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Abstract. We study the quantum many-body dynamics and entropy production triggered by an interac-
tion quench of few dipolar bosons in an external harmonic trap. We solve the time-dependent many-body
Schrödinger equation by using an in-principle numerically exact many-body method called the multicon-
figurational time-dependent Hartree method for bosons (MCTDHB). We study the dynamical measures
with high level of accuracy. We monitor the time evolution of the occupation in the natural orbitals and
normalized first- and second-order Glauber’s correlation functions. In particular, we focus on the relaxation
dynamics of the Shannon entropy. Comparison with the corresponding results for contact interactions is
presented. We observe significant effects coming from the presence of the non-local part of the dipolar
interaction. The relaxation process is very fast for dipolar bosons with a clear signature of a truly satu-
rated maximum entropy state. We also discuss the connection between the entropy production and the
occurrence of correlations and loss of coherence in the system. We identify the long-time relaxed state as
a many-body state retaining only diagonal correlations in the first-order correlation function and building
up anti-bunching effect in the second-order correlation function.

1 Introduction

The investigation of nonequilibrium quantum dynamics
has been stimulated by the remarkable progress in exper-
imental techniques. Ultracold atomic gases and trapped
ions are a test-bed for such studies as they offer a
very good isolation from the environment [1–9]. A fore-
front research in this direction aims at characterizing the
dynamical properties of isolated quantum many-body sys-
tems [9–14]. In this context, the onset of thermalization
in isolated quantum systems caused by the interparti-
cle interaction has received great interest [15–25]. The
necessary condition for the thermalization is the statis-
tical relaxation of the isolated system to equilibrium. In
some recent studies [26–35] the viability of thermaliza-
tion has been associated with the onset of quantum chaos.
The latter in systems of interacting Fermi or Bose par-
ticles implies a pseudorandomness depending mainly on
the strength of the interparticle interaction. In the recent
study of interacting spin 1

2 system, the delocalization of

the eigenstates in the energy shell approach was inves-
tigated [12,13]. The eigenstate thermalization hypothesis
(ETH) [36–38] predicts that the expectation value of few-
body observable should correspond to the prediction of
microcanonical ensemble [39–42]. The recent works [43,44]
make a clear connection between the ETH and informa-
tion entropy. Although a vast amount of works exist to
characterize the delocalized eigenstates and its connection
with the statistical relaxation, many open questions which
still are studied:
a) How and in which timescale the system relaxes?
b) How the time evolution of the entropy and the onset

of statistical relaxation are connected?
c) What is the link between the production of entropy

and both the build up of correlations and the loss of
coherence?

d) What is the effect of long-range interactions?
The last question (d) is motivated by the fact that many

investigations have focused on contact/short-range inves-
tigations. In this respect it would be interesting to com-
pare results for long-range interactions with short-range
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findings and with recent results for quantum systems
with long-range couplings [45–55]. Ultracold atoms with
dipole-dipole interactions are a popular setup to inves-
tigate the effect of non-local interactions [56]. Dipolar
atoms in quasi-one-dimensional traps can be experimen-
tally realized and provide a tool to explore a rich many-
body physics [57,58]. It is important to point out that one
can realize also several coupled one-dimensional systems,
with a tunable couplings [59].

In this paper, we focus on the role of dipolar interaction
in the relaxation dynamics of interacting bosons in a 1D
harmonic oscillator (HO) trap. The comparison between
the short-range contact interactions and long-range dipo-
lar ones is also presented. Ultracold dilute Bose gases
are very often well described by the contact interaction,
defined as

V̂ (xi − xj) = λδ(xi − xj), (1)

where the dimensionless parameter λ is the strength of
the 1D contact interaction [60]. For dipolar interaction,
in quasi-1D geometries, the effective non-local two-body
interaction term V can be obtained by integrating over
the transverse directions [61]. Here we consider dipolar
interaction of the form

V̂ (xi − xj) =
gd

|xi − xj |3 + α
, (2)

where the dimensionless parameter gd is the strength of
interaction and α is the short-scale cut-off to regular-
ize the divergence at xi = xj . We solve the N body
Schrödinger equation with very high level of accuracy
using the multiconfigurational time-dependent Hartree
method for bosons (MCTDHB) [62–66], with the many-
body ansatz being the sum of the different configurations
of N particles distributed over M orbitals.

