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We introduce the notion of reverse-safe data structures. These are data structures that prevent the reconstruc-

tion of the data they encode (i.e., they cannot be easily reversed). A data structure D is called z-reverse-safe

when there exist at least z datasets with the same set of answers as the ones stored by D. The main challenge

is to ensure that D stores as many answers to useful queries as possible, is constructed efficiently, and has

size close to the size of the original dataset it encodes. Given a text of length n and an integer z, we propose

an algorithm that constructs a z-reverse-safe data structure (z-RSDS) that has size O (n) and answers deci-

sion and counting pattern matching queries of length at most d optimally, where d is maximal for any such

z-RSDS. The construction algorithm takes O (nω logd ) time, where ω is the matrix multiplication exponent.

We show that, despite the nω factor, our engineered implementation takes only a few minutes to finish for

million-letter texts. We also show that plugging our method in data analysis applications gives insignificant

or no data utility loss. Furthermore, we show how our technique can be extended to support applications

under realistic adversary models. Finally, we show a z-RSDS for decision pattern matching queries, whose

size can be sublinear in n. A preliminary version of this article appeared in ALENEX 2020.
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1 INTRODUCTION

Data structures organize data allowing for their efficient access and modification. They are thus
the workhorse of many data analysis applications, such as clustering and outlier detection (e.g.,
through indexes for k-nearest neighbors join queries [Böhm and Krebs 2004]), frequent pattern
mining (e.g., through FP-trees [Han et al. 2000]), document retrieval (e.g., through inverted in-
dexes [Manning et al. 2008]), graph pattern matching (e.g., through graph indexes [Wang et al.
2016]), and range search in databases (e.g., through R-trees [Guttman 1984]).
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These applications are often fueled by data collected from individuals, such as location,
genomic, or customer data, and have led to justified privacy concerns [Smith et al. 2011]. To
alleviate these concerns and comply with legislation such as HIPAA [U.S. Department of Health
& Human Services 1996] in the United States and GDPR [European Parliament 2015] in the
European Union, it is necessary to guarantee that using data structures does not lead to the
reconstruction of the stored individuals’ data. This is a fundamentally different privacy goal
than that of existing privacy-preserving techniques, such as anonymization [Chen et al. 2012a,
b; Heatherly et al. 2013; Xu et al. 2016], sanitization [Bernardini et al. 2019, 2020a, 2020c, 2020d;
Bonomi et al. 2016; Gkoulalas-Divanis and Loukides 2011; Gwadera et al. 2013; Loukides and
Gwadera 2015; Wang et al. 2013], query auditing [Nabar et al. 2008], or access control [Bertino
et al. 2011]. Anonymization aims at preventing the disclosure of individuals’ identities and/or sen-
sitive information. Sanitization aims at preventing the mining of confidential knowledge. Query
auditing aims at preventing answering aggregate queries that leak private information. Access
control is the selective restriction of access to some parts of a database. Our privacy goal is also
different from that of encryption techniques, such as searchable encryption [Bezawada et al. 2015;
Li et al. 2010; Qin et al. 2019], which aim to prevent unauthorized parties from accessing the data.

We consider a setting where a large group of users want to query a dataset directly via a data
structure that prevents the reconstruction of the data. To this end, we introduce a novel encoding
model that enables the construction of reverse-safe data structures (RSDSs). The ultimate aim
of an RSDS is to make the reconstruction of a dataset sufficiently unlikely so that an adversary
cannot infer the dataset based on the query answers, but at the same time the RSDS stores as
many answers to useful queries as possible to support applications. In addition, the RSDS should
be constructed efficiently and have size close to the size of the original dataset it encodes. Our
idea is inspired by encoding data structures [Raman 2015]. The ultimate aim of an encoding data
structure is to break the information-theoretical lower bound, which is required to store a dataset,
by storing only the answers to useful queries (e.g., range queries [Fischer and Heun 2011; Grossi
et al. 2017] or nearest largest value queries [Hoffmann et al. 2018]).

Given a data structure D, we denote by AD its set of consistent datasets: all datasets with the
same set of answers as the answers stored by D. Let us denote αD = |AD |. Given an integer
threshold z > 1, which we call the privacy threshold, we say that D is a z-reverse-safe data

structure (z-RSDS) if and only if αD ≥ z. A large z implies strong data privacy because an
adversary cannot distinguish between the αD ≥ z consistent datasets, which implies that it is less
likely that the adversary infers the dataset used to construct D in the first place. Still, it could be
the case that D stores answers to many useful queries.

The notion of z-RSDSs is related to the privacy notion of z-anonymity [Samarati and Sweeney
1998]. This notion was introduced in the context of a relational database, where each record cor-
responds to a different individual. The notion of z-anonymity dictates that at least z > 1 records
of the database must have the same values over a set of attributes that may lead to the disclosure
of the identity of individuals in the database. The privacy goal is to prevent an adversary from
distinguishing an individual among at least z individuals in the database.

In this work, we consider string data (sometimes called text, word, or document depending
on the context). A string is a sequence of letters from an alphabet. A string may represent
various types of confidential information about individuals, including their movement history
[Theodorakopoulos et al. 2014], diagnosed diseases [Tamersoy et al. 2012], purchased prod-
ucts [Terrovitis et al. 2017], or DNA sequence [Malin and Sweeney 2000]. Our goal is to construct
a z-RSDS for string data that allows for decision and counting pattern matching queries to be ac-
curately and efficiently answered. Decision queries are fundamental for intrusion detection [Lin
et al. 2008], activity monitoring [Wang et al. 2013], and cataloguing human genetic variation

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.10. Publication date: July 2021.



Reverse-Safe Text Indexing 1.10:3

[Bentley 2006], whereas counting queries are fundamental for pattern mining that is central in
application domains ranging from bioinformatics [Shang et al. 2016] to marketing [Loukides and
Gwadera 2015] and to public health [Banerjee et al. 2019].

