Stochastic Gradient De-
scent (SGD). They also used Adaptive Windowing (ADWIN) to set
the size of the windows used. Stream and batch algorithms achieved
comparable performance. In some cases, the stream version overcame
its batch competitors, particularly in Concept Drift scenarios using ARF
and SGD.

Another work comparing batch and stream versions was presented
by Shin, Yooun, Shin, and Shin (2018). The compared models were Ho-
effding Tree, Naive Bayes (NB), kNN, Very Fast Decision Rules (VFDR),
and SGD using the KDDCup 99 dataset. The authors concluded the
batch method obtained the best results when evaluating each algorithm
using both versions. However, the time and memory used by the stream
mode were smaller. The batch mode becomes impractical in resource-
limited scenarios due to the memory required, making the stream
method a viable alternative in these cases. A deep discussion about the
stream method and its capacity to reduce memory consumption can be
found in da Costa et al. (2018).

Yin, Xia, Zhang, Sun, and Wang (2018) developed an approach
grounded on clustering algorithm as an intrusion detection mechanism.
The proposal uses a clustering algorithm to mine the data stream and
detect patterns. An attenuating sliding window technique was used
to reduce the importance as the data became obsolete. The intrusion
detection system alerts the network administrator when a stream is
considered abnormal.

Another approach using clustering was, Viegas, Santin, Abreu, and
liveira (2017), which applied Micro Cluster Outlier Detection (MCOD)

or detection. This approach is focused on the adversarial setting area,
reventing the attacker from avoiding the intrusion detection mech-
nism by using advanced attack techniques, e.g., causative and ex-
loratory strategies. According to the authors, the proposed approach
ealt with DDoS attacks and provided a constantly updated detection

ystem.
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Chenaghlou, Moshtaghi, Leckie, and Salehi (2018) proposed On-
CAD, an online clustering algorithm for anomaly detection. Their pro-
posal uses Gaussian Clusters as the primary detection mechanism. The
window concept is also used to split the data stream into time windows.
The approach initially generates clusters of standard network behavior;
as new samples arrive, the system assesses whether a compatible cluster
exists. Otherwise, it is considered a possible anomaly or an emerging
cluster. In the second stage, all samples from a window are used, and
a DBScan is performed to locate emerging clusters and, consequently,
the anomalies. The proposed algorithm was better than the existing
compared algorithms, Online K-means and Adaptive Resonance Theory
(ART-2). However, the time required to run this approach is longer.
Synthetic and public datasets were tested, and in both, the proposed
system obtained a better detection performance. The downside is the
execution time, leading to a detection lag that can compromise the
anomaly detection properly and open gaps in the security system.

The work presented by Zolotukhin and Hämäläinen (2018) pro-
posed an approach that detects DDoS attacks on encrypted traffic.
The proposal compared three algorithms: K-Means, K-Medoids, and
Fuzzy C-Means. Each algorithm was applied in batch and online mode.
The detection procedure is based on source IP and port, destination
addresses, duration, packet numbers, and bytes sent per second. It also
uses statistical data, such as the maximum, mean, and minimum values
of the packet size. The online mode uses time windows to cluster the
network behaviors. According to the authors, the online version of K-
means and offline mode of k-medoids achieved the best results. These
approaches were able to achieve a high detection performance and keep
the number of false alarms low. This approach is only specialized in
DDoS attacks, and they could be explored for other attack types.

Liu, Hu, and Shan (2021) proposed a detection method based on
fast Fourier transform (FFT) and information entropy. The authors
used the FFT coefficients and entropy values as features to train a
neural network (NN) to detect DDoS attacks. The work defined each
portion of network traffic data as a network behavior and proved
the network traffic data conformed to the Riemann flow structure. A
Riemann manifold generalizes Euclidean space’s metric, differential,
and topological concept to geometric objects that locally have the same
structure as Euclidean space but globally can represent curved shapes.
The method used the quantitative features of stream data like flow
duration, packet amount, packet size, and source and destination IP
to calculate frequency-domain information. According to the authors,
the proposed method reached high accurate values. However, the false
detection rate and the missed detection rate for detecting UDP and
UDPlag type was high because the high degree of similarity between
two types of the data packet.

Another work using HAT was presented by Corrêa, Enembreck, and
Silla (2017). The proposal was an IDS to detect attacks in the Kyoto
2006 dataset. The authors compared the proposed algorithm with kNN,
NB, and a Perceptron Neural Network as the algorithm in the classifica-
tion tree node. The results revealed the advantages of HAT and kNN to
detect anomalies. The authors reported that the HAT outperformed the
other compared algorithms. However, the generated tree by HAT has
many nodes, making it difficult for a network administrator to analyze
the generated model.

Gore and Gupta (2014) developed an IDS composed of VFDT and
ID3. The system adopted ID3 to generate static rules based on the
anomaly signature from KDD Rule Base. According to these rules, the
incoming network traffic is classified and forwarded to the VFDT to
perform the incremental decision model. These incremental models
classify new packets on the network and are continuously updated. The
approach was capable of detecting anomalies with an initial accuracy
under 70%. As time passes, the model learns the patterns and updates
the dynamic rules delivering accuracy boosting.

Among the presented works, the works Mulinka and Casas (2018),
Shin et al. (2018), Yin et al. (2018), require labeled samples for the

training phase. In addition, there are works that need an initial training n
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phase (offline) to learn the pattern, like as Dong and Japkowicz (2016),
iegas et al. (2017), Yin et al. (2018) or performs a detection through
ignatures such as Gore and Gupta (2014). Some proposals do not
etect anomalies using the sample’s positioning in relation to its search
pace, such as Chenaghlou et al. (2018), Corrêa et al. (2017), Zolo-
ukhin and Hämäläinen (2018). Moreover, none of the cited proposals
ddressed the attack recognition delay.

Our work presents an unsupervised online approach designed to
etect anomalies and get insights from the patterns based on the search
pace itself. In other words, the network administrator can comprehend
he kind of attack, intensity, and evolution based on the cluster position
n the projection of the feature space. Further information on multiple
imultaneous attacks can also be addressed. Moreover, our analysis
onsiders the lag between the beginning of the attack strike and its
ecognition.

. Unsupervised online learning

When learning from data streams, algorithms need to deal with
onstraints, such as the (potentially) infinite size of the stream, and
hat their probability distribution may change over time (da Costa
t al., 2018; Silva et al., 2013). A clustering problem consists of
etermining a finite set of features that describe the data in an un-
upervised learning strategy. Features, also called as attributes, can
e quantitative, ordinal, or qualitative when representing a property
r attribute from the stream, particularly in network environments,
ost of them are quantitative, i.e., represented by continuous values.

everal features can be used in the network’s behavior characterization,
uch as IP addresses, ports, protocols, among others. Generally, features
hat describe traffic volume, such as bytes and packets transmitted,
re commonly used in anomaly detection. However, these features
an cause the wrong classification when few hosts use the network
esources massively, generate significant peaks in these features, and
istort the real behavior of the network (Carvalho et al., 2018).