In our present setup, we consider N dipolar bosons in
1D HO trap. We consider few particles, such as N = 4,
even though we checked that the obtained results are
consistent with findings for higher number of particles,
such N ∼ 6. Our procedure corresponds to have the non-
interacting system at t < 0 and then at time t = 0 per-
form a quantum quench from gd = 0 to a finite, possibly
large, value of gd. Quantum quenches of the 1D Bose gas
with contact interactions have been deeply investigated
in the literature [67–78]. The results obtained with the
dipolar interactions are further compared with the quan-
tum quench for the contact interaction. The relaxation
is studied by analyzing the time evolution of Shannon
information entropy and as well the normalized first- and
second-order Glauber’s correlation functions. The con-
trast between contact and dipolar interactions is demon-
strated by the timescale of relaxation process. We observe
interesting many-body properties in the time evolution of
first- and second-order correlation functions in the case
of dipolar interactions. We also demonstrate that the
observed relaxation is associated with the loss of coherence
in the first-order correlation function and the occurrence
of an anti-bunching effect in the second-order correlation
function. The effect of long-range repulsive tail of the
dipolar interaction makes the dynamics very interesting.
The corresponding entropy evolution shows sharp linear

increment at very short time and then saturation. The
first-order correlation is quickly lost as well as a clear
anti-bunching effect is quickly developed for the dipolar
interaction.

Since the high resolution image technique allows to
probe the spatial correlation functions [79,80], the obser-
vations made in the present manuscript could be verified
in future experiments.

The paper is organized as follows. In Section 2, we give
a brief description of Hamiltonian and the used numerical
method. In Section 3, we introduce the key quantities that
are subsequently analyzed. In Section 4 we present our
results for the post-quench dynamics. Section 5 provides
a summary and discussion of our results.

2 Methodology

The dynamics of a system of N interacting structure-
less bosons in a one-dimensional (1D) harmonic well is
governed by the time-dependent many-body Schrödinger
equation:

i
∂Ψ

∂t
= ĤΨ. (3)

The total Hamiltonian we consider is

Ĥ(x1, x2, . . . , xN ) =
N∑
j=1

ĥ(xj) +Θ(t)
N∑

k>j=1

V̂ (xj − xk).

(4)
Here xj is the coordinate of the j-th boson, ĥ(x) =
T̂ (x) + V̂T (x) is the one-body Hamiltonian containing
kinetic energy T (x) = − 1

2
∂2

∂x2 and a harmonic well trap-
ping potential VT (x) = 1

2x
2 terms. In this work, we have

chosen ~ = m = ω = 1 to calculate all the quantities in
dimensionless unit. The pairwise interaction between the
j-th and k-th bosons is given by V̂ (xj − xk). The Heav-
iside step function Θ(t) indicates the interaction quench
at t = 0. In this work, we have considered dipolar inetrac-
tion V̂ (xi−xj) = gd

|xi−xj |3+α . Also, we considered contact
δ-potential for comparison.

The time-dependent many-body Schrödinger equation
can not be solved directly except only for a few specific
cases, see, e.g., [81]. Thus equation (3) is solved by an in-
principle numerically exact many-body method called the
multi-configurational time-dependent Hartree method for
bosons (MCTDHB), [62–64] which has been benchmarked
with an exactly-solvable model [82,83]. This method has
already been extensively used in the literature [84–99].
Detailed derivation of the MCTDHB equation of motions
can be found in [63]. For completeness, we provide here
with a brief description of the method.

In MCTDHB, the ansatz for solving equation (3)
is obtained by the superposition of all possible(
N +M − 1

N

)
time-dependent permanents, obtained by

distributing N bosons in M time-dependent single-
particle orbitals {φk(x, t)}. Therefore

|Ψ(t)〉 =
∑
n

Cn(t) |n; t〉 , (5)
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where the summation runs over all the occupations n =
(n1, n2, · · · , nM ) such that these preserve total number of
bosons N , i.e., n1 + n2 + · · · + nM = N and the time-
dependent permanents are given by

|n; t〉 =
1√

n1!n2! · · ·nM !

