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Abstract

We prove a three spheres inequality with optimal exponent at the boundary for
solutions to the Kirchhoff–Love plate’s equation satisfying homogeneous Dirich-
let conditions. This result implies the Strong Unique Continuation Property at the
Boundary (SUCPB). Our approach is based on the method of Carleman estimates,
and involves the construction of an ad hoc conformal mapping preserving the struc-
ture of the operator and the employment of a suitable reflection of the solution with
respect to the flattened boundary which ensures the needed regularity of the ex-
tended solution. To the authors’ knowledge, this is the first (nontrivial) SUCPB
result for fourth-order equations with a bi-Laplacian principal part.

1. Introduction

The main purpose of this paper is to prove a Strong Unique Continuation Prop-
erty at the Boundary (SUCPB) for the Kirchhoff–Love plate’s equation. In order to
introduce the subject of SUCPB we give some basic, although coarse, notion.

LetL be an elliptic operator of order 2m,m ∈ N, and let� be an open domain in
R

N , N � 2. We say that L enjoys a SUCPB with respect to the Dirichlet boundary
conditions if the following property holds true:

⎧
⎪⎨

⎪⎩

Lu = 0, in �,
∂ j u
∂n j = 0, on �, for j = 0, 1, . . . , m − 1,
∫

�∩Br (P)
u2 = O(rk), as r → 0,∀k ∈ N,

�⇒ u ≡ 0 in �, (1.1)
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where � is an open portion (in the induced topology) of ∂�, n is outer unit normal,
P ∈ � and Br (P) is the ball of center P and radius r . Similarly, we say that L
enjoys a SUCPB with respect to the set of normal boundary operators B j , j ∈ J ,
B j of order j , J ⊂ {0, 1, . . . , 2m −1}, �J = m, [17], if the analogue of (1.1) holds
when the Dirichlet boundary conditions are replaced by

B j u = 0, on �, for j ∈ J. (1.2)

The SUCPB has been studied for the second order elliptic operators in the last two
decades, both in the case of homogeneous Dirichlet, Neumann and Robin boundary
conditions, [1,2,5–8,23,25,38]. Although the conjecture that the SUCPB holds
true when ∂� is of Lipschitz class is not yet proved, the SUCPB and the related
quantitative estimates are today well enough understood for second-order elliptic
equations.

Starting from the paper [4], the SUCPB turned out to be a crucial property for
provingoptimal stability estimates for inverse elliptic boundaryvalueproblemswith
unknown boundaries. Mostly for this reason the investigation about the SUCPB has
been successfully extended to second order parabolic equations [9,13–15,41] and
to wave equation with time independent coefficients [39,42]. For completeness we
recall (coarsely) the formulation of inverse boundary value problemswith unknown
boundaries in the elliptic context.

Assume that� is a bounded domain,with connected boundary ∂� ofC1,α class,
and that ∂� is disjoint union of an accessible portion �(a) and of an inaccessible
portion �(i). Given a symmetric, elliptic, Lipschitz matrix valued A and ψ 
≡ 0
such that

ψ(x) = 0, on �(i),

let u be the solution to
{
div (A∇u) = 0, in �,

u = ψ, on ∂�.

Assuming that one knows

A∇u · ν, on 	,

where 	 is an open portion of �(a), the inverse problem under consideration con-
sists in determining the unknown boundary �(i). The proof of the uniqueness of
�(i) is quite simple and requires the weak unique continuation property of elliptic
operators. By contrast, the optimal continuous dependence of �(i) from the Cauchy
data u, A∇u · ν on 	, which is of logarithmic rate (see [12]), requires quantitative
estimates of strong unique continuation at the interior and at the boundary, like the
three spheres inequality, [24,26] and the doubling inequality, [2,18].

Inverse problemswith unknownboundaries havebeen studied in linear elasticity
theory for elliptic systems [30–32], and for fourth-order elliptic equations [33–35].
It is clear enough that the unavailability of the SUCPB precludes proving optimal
stability estimates for these inverse problems with unknown boundaries.
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In spite of the fact that the strong unique continuation in the interior for fourth-
order elliptic equation of the form


2u +
∑

|α|�3

cα Dαu = 0, (1.3)

where cα ∈ L∞(�), is nowadays well understood, [10,11,19,27,29,33,37], to the
authors’ knowledge, the SUCPB for equation like (1.3) has not yet been proved
even for Dirichlet boundary conditions. In this regard it is worthwhile to empha-
size that serious difficulties occur in performing the Carleman method (the main
method to prove the unique continuation property) for bi-Laplace operator near the
boundaries; we refer to [28] for a thorough discussion and wide references on the
topics.

In the present paper we begin to find results in this direction for the Kirchhoff–
Love equation, describing thin isotropic elastic plates

L(v) := div
(
div

(
B(1 − ν)∇2v + Bν
v I2

))
= 0, in � ⊂ R

2, (1.4)

where v represents the transversal displacement, B is the bending stiffness and ν

the Poisson’s coefficient (see (2.2)–(2.3) for the precise definitions).
Assuming B, ν ∈ C4(�) and � of C6,α class, we prove our main results: a

three spheres inequality at the boundary with optimal exponent (see Theorem 2.2
for the precise statement) and, as a byproduct, the following SUCPB result (see
Corollary 2.3):

⎧
⎪⎨

⎪⎩

Lv = 0, in �,

v = ∂v
∂n = 0, on �,

∫

�∩Br (P)
v2 = O(rk), as r → 0,∀k ∈ N,

�⇒ v ≡ 0 in �. (1.5)

In our proof, firstly we flatten the boundary � by introducing a suitable conformal
mapping (see Proposition 3.1), then we combine a reflection argument (briefly
illustrated below) and the Carleman estimate

3∑

k=0

τ 6−2k
∫

ρ2k+ε−2−2τ |DkU |2dxdy � C
∫

ρ6−ε−2τ (
2U )2dxdy (1.6)

for every τ � τ and for every U ∈ C∞
0 (BR̃0

\ {0}), where 0 < ε < 1 is fixed

and ρ(x, y) ∼ √
x2 + y2 as (x, y) → (0, 0), see [33, Theorem 6.8] and here

Proposition 4.4 for the precise statement.
To enter into a little more detail, let us outline the main steps of our proof:

a) Since equation (1.4) can be rewritten in the form


2v = −2
∇B

B
· ∇
v + q2(v) in �, (1.7)
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where q2 is a second order operator, the equation resulting after flattening � by a
conformal mapping preserves the same structure of (1.7) and, denoting by u the
solution in the new coordinates, we can write

{

2u = a · ∇
u + p2(u), in B+

1 ,

u(x, 0) = uy(x, 0) = 0, ∀x ∈ (−1, 1),
(1.8)

where p2 is a second order operator.

b) We use the following reflection of u, [16,22,36]:

u(x, y) =
{

u(x, y), in B+
1

w(x, y) = −[u(x,−y) + 2yuy(x,−y) + y2
u(x,−y)], in B−
1

which has the advantage of ensuring that u ∈ H4(B1) if u ∈ H4(B+
1 ) (see Proposi-

tion 4.1), and then we apply the Carleman estimate (1.6) to ξu, where ξ is a cut-off
function. Nevertheless we have still a problem, namely:

c) Derivatives of u up to the sixth order occur in the terms on the right-hand side of
the Carleman estimate involving negative value of y, hence such terms cannot
be absorbed in a standard way by the left hand side. In order to overcome this
obstruction, we use the Hardy inequality, [21,40], stated in Proposition 4.3.

The paper is organized as follows: in Section 2 we introduce some notation and
definitions and state our main results, Theorem 2.2 and Corollary 2.3. In Section 3
we state Proposition 3.1, which introduces the conformalmapwhich realizes a local
flattening of the boundary which preserves the structure of the differential operator.
Section 4 contains some auxiliary results which shall be used in the proof of the
three spheres inequality in the case of flat boundaries, precisely Propositions 4.1
and 4.2 concerning the reflection with respect to flat boundaries and its properties,
a Hardy’s inequality (Proposition 4.3), the Carleman estimate for bi-Laplace oper-
ator (Proposition 4.4), and some interpolation estimates (Lemmas 4.6 and 4.7). In
Section 5 we establish the three spheres inequality with optimal exponents for the
case of flat boundaries, Proposition 5.1, and then we derive the proof of our main
result, Theorem 2.2. Finally, in the Appendix, we give the proof of Proposition 3.1
and of the interpolation estimates contained in Lemma 4.7.