Pattern matching queries in strings are answered efficiently by means of indexing data struc-
tures. These structures enable fast access to the substrings of a string, which is important in many
data analysis applications [Gusfield 1997]. The main idea behind indexing a string S for efficient
substring querying is that every substring of S is a prefix of some suffix of S . Indexing data struc-
tures thus arrange the suffixes of S lexicographically in an ordered tree data structure. One popular
such data structure is the suffix tree [Weiner 1973]. The suffix tree of S is the compacted trie of all
suffixes of S . The term compacted refers to the fact that it reduces the number of nodes by replacing
each maximal branchless path segment with a single edge, and it uses intervals over S to store the
labels of these edges. This ensures that the suffix tree has size linear in |S |: it has no more than
2|S | nodes. Importantly, the suffix tree answers several types of pattern matching queries over S
in optimal time; see the work of Gusfield [1997] for a nice exposition.

However, the suffix tree of S , which provides (random) access to all substrings of S , is not a
z-RSDS, because it uniquely represents S . The privacy-utility trade-off we consider here is thus
to provide access only to the substrings of S whose length is at most d , for some d ∈ [1, |S |). In
particular, we want our z-RSDS to support the following types of online queries:

Decision query: Check if a string P of lengthm ≤ d is a substring of S .
Counting query: Count the occurrences of a string P of lengthm ≤ d in S .

Given a string S and a privacy threshold z, the computational challenge is to compute the max-

imal d for which a z-RSDS for indexing S can be constructed. The maximality of d offers data

utility, since any query for a substring of S of length d or less has the same answer, irrespectively
of whether it is posed on S or on the z-RSDS. The fact that the data structure is z-reverse-safe
offers data privacy, since the probability that an adversary infers S , based solely on knowledge of
the z-RSDS, is no more than 1/z.

We are now in a position to formally define the main computational problem considered in this
article.1

Problem 1. Given a string S of length n and a privacy threshold 1 < z ≤ nc , for some constant

c ≥ 1, construct a z-RSDS that answers decision and counting pattern matching queries for any pattern

of lengthm ≤ d , such that d is maximal, or output FAIL if no such d exists.

In Problem 1, d is maximal and uniform for all queries. Another related problem definition would
be to maximize the total number of sup ported queries, not necessarily of uniform maximal length.

Our contributions. We consider the word-RAM model of computations with w-bit machine
words, where w = Ω(logn), for stating our results. The main theoretical result of this work is
the following, where ω denotes the matrix multiplication exponent.2

Theorem 1. Given a string S of length n, there exists an O (nω logd )-time algorithm to construct

an O (n)-sized z-RSDS over S for a maximal d that answers decision and counting pattern matching

queries, for any pattern of length m ≤ d , in the optimal O (m) time per query. The algorithm outputs

FAIL if no such d exists.

The main ingredients of our construction algorithm include (truncated) suffix trees [Na et al.
2003; Weiner 1973], a combinatorial theorem on de Bruijn graphs [Hutchinson 1975; Karhumäki

1The problem of inferring a string from a text indexing data structure (see the work of Kärkkäinen et al. [2017] and references therein) is
conceptually related but fundamentally different to the problem investigated here.
2At the time of writing this article, ω < 2.373 [Williams 2012; Le Gall 2014].
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et al. 2017], and fast matrix multiplication [Williams 2012; Le Gall 2014]. To the best of our knowl-
edge, we are the first to combine these ingredients. We show that, despite the nω factor, our en-
gineered implementation can construct z-RSDSs over million-letter texts in only a few minutes.
To achieve this practical performance, we rely on further theoretical insight. We also show that
plugging our method in data analysis applications gives insignificant or no data utility loss. Fur-
thermore, we show how our technique can be extended at no extra cost to construct a z-RSDS
that supports applications under two realistic adversary models: one with positive adversarial
knowledge (an adversary knows a pattern that occurs in S), and the other with negative adver-
sarial knowledge (an adversary knows that a pattern does not occur in S). We also show how the
z-RSDS for both adversary models can be generalized to an arbitrary number of patterns. Both
positive and negative adversarial knowledge have been studied in the context of z-anonymity [Li
and Li 2008; Atzori et al. 2008]. Li and Li [2008] and Atzori et al. [2008] have a different privacy
goal than ours (preventing the disclosure of identities of individuals and/or their sensitive infor-
mation vs. preventing dataset reconstruction) and do not consider a string but a relational and a
set-valued dataset, respectively. Finally, we show a different z-RSDS for decision pattern matching
queries, whose size can be sublinear in n.

Organization of the article. The basic definitions and notation are introduced in Section 2. In
Section 3, we propose a z-RSDS for text indexing. In Section 4, we present our construction algo-
rithm. We then describe a series of practical improvements in Section 5. In Section 6, we present
our implementation and extensive experimental results. In Section 7, we discuss how to construct
an adapted version of our z-RSDS under two different adversary models. In Section 8, we show
a different z-RSDS for answering decision pattern matching queries. We conclude the article in
Section 9 with some final remarks and open problems.

A preliminary version of this article appeared in ALENEX 2020 [Bernardini et al. 2020b]. Com-
pared to the preliminary version, the new materials introduced herein are the construction algo-
rithm for negative adversarial knowledge, the generalization of both adversarial knowledge to an
arbitrary number of patterns, the z-RSDS for decision pattern matching queries, and the imple-
mentation and evaluation of a version of our main construction algorithm that replaces binary
search by exponential search. In fact, this is an implementation of the O (nω logd )-time algorithm
(Theorem 1).

2 DEFINITIONS AND NOTATION

An alphabet Σ is a finite non-empty set whose elements are called letters. A string is a sequence

of letters from Σ. We fix a string S = S[0] · · · S[n − 1] over Σ = {1, . . . ,nO (1) }. The length of S is
denoted by |S | = n. We also assume that S contains at least two different letters, as otherwise the
problem considered in this work is trivial. By S[i . . j] = S[i] · · · S[j], we denote the substring of
S starting at position i and ending at position j of S . A substring of S is called proper if it is not
equal to S . A substring S[i . . j] is called a prefix if i = 0; it is called a suffix if j = n − 1. Given
a positive integer k , we denote by (S )k,i the length-k substring of S starting at position i—that is,
(S )k,i = S[i . . i + k − 1], for all 0 ≤ i < n − k + 1. A string P has an occurrence in S or, more simply,
it occurs in S if P = (S ) |P |,i , for some i . An occurrence of P is thus characterized by its starting
position i in S .