Online clustering algorithms need to continuously create and update
heir clusters while also handling memory and time restrictions. The
ost common approaches are based on the distance between sam-
les as similarity criteria, which can be organized as Gama (2010),
uch as Partitioning, Micro-clustering, Grid-based, Model-based, and
ensity-based algorithms. Partitioning algorithms follow the assump-

ions of traditional k-Means grounded on minimizing an objective
unction. Micro-clustering algorithms have deleveraged wide-used clus-
ering methods on stream data, for example, BIRCH (Zhang, Ramakr-
shnan, & Livny, 1997) and CluStream (Aggarwal, Philip, Han, & Wang,
003). These algorithms perform in two steps: the former summarize
he online data to group the data into micro-clusters, and the latter is an
ffline step that delivers a general model of micro-clusters. Grid-based
nd Model-based algorithms use a multilevel granularity structure and
odel fitting, respectively. Both types are driven by solid a priori

nowledge, which poses some challenges when dealing with anomalies.
Density-based algorithms take advantage of the connectivity be-

ween regions and their density, e.g., DenStream (Cao et al., 2006),
o provide arbitrary numbers and forms of clusters. We consider this
ype of algorithm suitable for anomaly detection since the clustering
rocedure does not require hyperparameters related to an expected
umber of clusters (or behaviors) demanding little previous knowledge
r modeling. Moreover, density metrics and cluster structure can help
he administrator comprehend the attack intensity and further pattern
nalysis due to the compactness of representation, capacity to track
luster changes, and clear identification of outliers. Thus, we applied
enStream in our proposed IDS architecture because it matches the

tream mining constraints and provides complete attack analysis.
The DenStream algorithm is an adaptation of DBSCAN for data

treams grounded on some concepts of micro-clusters. It uses the con-
ept of micro-clusters (MC) to create, delete, and update clusters dy-

amically using a small amount of memory. A MC is defined as 𝑚𝑐𝑖 =
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Table 1
DenStream hyperparameters.

Hyperparameter Description

𝜆 Decay factor that limits the influence of past samples
𝛽 Outlier tolerance factor
𝜇 Core weight threshold
𝜖 Maximum radius of a micro-cluster
𝑣 Number of instances
𝜅 Threshold to define whether P-MC is inside the PA

{𝐶𝐹 1
𝑖, 𝐶𝐹 2

𝑖, 𝑤𝑖}, where 𝐶𝐹 1
𝑖 is the weighted linear sum of the feature

alues of all instances (network flows) in 𝑚𝑐𝑖, 𝐶𝐹 2
𝑖 is the weighted

squared sum and 𝑤𝑖 is the weight of 𝑚𝑐𝑖, i.e., the sum of its instances’
weights (usually each instance has a weight of 1).

The center of 𝑚𝑐𝑖 is defined as 𝑐𝑚𝑐𝑖 = 𝐶𝐹 1 𝑖
𝑤𝑖

and its radius is

𝑟𝑚𝑐𝑖 =
√

|𝐶𝐹 2 𝑖|
𝑤𝑖

− (𝐶𝐹
1 𝑖

𝑤𝑖
)2. MCs are used in three different ways in

he DenStream algorithm. A ‘‘dense’’ MC is called a core MC (C-MC),
here dense is defined if 𝑤𝑖 ≥ 𝜇, 𝜇 is a hyperparameter to control

he minimum density of an MC to be considered a C-MC. A MC with
≥ 𝛽 𝜇, where 𝛽 is a hyperparameter, is called the potential MC (P-

C). Lastly, outlier MCs (O-MC) have 𝑤 < 𝛽 𝜇 and instances belonging
o them are considered outliers. Note that only P and O-MC are updated
nline with the arrival of new instances.

For every 𝑣 (hyperparameter) instances, the P-MCs and O-MCs,
hich were not updated by any of the 𝑣 instances, have an exponential
ecay applied to them, defined as 2−𝜆 (𝜆 is a hyperparameter). By
erforming this operation, P-MCs and O-MCs fade and eventually are
eleted if not representing a new behavior.

The algorithm is divided into three main parts. First, there is an
nitialization step, where the DBSCAN algorithm is applied to the first
(hyperparameter) instances. After creating the initial clusters, those
ith 𝑤 > 𝛽 𝜇 are initialized as P-MCs. After that, new instances are
resented in an online fashion.

The DenStream tries to incorporate each new instance 𝑖 to its nearest
-MC 𝑝𝑚𝑐𝑛. If, after incorporating 𝑖, 𝑟𝑝𝑚𝑐𝑛 < 𝜖 would hold true, then
he instance is added to that P-MC, where 𝜖 is a hyperparameter that
imits the maximum value of a MC’s radius. Otherwise, the algorithm
ries to add 𝑖 to its nearest O-MC 𝑜𝑚𝑐𝑛, employing the same test. If it
annot incorporate 𝑖 (i.e., because it is too far away), then a new O-MC
ontaining only 𝑖 is created. Then, a procedure is employed to check if
ny O-MC has enough weight to be promoted to a P-MCs.

The last part consists of creating the final clusters (i.e., C-MCs) by
pplying the DBSCAN algorithm to the existing P-MCs. First, starting a
luster with an arbitrary P-MC 𝑝𝑚𝑐𝑎, it incorporates all the other P-
Cs where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑚𝑐𝑎, 𝑝𝑚𝑐) ≤ 𝑟𝑝𝑚𝑐𝑎 + 𝑟𝑝𝑚𝑐 , where 𝑝𝑚𝑐 is a P-MC

xcluding 𝑝𝑚𝑐𝑎. Then, for each new P-MC in that cluster, the same
canning process is performed. This is performed until no new P-MC
s added to that cluster. After that, if the total summed weight of P-
Cs in that cluster is greater than 𝜇, it becomes a final cluster. This

rocess repeats until all P-MCs are part of a final cluster or cannot be
ncorporated into any other. However, if a P-MC is in a potential area
PA), this P-MC will be excluded from the C-MC creation. This exclusion
as necessary to prevent the C-MC from being affected by anomalous
ehaviors present in these P-MC. The potential area concentrates P-
Cs that behave differently from C-MCs’ expected behavior. DenStream

seudocode is shown in Algorithm 1.
As the paper’s goal is to detect DDoS and portscan attacks, one of

A’s best features is destination port entropy. PA is defined by the
ntropy of the destination port of C-MC and the hyperparameter 𝜅.
f the absolute distance between the entropy values of the destination
ort of the C-MC and the P-MC is greater than 𝜅, this P-MC is inside
he PA. In this manner, it is possible to detect a portscan attack when
he P-MC destination port entropy value is higher than that of a C-
C. On the other hand, when this value is lower than a C-MC, it is
4

onsidered a DDoS attack. Additionally, P-MCs within a PA have an
xtra exponential decay applied to them every new instance, defined
s 1.1−𝜆. Using extra decay, it is possible to detect the end of the attack
ore accurately.