2. Notation

We shall generally denote points in R2 by x = (x1, x2) or y = (y1, y2), except
for Sections 4 and 5 where we rename x, y the coordinates in R

2.
In places we will use equivalently the symbols D and ∇ to denote the gradient

of a function. Also we use the multi-index notation.
We shall denote by Br (P) the disc in R

2 of radius r and center P , by Br the
disk of radius r and center O , by B+

r , B−
r the hemidiscs inR2 of radius r and center

O contained in the halfplanes R2+ = {x2 > 0}, R2− = {x2 < 0} respectively, and
by Ra,b the rectangle (−a, a) × (−b, b).
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Given a matrix A = (ai j ), we shall denote by |A| its Frobenius norm |A| =
√∑

i, j a2
i j .

Throughout our proofs, we shall denote by C a constant which may change
from line to line.

Definition 2.1. (Ck,α regularity) Let � be a bounded domain in R
2. Given k, α,

with k ∈ N, 0 < α � 1, we say that a portion S of ∂� is of class Ck,α with constants
r0, M0 > 0, if, for any P ∈ S, there exists a rigid transformation of coordinates
under which we have P = 0 and

� ∩ Rr0,2M0r0 = {x ∈ Rr0,2M0r0 | x2 > g(x1)},
where g is a Ck,α function on [−r0, r0] satisfying

g(0) = g′(0) = 0,

‖g‖Ck,α([−r0,r0]) � M0r0,

where

‖g‖Ck,α([−r0,r0]) =
k∑

i=0

r i
0 sup

[−r0,r0]
|g(i)| + rk+α

0 |g|k,α,

|g|k,α = sup
t,s∈[−r0,r0]

t 
=s

{
|g(k)(t) − g(k)(s)|

|t − s|α
}

.

We shall consider an isotropic thin elastic plate � × [− h
2 , h

2

]
, having middle

plane � and width h. Under the Kirchhoff–Love theory, the transversal displace-
ment v satisfies the following fourth-order partial differential equation

L(v) := div
(
div

(
B(1 − ν)∇2v + Bν
v I2

))
= 0, in �. (2.1)

Here the bending stiffness B is given by

B(x) = h3

12

(
E(x)

1 − ν2(x)

)

, (2.2)

and the Young’s modulus E and the Poisson’s coefficient ν can be written in terms
of the Lamé moduli as follows:

E(x) = μ(x)(2μ(x) + 3λ(x))

μ(x) + λ(x)
, ν(x) = λ(x)

2(μ(x) + λ(x))
. (2.3)

We shall make the following strong convexity assumptions on the Lamémoduli:

μ(x) � α0 > 0, 2μ(x) + 3λ(x) � γ0 > 0, in �, (2.4)

where α0, γ0 are positive constants.
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It is easy to see that equation (2.1) can be rewritten in the form


2v = ã · ∇
v + q̃2(v) in �, (2.5)

with

ã = −2
∇B

B
, (2.6)

q̃2(v) = −
2∑

i, j=1

1

B
∂2i j (B(1 − ν) + νBδi j )∂

2
i jv. (2.7)

Let

�r0 = {
x ∈ Rr0,2M0r0 | x2 > g(x1)

}
, (2.8)

�r0 = {(x1, g(x1)) | x1 ∈ (−r0, r0)} , (2.9)

with

g(0) = g′(0) = 0,

‖g‖C6,α([−r0,r0]) � M0r0, (2.10)

for some α ∈ (0, 1]. Let v ∈ H2(�r0) satisfy

L(v) = 0, in �r0 , (2.11)

v = ∂v

∂n
= 0, on �r0 , (2.12)

where L is given by (2.1) and n denotes the outer unit normal.
Let us assume that the Lamémoduliλ,μ satisfies the strong convexity condition

(2.4) and the following regularity assumptions:

‖λ‖C4(�r0 ), ‖μ‖C4(�r0 ) � �0. (2.13)

The regularity assumptions (2.4), (2.10) and (2.13) guarantee that v ∈ H6(�r ),
see for instance [3].

Theorem 2.2. (Optimal three spheres inequality at the boundary) Under the
above hypotheses, there exist c < 1 only depending on M0 and α, C > 1 only
depending on α0, γ0, �0, M0, α, such that, for every r1 < r2 < cr0 < r0,

∫

Br2∩�r0

v2 � C

(
r0
r2

)C
(∫

Br1∩�r0

v2

)θ (∫

Br0∩�r0

v2

)1−θ

, (2.14)

where

θ =
log

(
cr0
r2

)

log
(

r0
r1

) . (2.15)
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Corollary 2.3. (Quantitative strong unique continuation at the boundary) Un-
der the above hypotheses and assuming

∫

Br0∩�r0
v2 > 0,

∫

Br1∩�r0

v2 �
(

r1
r0

) log A

log
r2
cr0

∫

Br0∩�r0

v2, (2.16)

where

A = 1

C

(
r2
r0

)C
∫

Br2∩�r0
v2

∫

Br0∩�r0
v2

< 1, (2.17)

c < 1 and C > 1 being the constants appearing in Theorem 2.2.

Proof. Reassembling the terms in (2.14), it is straightforward to obtain (2.16)–
(2.17). The SUCBP follows immediately. ��

3. Reduction to a Flat Boundary

The followingProposition introduces a conformalmapwhichflattens thebound-
ary �r0 and preserves the structure of equation (2.5).

Proposition 3.1. (Conformal mapping) Under the hypotheses of Theorem 2.2,
there exists an injective sense preserving differentiable map

� = (ϕ, ψ) : [−1, 1] × [0, 1] → �r0

which is conformal, and that satisfies

�((−1, 1) × (0, 1)) ⊃ Br0
K

(0) ∩ �r0 , (3.1)

�(([−1, 1] × {0}) = {(x1, g(x1)) | x1 ∈ [−r1, r1]} , (3.2)

�(0, 0) = (0, 0), (3.3)
c0r0
2C0

� |D�(y)| � r0
2

, ∀y ∈ [−1, 1] × [0, 1], (3.4)

4

r0
� |D�−1(x)| � 4C0

c0r0
, ∀x ∈ �([−1, 1] × [0, 1]), (3.5)

|�(y)| � r0
2

|y|, ∀y ∈ [−1, 1] × [0, 1], (3.6)

|�−1(x)| � K

r0
|x |, ∀x ∈ �([−1, 1] × [0, 1]), (3.7)

with K > 8, 0 < c0 < C0 being constants only depending on M0 and α.
Letting

u(y) = v(�(y)), y ∈ [−1, 1] × [0, 1], (3.8)
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u ∈ H6((−1, 1) × (0, 1)), and satisfies


2u = a · ∇
u + q2(u), in (−1, 1) × (0, 1), (3.9)

u(y1, 0) = uy2(y1, 0) = 0, ∀y1 ∈ (−1, 1), (3.10)

where

a(y) = |∇ϕ(y)|2
(
[D�(y)]−1ã(�(y)) − 2∇(|∇ϕ(y)|−2)

)
,

a ∈ C3([−1, 1] × [0, 1],R2), and q2 = ∑
|α|�2 cα Dα is a second order elliptic

operator with coefficients cα ∈ C2([−1, 1] × [0, 1]), satisfying

‖a‖C3([−1,1]×[0,1],R2) � M1, ‖cα‖C2([−1,1]×[0,1]) � M1, (3.11)

with M1 > 0 only depending on M0, α, α0, γ0,�0.

The explicit construction of the conformal map � and the proof of the above
Proposition are postponed to the Appendix.