The weighted de Bruijn graph of order k over a string S of length n is a directed multigraph
GS,k = (VS,k ,ES,k ), where the set of vertices VS,k is the set of length-(k − 1) substrings of S and
ES,k is the multiset of edges from vertexu to vertexv for every occurrence ofu andv as consecutive
length-(k − 1) substrings of S . More formally, there is a multi-edge (u,v ) ∈ ES,k with multiplicity
m if and only if u[0] · v = u · v[k − 2] and this string occurs in S exactly m times. Thus, GS,k has
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exactly n − k + 1 edges; in general, GS,k contains self-loops and multi-edges (inspect Figure 3 for
an example).

3 A z-RSDS FOR TEXT INDEXING

Let S be a string of length n. For a positive integer d , we define a d-substring of S as a substring of
length d of S , or a suffix of S whose length is less than d .

The d-truncated suffix tree of a string S , denoted by Td (S ), is a path-compacted trie representing
every d-substring of S [Na et al. 2003]. We make use of a terminating letter # � Σ for technical
purposes. Formally, Td (S ) is a rooted tree satisfying the following conditions (see Figure 1 for an
example):

(1) Each edge is labeled with a non-empty substring of string S# encoded as an [i, j] interval
over [0,n].

(2) Each internal node v , except possibly the root, has at least two children. The labels of edges
from v to its children start with distinct letters.

(3) Let L (v ) denote the string obtained by concatenating labels on the path from the root to
node v . For every d-substringU , there is exactly one leaf w such thatU = L (w ) (if |U | = d)
or U # = L (w ) (if |U | < d). For each leaf w , there is at least one d-substring U such that
L (w ) = U or L (w ) = U #.

(4) Each node v other than the root has a counter that stores the number of substrings of string
S# that are equal to L (v ).

Therefore, the number of leaves is at most n and the total number of nodes is less than 2n. Re-
call that the label of the edge between node u and its childv , denoted by label(u,v ), is represented
implicitly by an interval over [0,n]. Thus, the space occupied by Td (S ) is O (n). The children of
internal nodes are indexed by the alphabet letters using perfect hashing to ensure O (1)-time ac-
cess [Fredman et al. 1984]. Importantly, Td (S ) supports the following online pattern matching
operations:

Decision query: Check if a string P of lengthm ≤ d is a substring of S in O (m) time.
Counting query: Count the occurrences of a string P of lengthm ≤ d in S in O (m) time.

Theorem 2 ([Na et al. 2003; Charalampopoulos et al. 2020]). Given a string S of length n
and 0 < d ≤ n, Td (S ) has size O (n) and it can be constructed in O (n) time. Td (S ) answers decision

and counting pattern matching queries, for any pattern of length m ≤ d , in the optimal O (m) time

per query.

The following offline operations are also supported:

Frequent substrings: Find all most frequent substrings, for all lengths 1, 2, . . . ,d , inO (n) time.
Repeated substrings: Find all longest repeated substrings of length at most d in O (n) time.
Unique substrings: Find all shortest unique substrings of length at most d in O (n) time.

We next consider a different representation of Td (S ) toward defining the notion of z-RSDSs. If
label(u,v ) is represented explicitly by a string, we denote the resulting data structure by TRIEd (S ).
In this case, string S is not part of the data structure, and thus TRIEd (S ) does not, generally, define
S uniquely.

Definition 3 (d-Equivalent Strings). Given the set of all possible strings of length n over an al-
phabet Σ and an integer d , string S is d-equivalent to string S ′ if and only if TRIEd (S ) = TRIEd (S ′).
In this case, we write S ∼d S ′ and say that S ′ is consistent with Td (S ).

See Figure 2 for an example. We can now formally define a z-RSDS for text indexing.
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1.10:6 G. Bernardini et al.

Fig. 1. Td (S ) for S = abaabbabba and d = 3. We omit edges whose labels start with letter # for clarity.

Fig. 2. Let S = abaabbabba and S ′ = abbaabbaba. S ∼3 S ′ ⇐⇒ TRIE3 (S ) = TRIE3 (S ′).

Definition 4 (z-RSDS for Text Indexing). Given an integer z > 1, Td (·) is called z-reverse-safe if
and only if there exist at least z distinct strings that are consistent with Td (·).

In what follows, we denote the set of strings that are consistent with Td (S ) by Ad (S ), and
|Ad (S ) | by αd (S ), for d ∈ [1,n]. We omit (S ) when this is clear from the context, and we also set
α0 (S ) = ∞ for completeness.

4 CONSTRUCTING z-RSDS

Clearly, Tn (S ), the (non-truncated) suffix tree of S , has αn = 1 (i.e., it uniquely represents S), so it
can never be a solution to Problem 1 since z > 1, by definition.

The following lemma is important for efficiency.

Lemma 5. The sequence α0,α1, . . . ,αn is monotonically non-increasing.

Proof. Let Ad be the set of strings consistent with Td , d ∈ [1,n], and αd = |Ad |. Further, let S
be any element of Ad . By construction, if U is a d-substring of S , then U = L (w ) or U # = L (w ),
for some leaf w of Td . Every (d − 1)-substring S[i . . i + d − 2] of S is a prefix of the d-substring
S[i . . i +d − 1] of S . Thus, string S is consistent with Td−1, the path-compacted trie that represents
every such (d−1)-substring, and thus S ∈ Ad−1. This implies the following relation:An ⊆ An−1 ⊆
· · · ⊆ A1. The statement follows directly from this relation and the fact that α0 = ∞. �

By Lemma 5, for increasing d , Td (S ) generally decreases αd and increases utility. We thus need
an algorithm to compute the maximum possible d that results in a z-RSDS. We next provide an
algorithm, called z-RC (for z-RSDS Construction), to find this d .

As can be seen in the pseudocode, z-RC performs binary search onn (the length of S), computing
αd until d results in a z-RSDS and d is maximal. An alternative is to perform exponential search
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ALGORITHM 1: z-RC

Input: string S of length n and integer z > 1

Output: d and Td (S ′), for some S ′ ∈ Ad , or FAIL

1 � ← 0; r ← n;

2 while � < r do

3 d ← 
 �+r

2 �;
4 if αd (S ) ≥ z then

5 � ← d + 1;

6 else

7 r ← d ;

8 if � > 0 then

9 output d ← � − 1 and Td (S ′), for some S ′ ∈ Ad

10 else

11 output FAIL

instead of binary search. We refer to this variation of z-RC as z-RCE (for z-RSDS Construction
Exponential). At this point, the z-RSDS Td (S ′) is output, where S ′ is an element of Ad chosen at
random, and the algorithm terminates. If � > 0 and α�−1 = z, then α�−1 is the rightmost element
that equals z. Even if such an element is not found, n−� is the number of elements that are smaller
than z.