×
(
b†1(t)

)n1
(
b†2(t)

)n2

· · ·
(
b†M (t)

)nM

|vac〉 ,
(6)

where |vac〉 is the vacuum. The bosonic annihilation and
corresponding creation operators obey the usual commu-
tation relations bk(t)b†j(t) − b

†
j(t)bk(t) = δkj at any point

in time. Note that in representation (5) both the expan-
sion coefficients {Cn(t)} and orbitals {φk(x, t)} compris-
ing the permanents |n; t〉 are independent parameters. We
point out that because of the time-dependent permanents,
one can use a much shorter expansion in equation (5)
compared to the ansatz with fixed time-independent
orbitals.

For an exact theory, M should be infinitely large. How-
ever, for numerical computations one has to truncate the
series at a finite M . In actual calculations, we keep on
increasing M until we reach the convergence with respect
to M and thereby we obtain a numerically-exact result.
Here we would like to point out that for M = 1, the ansatz
equation (5) gives back the ansatz for the Gross Pitaevskii
theory [100,101]. To solve for the time-dependent wave-
function Ψ(t) we employ the usual Lagrangian formulation
of the time-dependent variational principle [102,103] sub-
ject to the orthonormality between the orbitals. In this
framework, substitution of the many-body ansatz equa-
tion (5) for Ψ(t) into the functional action of the time-
dependent Schrödinger equation and the requirement of
the stationarity of the functional action with respect to
its arguments {Cn(t)} and {φk(x, t)} lead to the working
equations of the MCTDHB:

i
∣∣∣φ̇j〉 = P̂

ĥ |φj〉+
M∑

k,s,q,l=1

{ρ(t)}−1
jk ρksqlŴsl |φq〉

 ;

P̂ = 1−
M∑
j′=1

|φj′ 〉〈φj′ |

H(t)C(t) = i
∂C(t)
∂t
· (7)

Here, ρ(t) is the reduced one-body density matrix (see
Eq. (8) below), ρksql are the elements of the two-body
reduced density matrix (see Eq. (9) below), and H(t)
is the Hamiltonian matrix with the elements Hnn′(t) =〈
n; t

∣∣∣Ĥ∣∣∣n′; t〉.

It is convenient to define the different quantities of inter-
est in terms of the one-body and the two-body reduced
density matrices [104–107] instead of the full many-body
wavefunction. Given the normalized many-body wave-
function Ψ(t), the reduced one-body density matrix can
be calculated as

ρ(1)(x1|x′1; t) = N

∫
dx2 . . . dxN Ψ

∗(x′1, x2, . . . , xN ; t)

× Ψ(x1, x2, . . . , xN ; t)

=
M∑
j=1

nj(t)φ∗NOj (x′1, t)φ
NO
j (x1, t). (8)

Here, φNOj (x1, t) are the time-dependent natural orbitals
and nj(t) the time-dependent natural occupation num-
bers. The natural occupations nj(t) are used to character-
ize the (time varying) degree of condensation in a system
of interacting bosons [108] and satisfy

∑M
j=1 nj = N . If

only one macroscopic eigenvalue n1(t) ≈ O(N) exists, the
system is condensed [108] whereas if there are more than
one macroscopic eigenvalues, the BEC is said to be frag-
mented [109–112]. The diagonal of the ρ(1)(x1|x′1; t) gives
the density of the system ρ(x; t) ≡ ρ(1)(x|x′ = x; t).

Similarly, the two-body density can be calculated as

ρ(2)(x1, x2|x′1, x′2; t)

= N(N − 1)
∫
dx3 . . . dxNΨ

∗(x′1, x
′
2, x3, . . . , xN ; t)

× Ψ(x1, x2, x3, . . . , xN ; t). (9)

Therefore, the matrix elements of the two-body reduced
density matrix are given by ρksql =

〈
Ψ
∣∣∣b†kb†sbqbl∣∣∣Ψ〉 where

bk and b†k are the bosonic annihilation and creation oper-
ators, respectively.

3 Key quantities

3.1 Shannon information entropy

Entropy of quantum system is a measure of degree of order
in a particular state [13,38,113–116]. The Shannon infor-
mation entropy (SIE) of the one-body density in position
space is defined as

Sx(t) = −
∫
dxρ(x, t) ln[ρ(x, t)]

and similarly in the momentum space as

Sk(t) = −
∫
dkρ(k, t) ln[ρ(k, t)]

where ρ(x) and ρ(k) are the density of the system in
coordinate space and in momentum space respectively
[117–119]. The two SIEs as defined above are two inde-
pendent key quantities in the calculation of quantum
information in many-body system, as they measure the
delocalization of the corresponding distributions. How-
ever, since SIE is based on the one-body density, one can
not infer the presence of correlation in the many-body
state. The concept of many-body information entropy is
introduced in the Gaussian orthogonal ensemble (GOE)
of random matrices [120]. In general, in the interaction
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quench, when different entropy measures take the GOE
values - is referred to as statistical relaxation.