4. Preliminary Results

In this paragraph, for simplicity of notation, we find it convenient to rename
x, y the coordinates in R

2 instead of y1, y2.
Let u ∈ H6(B+

1 ) be a solution to


2u = a · ∇
u + q2(u), in B+
1 , (4.1)

u(x, 0) = uy(x, 0) = 0, ∀x ∈ (−1, 1), (4.2)

with q2 = ∑
|α|�2 cα Dα ,

‖a‖
C3(B

+
1 ,R2)

� M1, ‖cα‖
C2(B

+
1 )

� M1, (4.3)

for some positive constant M1.
Let us define the following extension of u to B1 (see [22]):

u(x, y) =
{

u(x, y), in B+
1

w(x, y), in B−
1 ,

(4.4)

where

w(x, y) = −[u(x,−y) + 2yuy(x,−y) + y2
u(x,−y)]. (4.5)

Proposition 4.1. Let

F := a · ∇
u + q2(u). (4.6)

Then F ∈ H2(B+
1 ), u ∈ H4(B1),


2u = F, in B1, (4.7)
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where

F(x, y) =
{

F(x, y), in B+
1 ,

F1(x, y), in B−
1 ,

(4.8)

and

F1(x, y) = −[5F(x,−y) − 6yFy(x,−y) + y2
F(x,−y)]. (4.9)

Proof. Throughout this proof, we understand (x, y) ∈ B−
1 . It is easy to verify that


2w(x, y) = −[5F(x,−y) − 6yFy(x,−y) + y2
F(x,−y)] = F1(x, y).

(4.10)

Moreover, by (4.2) and (4.5),

w(x, 0) = −u(x, 0) = 0, ∀x ∈ (−1, 1). (4.11)

By differentiating (4.5) with respect to y, we have

wy(x, y) = −[uy(x,−y)−2yuyy(x,−y)+2y
u(x,−y) − y2(
uy)(x,−y)],
(4.12)

so that, by (4.2),

wy(x, 0) = −uy(x, 0) = 0, ∀x ∈ (−1, 1). (4.13)

Moreover,


w(x, y) = −[3
u(x,−y) − 4uyy(x,−y)

− 2y(
uy)(x,−y) + y2(
2u)(x,−y)], (4.14)

so that, recalling (4.2), we have that, for every x ∈ (−1, 1),


w(x, 0) = −[3
u(x, 0) − 4uyy(x, 0)] = uyy(x, 0) = 
u(x, 0). (4.15)

By differentiating (4.14) with respect to y, we have

(
wy)(x, y) = −[−5(
uy)(x,−y) + 4uyyy(x,−y)

+ 2y(
uyy)(x,−y) + 2y(
2u)(x,−y) − y2(
2uy)(x,−y)],
(4.16)

so that, taking into account (4.2), it follows that, for every x ∈ (−1, 1),

(
wy)(x, 0) = −[−5(
uy)(x, 0) + 4uyyy(x, 0)]
= −[−5uyxx (x, 0) − uyyy(x, 0)] = uyyy(x, 0) = (
uy)(x, 0).

(4.17)
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By (4.11) and (4.13), we have that u ∈ H2(B1). Let ϕ ∈ C∞
0 (B1) be a test function.

Then, integrating by parts and using (4.10), (4.15) and (4.17), we have

∫

B1


u
ϕ =
∫

B+
1


u
ϕ +
∫

B−
1


w
ϕ

= −
∫ 1

−1

u(x, 0)ϕy(x, 0) +

∫ 1

−1
(
uy)(x, 0)ϕ(x, 0) +

∫

B+
1

(
2u)ϕ

+
∫ 1

−1

w(x, 0)ϕy(x, 0) −

∫ 1

−1
(
wy)(x, 0)ϕ(x, 0) +

∫

B−
1

(
2w)ϕ

= +
∫

B+
1

Fϕ +
∫

B−
1

F1ϕ =
∫

B1

Fϕ. (4.18)

Therefore

∫

B1


u
ϕ =
∫

B1

Fϕ, ∀ϕ ∈ C∞
0 (B1),

so that (4.7) holds and, by interior regularity estimates, u ∈ H4(B1). ��

From now on, we shall denote by Pk , for k ∈ N, 0 � k � 3, any differential
operator of the form

∑

|α|�k

cα(x)Dα,

with ‖cα‖L∞ � cM1, where c is an absolute constant.

Proposition 4.2. For every (x, y) ∈ B−
1 , we have

F1(x, y) = H(x, y) + (P2(w))(x, y) + (P3(u))(x,−y), (4.19)

where

H(x, y) = 6
a1
y

(wyx (x, y) + uyx (x,−y))

+ 6
a2
y

(−wyy(x, y) + uyy(x,−y)) − 12a2
y

uxx (x,−y), (4.20)

where a1, a2 are the components of the vector a. Moreover, for every x ∈ (−1, 1),

wyx (x, 0) + uyx (x, 0) = 0, (4.21)

−wyy(x, 0) + uyy(x, 0) = 0, (4.22)

uxx (x, 0) = 0. (4.23)

10
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Proof. As before, we understand (x, y) ∈ B−
1 . Recalling (4.5) and (4.6), it is easy

to verify that

F(x,−y) = (P3(u))(x,−y), (4.24)

−6yFy(x,−y) = −6y(a · ∇
uy)(x,−y) + (P3(u))(x,−y). (4.25)

Next, let us prove that

y2
F(x,−y) = (P2(w))(x, y) + (P3(u))(x,−y). (4.26)

By denoting, for simplicity, ∂1 = ∂
∂x , ∂2 = ∂

∂y , we have that

y2
F(x,−y) = y2(a j∂ j

2u + 2∇a j · ∇∂ j
u + 
a j∂ j
u)(x,−y)

+ y2
(q2(u))(x,−y)

= y2(a j∂ j (a · ∇
u+q2(u))(x,−y)+2y2(∇a j · ∇∂ j
u)(x,−y)

+ y2(
q2(u))(x,−y) + y2(P3(u))(x,−y)

= y2(a j a · ∇
∂ j u)(x,−y)

+ 2y2(∇a j · ∇∂ j
u)(x,−y)

+ y2
(q2(u))(x,−y) + y2(P3(u))(x,−y). (4.27)

By (4.5), we have

y2
u(x,−y) = −w(x, y) − u(x,−y) − 2yuy(x,−y),

obtaining

y2(a j a · ∇∂ j
u)(x,−y) = (a j a · ∇∂ j (y2
u))(x,−y) + (P3(u))(x,−y)

= (P2(w))(x, y) + (P3(u))(x,−y). (4.28)

Similarly, we can compute

2y2(∇a j · ∇∂ j
u)(x,−y) = (P2(w))(x, y) + (P3(u))(x,−y), (4.29)

y2(
q2(u))(x,−y) = (P2(w))(x, y) + (P3(u))(x,−y). (4.30)

Therefore, (4.26) follows from (4.27)–(4.30).
From (4.9) and (4.24)–(4.26), we have

F1(x, y) = 6y(a · ∇
uy)(x,−y) + (P2(w))(x, y) + (P3(u))(x,−y).

(4.31)

We then have that

6y(a · ∇
uy)(x,−y) = 6y(a1
uxy)(x,−y) + 6y(a2
uyy)(x,−y).

(4.32)

By (4.5), we have

wyx (x, y) = −uyx (x,−y) + 2yuyyx (x,−y) − 2y(
ux )(x,−y)

+ y2(
uyx )(x,−y), (4.33)

11
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so that

y(
uyx )(x,−y) = 1

y
(wyx (x, y) + uyx (x,−y)) + (P3(u))(x,−y). (4.34)

Again by (4.5), we have

wyy(x, y) = 3uyy(x,−y) − 2(
u)(x,−y)

− 2y((uyyy)(x,−y) + 2
uy(x,−y)) − y2(
uyy)(x,−y)

= uyy(x,−y) − 2uxx (x,−y) − y2(
uyy)(x,−y)+y(P3(u))(x,−y),

(4.35)

so that

y(
uyy)(x,−y) = 1

y
(−wyy(x, y) + uyy(x,−y) − 2uxx (x,−y))

+(P3(u))(x,−y). (4.36)

Therefore (4.19)–(4.20) follow by (4.31), (4.32), (4.34) and (4.36).
The identity (4.21) is an immediate consequence of (4.33) and (4.2).
By (4.2), we have (4.23) and by (4.35) and (4.23),

−wyy(x, 0) + uyy(x, 0) = 2uxx (x, 0) = 0.