The computational challenge is thus to implement the check of line 4 efficiently and to find a
consistent S ′ when this is possible (line 9). To this end, we start with the following simple yet
crucial observation.

Observation 6. Given two strings X and Y , X is d-equivalent to Y if and only if X and Y have

the same multisets of substrings of length i , for every i ∈ [1,d].

In the terminology of combinatorics on words, d-equivalence is known as d-abelian equiva-

lence [Karhumäki et al. 2013]. We report a lemma from Karhumäki et al. [2013], which gives several
equivalent conditions that characterize d-equivalence.

Lemma 7 ([Karhumäki et al. 2013]). Let X and Y be two strings of length at least d that have

the same multiset of substrings of length d . The following are equivalent:

(1) X and Y have the same multiset of substrings of length i for every 1 ≤ i ≤ d ;

(2) X and Y have the same prefix of length d − 1 and the same suffix of length d − 1;

(3) X and Y have the same prefix of length d − 1;

(4) X and Y have the same suffix of length d − 1.

Lemma 7 tells us that we should rely on the construction of weighted de Bruijn graphs over
string S to compute αd (S ). The weighted de Bruijn graph of order d over string S is denoted by
GS,d = (VS,d ,ES,d ). Recall that its set of verticesVS,d is the set of distinct substrings of S of length
d − 1 (we implicitly identify a vertex by the string it represents) and there is an edge (u,v ) ∈ ES,d

with multiplicity m if and only if u[0] · v = u · v[d − 2] and this string occurs in S exactly m
times. We borrow the terminology used in the work of Kingsford et al. [2010]. Let d− (u) and d+ (u)
be, respectively, the in- and out-degree of vertex u of GS,d . Let s and t be the vertices of GS,d

corresponding, respectively, to the prefix and to the suffix of length d − 1 of S . Since any weighted
de Bruijn graph is either Eulerian (if s = t ) or semi-Eulerian (if s � t ), we have that d+ (u) = d− (u)
for all u with the possible exception of the two nodes s and t for which d− (s ) = d+ (s ) − 1 and
d+ (t ) = d− (t ) − 1, if s � t . Clearly, S corresponds to an Eulerian path in GS,d that starts at s and
ends at t � s (if s = t , then it corresponds to an Eulerian cycle starting from s). The graphGS,d may
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ln: Sprime


1.10:8 G. Bernardini et al.

Fig. 3. GS,d with S = abaabbabba and d = 3 (on the left), and the set of d-equivalent strings (on the right).

contain other Eulerian paths (respectively, cycles). Notice, however, that if two distinct Eulerian
paths (respectively, cycles) traverse the vertices ofGS,d in the same order, but the edges in different
order, then they give rise to the same string. We call these Eulerian paths (respectively, cycles)
equivalent. We summarize these observations into the following statement, which is crucial for
the correctness of the z-RC algorithm.

Observation 8. (a) If S ∼d S ′, then S ′ corresponds to an Eulerian path in GS,d that starts from

vertex s and ends at vertex t � s (if s = t , then it corresponds to an Eulerian cycle starting from s). (b)

The number of distinct strings that are d-equivalent to S is the number of non-equivalent Eulerian

paths (respectively, cycles) in GS,d .

The number of non-equivalent Eulerian paths (respectively, cycles) inGS,d can be computed via
the following theorem, which is attributed to Hutchinson [1975].

Theorem 9 ([Hutchinson 1975], cf. [Kingsford et al. 2010; Karhumäki et al. 2017]). Let

A = (auv ) be the adjacency matrix of the weighted de Bruijn graph GS,d = (VS,d ,ES,d ), with both

auv > 1 (multi-edges) and auu > 0 (self-loops) allowed. Let ru = d+ (u) + 1 if u = t or ru = d+ (u)
otherwise. The number of non-equivalent Eulerian paths starting at s and ending at t (respectively, the

number of non-equivalent Eulerian cycles starting at s , when t = s) is given by

(detLS,d ) · �
�

∏

u ∈VS,d

(ru − 1)!�
�
· �
�

∏

(u,v )∈ES,d

auv !�
�

−1

, (1)

where LS,d = (luv ) is the |VS,d | × |VS,d | matrix with luu = ru − auu and luv = −auv .

Let us denote by |S |x the number of occurrences of a string x in S . Since, by definition, ru = |S |u
and auv = |S |u ·v[k−2] = |S |u[0]·v , Equation (1) is equivalent to

(detLS,d ) · �
�

∏

u ∈VS,d

( |S |u − 1)!�
�
· �
�

∏

a∈Σ

|S |ua !�
�

−1

. (2)

Equation (2), together with a combinatorial study of the strings that belong to the same d-
equivalence class, can be found in the work of Karhumäki et al. [2017]. An example is provided
with Figure 3.

It is, however, not immediate that Equation (1) (or the equivalent Equation (2)), involved in the
check of line 4 in algorithm z-RC, can be computed efficiently. We show this next, starting with a
known fact on de Bruijn graphs.

Fact 10 ([Cazaux et al. 2019]). Given a string S of length n and d < n, its weighted de Bruijn

graph GS,d can be constructed in O (n) time.
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Lemma 11. The determinant detA of an n × n non-singular matrix A can be computed in O (nω )
time.

Proof. The decomposition of a non-singular matrix A = LU , where L and U is a lower and
upper triangular matrix, respectively, is known as LU decomposition and can be computed in the
same time as matrix multiplication [Bunch and Hopcroft 1974]. Given this decomposition, the
determinant can be computed as detA = detL · detU =

∏
n

i=1 lii ·
∏

n

i=1 uii . This is because the
determinant of any triangular matrix (e.g., L and U ) is the product of its diagonal entries. �

Lemma 12. Given detLS,d , the check of line 4 in algorithm z-RC can be performed in O (n logn)
time.