In the present calculation, where the many-body ansatz
is constructed from the time-dependent coefficients as well
as time-dependent orbitals, we provide two alternative
definitions of many-body information entropy. Informa-
tion entropy which is calculated from the time-dependent
coefficients is termed as coefficient Shannon information
entropy (C-SIE or Sinfo(t)) and calculated as

Sinfo(t) = −
∑
n

|Cn(t)|2 ln |Cn(t)|2, (10)

where

|Cn(t)|2 =
1∏M

i=1 ni!
〈Ψ |[b1(t)]n1 ...[bM (t)]nM

× [b†1(t)]n1 ...[b†M (t)]nM |Ψ〉.
(11)

Thus, Sinfo(t) is the measure of effective number of basis
states that contribute to a given many-body state |Ψ(t)〉
at time t. Alternatively, the measure of Sinfo(t) can be
directly linked with the distribution of coefficients in the
Hilbert space. In GP mean-field [100,101] and multior-
bital mean-field theory [121] as a single contribution is
included Sinfo(t) = 0 for all time. Thus, Sinfo(t) can not
be produced in mean-field theory.

From the time-dependent orbitals, we define occupation
Shannon information entropy (O-SIE or Soccu(t)) and cal-
culated from

Soccu(t) = −
∑
j

nj lnnj . (12)

Thus, Soccu(t) is an entropy obtained from the natu-
ral occupations i.e., the eigenvalues of the reduced one-
body density matrix n̄j = nj

N . For time-dependent GP,
Soccu(t) = 0 for all time, as only one natural occupation
n̄1 = n1

N is included and can not be produced in mean-field
theory.

3.2 Correlation functions

To complement the results for the entropies Sinfo(t) and
Soccu(t) we calculate the normalized first- and second-
order Glauber’s correlation functions at many-body level.
The time evolution of the correlation function quantifies
the coherence and fringe visibility in interfence experi-
ments. We demonstrate a fundamental relation between
the production of many-body information entropy, the
build-up of correlation and loss of coherence. We estab-
lish that loss of coherence is related with the increase in
many-body entropy. As spatial correlation function can
be directly measured, the observed findings can be scru-
tinized in the future experiments. The normalized p-th
order correlation function is defined as

g(p)(x′1, ..., x
′
p, x1, ..., xp; t) = (13)

ρ(p)(x1, ..., xp|x′1, ..., x′p; t)√∏p
i=1 ρ

(1)(xi|xi; t)ρ(1)(x′i|x′i; t)
·

It is the key quantity to define the spatial p-th order coher-
ence. Here, ρ(p)(x1, ..., xp|x′1, ..., x′p; t) is the p-th order
reduced density matrix of the state |Ψ〉 [122]. In the case of
|g(p)(x1..., xp, x1..., xp; t)| > 1 (< 1), the detection proba-
bilities of p particles at positions x1, ..., xp are referred to
as (anti-)correlated. The normalized first-order coherence
is directly related to the fringe visibility in interference
experiments and it is defined as

g(1)(x′1, x1; t) =
ρ(1)(x′1|x1; t)√
ρ(x′1; t)ρ(x1; t)

, (14)

g(1)(x′1, x1; t) < 1 means the visibility of interfer-
ence fringes in the experiment is less than 100%,
which is referred to as loss of coherence. At variance,
g(1)(x′1, x1; t) = 1 corresponds to maximal fringe visibility
and is referred to as full coherence. The diagonal of the
two-body density matrix (Eq. (9)) is given by,

ρ(2)(x1, x2; t) ≡ ρ(2)(x′1 = x1, x
′
2 = x2|x1, x2; t). (15)

The diagonal of the second-order correlation function
g(2)(x′1 = x1, x

′
2 = x2|x1, x2; t) = g(2)(x1, x2; t) is calcu-

lated from

g(2)(x1, x2; t) =
ρ(2)(x1, x2; t)
ρ(x1; t)ρ(x2; t)

, (16)

when g(2) < 1, we refer to it as the anti-bunching effect,
while the case g(2) > 1 is termed as bunching. g(2) = 1
signifies that the measures of two particles at positions x1

and x2 are stochastically independent.