��
For the proof of the three spheres inequality at the boundarywe shall useHardy’s

inequality ([21, §7.3, p. 175]); for a proof see also [40].

Proposition 4.3. (Hardy’s inequality) Let f be an absolutely continuous function
defined in [0,+∞), such that f (0) = 0. Then

∫ +∞

1

f 2(t)

t2
dt � 4

∫ +∞

1
( f ′(t))2 dt. (4.37)

Another basic result we need to derive the three spheres inequality at the bound-
ary is the following Carleman estimate, which was obtained in [33, Theorem 6.8]:

Proposition 4.4. (Carleman estimate) Let ε ∈ (0, 1). Let us define

ρ(x, y) = ϕ

(√

x2 + y2
)

, (4.38)

where

ϕ(s) = s exp

(

−
∫ s

0

dt

t1−ε(1 + tε)

)

. (4.39)

12
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Then there exist τ > 1, C > 1, R̃0 � 1, only depending on ε, such that

3∑

k=0

τ 6−2k
∫

ρ2k+ε−2−2τ |DkU |2 dxdy � C
∫

ρ6−ε−2τ (
2U )2 dxdy (4.40)

for every τ � τ and for every U ∈ C∞
0 (BR̃0

\ {0}).
Remark 4.5. Let us notice that

e− 1
ε s � ϕ(s) � s,

e− 1
ε

√

x2 + y2 � ρ(x, y) �
√

x2 + y2. (4.41)

We shall also need the following interpolation estimates:

Lemma 4.6. Let 0 < ε � 1 and m ∈ N, m � 2. There exists an absolute constant
Cm, j such that for every v ∈ Hm(B+

r ),

r j‖D jv‖L2(B+
r ) � Cm, j

(

εrm‖Dmv‖L2(B+
r ) + ε

− j
m− j ‖v‖L2(B+

r )

)

(4.42)

(see for instance [3, Theorem 3.3]).

Lemma 4.7. Let u ∈ H6(B+
1 ) be a solution to (4.1)–(4.2), with a and q2 satisfying

(4.3). For every r , 0 < r < 1, we have

‖Dhu‖L2(B+
r
2
) � C

rh
‖u‖L2(B+

r ), ∀h = 1, . . . , 6, (4.43)

where C is a constant only depending on α0, γ0 and �0.

The proof of the above result is postponed to the “Appendix”.

5. Three Spheres Inequality at the Boundary and Proof of the Main Theorem

Theorem 5.1. (Optimal three spheres inequality at theboundary-flatboundary
case) Let u ∈ H6(B+

1 ) be a solution to (4.1)–(4.2), with a and q2 satisfying (4.3).
Then there exist γ ∈ (0, 1), only depending on M1 and an absolute constant C > 0
such that, for every r < R < R0

2 < R0 < γ ,

R2ε
∫

B+
R

u2 � C(M2
1 + 1)

(
R0/2

R

)C (∫

B+
r

u2
)θ̃

(∫

B+
R0

u2

)1−θ̃

, (5.1)

where

θ̃ =
log

(
R0/2

R

)

log
(

R0/2
r/4

) . (5.2)

13
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Proof. Let ε ∈ (0, 1) be fixed, for instance ε = 1
2 . However, it is convenient to

maintain the parameter ε in the calculations. Throughout this proof, C shall denote
a positive constant which may change from line to line. Let R0 ∈ (0, R̃0) be chosen
later, where R̃0 has been introduced in Proposition 4.4, and let

0 < r < R <
R0

2
. (5.3)

Let η ∈ C∞
0 ((0, 1)) such that

0 � η � 1, (5.4)

η = 0, in
(
0,

r

4

)
∪
(
2

3
R0, 1

)

, (5.5)

η = 1, in

[
r

2
,

R0

2

]

, (5.6)

∣
∣
∣
∣
dkη

dtk
(t)

∣
∣
∣
∣ � Cr−k, in

(r

4
,

r

2

)
, for 0 � k � 4, (5.7)

∣
∣
∣
∣
dkη

dtk
(t)

∣
∣
∣
∣ � C R−k

0 , in

(
R0

2
,
2

3
R0

)

, for 0 � k � 4. (5.8)

Let us define

ξ(x, y) = η

(√

x2 + y2
)

. (5.9)

By a density argument, we may apply the Carleman estimate (4.40) to U = ξu,
where u has been defined in (4.4), obtaining

3∑

k=0

τ 6−2k
∫

B+
R0

ρ2k+ε−2−2τ |Dk(ξu)|2 +
3∑

k=0

τ 6−2k
∫

B−
R0

ρ2k+ε−2−2τ |Dk(ξw)|2

� C
∫

B+
R0

ρ6−ε−2τ |
2(ξu)|2 + C
∫

B−
R0

ρ6−ε−2τ |
2(ξw)|2 (5.10)

for τ � τ , where C is an absolute constant.
By (5.4)–(5.9) we have

|
2(ξu)| � ξ |
2u| + CχB+
r/2\B+

r/4

3∑

k=0

rk−4|Dku|

+ CχB+
2R0/3\B+

R0/2

3∑

k=0

Rk−4
0 |Dku|, (5.11)

|
2(ξw)| � ξ |
2w| + CχB−
r/2\B−

r/4

3∑

k=0

rk−4|Dkw|

+ CχB−
2R0/3\B−

R0/2

3∑

k=0

Rk−4
0 |Dkw|. (5.12)

14
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Let us set

J0 =
∫

B+
r/2\B+

r/4

ρ6−ε−2τ
3∑

k=0

(rk−4|Dku|)2

+
∫

B−
r/2\B−

r/4

ρ6−ε−2τ
3∑

k=0

(rk−4|Dkw|)2, (5.13)

J1 =
∫

B+
2R0/3\B+

R0/2

ρ6−ε−2τ
3∑

k=0

(Rk−4
0 |Dku|)2

+
∫

B−
2R0/3\B−

R0/2

ρ6−ε−2τ
3∑

k=0

(Rk−4
0 |Dkw|)2. (5.14)

By inserting (5.11) and (5.12) in (5.10) we have

3∑

k=0

τ 6−2k
∫

B+
R0

ρ2k+ε−2−2τ |Dk(ξu)|2 +
3∑

k=0

τ 6−2k
∫

B−
R0

ρ2k+ε−2−2τ |Dk(ξw)|2

� C
∫

B+
R0

ρ6−ε−2τ ξ2|
2u|2 + C
∫

B−
R0

ρ6−ε−2τ ξ2|
2w|2 + C J0 + C J1

(5.15)

for τ � τ , with C being an absolute constant.
By (4.1) and (4.3) we can estimate the first term in the right hand side of (5.15)

as follows:

∫

B+
R0

ρ6−ε−2τ ξ2|
2u|2 � C M2
1

∫

B+
R0

ρ6−ε−2τ ξ2
3∑

k=0

|Dku|2. (5.16)

By (4.10) and (4.19), and by making the change of variables (x, y) → (x,−y)

in the integrals involving the function u(x,−y), we can estimate the second term
in the right hand side of (5.15) as follows:
∫

B−
R0

ρ6−ε−2τ ξ2|
2w|2 � C
∫

B−
R0

ρ6−ε−2τ ξ2|H(x, y)|2

+ C M2
1

∫

B−
R0

ρ6−ε−2τ ξ2
2∑

k=0

|Dkw|2 + C M2
1

∫

B+
R0

ρ6−ε−2τ ξ2
3∑

k=0

|Dku|2.