Proof. We unfold all factorials involved in the two products of Equation (1). Let us first consider
the leftmost product. Observe that the total number of multiplications involved is no more than
n because the sum of out-degrees over all nodes of GS,d is no more than n. Moreover, observe
that each factor of the product is represented by logn bits because its value is no more than n.
We assume a word-RAM algorithm that takes O (n1 + n2) arithmetic operations to multiply an
n1-bit integer by an n2-bit integer [Knuth 1998] resulting in an (n1 + n2)-bit integer. Using a logn-
depth divide and conquer, we can multiply these n integers in time O ( n

21 20 logn + n

22 21 logn +

. . . + n

2log n
2log n−1 logn) = O (n logn). Using an analogous argument, the rightmost product can

be computed in O (n logn) time, because GS,d has no more than n edges, which implies that the
product has at most n factors.

The leftmost product results in an (n logn)-bit integer (we multiply n logn-bit integers). By
Hadamard’s inequality [Gradshteyn and Ryzhik 2007], an upper bound on the value of detLS,d is

Bn · nn/2, where B is an upper bound on the values in LS,d . Since here B ≤ n, an upper bound on

detLS,d is nn ·nn/2 = n3n/2, which can be expressed using log(n3n/2) = 1.5n logn bits. Multiplying
detLS,d by the leftmost product is thus done inO (n logn) time. The rightmost product also results
in an (n logn)-bit integer, which we multiply by z. Since z ≤ nc is a c logn-bit integer, this is done
in O (n logn) time. Thus, line 4 is checked in O (n logn) time if detLS,d is known. �

We arrive at the main theoretical result.

Theorem 1. Given a string S of length n, there exists an O (nω logd )-time algorithm to construct

an O (n)-sized z-RSDS over S for a maximal d that answers decision and counting pattern matching

queries, for any pattern of length m ≤ d , in the optimal O (m) time per query. The algorithm outputs

FAIL if no such d exists.

Proof. The correctness of the z-RC algorithm follows by Lemma 5 (monotonicity) and Obser-
vation 8 (d-equivalence). The correctness of querying follows by the definition of d-equivalent
strings.

The construction time follows by Fact 10, Lemmas 11 and 12, Theorem 2, and the binary search
cost over [0,n]. Specifically, the check of line 4 is implemented inO (nω ) time by Fact 10 (de Bruijn
graph construction) and Lemmas 11 and 12 (computing the number of non-equivalent Eulerian
paths). If we find a valid d , we choose an Eulerian path (respectively, cycle) of GS,d to construct
a string S ′ and then construct Td (S ′) using Theorem 2 (truncated suffix tree contruction) in O (n)
time (line 9). The z-RSDS size and the time per query follow by Theorem 2. If no such d exists, the
algorithm outputs FAIL.

If we apply exponential search (instead of binary search) as in z-RCE, we get anO (nω logd )-time
construction. �

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.10. Publication date: July 2021.

ln: Sprime


1.10:10 G. Bernardini et al.

Colbourn et al. [1996] gave an algorithm allowing for sampling of a random arborescence rooted
at a given node to be carried out in the same time as counting all such arborescences, which forms
the basis of counting Eulerian paths and cycles in directed multigraphs. Hence, by plugging the
algorithm of Colbourn et al. in our construction algorithm (line 9), we can also choose a string
S ′ ∼d S randomly in the same time complexity.

5 ENGINEERING THE z-RC ALGORITHM

In what follows, we describe a series of practical improvements, which are based on theoretical
insight.

5.1 Improvement I: Reducing the BS Interval

Lemma 13. Let S be a string and r (S ) be the length of a longest substring of S occurring at least

twice in S . Td (S ) cannot be a z-RSDS over S if d ≥ r (S ) + 2.

Proof. Let I be the set of substrings of length r (S ) + 2 of string S . Having set I is a sufficient
condition for the unique reconstruction of S from I [Fici et al. 2006; Carpi and de Luca 2001]. This
implies that, if d ≥ r (S ) + 2, Td (S ) defines S in a unique way (i.e., αd = 1), and thus Td (S ) cannot
be a z-RSDS (since by definition z > 1). �

Note that the upper bound of r (S ) + 1 can be computed in O (n) time using the suffix tree of
S [Farach-Colton 1997], which is much faster than computing the bounds found by an exponential
search. This is because exponential search takes O (nω ) time for each of its iterations. As a conse-
quence of Lemma 13, we can reduce the binary search interval from [0,n] to [0, r (S ) + 1] in O (n)
time. Furthermore, it is known that r (S ) tends to log |Σ | n as n tends to infinity under a Bernoulli
i.i.d. model (cf. Fici et al. [2006]). It should be clear that there is a trade-off between the value of d
(utility of the z-RSDS) and the time taken by the binary search (due to the size of the interval).

5.2 Improvement II: Checking Prefixes of S

Lemma 14. Let S be a string and P be a prefix of S . Further, letAd (P ) (respectively,Ad (S )) be the

set of strings that are consistent with Td (P ) (respectively, with Td (S )). It holds that αd (P ) ≤ αd (S ).

Proof. We show the lemma by showing that for any stringX and any letter a, αd (X ) ≤ αd (Xa).
This implies that αd (P ) ≤ αd (S ). Indeed, by Lemma 7, it follows that if X ′ is d-equivalent to X ,
then X ′a is d-equivalent to Xa. �

Lemma 14 lets us implement the check in line 4 of the z-RC algorithm by operating on the
prefixes of S . The length of a longest substring of every prefix P of S occurring at least twice in P
can be computed by means of the longest previous factor (LPF) array [Crochemore et al. 2013].
The LPF array gives, for each position i in S , the length of a longest substring occurring both at
i and to the left of i in S . We can thus construct an array R, where R[i] stores the length of a
longest substring occurring at least twice in the prefix P = S[0 . . i] of S , by traversing the LPF
array. Then, we only need to perform the check αd (P ) ≥ z when d < R[i] + 2. This is because
of applying Improvement I on P . The LPF array, and thus array R, can be computed both in O (n)
time [Crochemore et al. 2013]. Note that R[i] ≤ R[i + 1]. Thus, having R, we can find (whether
there exists) a prefix P = S[0 . . i] satisfying d < R[i] + 2, for all d , in O (n) time in total.