Table 1 summarizes the DenStream hyperparameters and presents
heir description.

In our proposal, each MC is related to a network pattern. O-MCs
re the first MC created in the learning process and cannot provide any
lear information about possible attacks in the network. When a new
-MC appears, it can be considered an anomaly when its position is
nside the PA. Furthermore, its position in the clustering space reveals
he nature of a given threat. The common behavior is represented by
ne or more C-MCs.

Algorithm 1: DenStream(𝑆𝑡𝑟𝑒𝑎𝑚, 𝜆, 𝛽, 𝜇, 𝜖, 𝑣, 𝜅)
1 //Get the next sample 𝑝 at current time 𝑡 from 𝑆𝑡𝑟𝑒𝑎𝑚;
2 //Try to merge 𝑝 into its nearest P-MC;
3 if 𝑟𝑝 (radius of P-MC) ≤ 𝜖 then
4 Merge 𝑝 into P-MC;
5 else
6 //Try to merge 𝑝 into its nearest O-MC;
7 if 𝑟𝑜 (radius of O-MC) ≤ 𝜖 then
8 Merge 𝑝 into O-MC;
9 if 𝑤 (the new weight of O-MC) > 𝛽𝜇 then
10 //Remove O-MC and create a new P-MC by O-MC;
11 else
12 //Create a new O-MC by 𝑝 and insert it into the

buffer;
13 end
14 end
15 end
16 //Checking each 𝑝 on 𝑇𝑝 (time periods) for applying

exponential decay;
17 //𝑇𝑝 =

⌈

1
𝜆 𝑙𝑜𝑔(

𝛽𝜇
𝛽𝜇−1 )

⌉

;
18 if (𝑣 mod 𝑇𝑝)=0 then
19 for each P-MC do
20 if 𝑤 (the new weight of P-MC) ≤ 𝛽𝜇 then
21 // Remove P-MC;
22 end
23 end
24 for each O-MC do
25 if 𝑤 (the new weight of O-MC) ≤ 𝜅 then
26 // Remove O-MC;
27 end
28 end
29 end

4. Test scenario and evaluation

We propose to use the DenStream algorithm as an IDS kernel
inside Floodlight,1 a Java-based open source SDN controller used in
these scenarios. The DenStream uses entropy features of source and
destination IP addresses and ports for the detection process. If P-MC
arises, several assumptions are evaluated, and an alarm is triggered in
a portscan or DDoS attack. Our IDS and DenStream algorithm,2 were
implemented in Python 3.7. Fig. 1 presents an overview of our proposal.

The datasets were build using the Mininet3 emulator and Open
vSwitch4 to control the network switches. Some factors influenced the

1 https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
2 https://github.com/vturrisi/anomaly_detection_sdn
3 http://mininet.org/overview
4
 https://www.openvswitch.org/

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
https://github.com/vturrisi/anomaly_detection_sdn
http://mininet.org/overview
https://www.openvswitch.org/
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Fig. 1. Overview of proposed IDS architecture.

able 2
ttributes used in DenStream algorithm.
Attributes Description Std

Dev
Mean
value

Max
value

𝐻(𝑠𝑟𝑐𝐼𝑃 ) Entropy of Source IP Addresses 0.341 5.430 6.599
𝐻(𝑠𝑟𝑐𝑃 𝑜𝑟𝑡) Entropy of Source Ports 0.315 3.998 7.098
𝐻(𝑑𝑠𝑡𝐼𝑃 ) Entropy of Destination IP Addresses 0.684 4.705 5.481
𝐻(𝑑𝑠𝑡𝑃 𝑜𝑟𝑡) Entropy of Destination Ports 0.538 3.638 6.401

decision to choose the Mininet as the environment used to carry out
the experiments: (i) Mininet is a resolute project that has an active
community; (ii) since its inception, Mininet has received significant
effort to support the SDN technologies, such as the OpenFlow pro-
tocol and several controllers; (iii) applications developed in Mininet
can be deployed in a real environment with few or no changes. To
do so, the emulator allows to configure and monitor various aspects
of the network in real-time; (iv) Mininet is already considered a de
facto standard for teaching, research, and SDN solutions prototyping.
Moreover, Mininet is the most widely known and used tool for SDN
simulation (Khorsandroo, Sánchez, Tosun, Arco, & Doriguzzi-Corin,
2021; Singh & Bhandari, 2020; Yurekten & Demirci, 2021) because it
rovides an accurate SDN environment for testing and validation.

To ensure a realistic scenario of an SDN environment with high
raffic rates, we employed a tool called Scapy5 to inject traffic into
he emulated network. Scapy is a powerful tool to support a test
nvironment, forging packets and sending them through the network
nterface. The flows that made up the network traffic were produced
andomly and the volume of data changed throughout the day to
imulate variations in legitimate network usage.

We collected the one-day stream generating a total of 86400 sam-
les (network flows) per dataset. Four attributes were collected from
he network flows: source IP address, destination IP address, source
ort, and destination port from the stream. Then, we computed the
hannon entropy to extracts information from the concentration and
ispersion of these attributes. Table 2 summarizes all attributes used in
he datasets.

We generated DDoS attacks using hping36 tool by flooding a single
ost with several requests from different sources. The intensity of DDoS
ttacks was set according to the number of malicious hosts. The attack-
rs’ requests were directed to a specific port of the target to overwhelm
t and make the service associated with the port unavailable. Each
ttacker sent 500 UDP datagrams per second on average. Regarding
ortscan attacks, a host running Scapy crafted and sequentially sent
ackets with the SYN flag enabled to different ports of the destination

5 http://www.secdev.org/projects/scapy
6 https://github.com/antirez/hping
5

Table 3
Dataset terminology.

Dataset names DDoS
Intensity

DDoS
Duration

Portscan
Intensity

Portscan
Duration

Stream_HS_HS High Short High Short
Stream_HS_HL High Short High Long
Stream_HS_LS High Short Low Short
Stream_HS_LL High Short Low Long
Stream_HL_HS High Long High Short
Stream_HL_HL High Long High Long
Stream_HL_LS High Long Low Short
Stream_HL_LL High Long Low Long
Stream_LS_HS Low Short High Short
Stream_LS_HL Low Short High Long
Stream_LS_LS Low Short Low Short
Stream_LS_LL Low Short Low Long
Stream_LL_HS Low Long High Short
Stream_LL_HL Low Long High Long
Stream_LL_LS Low Long Low Short
Stream_LL_LL Low Long Low Long

Table 4
Hyperparameters tuning values.