(5.17)

Now, let us split the integral in the right hand side of (5.16) and the second and third
integrals in the right hand side of (5.17) over the domains of integration B±

r/2 \ B±
r/4,

B±
R0/2

\ B±
r/2, B±

2R0/3
\ B±

R0/2
and then let us insert (5.16)–(5.17) as rewritten in

(5.15), obtaining

15
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3∑

k=0

τ 6−2k
∫

B+
R0

ρ2k+ε−2−2τ |Dk(ξu)|2 +
3∑

k=0

τ 6−2k
∫

B−
R0

ρ2k+ε−2−2τ |Dk(ξw)|2

� C
∫

B−
R0

ρ6−ε−2τ ξ2|H(x, y)|2 + C M2
1

∫

B−
R0/2\B−

r/2

ρ6−ε−2τ
2∑

k=0

|Dkw|2

+ C M2
1

∫

B+
R0/2\B+

r/2

ρ6−ε−2τ
3∑

k=0

|Dku|2 + C(M2
1 + 1)(J0 + J1), (5.18)

for τ � τ , with C as an absolute constant. ��
Next, by estimating from below the integrals in the left hand side of this last in-
equality, reducing their domain of integration to B±

R0/2
\ B±

r/2, where ξ = 1, we
have

3∑

k=0

∫

B+
R0/2\B+

r/2

τ 6−2k(1 − C M2
1ρ8−2ε−2k)ρ2k+ε−2−2τ |Dku|2

+
∫

B−
R0/2\B−

r/2

ρ4+ε−2τ |D3w|2

+
2∑

k=0

∫

B−
R0/2\B−

r/2

τ 6−2k(1 − C M2
1ρ8−2ε−2k)ρ2k+ε−2−2τ |Dkw|2

� C
∫

B−
R0

ρ6−ε−2τ ξ2|H(x, y)|2 + C(M2
1 + 1)(J0 + J1), (5.19)

for τ � τ , with C being an absolute constant.
Recalling (4.41), we have that, for k = 0, 1, 2, 3 and for R0 � R1 := min

{R̃0, 2(2C M2
1 )

− 1
2(1−ε) },

1 − C M2
1ρ8−2ε−2k � 1

2
, in B±

R0/2
, (5.20)

so that, inserting (5.20) in (5.19), we have

3∑

k=0

τ 6−2k
∫

B+
R0/2\B+

r/2

ρ2k+ε−2−2τ |Dku|2

+
3∑

k=0

τ 6−2k
∫

B−
R0/2\B−

r/2

ρ2k+ε−2−2τ |Dkw|2

� C
∫

B−
R0

ρ6−ε−2τ ξ2|H(x, y)|2 + C(M2
1 + 1)(J0 + J1) (5.21)

for τ � τ , with C an absolute constant.
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By (4.20) and (4.3), we have that
∫

B−
R0

ρ6−ε−2τ ξ2|H(x, y)|2 � C M2
1 (I1 + I2 + I3), (5.22)

with

I1 =
∫ R0

−R0

(∫ 0

−∞

∣
∣
∣y−1(wyy(x, y) − (uyy(x,−y))ρ

6−ε−2τ
2 ξ

∣
∣
∣
2

dy

)

dx . (5.23)

I2 =
∫ R0

−R0

(∫ 0

−∞

∣
∣
∣y−1(wyx (x, y) + (uyx (x,−y))ρ

6−ε−2τ
2 ξ

∣
∣
∣
2
dy

)

dx . (5.24)

I3 =
∫ R0

−R0

(∫ 0

−∞

∣
∣
∣y−1uxx (x,−y)ρ

6−ε−2τ
2 ξ

∣
∣
∣
2
dy

)

dx . (5.25)

Now, let us see that, for j = 1, 2, 3,

I j � C
∫

B−
R0

ρ6−ε−2τ ξ2|D3w|2 + Cτ 2
∫

B−
R0

ρ4−ε−2τ ξ2|D2w|2

+ C
∫

B+
R0

ρ6−ε−2τ ξ2|D3u|2 + Cτ 2
∫

B+
R0

ρ4−ε−2τ ξ2|D2u|2 + C(J0 + J1)

(5.26)

for τ � τ , with C being an absolute constant.
Let us verify (5.26) for j = 1, the other cases following by using similar

arguments.
By (4.22), we can apply Hardy’s inequality (4.37), obtaining
∫ 0

−∞

∣
∣
∣y−1(wyy(x, y) − (uyy(x,−y))ρ

6−ε−2τ
2 ξ

∣
∣
∣
2
dy

� 4
∫ 0

−∞

∣
∣
∣∂y

[
(wyy(x, y) − (uyy(x,−y))ρ

6−ε−2τ
2 ξ

]∣
∣
∣
2
dy

� 16
∫ 0

−∞

(
|wyyy(x, y)|2 + |uyyy(x,−y)|2

)
ρ6−ε−2τ ξ2 dy

+ 16
∫ 0

−∞

(
|wyy(x, y)|2 + |uyy(x,−y)|2

) ∣
∣
∣∂y

(
ρ

6−ε−2τ
2 ξ

)∣
∣
∣
2
dy. (5.27)

Noticing that

|ρy | �
∣
∣
∣
∣
∣

y
√

x2 + y2
ϕ′
(√

x2 + y2
)∣∣
∣
∣
∣
� 1, (5.28)

we can compute

∣
∣
∣∂y

(
ρ

6−ε−2τ
2 (x, y)ξ(x, y)

)∣
∣
∣
2

� 2|ξy |2ρ6−ε−2τ + 2

∣
∣
∣
∣

(
6 − ε − 2τ

2

)

ξρyρ
4−ε−2τ

2

∣
∣
∣
∣

2

� 2ξ2y ρ6−ε−2τ + 2τ 2ρ4−ε−2τ ξ2 (5.29)
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for τ � τ̃ := max{τ , 3}; again C is an absolute constant.
By inserting (5.29) in (5.27), by integrating over (−R0, R0) and by making

the change of variables (x, y) → (x,−y) in the integrals involving the function
u(x,−y), we derive

I1 � C
∫

B−
R0

ξ2ρ6−ε−2τ |wyyy |2 + C
∫

B+
R0

ξ2ρ6−ε−2τ |uyyy |2

+ C
∫

B−
R0

ξ2y ρ6−ε−2τ |wyy |2 + C
∫

B+
R0

ξ2y ρ6−ε−2τ |uyy |2

+ Cτ 2
∫

B−
R0

ξ2ρ4−ε−2τ |wyy |2 + Cτ 2
∫

B+
R0

ξ2ρ4−ε−2τ |uyy |2. (5.30)

Recalling (5.4)–(5.9), we find (5.26) for j = 1.
Next, by (5.21), (5.22) and (5.26), we have

3∑

k=0

τ 6−2k
∫

B+
R0/2\B+

r/2

ρ2k+ε−2−2τ |Dku|2

+
3∑

k=0

τ 6−2k
∫

B−
R0/2\B−

r/2

ρ2k+ε−2−2τ |Dkw|2

� C M2
1

∫

B+
R0

ρ6−ε−2τ ξ2|D3u|2 + C M2
1

∫

B−
R0

ρ6−ε−2τ ξ2|D3w|2

+ C M2
1 τ 2

∫

B+
R0

ρ4−ε−2τ ξ2|D2u|2

+ C M2
1 τ 2

∫

B−
R0

ρ4−ε−2τ ξ2|D2w|2 + C(M2
1 + 1)(J0 + J1) (5.31)

for τ � τ̃ , with C being an absolute constant.
Now, let us split the first four integrals in the right hand side of (5.31) over the

domains of integration B±
r/2 \ B±

r/4, B±
2R0/3

\ B±
R0/2

and B±
R0/2

\ B±
r/2 and move on

the left hand side the integrals over B±
R0/2

\ B±
r/2. Recalling (4.41), we obtain

3∑

k=2

∫

B+
R0/2\B+

r/2

τ 6−2k(1 − C M2
1ρ2−2ε)ρ2k+ε−2−2τ |Dku|2

+
3∑

k=2

∫

B−
R0/2\B−

r/2

τ 6−2k(1 − C M2
1ρ2−2ε)ρ2k+ε−2−2τ |Dkw|2

+
1∑

k=0

τ 6−2k
∫

B+
R0/2\B+

r/2

ρ2k+ε−2−2τ |Dku|2

+
1∑

k=0

τ 6−2k
∫

B−
R0/2\B−

r/2

ρ2k+ε−2−2τ |Dkw|2

� C(τ 2M2
1 + 1)(J0 + J1) (5.32)
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for τ � τ̃ , with C being an absolute constant.