5.3 Improvement III: Sparse LU Decomposition

Let GS,d = (VS,d ,ES,d ) be the weighted de Bruijn graph for which we must compute the determi-
nant detLS,d . LS,d is a |VS,d | × |VS,d | non-singular matrix, where |VS,d | is the number of distinct
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substrings of length d − 1 occurring in S . Hence, we have that |VS,d | ≤ min( |Σ|d−1,n − d + 1). If

|VS,d | = O (n1/ω ), then detLS,d is computed in O (n) time by Lemma 11. If |VS,d | = Θ(n), then LS,d

is sparse: it has no more than |VS,d | +n −d + 1 non-zero elements, because in the worst case there
is a non-zero element for each edge and there are n −d + 1 edges with multiplicity 1. Thus, in any
case, LS,d cannot contain more than 2n−d +1 non-zero elements. We can therefore employ highly
optimized algorithms for sparse LU decomposition (e.g., Demmel et al. [1999]; Gilbert and Peierls
[1988]) to compute detLS,d efficiently. Let flops(XY ) be the number of multiplications of non-zero
elements performed while computing the product XY by conventional matrix multiplication. The
algorithm of Gilbert and Peierls [1988], for instance, takes O (flops(LU ) +m) time to compute the
LU decomposition of a matrix with m non-zero elements. Thus, in our case, computing detLS,d

takes O (flops(LU ) + n) time.

6 IMPLEMENTATIONS AND EXPERIMENTS

6.1 Implementations

We have implemented the following algorithms in C++: (I) z-RC with Improvement III; (II) z-
RCB (for Binary search interval reduction), which implements Improvements I and III; (III) z-
RCE with Improvement III; and (VI) z-RCBP (for Binary search interval reduction and Prefix
checking), which implements Improvements I, II, and III. Our implementation is available at
https://bitbucket.org/reverse-safe-data-structures/rsds. We have omitted the results of the ver-
sions of the algorithms without Improvement III, as they were too slow to be practical.

For Improvement II, we have combined the idea described in Section 5.2 with exponential search:
we start from an initial prefix P0 of S that has length |P0 | = κ and use it to perform the check in
line 4 of our algorithm in Section 4. Due to Lemma 14, we know that αd (P0) ≥ z implies αd (S ) ≥ z;
we thus check if αd (P0) ≥ z, because this is clearly more efficient than checking αd (S ) ≥ z. If
αd (P0) < z, αd (S ) ≥ z may or may not hold. In this case, we consider a longer prefix of S that
has length |P1 | = 21 · κ and proceed similarly. Clearly, significant computational savings can be
brought when the last considered prefix Pi has small length |Pi | = 2i ·κ, whereas in the worst case
Pi = S , and the total cost of our algorithm with Improvement II is twice the cost of the algorithm
without it due to doubling. We also apply Improvement I on these prefixes: if d ≥ R[i]+2 for prefix
Pi , we do not check αd (Pi ) ≥ z, because Lemma 13 already ensures that αd (Pi ) = 1 < z.

For Improvement III, we used the Sparse LU decomposition function of the open source Eigen
library (v. 3.3.7) [Eigen Library 2020], which is based on the algorithm of Demmel et al. [1999], to
compute detLS,d .

6.2 Experimental Setup and Datasets

We have evaluated z-RC, z-RCB, z-RCE, and z-RCBP in terms of data utility and efficiency. We
do not compare our methods to existing approaches, as they are not alternatives to our work as
mentioned in Section 1.

We used the following publicly available datasets: MSNBC (MSN), which contains page cate-
gories visited by users on msnbc.com over a 24-hour period; the complete genome of Escherichia

coli (EC); KASANDR (KAS), which contains product categories in the Kelkoo price comparison
site; and a dataset containing 27 Primate mitochondrial genomes (PR). MSN was used in the work
of Gkoulalas-Divanis and Loukides [2011], Gwadera et al. [2013], and Loukides and Gwadera
[2015], EC was used in the work of Bernardini et al. [2020a], was used in the work of Sidana
et al. [2017], and PR was used in the work of Thankachan et al. [2017]. We also generated a uni-
formly random string of length 100M over an alphabet of size 10, and used its prefixes of length
1M, . . . , 100M as synthetic datasets, referred to as SYN1M, . . . , SYN100M, respectively. Each dataset
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Table 1. Characteristics of Datasets Used

Dataset Data Total Alphabet r (S )
S Domain Length n Size |Σ|

MSN Web 4,698,764 17 14,794

EC Genomic 4,641,652 4 2,815

KAS E-commerce 15,844,718 94 63

PR Genomic 446,246 (27 strings) 4 [13, 311]

SYN100M Synthetic 100,000,000 10 16

contains a single string, except for PR, which contains 27 strings (one for each mitochondrial
genome). In PR, we applied our methods to each string independently. Table 1 summarizes the
characteristics of the datasets.

To evaluate data utility, we report the length d found by our methods for different values of z,
and also investigate the accuracy of performing two classes of data analysis applications: pattern

mining [Zaki et al. 2014] and phylogenetic tree reconstruction [Thankachan et al. 2017]. Unlike deci-
sion and counting pattern matching queries of length at most d , which are answered exactly using
the z-RSDS constructed by our methods, these applications are not guaranteed to be performed
accurately on the output encoding. Yet, we show that plugging in our approach gives insignificant
or no data utility loss in these applications. We now discuss each of these applications.

(Closed) frequent pattern mining. Frequent patterns and closed frequent patterns in string
datasets model knowledge that aids decision making [Arimura and Uno 2007; Shang et al. 2016]
and can be used for data classification and clustering [Zaki et al. 2014]. Given a string S and a
user-specified threshold minSup, a pattern is frequent if its relative frequency in S , also referred to
as support, is at least minSup. A frequent pattern of S is closed if none of its superstrings has the
same relative frequency in S . Closed frequent patterns are typically fewer than the frequent ones,
and they are mined much more efficiently. Their benefit is that they uniquely determine the set of
frequent patterns and their exact frequency. Our methods allow mining the frequent and closed
frequent patterns of length at most d and only those. Thus, our methods preserve data utility well
when the d computed is sufficiently large for low minSup values. In our experiments, we used the
algorithm of Arimura and Uno [2007] to mine a more general class of frequent and closed frequent
patterns having up tow ∈ [0, 3] occurrences of a wildcard letter �. A pattern with wildcards occurs
in a string S if it is a subtring of S after replacing the wildcard letters with alphabet letters (e.g., pat-
tern a��e occurs in S = babdeb). Mining patterns with wildcards poses a further challenge to our
approach, since (closed) frequent patterns with wildcards are a superset of the (closed) frequent
patterns and are typically longer.