Hyperparameters Suggested values Best value

𝜆 0.03, 0.06, 0.09, 0.12 0.06
𝛽 0.1, 0.2, 0.3, 0.4, 0.5 0.1
𝜇 250, 500, 1000, 1500, 2000 1000
𝜖 0.01, 0.02, 0.05, 0.10, 0.15 0.05
𝑣 250, 500, 750, 1000, 1500, 2000 1000
𝜅 0.1, 0.25, 0.5 0.5

host to probe active ports. We also varied the intensity of portscan
attacks, changing the time interval between two consecutive malicious
packets.

The first analysis is about the behavior of the proposed IDS. We
generated 48 datasets, in which each of them has a DDoS and a
portscan. These datasets are divided into three attack strategies: sep-
arated, partially overlapping, and totally overlapping. In each strategy,
16 datasets were generated, varying the intensity between high and low
and the duration in short or long for both attacks.

We used the following terminology to describe each dataset. All
datasets start with the acronym Stream_, followed by the configuration
of the DDoS attack intensity, H for high or L for low intensity, and the
attack duration, L for long attack or S for a short attack. The underline
separates each attack’s configuration, and the portscan configuration
follows the same pattern. Lastly, the last letter represents the attack
strategy used, S for separated, P for partially overlapping, and O
for fully overlapping. For example, in the 𝑆𝑡𝑟𝑒𝑎𝑚_𝐻𝑆_𝐿𝐿_𝑆 dataset,
whereas the DDoS attack has high intensity and short duration, the
portscan attack has low intensity and long duration, and both attacks
are separated. All possible combinations regarding the intensity and
duration of DDoS and Portscan attacks are presented in Table 3.

As described in Section 3, some hyperparameters of the DenStream
algorithm (𝜆, 𝛽, 𝜇, 𝜖, 𝑣 and 𝜅) need to be tuned to obtain suitable
results. Metrics were necessary to evaluate the tuning process. The met-
rics used in this process were accuracy, precision, recall, false-positive
rate, and f-measure.

Accuracy (Acc) assesses the proportion of correctly classified in-
tervals among all samples. Precision (Prec) emphasizes the detection
of abnormal intervals and penalizes the misclassified normal intervals.
Acc and Prec complement each other, showing suitable results when
the classes are unbalanced. Recall (Rec) indicates the proportion of
correctly classified among all anomalous samples. F-measure (Fm)
consists of a global score given to the classifier, and the score is the
harmonic mean between precision and recall. All presented metrics
range from 0 to 1, in which the former is the worst-case scenario, and

the latter represents the optimal value. Finally, the false-positive rate

http://www.secdev.org/projects/scapy
https://github.com/antirez/hping
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Table 5
Attack detection and delay of the first analysis in terms of number of instances.

Dataset Separated Partially overlapping Fully overlapping

DDoS PortScan DDoS PortScan DDoS PortScan

Stream_HS_HS 139 277 156 427 170 ✗

Stream_HS_HL 155 259 103 679 99 403
Stream_HS_LS 190 ✗ 165 ✗ 150 ✗

Stream_HS_LL 151 2277 148 699 137 2222
Stream_HL_HS 157 159 160 261 184 ✗

Stream_HL_HL 160 246 393 341 147 ✗

Stream_HL_LS 166 ✗ 162 ✗ 151 ✗

Stream_HL_LL 166 1772 158 458 147 ✗

Stream_LS_HS 184 258 104 332 208 ✗

Stream_LS_HL 186 231 101 334 100 291
Stream_LS_LS 170 ✗ 230 ✗ 227 ✗

Stream_LS_LL 173 1154 178 844 195 2518
Stream_LL_HS 120 339 224 261 221 ✗

Stream_LL_HL 182 160 102 346 243 ✗

Stream_LL_LS 203 ✗ 163 ✗ 167 ✗

Stream_LL_LL 141 2662 188 606 233 ✗
(FP) indicates the balance of misclassified among all normal samples,
and better results are achieved when the value tends to zero.

The hyperparameter tuning process was done through the grid
search technique.7 (Veloso, Gama, Malheiro, & Vinagre, 2021) The
ataset used in this process were random subsets of 48 generated
atasets, which represent 10 percent of each dataset. During the tuning
rocess, no sample labels are used because Denstream is an unsuper-
ised algorithm. These labels are only used to verify the performance
f the algorithm. For every test in a grid search, the prequential
ethod (Lopes et al., 2020) was performed sample by sample.

The prequential learning method is a methodology used in stream-
ng scenarios for evaluating the algorithms over time. Table 4 summa-
izes all hyperparameters tested values and the best values achieved.
e selected values that focused on providing comprehensive and accu-

ate results by balancing the trade-off between true and False Positives.
We divided the evaluation of our proposal into three analyses. To

valuate our IDS in the first analysis, we consider two aspects: (a)
etection: the capacity for recognizing a given attack; (b) Latency: the
elay to trigger the detection alert according to the number of sam-
les elapsed between the attack start and P-MC creation. The second
nalysis explores the capacity of our IDS to identify specific attacks
y observing the cluster (P-MC) spatial position following the premises
f concentration and dispersion of entropy. The third analysis uses six
atasets to compare the overall result of our approach’s detection to
nother algorithm.

. Results and discussion

In the first analysis, we used the presented approach to evaluate
he 48 datasets’ results regarding the attack’s detection and the delay
n detecting them. The delay is considered the number of analyzed sam-
les between the beginning of the attack and its detection. Additionally,
he attack recognition’s capability and another analysis of the proposed
lgorithm were discussed.

.1. Attack’s detection and delay in detection

Based on DenStream’s foundation, we interpret C-MCs as a common
ehavior, a P-MC in a PA as a cluster of attack samples, and O-MC as
ddressing minor adjustments during the learning procedure and noise
amples. In this way, Table 5 presents the results of the 48 datasets,
ivided into three groups: separated, partially overlapping, and fully
verlapping. The table also shows whether attacks were detected and
he delay in catching them.

7 https://scikit-learn.org/stable/modules/grid_search.html
6

The proposed approach was able to detect DDoS attacks in all
datasets. It also expressed a detection delay average of 169.93 instances
that may be considered a low deferral in recognizing DDoS attacks. The
detection of portscan attacks was more challenging than the DDoS ones.
Our approach detected the attack in 28 datasets, and the average delay
was higher, achieving 743.42 instances.