4 Results

To compare the results of dipolar interaction with the con-
tact one, we fix the interaction strength gd and λ requiring
the effective interaction∫

1
x3 + α

dx =
∫
δ(x)dx = 1, (17)

so that the integral of V̂ is the same with λ = gd in
our units. equation (17) fixes as well the cut-off param-
eter α. Throughout the computation we keep a number
M of orbitals which are sufficient to get convergence in
the measured quantities (for N = 4, M = 12 orbitals are
enough). The convergence is further guaranteed when the
occupation in the last orbital is negligible. We prepared
the ground state of the non-interacting Hamiltonian using
the R-MCTDHB package [66,83,123,124]. The interactions
are then abruptly turned on at t = 0.

In Figure 1, we plot the natural occupations nj as a
function of time. The left panel is for contact interac-
tion and right panel is for dipolar interaction. We choose
gd = λ = 5. Initially at t = 0, only the first natural orbital
contributes. When the time goes on, the occupation of the
higher orbitals start to contribute. However we get a clear
difference with time between the contact and the dipolar
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interactions. For contact interaction, mostly one natural
occupation, n1, dominates throughout the time evolution
and other occupations remain comparatively small. At
variance, for dipolar interaction, again initially at time
t = 0 only n1 contributes, but at short time n1 sharply
decreases and other orbitals start to populate. For the
rest of evolution we find that several other orbitals almost
equally contribute as n1 (we checked that the obtained
results do not depend on the chosen value of M). How-
ever, with the considered number of particles our present
computation is unable to present the full-blown N -fold
occupation of natural orbitals which can be achieved when
the system is quenched to very large values of gd, that cor-
respond to crystal-like states [125,126]; required orbitals
are too large to achieve the convergence.

Figure 2 reports the dynamics of many-body SIE for
dipolar as well as for contact interactions. The statisti-
cal relaxation is manifested by the long-time dynamics
when Sinfo(t) saturates to a maximum entropy state. At
very short time we observe linear increase in Sinfo(t) fit-
ted with the analytical formula S = Γt lnP , where Γ is
determined by the decay probability to stay in the ini-
tial ground state and P is the number of many-body
states [127,128]. However the difference in Sinfo(t) for con-
tact and dipolar interactions can be identified from the
corresponding Γ values. For contact interaction the linear
increase is determined by Γc which is significantly smaller
than the corresponding Γd for dipolar interaction. The
very sharp linear increase in the information entropy for
dipolar interaction implies the number of principal compo-
nents participating in the many-body dynamics increases
exponentially very fast. At long times, the system relaxes
to the maximum entropy state. For contact interaction,
Sinfo(t) also has a tendency to achieve a saturation value
or maximum entropy value, however the corresponding Γ
value (Γc) is almost 125 times smaller than the Γd value -
this implies very slow relaxation process. The saturation
value or maximum entropy value achieved by the system
for contact interaction is also smaller than that for the
dipolar interaction.

In Figure 3, we present the time evolution of Soccu(t)
for the same interaction quench parameter as reported in
Figure 2. At t = 0, when all bosons are in the lowest orbital
: n1 = N = 4 and all other nj = 0, so Soccu(t = 0) = 0. At
later time, the bosons are distributed in several orbitals
as the many-body state is fragmented. Unlike Sinfo(t), we
observe significant difference in the dynamical evolution
of Soccu(t) for dipolar interaction compared to the con-
tact interaction. The qualitative behaviour of Sinfo(t) and
Soccu(t) for dipolar interaction is same only the maxi-
mum value of the entropy differes : Sinfo

sat = 6.80 and
Soccu

sat = 2.47. However, Soccu(t) for contact interaction
exhibits rigorous fluctuation at short and intermediate
time, the fluctuation gradually reduces. At long time (not
shown here) it saturates to a maximum value.