Therefore, for R0 � R2 = min{R1, 2(2C M2
1 )

− 1
2(1−ε) }, it follows that

3∑

k=0

τ 6−2k
∫

B+
R0/2\B+

r/2

ρ2k+ε−2−2τ |Dku|2

+
3∑

k=0

τ 6−2k
∫

B−
R0/2\B−

r/2

ρ2k+ε−2−2τ |Dkw|2

� C(τ 2M2
1 + 1)(J0 + J1) (5.33)

for τ � τ̃ , with C being an absolute constant.
Let us estimate J0 and J1. From (5.13) and recalling (4.41), we have

J0 �
(r

4

)6−ε−2τ
{∫

B+
r/2

3∑

k=0

(rk−4|Dku|)2 +
∫

B−
r/2

3∑

k=0

(rk−4|Dkw|)2
}

. (5.34)

By (4.5), we have that, for (x, y) ∈ B−
r/2 and k = 0, 1, 2, 3,

|Dkw| � C
2+k∑

h=k

rh−k |(Dhu)(x,−y)|. (5.35)

By (5.34)–(5.35), by making the change of variables (x, y) → (x,−y) in the
integrals involving the function u(x,−y) and by using Lemma 4.7, we get

J0 � C
(r

4

)6−ε−2τ 5∑

k=0

r2k−8
∫

B+
r/2

|Dku|2 � C
(r

4

)−2−ε−2τ
∫

B+
r

|u|2, (5.36)

where C is an absolute constant. Analogously, we obtain

J1 � C

(
R0

2

)−2−ε−2τ ∫

B+
R0

|u|2. (5.37)

Let R such that r < R < R0
2 . By (5.33), (5.36) and (5.37), it follows that

τ 6Rε−2−2τ
∫

B+
R \B+

r/2

|u|2 �
3∑

k=0

τ 6−2k
∫

B+
R0/2\B+

r/2

ρ2k+ε−2−2τ |Dku|2

� Cτ 2(M2
1 + 1)

[
(r

4

)−2−ε−2τ
∫

B+
r

|u|2 +
(

R0

2

)−2−ε−2τ ∫

B+
R0

|u|2
]

(5.38)
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for τ � τ̃ , with C being an absolute constant. Since τ > 1, we may rewrite the
above inequality as

R2ε
∫

B+
R \B+

r/2

|u|2

� C(M2
1 + 1)

[(
r/4

R

)−2−ε−2τ ∫

B+
r

|u|2 +
(

R0/2

R

)−2−ε−2τ ∫

B+
R0

|u|2
]

(5.39)

for τ � τ̃ , withC as an absolute constant. By adding R2ε
∫

B+
r/2

|u|2 to bothmembers

of (5.39), and setting, for s > 0,

σs =
∫

B+
s

|u|2,

we obtain

R2εσR � C(M2
1 + 1)

[(
r/4

R

)−2−ε−2τ

σr +
(

R0/2

R

)−2−ε−2τ

σR0

]

(5.40)

for τ � τ̃ , with C being an absolute constant.
Let τ ∗ be such that

(
r/4

R

)−2−ε−2τ∗

σr =
(

R0/2

R

)−2−ε−2τ∗

σR0 , (5.41)

that is

2 + ε + 2τ ∗ = log(σR0/σr )

log
(

R0/2
r/4

) . (5.42)

Let us distinguish two cases:

i) τ ∗ � τ̃ ,
ii) τ ∗ < τ̃ ,

and set

θ̃ =
log

(
R0/2

R

)

log
(

R0/2
r/4

) . (5.43)

In case i), it is possible to choose τ = τ ∗ in (5.40), obtaining, by (5.41)–(5.43),

R2εσR � C(M2
1 + 1)σ θ̃

r σ 1−θ̃
R0

. (5.44)

In case ii), since τ ∗ < τ̃ , from (5.42), we have

log(σR0/σr )

log
(

R0/2
r/4

) < 2 + ε + 2τ̃ ,
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so that, multiplying both members by log
(

R0/2
R

)
, it follows that

θ̃ log

(
σR0

σr

)

< log

(
R0/2

R

)2+ε+2τ̃

,

and hence

σ θ̃
R0

�
(

R0/2

R

)2+ε+2τ̃

σ θ̃
r . (5.45)

Then it follows trivially that

R2εσR � R2εσR0 � R2ε
(

R0/2

R

)2+ε+2τ̃

σ θ̃
r σ 1−θ̃

R0
. (5.46)

Finally, by (5.44) and (5.46), we obtain (5.1).

Proof of Theorem 2.2. Let r1 < r2 < r0R0
2K < r0, where R0 is chosen such that

R0 < γ < 1, where γ has been introduced in Theorem 5.1 and K > 1 is the
constant introduced in Proposition 3.1. Let us define

r = 2r1
r0

, R = Kr2
r0

.

Recalling that K > 8, it follows immediately that r < R < R0
2 . Therefore, we can

apply (5.1) with ε = 1
2 to u = v ◦ �, obtaining

∫

B+
R

u2 � C

RC

(∫

B+
r

u2
)θ̃

(∫

B+
R0

u2

)1−θ̃

, (5.47)

with

θ̃ =
log

(
R0r0
2Kr2

)

log
(

R0r0
r1

)

and with C > 1 only depending on M0, α, α0 e γ0 and �0.
From (3.5), (3.6) and (3.7), and noticing that

θ̃ � θ :=
log

(
R0r0
2Kr2

)

log
(

r0
r1

) ,

we obtain (2.14)–(2.15). ��

Acknowledgements. The authors wish to thank Antonino Morassi for fruitful discussions
on the subject of this work.
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6. Appendix

Proof of Proposition 3.1. Let us construct a suitable extension of g to [−2r0, 2r0].
Let P±

6 be the Taylor polynomial of order 6 and center ±r0

P±
6 (x1) =

6∑

j=0

g( j)(±r0)

j ! (x1 − (±r0))
j ,

and let χ ∈ C∞
0 (R) be a function satisfying

0 � χ � 1,

χ = 1, for |x1| � r0,

χ = 0, for
3

2
r0 � |x1| � 2r0,

|χ( j)(x1)| � C

r j
0

, for r0 � |x1| � 3

2
r0,∀ j ∈ N.

Let us define

g̃ =
⎧
⎨

⎩

g, for x1 ∈ [−r0, r0],
χ P+

6 , for x1 ∈ [r0, 2r0],
χ P−

6 , for x1 ∈ [−2r0,−r0].
It is a straightforward computation to verify that

g̃(x1) = 0, for
3

2
r0 � |x1| � 2r0, (6.1)

|̃g(x1)| � 2M0r0, for |x1| � 2r0, (6.2)

so that the graph of g̃ is contained in R2r0,2M0r0 and

‖g̃‖C6,α([−2r0,2r0]) � C M0r0, (6.3)

where C is an absolute constant. Let

�̃r0 = {
x ∈ R2r0,2M0r0 | x2 > g̃(x1)

}
, (6.4)

and let k ∈ H1(�̃r0) be the solution to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩


k = 0, in �̃r0 ,

kx1(2r0, x2) = kx1(−2r0, x2) = 0, for 0 � x2 � 2M0r0,

k(x1, 2M0r0) = 1, for − 2r0 � x1 � 2r0,

k(x1, g̃(x1)) = 0, for − 2r0 � x1 � 2r0.