The most difficult attacks to be detected are those with low intensity
(LL) and short duration (LS), as they do not affect the indicators to
identify the attack as much. Still, DDoS attacks with this behavior were
detected. However, the portscan attack detection was no longer able
to obtain good results; only one of the 12 portscan attacks with this
behavior was detected. Another scenario that deserves to be highlighted
is the portscan attacks that are totally overlapped are scarcely detected:
Only 5 of these 16 attacks were correctly detected.

In-depth analysis revealed that when different attacks have the same
overlapped duration, the portscan attack is not detected. Whereas a
DDoS attack tends to decrease the destination port’s entropy, a portscan
increases this value. Thus, the DDoS attack negatively influences the
detection of the portscan attack. Even a low-intensity DDoS attack is
still being detected.

Six datasets were selected for a deeper analysis of our approach.
Fig. 2 depicts the entropy value calculated for each dataset during
the 24 h of traffic collection. Each row represents a dataset, and the
columns are, respectively: source IP (SrcIP) entropy, destination IP
(DstIP) entropy, source port (SrcPort) entropy, and destination port
(DstPort) entropy. Each graph’s green area represents the entropy
values at one-second intervals when attacks were not generated. The
red area represents the values calculated at the time the attacks were
taking place. As can be observed, the entropy values are fairly stable. In
contrast, they are sensitive to changes in network usage behavior, for
example, in portscan attacks, where the destination port entropy tends
to increase, as can be observed in Stream_HL_LH_S and Stream_LL_HL_P
datasets. In the DDoS attacks, the entropy tends to fall, as observed in
Stream_LL_HL_P and Stream_LS_LL_S datasets.

Fig. 3 shows the number of MCs of each type of cluster (C-MC, P-MC,
and O-MC) detected in each dataset. The pink vertical marks represent
the DDoS attacks, and the yellow vertical mark represents the portscan
attacks.

Fig. 3(a) represents the Stream_HL_HL_S and as the stream began,
a P-MC was created, but the cluster position was outside the PA,
so it was not considered an attack. Soon after, the P-MC became C-
MC, proving that it was not an attack, but a stage in the approach’s
learning process. The C-MC remained equal (one C-MC was detected)
throughout the analysis period, showing that it represented the core
behavior of the network. Both attacks were also correctly detected,
being created and deleted in the P-MC near the beginning and end of

the attacks, respectively. This dataset is the best possible scenario, as it

https://scikit-learn.org/stable/modules/grid_search.html
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has two high intensity, prolonged, and separated attacks, being possible
to detect without significant difficulty.

A more complex scenario is shown in Fig. 3(b). At the beginning of
the stream, we observed the approach’s learning process in its initial
stage. The P-MC portscan attack (marked as a yellow region) had
a significant delay in detection (P-MC creation), and this probably
occurred because the attack had low intensity. Even with low intensity
and short duration, the P-MC DDoS attack (thin pink region) was
detected correctly.

Fig. 3(c) represents the Stream_LL_HL_P. At the beginning of the
portscan attack, a P-MC was created without significant delay. During
the portscan attack, the DDoS attack started, and a new P-MC cluster
was created, representing the new attack behavior. At the end of the
portscan attack, a new P-MC cluster was created, representing only the
DDoS attack and excluding the cluster that represented the portscan
attack. Thereby, the approach was able to detect attacks individually
even when occurring in an overlapping scenario.

However, in some cases, it was not possible to detect overlapped at-
tacks. Fig. 3(d) represents the Stream_HL_HL_P. The dataset represents a
very similar scenario to the previous one but changes in DDoS intensity.
Portscan attack was correctly detected, however, at the beginning of
the DDoS attack, a new P-MC was created and excluded the portscan’s
P-MC. When the portscan ended, no new clusters were created, and
it remained active until the end of DDoS, demonstrating that in some
cases with low intensity, the detection is tricky. In this scenario, a P-
MC representing both attacks was not created; this was because DDoS
causes a high distortion of entropy compared to portscan. Thus, even
with both attacks, only the DDoS was detected.

Considering a totally overlapping scenario, as in Fig. 3(e) is repre-
sented (Stream_HS_LL_O), as the streams began, the P-MC was created
and soon transformed into C-MC, representing the approach’s learning
process. A long portscan attack with low intensity has started and was
not detected. A DDoS was started too, and this attack was correctly rec-
ognized, and only at the end of the DDoS attack, the previous portscan
was detected. Finally, Fig. 3(f) represents the Stream_LL_HL_O. In this
dataset, the anomalous moment was detected correctly; however, it was
detected as a DDoS attack and not as a joint attack.
 t
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All scenarios exposed a regular pattern for C-MC, P-MC, and O-MC
during their processing. C-MC represents the core behavior arising from
the beginning of the stream ingestion throughout stream processing. P-
MCs outside the PA are not considered alarms, but rather the learning
process. They can be related to a concept drift, in which a novel
common behavior has been injected synthetically, changing the current
pattern. P-MCs inside the PA are considered attacks, and their location
in the PA may indicate this attack’s nature to be properly mitigated.
Therefore, our IDS is susceptible to creating a new P-MC outside the PA
when the actual behavior deviates from the previous common behavior.
The created P-MC was often transformed into a new C-MC.

5.2. Identification of attacks type

The proposed IDS uses features based on entropy from IP addresses
and ports to cluster the network flows and detect the common and
anomalous behavior. The identification of attack types are grounded
on some premises:

• DDoS: P-MC with lower entropy of destination port than C-MC
(common behavior).

• Portscan: P-MC with higher entropy of destination port and lower
entropy of source IP than C-MC (common behavior).

We can get some insights when representing the clustering space
projected on the entropy of the destination port and the entropy of the
source IP, as in Fig. 4. The scenarios from the previous analysis were
used. At the moment that a P-MC was created, it was plotted and it has
included the identification of which attack was taking place.

Fig. 4(a) shows the cluster space in Stream_HL_HL_S dataset. The P-
C with PS label represents the cluster created during the portscan

ttack. Its position reinforces the premises mentioned, as the entropy
f destination port is higher and the entropy of the source IP address
s lower than the C-MC cluster. The P-MC with the DDoS label, repre-
enting the DDoS attack, has a lower destination port entropy than the
-MC, confirming the premises.