The time evolution of information entropy Sinfo(t) for
other interaction quench (small values) is presented in
Figure 4. The top panel corresponds to dipolar interac-
tion and bottom panel corresponds to contact interac-
tion (gd = λ = 0.1, 0.2, 0.5, 1.0). In all cases the system
is initially prepared in the noninteracting limit and then
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Fig. 1. Eigenvalues of the reduced density matrix (i.e., the
natural occupations) as a function of time for gd = λ = 5.
Panel(a): contact interaction. Panel(b): dipolar interaction.
The natural occupations nj exhibit depletion for contact inter-
actions (many small nj with j > 1 emerge) and full-blown
N -fold fragmentation for dipolar interactions (all nj with
j ≤ N contribute equally). All quantities shown are
dimensionless.

suddenly quenched. For dipolar interaction, the qualita-
tive nature of Sinfo(t) is similar to Figure 2 - although
for very small interaction quench we observe flat increase
in Sinfo(t) as Combine as expected, whereas, for contact
interaction we observe very small production of entropy
and there is no genuine signature of linear increase in
Sinfo(t) except λ = 1.0. The small interaction quench basi-
cally acts as a small external perturbation. We observe
the same behaviour in Soccu(t) (not shown here) for small
interaction quenches.

Figure 5 presents the time evolution of the first-order
correlation function |g(1)(x1, x

′
1; t)|2 as a function of its

two spatial variables x1 and x′1 for various time t and
fixed interaction strength quench. For contact interaction,
|g(1)(x1, x

′
1; t)|2 remains close to unity for all (x1, x

′
1) for

a comparatively long time. This implies that the system
remains coherent. At longer time the off-diagonal corre-
lation is gradually lost and finally at time t = 1.0 only
the diagonal correlation is maintained. The strong inter-
particle repulsion leads to the loss of coherence which
is further maintained at larger timescale when the sys-
tem reaches to its relaxed state. It is also in good agree-
ment with the relaxation process when Sinfo(t) saturates
to maximum entropy state. In contrast, for dipolar interac-
tion we observe very quick loss of off-diagonal correlation.
|g(1)(x1, x

′
1; t)|2 is close to unity almost exclusively for

x1 = x′1, away from the diagonal (x1 6= x′1) is close to zero.
This is the effect of long-range repulsive tail of the dipo-
lar interaction. Thus the relaxed state can be described as
a many-body state with many natural orbitals occupied,
maximum entropy and persistence of diagonal first-order
correlation.

In Figure 6, we plot the corresponding second-order
correlation function g(2)(x1, x2; t) for the same parame-
ters as reported in Figure 5. At small time, for almost
all (x1, x2) the second-order coherence is maintained for
contact interaction, whereas the diagonal coherence starts
to deplete for dipolar interaction. For larger times (such
t = 1), g(2)(x1, x2; t) ≈ 1 at the off-diagonal (x1 6= x2) for
contact interaction, whereas the diagonal is almost vanish-
ing. It means that there is a finite probability of detect-
ing two particles for all (x1, x2), except for the narrow
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Fig. 2. Dynamics of Sinfo(t) or C-SIE for the same interac-
tion quench as reported in Figure 1. The statistical relaxation
is seen by the saturation of Sinfo(t) to the maximum entropy
value. The insets present the sharp linear increase fitted with
the analytical formula for small times (see text). Fitting param-
eters : Γc = 0.34 for contact interaction and Γd = 43.2 for
dipolar interaction. All quantities shown are dimensionless.

Fig. 3. Dynamics of Soccu(t) or O-SIE for the same interac-
tion quench as reported in Figure 1. The statistical relaxation
is seen by the saturation of Soccu(t) to the maximum entropy
value for dipolar interaction. For contact interaction the fluc-
tuations present in the occupation entropy reduces slowly with
time. At very long time the system will relax. All quantities
shown are dimensionless.

band around the diagonal. The vanishing diagonal part of
g(2)(x1, x2; t) is corresponding to the anti-bunching effect,
as the probability of finding a double occupation along the
diagonal is almost zero. Complete vanishing of the diag-
onal coherence is maintained at larger times. For dipo-
lar interaction, the anti-bunching effect appears at very
short times such t ≈ 0.01. With further increase in time,
the anti-bunching band spreads. The quick development
of the anti-bunching effect for dipolar interaction is also in
good agreement with our previous observation [129] when
Sinfo(t) quickly attains the saturation value. We conclude
that by observing very quick loss of first-order coherence
and the setup of the anti-bunching effect in second-order
coherence may be considered as characterizing the many-
body state with maximum entropy. Since with further
increase in time we do not observe any change in entropy