(6.5)

Let us notice that k ∈ C6,α
(
�̃r0

)
. Indeed, this regularity is standard away from

any neighborhoods of the four points (±2r0, 0), (±2r0, 2M0r0) and, by making a
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even reflection of k with respect to the lines x1 = ±2r0 in a neighborhood in �̃r0 of
each of these points, we can apply Schauder estimates and again obtain the stated
regularity.
By the maximum principle, min

�̃r0
k = min∂�̃r0

k. In view of the boundary con-

ditions, this minimum value cannot be achieved in the closed segment {x2 =
2M0r0, |x1| � 2r0} nor can’t be achieved in the segments {±2r0} × (0, 2M0r0),
since the boundary conditions over these segment contradict the Hopf Lemma (see
[20]). Therefore theminimum is attained on the boundary portion {(x1, g̃(x1) | x1 ∈
[−2r0, 2r0]}, so that min

�̃r0
k = 0. Similarly, max

�̃r0
k = 1 and, moreover, by

the strong maximum and minimum principles, 0 < k(x1, x2) < 1, for every
(x1, x2) ∈ �̃r0 .
Denoting byR be the reflection around the line x1 = 2r0, let

�∗
r0 = �̃r0 ∪ R(�̃r0) ∪ ({2r0} × (0, 2M0r0)),

and let k∗ be the extension of k to �
∗
r0 obtained by making an even reflection of k

around the line x1 = 2r0.
Next, let us extend k∗ by periodicity with respect to the x1 variable to the unbounded
strip

Sr0 = ∪l∈Z(�∗
r0 + 8r0le1).

By Schauder estimates and by the periodicity of k∗, it follows that

‖∇k∗‖L∞(Sr0 ) � C0

r0
, (6.6)

with C0 only depending on M0 and α. Therefore there exists δ0 = δ0(M0, α),
0 < δ0 � 1

4 , such that

k∗(x1, x2) � 1

2
∀(x1, x2) ∈ R × [(1 − δ0)2M0r0, 2M0r0]. (6.7)

Since k∗ > 0 in Sr0 , by applying Harnack inequality and Hopf Lemma (see [20]),
we have

∂k∗

∂x2
� c0

r0
, on ∂Sr0 ,

with c0 only depending on M0 and α. Therefore, the function k∗ satisfies
⎧
⎪⎨

⎪⎩



(

∂k∗
∂x2

)
= 0, in Sr0 ,

∂k∗
∂x2

� c0
r0

, on ∂Sr0 .

Moreover, ∂k∗
∂x2

, being continuous and periodicwith respect to the variable x1, attains

its minimum in Sr0 . Since this minimum value cannot be attained in Sr0 , it follows
that

∂k∗

∂x2
� c0

r0
, in Sr0 . (6.8)
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Now, let h be an harmonic conjugate of −k in �̃r0 , that is
⎧
⎨

⎩

hx1 = kx2 ,

hx2 = −kx1 .

(6.9)

The map � := h + ik is a conformal map in �̃r0 ,

D� =
⎛

⎝
kx2 −kx1

kx1 kx2

⎞

⎠ (6.10)

so that |D�| = √
2|∇k| and, by (6.6) and (6.8),

√
2

c0
r0

� |D�| �
√
2

C0

r0
, in �̃r0 . (6.11)

Let us analyze the behavior of � on the boundary of �̃r0

∂�̃r0 = σ1 ∪ σ2 ∪ σ3 ∪ σ4,

where

σ1 = {(x1, g̃(x1)), | x1 ∈ [−2r0, 2r0]}, σ2 = {(2r0, x2), | x2 ∈ [0, 2M0r0]},
σ3 = {(x1, 2M0r0), | x1 ∈ [−2r0, 2r0]}, σ4 = {(−2r0, x2), | x2 ∈ [0, 2M0r0]}.
On σ1, we have

�(x1, g̃(x1)) = h(x1, g̃(x1)) + i0,
∂

∂x1
h(x1, g̃(x1)) = hx1(x1, g̃(x1)) + hx2(x1, g̃(x1))g̃

′(x1)

= −
√

1 + [g̃′(x1)]2(∇k · n) > 0,

where n is the outer unit normal. Therefore � is injective on σ1 and �(σ1) is an
interval [a, b] contained in the line {y2 = 0}, with

a = h(−2r0, 0), b = h(2r0, 0).

On σ2, we have

�(2r0, x2) = h(2r0, x2) + ik(2r0, x2),

hx2(2r0, x2) = −kx1(2r0, x2) = 0,

and similarly in σ4, so that h(−2r0, x2) ≡ a and h(2r0, x2) ≡ b for x2 ∈ [0, 2M0r0]
whereas, by (6.8), k is increasing with respect to x2. Therefore � is injective on
σ2∪σ4, andmapsσ2 into the segment {b}×[0, 1] andσ4 into the segment {a}×[0, 1].
On σ3, we have

�(x1, 2M0r0) = h(x1, 2M0r0) + i1,

hx1(x1, 2M0r0) = kx2(x1, 2M0r0) > 0,
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so that h is increasing in [−2r0, 2r0], � is injective on σ3 and �(σ3) is the interval
[a, b] × {1}.
Therefore � maps in a bijective way the boundary of �̃r0 into the boundary of
[a, b] × [0, 1]. Moreover, we have

b − a =
∫ 2r0

−2r0
hx1(x1, 2M0r0) dx1 =

∫ 2r0

−2r0
kx2(x1, 2M0r0) dx1. (6.12)

By (6.6), (6.8) and (6.12) the following estimate holds:

4c0 � b − a � 4C0. (6.13)

By (6.11), we can apply the global inversion theorem, ensuring that

�−1 : [a, b] × [0, 1] → �̃r0

is a conformal diffeomorphism. Moreover,

D(�−1) = 1

|∇k|2

⎛

⎝
kx2 kx1

−kx1 kx2

⎞

⎠ , (6.14)

√
2

C0
r0 � |D�−1| =

√
2

|∇k| �
√
2

c0
r0, in [a, b] × [0, 1]. (6.15)

Now, we can see that the set �(�r0) contains a closed rectangle having one basis
contained in the line {y2 = 0} and whose sides can be estimated in terms of M0
and α. To this end we need to estimate the distance of �(0, 0) = (ξ1, 0) from the
edges (a, 0) and (b, 0) of the rectangle [a, b] × [0, 1]. Recalling that g̃ ≡ 0 for
3
2r0 � |x1| � 2r0, we have that σ1 contains the segments

[−2r0,− 3
2r0

] × {0},
[ 3
2r0, 2r0

]× {0}, so that

h(2r0, 0) − h

(
3

2
r0, 0

)

=
∫ 2r0

3
2 r0

hx1(x1, 0) dx1 =
∫ 2r0

3
2 r0

kx2(x1, 0) dx1. (6.16)

By (6.6), (6.8) and (6.16) we derive

c0
2

� h(2r0, 0) − h

(
3

2
r0, 0

)

� C0

2
. (6.17)

Similarly,

c0
2

� h

(

−3

2
r0, 0

)

− h(−2r0, 0) � C0

2
. (6.18)

Since h is injective and maps σ1 into [a, b] × {0}, it follows that

|�(0, 0) − (a, 0)| = h(0, 0) − h(−2r0, 0) � c0
2

,

|�(0, 0) − (b, 0)| = h(2r0, 0) − h(0, 0) � c0
2

.
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Possibly replacing c0 with min{c0, 2}, we obtain that B
+
c0
2
(�(O)) ⊂ [a, b]×[0, 1].

By (6.15),

|�−1(ξ)| = |�−1(ξ) − �−1(�(O))| �
√
2

2
r0 < r0, ∀ξ ∈ B+

c0
2
(�(O)),

so that �−1
(

B+
c0
2
(�(O))

)

⊂ �r0 ,

�(�r0) ⊃ B+
c0
2
(�(O)) ⊃ R,

where R is the rectangle

R =
(

ξ1 − c0

2
√
2
, ξ1 + c0

2
√
2

)

×
(

0,
c0

2
√
2

)

.

Let us consider the homothety

� : [a, b] × [0, 1] → R
2,

�(ξ1, ξ2) = 2
√
2

c0
(ξ1 − ξ1, ξ2),

which satisfies

�(�(O)) = O, D� = 2
√
2

c0
I2,

�([a, b] × [0, 1]) = R∗, R∗ =
[
2
√
2

c0
(a − ξ1),

2
√
2

c0
(b − ξ1)

]

×
[

0,
2
√
2

c0

]

,

�(R) = [−1, 1] × [0, 1],
D(� ◦ �)(x) = 2

√
2

c0
D�(x);

its inverse

�−1 : R∗ → [a, b] × [0, 1],
�−1(y1, y2) = c0

2
√
2
(y1 + ξ1, y2),

satisfies

D�−1 = c0

2
√
2

I2,

D((� ◦ �)−1)(y) = c0

2
√
2

D�−1(�−1(y)).