Phylogenetic tree reconstruction. A phylogenetic tree illustrates the evolutionary relationships
among a set of species. In our context, each species is represented by a different string in a collec-
tion of strings. To reconstruct phylogenetic trees, we applied the methodology of Thankachan et al.
[2017] on the PR dataset, the only dataset comprised of a collection of strings. In other words, we
compute the pairwise Average Common Substring with k mismatches (k-ACS) distance [Ulit-
sky et al. 2006; Leimeister and Morgenstern 2014] between the 27 strings in PR, using the ALFRED-
G [Thankachan et al. 2017] algorithm, and then apply the neighbor-joining algorithm [Saitou and
Nei 1987] to reconstruct the phylogenetic tree. We apply the methodology to S and to S ′ ∼d S ,
S ′ � S : intuitively, data utility is preserved well when the phylogenetic tree for S is similar to
the one for S ′. Following Thankachan et al. [2017], we measured similarity using the normalized

Robinson-Foulds (nRF) distance [Robinson and Foulds 1981].

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.10. Publication date: July 2021.



Reverse-Safe Text Indexing 1.10:13

Fig. 4. Length d for different z values for EC (a), MSN (b), and KAS (c). The length d for each z and dataset

also appears on top of each bar.

Unless otherwise stated, we used z = 100 and κ = 1, 000. We compiled all implementations
using gcc version 7.3.0 with the -O3 and -msse3 flags and executed them on a machine with an
Intel Xeon E5-2640 at 2.66 GHz and 160 GB of RAM.

6.3 Data Utility

Recall that our approach allows for answering pattern matching queries of length at most d in
optimal time, and at the same time it prevents the reconstruction of the original dataset. In this
section, we demonstrate that z-RCBP, and z-RC, z-RCB, which by design create the same output
as z-RCBP, allow for other meaningful data analysis tasks to be applied with insignificant or no
utility loss.

6.3.1 Length d . We first show that z-RCBP provides access to very long substrings of the orig-
inal dataset (i.e., the output length d is large). Figure 4(a), (b), and (c) show d for different values
of the privacy threshold z in EC, MSN, and KAS, respectively. As expected, d decreases when z
increases. However, d is still very large even when z is set to 100,000. Specifically, d is in the order
of several hundreds for EC and MSN and around 50 for KAS. This implies (I) no accuracy loss
for applying the pattern matching queries described in Section 3 on very long substrings and (II)
strong privacy against dataset reconstruction.

6.3.2 Frequent Pattern Mining. We demonstrate that z-RCBP allows for accurately mining fre-
quent and closed frequent patterns with up tow ∈ [0, 3] wildcard letters at very low minSup values.
To this aim, we have computed the smallest possible value of minSup such that the mined frequent
and closed frequent patterns have length no more than d . We denote this value by τ . Clearly, our
method has no data utility loss for any minSup ≥ τ . For EC, the smallest such minSup value (up
to eight decimal digits) was τ = 1.8 · 10−6. Figure 5(a) and (b) show the number and the maximal
length of the mined patterns with minSup = τ = 1.8 · 10−6 for EC. For MSN, the smallest such
minSup value (up to four decimal digits) was τ = 3.1 · 10−3. The results for mining MSN with
minSup = τ = 3.1 · 10−3 in Figure 6(a) and (b). For KAS, the smallest such minSup value (up to
eight decimal digits) was 1.6 ·10−6. Figure 7(a) and (b) show the number and the maximal length of
the mined patterns with minSup = τ = 1.6 · 106 for KAS. The plots in Figures 5, 6, and 7 show that
a large number of (potentially interesting) patterns can still be mined from the randomly selected
S ′, even if some of them occur a small number of times in S (since τ was very low). Thus, our
method permits the fundamental task of frequent pattern mining to be performed accurately.
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Fig. 5. Number of frequent patterns (a) and closed frequent patterns (b) with up to w ∈ [0, 3] wildcards

mined from EC using minSup = 1.8 · 10−6. The length of the longest mined pattern is on the top of each bar.

Fig. 6. Number of frequent patterns (a) and closed frequent patterns (b) with up to w ∈ [0, 3] wildcards

mined from MSN using minSup = 3.1 · 10−3. The length of the longest mined pattern is on the top of each

bar.

6.3.3 Phylogenetic Tree Reconstruction. We next demonstrate that z-RCBP leads to phyloge-
netic trees constructed from S ′ ∼d S , S ′ � S , which are either the same or very similar with
respect to the nRF distance to the phylogenetic trees constructed from S . Figure 8 shows the nRF
distance between these trees. The trees were obtained using the k-ACS distance for different k val-
ues in [0, 9] and the neighbor-joining algorithm as in the work of Thankachan et al. [2017]. Note
that the tree constructed from S was the same to the one constructed from S ′ in 6 out of 10 cases,
implying no data utility loss, and in the remaining 4 cases, the nRF had a very small value of 0.04,
implying insignificant data utility loss for this fundamental bioinformatics task.

6.4 Runtime

In this section, we show that, despite the nω factor, z-RCBP takes only a few minutes to finish
for million-letter texts. Figure 9(a) shows the runtime of z-RC, z-RCB, z-RCE, and z-RCBP using
the synthetic datasets as input. Recall that the largest synthetic dataset is SYN100M and the other
datasets are prefixes of SYN100M. z-RCBP was substantially more efficient than all other algorithms
and scaled better with the dataset size, confirming the necessity of Improvements I and II for being
able to apply our methodology to large texts. However, z-RC was the slowest, and it did not finish
within 48 hours for SYN10M, . . . , SYN100M. Note that z-RCE was more efficient than z-RC, since it
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Fig. 7. Number of frequent patterns (a) and closed frequent patterns (b) with up to w ∈ [0, 3] wildcards

mined from KAS using minSup = 1.6 · 10−6. The length of the longest mined pattern is on the top of each

bar.