Fig. 4(b) shows the cluster space in Stream_LS_LL_S dataset. Again,
he P-MC reinforces the approach premises. However, both P-MC were



Fig. 3. Different Stream.
t
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closer to C-MC compared to the previous scenario. It occurred because,
in this scenario, the attacks have low intensity. Fig. 4(c) shows the clus-
ter space in Stream_LL_HL_P scenario. In this dataset, in addition to the
2 P-MC of each attack, an extra P-MC refers to both attacks overlapped.
This cluster has a position closer to the DDoS attack, therefore taking
into account the premises presented, this behavior represents a DDoS,
despite containing two types of attacks simultaneously. Fig. 4(d) shows
the cluster space in Stream_HL_HL_P dataset. The P-MC positions were
similar to the Stream_HL_HL_S dataset. Thus, it was found that even if
the attacks are partially overlapping, the clusters’ position was slightly
changed.

Fig. 4(e) shows the cluster space in Stream_HS_LL_O dataset. The
P-MC labeled DDoS refers to two different attacks running together.
The P-MC labeled PS is not so far from the C-MC, as it is a low-
intensity portscan attack. Finally, Fig. 4(f) shows the cluster space in
Stream_LL_HL_O dataset. Only one P-MC was created (DDoS attack) with
a very similar position to the P-MC regarding the joint attacks of the
Stream_LL_HL_P dataset. Due to the intensity and duration of the attack,
even having both overlapped attacks, just DDoS was detected in this
scenario.

In general, the P-MC’s positioning on the projected feature space
has attended the premises specified in the attack definition. However,
in some cases, when multiple attacks overlap, P-MC’s cluster can only

reveal the most striking anomalous behavior. h
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5.3. Proposed approach comparison

The previous subsections demonstrated the performance of our
approach in detecting DDoS and portscan attacks. However, for addi-
tional validation, we compared our approach with HS-Trees (Tan et al.,
2011), a one-class anomaly detector for stream data. We selected this
algorithm due to its high predictive capacity and successful application
in anomaly detection on computer networks (Bhaya & Alasadi, 2016;
Pevnỳ, 2016; Tan et al., 2011).

The HS-Trees application for online anomaly detection uses an
ensemble of HS-Trees. Each HS-Tree is a binary tree, and its nodes have
conditions related to the most important features for a specific decision.
All leaves have a mass of elements with the same condition as nodes.
The method uses the uniform mass distribution to calculate a score and
make anomaly detection. When a new element arrives, each HS-Tree
calculates a score for this new element, and the final score is the sum
of HS-Trees from the ensemble.

HS-Trees algorithm has three hyperparameters. The first one is 𝜓 ,
which is the size of the window used to create the trees, 𝑡 is the number
of trees, and ℎ is the maximum depth of each tree generated. As HS-
Trees is one-class, the first 𝜓 samples need to be free of anomalies for
he algorithm’s initial training and correct functioning. A grid search
as used to define the values of each hyperparameter. F-measure, a

armonic mean between precision and recall, was used for comparing



Fig. 4. Clustering space of infections after the creation of a P-MC containing the new infection behavior.
Fig. 5. Comparative radar chart between DenStream and HS-Trees.
the overall performance. In the tests, the best f-measure value was
achieved when 𝜓 = 4500, 𝑡 = 3 and ℎ = 4.

Fig. 5 shows the comparison between DenStream and HS-Trees in
the scenarios evaluated for identifying the type of attack. As can be
seen, DenStream achieved accuracy (Acc) and precision (Pre) rates
higher than HS-Trees in all scenarios. The results indicate that Den-
Stream recognized more attack intervals and was less susceptible to
false-positives (FP).

In contrast, HS-Trees yielded a higher recall rate (Rec) in the
four evaluated datasets and DenStream achieved a higher rate of
9

false-negatives due to the delay in recognizing the beginning of at-
tacks. Whereas DenStream acts completely online, adjusting to constant
changes as traffic measurements arrive, HS-Trees require prior train-
ing with non-anomalous samples to operate correctly. Although the
training samples can decrease the detection time, they can skew the
identification of the attack, requiring constant training of the algorithm
as the normal network traffic pattern changes. Besides, ensuring that
the training samples are attack-free is time-consuming and requires
expert evaluation, which is not always feasible.
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Fig. 6. Prequential metric analysis of DS and HS.
a
F
D
g

o
p
g
h
v
i

As depicted in Fig. 5(a) and Fig. 5(e), HS-Trees slightly outper-
ormed DenStream regarding the overlapped attacks. HS-Trees achieved
satisfactory combination of precision and recall, resulting in a higher

-measure (Fm) in these scenarios. In general, both methods recognized
DoS attacks but were less precise to detect portscan, especially the

ow-intensity one in the HS_LL_O dataset. DenStream exceeded the HS-
rees’ results in all other scenarios. The difference is more prominent

n scenarios where attacks are separated as in LS_LL_S and HL_HL_S
atasets.

Fig. 6 shows the metrics’ results throughout the experiment’s exe-
ution in each of the datasets. Each chart presents the adaptation of
he algorithms with concept drift generated by the attacks. Fig. 6(a)
epicts that the values of all metrics were affected right after the start
f the DDoS attack, however, DS was able to recognize the anomalous
ehavior faster than HS and promptly reestablished the metric values
 a

10
to levels reached before the attack. Similar results are also seen in
Figs. 6(b)–(d).

Fig. 6(e) and Fig. 6(f) show results for scenarios where attacks
re overlapping. The result is similar to the radar charts presented in
ig. 5(a) and Fig. 5(e), in which HS presents results slightly superior to
S. In spite of FPR, HS was able to better adapt itself to the concept drift
enerated by executing the DDoS and Portscan attacks simultaneously.

For further analysis, Fig. 7, which corresponds to the second row
f Fig. 2, shows the entropy values for source and destination IP and
orts, calculated during the 24 h of Stream_HL_HL_S collection. The
reen area represents the values calculated at intervals when the attacks
ave not been generated. The red area corresponds to the entropy
alues calculated when an attack occurred. The figure also highlights
n blue the intervals that DenStream and HS-Trees classified as having
ttacks. Both compared algorithms were able to classify most of the
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Fig. 7. Comparative detection between DenStream and HS-Trees on Stream_HL_HL_S.
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analyzed one-second intervals correctly. However, DenStream captured
more efficiently the disturbances generated by anomalies in IP and
port entropies. Besides, fewer false-positives were raised during its
execution. This analysis corroborates the results expressed in Fig. 5(f).
urthermore, it is important to mention the visual analysis supported
y DenStream when comparing the HS-Trees. Using the clustering
rojection, it is possible to have insights and a more comprehensive
nalysis about the attack, its amplitude, and likely multiple attacks.

The DenStream complexity has a linear growth as the stream pro-
eeds, even with more features. The memory usage does not signifi-
antly enlarge if the amount of flows increases because the algorithm
tores the information of clusters rather than each traffic sample in-
ividually (Cao et al., 2006). HS-Trees also has linear growth as the
tream or data dimensionality increases. Since HS-trees stores binary
rees instead of the entire stream, it can run with reduced memory (Tan
t al., 2011).