Fig. 4. Dynamics of Sinfo(t) for small interaction quenches.
Top panel is for dipolar interaction. The qualitative behaviour
for all the small interaction quenches are almost same. Bottom
panel is for contact interaction. These small quenches act as
perturbation. All quantities shown are dimensionless.

production, first- and second-order correlation functions,
we may define the state as a relaxed state. As the different
orders of coherence can be measured experimentally the
above relation between the entropy production and coher-
ence can be directly verified in the experiment to test the
process of statistical relaxation. All our results presented
here can be measured experimentally using single-shot
absorption imaging [130–134]. From experimental absorp-
tion images, the one-body and two-body density are avail-
able as averages of many single-shot images. In the present
work, we have calculated first- and second-order correla-
tion functions using one- and two-body density. Thus a
direct verification of our results can be performed easily.
Furthermore, references [97,125] suggest that the natural
occupations can be inferred from the integrated variance
of single-shot images, at least at zero temperature.

Our present calculation is done for a finite system of few
particles. The natural question is to verify our present
observation for larger bosonic systems. In our previous
work [129], we have already reported the quench dynam-
ics with contact interaction for a larger number of bosons,
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Fig. 5. Coherence in the quench dynamics measured
with first-order correlation function |g(1)(x1, x

′
1; t)|2. The

left column depicts |g(1)|2 for contact interaction for the
times t = 0.01, 0.1, 1.0 and 8.0 respectively. The right
column shows the same for dipolar interaction for time
t = 0.01, 0.05, 0.1 and 0.2 respectively. For the dipolar inter-
action |g(1)|2 becomes close to zero almost everywhere except
the diagonal at very short time, in good agreement with the
quick and large production of the many-body SIE. All quanti-
ties shown are dimensionless.

however only the first-order correlation dynamics and its
link with the production of entropy have been discussed.
In the context of our present computation we redo the
simulation for N = 10 bosons with contact interaction
and observed the similar physics in the second-order cor-
relation dynamics as observed for N = 4 bosons. However
we are unable to extend our simulation for N = 10 bosons
with dipolar interaction due to serious convergence prob-
lem. Increasing the particle number increases the size of
the Hilbert space rapidly. For example, for N = 4 bosons
distributed over M = 12 orbitals the size of the Hilbert
space is Nconf = 1365 and the same for N = 10 bosons
is 352716. However for 10 bosons, with dipolar interac-
tion M = 12 orbitals may not be sufficient to achieve
convergence. So we checked our present observations for
N = 6 bosons distributed in M = 15 orbitals and the gen-
eral conclusion drawn for N = 4 dipolar bosons remain
unchanged.

5 Conclusion

In this paper, we considered few dipolar bosons in a 1D
harmonic trap. We studied the statistical relaxation of
dipolar bosons and its comparison with that for contact

Fig. 6. Coherence in the quench dynamics measured
with second-order correlation function g(2)(x1, x2; t). The

left column depicts g(2) for contact interaction for time
t = 0.01, 0.1, 1.0 and 8.0 respectively. The right col-
umn shows the same for dipolar interaction for time
t = 0.01, 0.05, 0.1 and 0.2 respectively. For dipolar interaction
the diagonal part of g(2) is extinguished quickly due to the
repulsive long-range tail and the anti-bunching effect develops
in correspondence of the behaviour of the SIE. All quantities
shown are dimensionless.

interaction. We solved the quantum many-body dynamics
by MCTDHB and the relaxation is presented through the
time evolution of natural occupation, entropy production,
normalized first- and second-order Glauber’s correlation
functions. In the long time dynamics, the system relaxes
to its maximum entropy state. The effect of the long-range
repulsive tail of dipolar interaction in the dynamics is
clearly visible. The relaxation process for dipolar inter-
action is quicker than that for contact interaction. We
also presented a link between the production of entropy
and the first- and second-order coherences. We observed
that at the time when the many-body system occupies
many natural orbitals, then at the same time the off-
diagonal coherence in first-order correlation function is
completely lost, and the anti-bunching effect is exhibited
in the second-order correlation. Thus in our present work,
we redefine the relaxed state as the many-body state with
maximum entropy retaining only the diagonal correlation
in g(1) and developing the anti-bunching effect in g(2). Two
remaining and natural open questions are to study the
connection of these results with the behaviour of collec-
tive modes and to consider the broader class of long-range
interactions with smaller power of interaction, especially
when its value is smaller than the dimension of the con-
sidered system.
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