Let us define

� = (� ◦ �)−1).

We have that � is a conformal diffeomorphism from R∗ into �̃r0 such that

�r0 ⊃ �−1(R) = �((−1, 1) × (0, 1)), (6.19)
c0r0
2C0

� |D�(y)| � r0
2

, (6.20)
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4

r0
� |D�−1(x)| � 4C0

c0r0
. (6.21)

By (3.4), we have that, for every y ∈ [−1, 1] × [0, 1],

|�(y)| = |�(y) − �(O)| � r0
2

|y|. (6.22)

Given any x(x1, x2) ∈ �r0 , let x∗ = (x1, g(x1)). We have

|x − x∗| = |x2 − g(x1)| � |x2| + |g(x1) − g(0)| � (M0 + 1)|x |,
and, since the segment joining x and x∗ is contained in �r0 , by (6.21) we have

|�−1(x) − �−1(x∗)| � 4C0

c0r0
(M0 + 1)|x |. (6.23)

Let un consider the arc τ(t) = �−1(t, g1(t)), for t ∈ [0, x1]. Again by (6.21), we
have

|�−1(x∗)| = |�−1(x∗) − �−1(O)| = τ(x1) − τ(0) �

�
∣
∣
∣
∣

∫ x1

0
τ ′(t)dt

∣
∣
∣
∣ � 4C0

c0r0

√

M2
0 + 1 |x |. (6.24)

By (6.23) and (6.24), we have

|�−1(x)| � K

r0
|x |, (6.25)

with K = 4C0
c0

(M0 + 1 +
√

M2
0 + 1) > 8. From this last inequality, we have that

�−1
(
�r0 ∩ B r0

K

)
⊂ B+

1 ⊂ (−1, 1) × (0, 1), �((−1, 1) × (0, 1)) ⊃ �r0 ∩ B r0
K

.

Let � = (ϕ, ψ). We have that

D� =
⎛

⎝
ϕy1 ϕy2

−ϕy2 ϕy1

⎞

⎠ , (6.26)

det (D�(y)) = |∇ϕ(y)|2, (6.27)

(D�)−1 = 1

|∇ϕ|2

⎛

⎝
ϕy1 −ϕy2

ϕy2 ϕy1

⎞

⎠ . (6.28)

Concerning the function u(y) = v(�(y)), we can compute

(∇v)(�(y)) = [(D�(y))−1]T ∇u(y), (6.29)

(
v)(�(y)) = 1

|det (D�(y)|div (A(y)∇u(y)), (6.30)
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where

A(y) = |det (D�(y)|(D�(y))−1[(D�(y))−1]T . (6.31)

By (6.26)–(6.28), we obtain that

A(y) = I2, (6.32)

so that

(
v)(�(y)) = 1

|∇ϕ(y)|2
u(y), (6.33)

(
2v)(�(y)) = 1

|∇ϕ(y)|2


(
1

|∇ϕ(y)|2
u(y)

)

. (6.34)

By using the above formulas, some computations allow to derive (3.9)–(3.11) from
(2.5).
Finally, the boundary conditions (3.10) follow from (6.29), (3.2) and (2.12). ��
Proof of Lemma 4.7. Here, we develop an argument which is contained in [20,
Chapter 9]. By noticing that a · ∇
u = div (
ua) − (div a)
u, we can rewrite
(2.14) in the form

∑

|α|,|β|�2

Dα(aαβ Dβu) = 0.

Let σ ∈ [ 1
2 , 1

)
, σ ′ = 1+σ

2 and let us notice that

σ ′ − σ = 1 − σ

2
, 1 − σ = 2(1 − σ ′). (6.35)

Let ξ ∈ C∞
0 (R2) be such that

0 � ξ � 1,

ξ = 1, for |x | � σ,

ξ = 0, for |x | � σ ′,

|Dk(ξ)| � C

(σ ′ − σ)k
, for σ � σ ′, k = 0, 1, 2.

By straightforward computations we have that
∑

|α|,|β|�2

Dα(aαβ Dβ(uξ)) = f,

with

f =
∑

|α|,|β|�2

∑

δ2�α
δ2 
=0

(
α

β

)

Dα−δ2aαβ Dβu)Dδ2ξ

+
∑

|α|,|β|�2

Dα

⎡

⎢
⎢
⎢
⎣

aαβ

∑

δ1�β
δ1 
=0

(
β

δ1

)

Dβ−δ1u Dδ1ξ

⎤

⎥
⎥
⎥
⎦

.
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By standard regularity estimates (see for instance [3, Theorem 9.8],

‖uξ‖H4+k (B+
1 ) � C

(
‖uξ‖L2(B+

1 ) + ‖ f ‖Hk (B+
1 )

)
. (6.36)

On the other hand, it follows trivially that

‖ f ‖Hk (B+
1 ) � C M1

3+k∑

h=0

1

(1 − σ ′)4+k−h
‖Dhu‖L2(B+

σ ′ ). (6.37)

By inserting (6.37) in (6.36), by multiplying both members by (1− σ ′)4+k and by
recalling (6.35), we have

(1 − σ)4+k‖D4+ku‖L2(B+
σ ) � C

(

‖u‖L2(B+
1 ) +

3+k∑

h=1

(1 − σ ′)h‖Dhu‖L2(B+
σ ′ )

)

.

(6.38)

Setting

� j = sup
σ∈

[
1
2 ,1

)
(1 − σ) j‖D j u‖L2(B+

σ ),

from (6.38), we obtain

�4+k � C (A2+k + �3+k) . (6.39)

where

A2+k = ‖u‖L2(B+
1 ) +

2+k∑

h=1

�h .

By the interpolation estimate (4.42) we have that, for every ε, 0 < ε < 1 and for
every h ∈ N, 1 � h � 3 + k,

‖Dhu‖L2(B+
σ ) � C

(
ε‖D4+ku‖L2(B+

σ ) + ε− h
4+k−h ‖u‖L2(B+

σ )

)
. (6.40)

Let γ > 0 and let σγ ∈ [ 1
2 , 1

)
such that

�3+k � (1 − σγ )3+k‖D3+ku‖L2(B+
σγ ) + γ. (6.41)

By applying (6.40) with h = 3 + k, ε = (1 − σγ )̃ε, σ = σγ , we have

(1 − σγ )3+k‖D3+ku‖L2(B+
σγ )

�
(
ε̃(1 − σγ )4+k‖D4+ku‖L2(B+

σγ ) + ε̃−(3+k)‖u‖L2(B+
σγ )

)
,

so that, by (6.41) and by the arbitrariness of γ , we have

�3+k � C
(
ε̃�4+k + ε̃−(3+k)‖u‖L2(B+

1 )

)
.
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By inserting this last inequality in (6.39), we get

�4+k � C
(

A2+k + ε̃−(3+k)‖u‖L2(B+
1 ) + ε̃�4+k

)
,

which gives, for ε = 1
2C+1 ,

�4+k � C

(

‖u‖L2(B+
1 ) +

2+k∑

h=1

�h

)

.

By proceeding similarly, we get

�4+k � C‖u‖L2(B+
1 ),

so that

‖D4+ku‖L2(B+
1
2
) � 24+kC‖u‖L2(B+

1 ), k = 0, 1, 2. (6.42)

��
By applying (6.40) for a fixed ε, σ = 1

2 , we can estimates the derivatives of order
h, 1 � h � 3 as

‖Dhu‖L2(B+
1
2
) � C

(

‖D4+ku‖L2(B+
1
2
) + ‖u‖L2(B+

1
2
)

)

. (6.43)

By (6.42) and (6.43), we have

‖Dhu‖L2(B+
1
2
) � C‖u‖L2(B+

1 ), for h = 1, . . . , 6.

By employing an homothety, we obtain (4.43).
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