Thus, when comparing our proposal of unsupervised online anomaly
etection with a semi-supervised high accurate algorithm, our proposal
chieved superior results in detecting and identifying attacks in human-
riendly monitoring. This comprehensive monitoring is able to support
nsights about the intensity, duration, and overlapping of attacks.

. Conclusion

In this work, we proposed an IDS for online detection of DDoS and
ortscan in the SDN context. We explored the DenStream algorithm
o handle the trade-off between predictive performance, low-latency
etection, insightful analysis, and complexity of detector generation.

Different attack scenarios were evaluated by simulating 48 datasets.
n these scenarios, the attack settings such as intensity, duration, and
verlap have been modified. In addition, the tests were divided into
hree stages. The first one evaluates the detection capacity and delay
f our proposal. The second stage explores the identification of the
ttack type based on premises that use the distortion pattern suffered
y entropy during an attack. The last step of the evaluation compared
enStream with another anomaly detection algorithm. In this manner,

he experiments carried out made it possible to assess the detection
apacity of our IDS in each scenario.

Our IDS detected all DDoS attacks in the most varied scenarios with

short time response. The portscan attacks were more tricky to be
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detected because this attack does not distort entropy as much as DDoS.
Thus, it took longer to create the P-MC, especially when the intensity of
the attack is low and its duration is short. When comparing DenStream
and HS-Trees, both approaches showed close results; however, our
approach achieved better results, mainly concerning low false-positive
rate and suitable portscan detection.

A DenStream’s limitation occurs in attacks that do not alter the used
features. They may not be detected correctly by the IDS. Furthermore,
if the network presents more than one common behavior (C-MC), the
algorithm can assume this behavior as an attack. In future works, these
issues and the integration of mitigation solutions will be considered.
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Pevnỳ, T. (2016). Loda: Lightweight on-line detector of anomalies. Machine Learning,
102(2), 275–304. http://dx.doi.org/10.1007/s10994-015-5521-0.

http://dx.doi.org/10.1016/j.comnet.2020.107364
http://dx.doi.org/10.1016/B978-012722442-8/50016-1
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1016/j.cose.2019.101646
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb5
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb5
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb5
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb5
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb5
http://dx.doi.org/10.1016/j.eswa.2020.113786
http://dx.doi.org/10.1016/j.eswa.2020.113786
http://dx.doi.org/10.1016/j.eswa.2020.113786
http://dx.doi.org/10.1016/j.comnet.2019.106984
http://dx.doi.org/10.1016/j.comnet.2019.106984
http://dx.doi.org/10.1016/j.comnet.2019.106984
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb8
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb8
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb8
http://dx.doi.org/10.1016/j.eswa.2020.113453
http://dx.doi.org/10.1016/j.eswa.2020.113453
http://dx.doi.org/10.1016/j.eswa.2020.113453
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb10
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb10
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb10
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb10
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb10
http://dx.doi.org/10.1016/j.eswa.2018.03.027
http://dx.doi.org/10.1016/j.eswa.2018.03.027
http://dx.doi.org/10.1016/j.eswa.2018.03.027
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb13
http://dx.doi.org/10.1016/j.jnca.2020.102595
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb15
http://dx.doi.org/10.1109/ACCESS.2018.2878576
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb18
http://dx.doi.org/10.1016/j.jnca.2020.102767
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb20
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb20
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb20
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb20
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb20
http://dx.doi.org/10.1016/j.cose.2020.101984
http://dx.doi.org/10.1016/j.cose.2020.101984
http://dx.doi.org/10.1016/j.cose.2020.101984
http://dx.doi.org/10.1016/j.comnet.2021.107981
http://dx.doi.org/10.1016/j.eswa.2020.113252
http://dx.doi.org/10.1016/j.eswa.2020.113252
http://dx.doi.org/10.1016/j.eswa.2020.113252
http://dx.doi.org/10.1016/j.eswa.2020.113187
http://dx.doi.org/10.1016/j.eswa.2020.113187
http://dx.doi.org/10.1016/j.eswa.2020.113187
http://dx.doi.org/10.1016/j.cageo.2020.104563
http://dx.doi.org/10.1016/j.cageo.2020.104563
http://dx.doi.org/10.1016/j.cageo.2020.104563
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb26
http://dx.doi.org/10.1016/j.jnca.2019.01.006
http://dx.doi.org/10.1109/TNSM.2020.2983921
http://dx.doi.org/10.1016/j.asoc.2020.106301
http://dx.doi.org/10.1016/j.asoc.2020.106301
http://dx.doi.org/10.1016/j.asoc.2020.106301
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb30
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb30
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb30
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb30
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb30
http://dx.doi.org/10.1109/ACCESS.2020.2992044
http://dx.doi.org/10.1109/ACCESS.2020.2992044
http://dx.doi.org/10.1109/ACCESS.2020.2992044
http://dx.doi.org/10.1109/ISCC.2014.6912503
http://dx.doi.org/10.1007/s10994-015-5521-0


P

S

T

T

Proença, M. L., Zarpelão, B. B., & Mendes, L. S. (2005). Anomaly detection
for network servers using digital signature of network segment. In Advanced
industrial conference on telecommunications/service assurance with partial and in-
termittent resources conference/e-learning on telecommunications workshop, vol. 05
(AICT/SAPIR/ELETE’05), (pp. 290–295). http://dx.doi.org/10.1109/AICT.2005.26.

utina, A., & Rossi, D. (2020). Online anomaly detection leveraging stream-based
clustering and real-time telemetry. IEEE Transactions on Network and Service
Management, 1. http://dx.doi.org/10.1109/TNSM.2020.3037019.

Sahay, R., Meng, W., & Jensen, C. D. (2019). The application of software defined
networking on securing computer networks: A survey. Journal of Network and
Computer Applications, 131, 89–108. http://dx.doi.org/10.1016/j.jnca.2019.01.019.

Sharma, A., Pilli, E. S., Mazumdar, A. P., & Gera, P. (2020). Towards trustworthy inter-
net of things: A survey on trust management applications and schemes. Computer
Communications, 160, 475–493. http://dx.doi.org/10.1016/j.comcom.2020.06.030.

Shin, G., Yooun, H., Shin, D., & Shin, D. (2018). Incremental learning method for
cyber intelligence, surveillance, and reconnaissance in closed military network
using converged IT techniques. Soft Computing, 22(20), 6835–6844. http://dx.doi.
org/10.1007/s00500-018-3433-1.

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P. L. F. d.,
& Gama, J. a. (2013). Data stream clustering: A survey. ACM Computing Surveys,
46(1), http://dx.doi.org/10.1145/2522968.2522981.

Singh, J., & Behal, S. (2020). Detection and mitigation of ddos attacks in SDN: A
comprehensive review, research challenges and future directions. Computer Science
Review, 37, Article 100279. http://dx.doi.org/10.1016/j.cosrev.2020.100279.

Singh, M. P., & Bhandari, A. (2020). New-flow based ddos attacks in SDN: Taxonomy,
rationales, and research challenges. Computer Communications, 154, 509–527. http:
//dx.doi.org/10.1016/j.comcom.2020.02.085.

ovilj, D., Budnarain, P., Sanner, S., Salmon, G., & Rao, M. (2020). A comparative
evaluation of unsupervised deep architectures for intrusion detection in sequential
data streams. Expert Systems with Applications, 159, Article 113577. http://dx.doi.
org/10.1016/j.eswa.2020.113577.

ajalizadeh, H., & Boostani, R. (2019). A novel stream clustering framework for
spam detection in Twitter. IEEE Transactions on Computational Social Systems, 6(3),
525–534. http://dx.doi.org/10.1109/TCSS.2019.2910818.

an, S. C., Ting, K. M., & Liu, F. T. (2011). Fast Anomaly Detection for Streaming
Data. In IJCAI .
13
Thakkar, A., & Lohiya, R. (2020). Role of swarm and evolutionary algorithms for
intrusion detection system: A survey. Swarm and Evolutionary Computation, 53,
Article 100631. http://dx.doi.org/10.1016/j.swevo.2019.100631.

Ujjan, R. M. A., Pervez, Z., Dahal, K., Bashir, A. K., Mumtaz, R., & González, J.
(2020). Towards sflow and adaptive polling sampling for deep learning based
ddos detection in SDN. Future Generation Computer Systems, 111, 763–779. http:
//dx.doi.org/10.1016/j.future.2019.10.015.

Veloso, B., Gama, J. a., Malheiro, B., & Vinagre, J. a. (2021). Hyperparameter
self-tuning for data streams. Information Fusion, 76, 75–86.

Viegas, E., Santin, A., Abreu, V., & Oliveira, L. S. (2017). Stream learning and anomaly-
based intrusion detection in the adversarial settings. In 2017 IEEE symposium on
computers and communications (pp. 773–778). IEEE.

Wang, L., & Jones, R. (2017). Big data analytics for network intrusion detection: A
survey. International Journal of Networks and Communications, 7(1), 24–31.

Wankhade, K., Hasan, T., & Thool, R. (2013). A survey: Approaches for handling
evolving data streams. In Communication systems and network technologies (CSNT),
2013 international conference on (pp. 621–625). IEEE.

Yamansavascilar, B., Baktir, A. C., Ozgovde, A., & Ersoy, C. (2020). Fault tolerance
in SDN data plane considering network and application based metrics. Journal of
Network and Computer Applications, 170, Article 102780. http://dx.doi.org/10.1016/
j.jnca.2020.102780.

Yi, B., Wang, X., Huang, M., & Zhao, Y. (2020). Novel resource allocation mechanism
for SDN-based data center networks. Journal of Network and Computer Applications,
155, Article 102554. http://dx.doi.org/10.1016/j.jnca.2020.102554.

Yin, C., Xia, L., Zhang, S., Sun, R., & Wang, J. (2018). Improved clustering algorithm
based on high-speed network data stream. Soft Computing, 22(13), 4185–4195.
http://dx.doi.org/10.1007/s00500-017-2708-2.

Yurekten, O., & Demirci, M. (2021). Sdn-based cyber defense: A survey. Future
Generation Computer Systems, 115, 126–149. http://dx.doi.org/10.1016/j.future.
2020.09.006.

Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A new data clustering
algorithm and its applications. Data Mining and Knowledge Discovery, 1(2), 141–182.
http://dx.doi.org/10.1023/A:1009783824328.

Zolotukhin, M., & Hämäläinen, T. (2018). Data stream clustering for application-
layer ddos detection in encrypted traffic. In M. Lehto, & P. Neittaanmäki (Eds.),
Cyber security: Power and technology (pp. 111–131). Cham: Springer International
Publishing, http://dx.doi.org/10.1007/978-3-319-75307-2_8.

http://dx.doi.org/10.1109/AICT.2005.26
http://dx.doi.org/10.1109/TNSM.2020.3037019
http://dx.doi.org/10.1016/j.jnca.2019.01.019
http://dx.doi.org/10.1016/j.comcom.2020.06.030
http://dx.doi.org/10.1007/s00500-018-3433-1
http://dx.doi.org/10.1007/s00500-018-3433-1
http://dx.doi.org/10.1007/s00500-018-3433-1
http://dx.doi.org/10.1145/2522968.2522981
http://dx.doi.org/10.1016/j.cosrev.2020.100279
http://dx.doi.org/10.1016/j.comcom.2020.02.085
http://dx.doi.org/10.1016/j.comcom.2020.02.085
http://dx.doi.org/10.1016/j.comcom.2020.02.085
http://dx.doi.org/10.1016/j.eswa.2020.113577
http://dx.doi.org/10.1016/j.eswa.2020.113577
http://dx.doi.org/10.1016/j.eswa.2020.113577
http://dx.doi.org/10.1109/TCSS.2019.2910818
http://dx.doi.org/10.1016/j.swevo.2019.100631
http://dx.doi.org/10.1016/j.future.2019.10.015
http://dx.doi.org/10.1016/j.future.2019.10.015
http://dx.doi.org/10.1016/j.future.2019.10.015
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb47
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb47
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb47
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb48
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb48
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb48
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb48
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb48
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb49
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb49
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb49
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb50
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb50
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb50
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb50
http://refhub.elsevier.com/S0957-4174(21)01538-4/sb50
http://dx.doi.org/10.1016/j.jnca.2020.102780
http://dx.doi.org/10.1016/j.jnca.2020.102780
http://dx.doi.org/10.1016/j.jnca.2020.102780
http://dx.doi.org/10.1016/j.jnca.2020.102554
http://dx.doi.org/10.1007/s00500-017-2708-2
http://dx.doi.org/10.1016/j.future.2020.09.006
http://dx.doi.org/10.1016/j.future.2020.09.006
http://dx.doi.org/10.1016/j.future.2020.09.006
http://dx.doi.org/10.1023/A:1009783824328
http://dx.doi.org/10.1007/978-3-319-75307-2_8

	Unsupervised online anomaly detection in Software Defined Network environments
	Introduction
	Related work
	Unsupervised online learning
	Test scenario and evaluation
	Results and discussion
	Attack's detection and delay in detection
	Identification of attacks type
	Proposed approach comparison

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References