Fig. 8. nRF distance vs. k between phylogenetic trees constructed for S and for S ′ ∼d S , S ′ � S , using the

k-ACS distance in PR.

performs fewer iterations. The reason is that d < 20 for these datasets. In addition, z-RCE was
comparable to z-RCB. The reason is that d was very close to r (S ) + 1.

We also measured the runtime of z-RCB, z-RCE, and z-RCBP for different z values (see Fig-
ure 9(b)). We do not report the runtime of z-RC because it did not finish within 48 hours. The
runtime of z-RCBP is much less when z is small, because z-RCBP considered fairly short prefixes.
Specifically, z-RCBP was two times faster than z-RCB on average, and three times faster when
z = 10. The runtime of z-RCB and of z-RCE was not affected substantially by z. This is because
these algorithms output the same d as z-RCBP for all z values (i.e., they construct the same output)
but operate on the entire string S . z-RCB was comparable to z-RCE for the reason explained earlier.

Next, we studied the impact of the initial prefix length κ on the runtime of z-RCBP, the only
method that uses Improvement II (see Figure 9(c)). The runtime of z-RCBP decreased when κ
increased, but only up to κ = 1, 000. Until then, prefixes were too short (i.e., the condition αd (S ′) ≥
z did not hold), so longer prefixes were considered. For κ > 1, 000, z-RCBP took more time because
it is more expensive to check the condition on longer prefixes (e.g., z-RCBP took 40% more time
when κ = |S | compared to when κ = 1, 000).

Similar results were observed for the other datasets. For example, as can be seen in Table 2, in
the case of MSN and KAS, z-RCBP was again the fastest, z-RC was the slowest, and z-RCB and
z-RCE performed similarly. In the case of the EC dataset, however, z-RCE was the slowest. The
reason is that EC led to a larger d than that of MSN, so z-RCE had to perform more iterations.
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Fig. 9. Runtime vs. n (a) (z-RC did not finish within 48 hours for SYN10M, . . . , SYN100M and z-RCB did not

finish within 48 hours for SYN100M). Runtime vs. z (b) and κ (c).

Table 2. Runtime (in Seconds) for All Implementations

Dataset z-RCB z-RCE z-RC z-RCBP

MSN 438.49 421.96 659.17 347.34

EC 364.84 725.26 571.8 339.18

KAS 710.55 1022.59 2555.8 649.09
Note: The minimum is set in bold.

6.5 Memory Usage

In this section, we report the peak memory usage of all implementations. Figure 10 shows these
results when the synthetic datasets (i.e., prefixes of SYN100M) are given as input. All implementa-
tions required a larger amount of memory when they were applied to longer strings. In addition,
the amount of required memory was similar for all implementations. This is because most of the
memory is needed for computing detLS,d (i.e., the sparse LU decomposition in Improvement III,
which is employed by all algorithms). For example, the detLS,d computations required approxi-
mately 90 GB out of the 96 GB of memory that were needed when z-RCE was applied to SYN100M.
Similar results were observed for the other datasets, as can be seen in Table 3.

6.6 Disregarded Prefixes

Last, we demonstrate that applying Improvement I on the prefixes of S , which are used in Im-
provement II, allows for disregarding a large ratio of them from the computation. In other words,
we often avoid computing αd (P ) for a prefix P of S , because when d ≥ r (P ) + 2, we have that
αd (P ) = 1 < z by Lemma 13. Specifically, Figure 11 shows that the ratio of disregarded prefixes
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Fig. 10. Peak memory usage (in GB) vs. n (we do not report the results for z-RC for SYN10M, . . . , SYN100M

and for z-RCB for SYN100M, as these implementations did not finish within 48 hours).

Table 3. Peak Memory Usage (in GB) for All

Implementations

Dataset z-RCB z-RCE z-RC z-RCBP

MSN 15.3 15.3 15.3 15.4

EC 32.9 32.9 32.9 33.0

KAS 15.3 15.3 15.3 15.7

Fig. 11. Ratio of disregarded prefixes vs. z in MSN, EC, and KAS.

over all prefixes considered for MSN and EC is at least 0.38, whereas that for KAS is 0.85. The
benefit of the improvement when this ratio is large is time efficiency, since computing αd (P ) to
check whether αd (P ) ≥ z can be expensive particularly for a long prefix P of S .

7 APPLICATION TO ADVERSARY MODELS

In this section, we discuss adapted versions of our z-RSDS that can be applied to two different
adversary models, in which an adversary possesses positive and negative knowledge, respectively.
In the context of z-anonymity, positive adversarial knowledge has been considered in the work of
Loukides et al. [2010], Mohammed et al. [2010], Poulis et al. [2014], Terrovitis and Mamoulis [2008],
and Terrovitis et al. [2011], and negative adversarial knowledge in the work of Atzori et al. [2008]
and Li and Li [2008]. Unlike our work, none of these works considers adversarial knowledge in
the context of a string.
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7.1 Adversary Model I: Positive Adversarial Knowledge

Our privacy goal is to limit the probability of inferring string S when the adversary possesses the
following knowledge.

Definition 15 (Positive Adversarial Knowledge). A pair K = (Td (S ′), S̃ ), where S ′ ∼d S and S̃ is a
(possibly empty) substring of S .

The adversarial knowledge K is comprised of Td (S ′), which is accessible by the adversary, and

of S̃ which is the adversary’s background knowledge. Background knowledge is obtained by an ad-
versary, typically from external data sources and/or communication with individuals represented
in the input dataset [Terrovitis et al. 2011; Loukides et al. 2010; Poulis et al. 2014; Mohammed et al.
2010; Terrovitis and Mamoulis 2008]. As it will become clear later, such knowledge may make a
z-RSDS more likely to be reversed. Thus, when certain background knowledge is known or can be
assumed, it should be modeled and taken into account in the construction of a z-RSDS to ensure
that the z-RSDS remains sufficiently unlikely to reverse.

We model the background knowledge as a substring to capture manifested attacks [Loukides
et al. 2010; Terrovitis and Mamoulis 2008] in which the adversary observes an individual’s actions
within a time frame. The actions are represented by S̃ . For example, when S models the diagnoses in

an individual’s electronic health record, S̃ models the diagnoses assigned to the individual during a
hospital visit, which may be known by a hospital employee [Loukides et al. 2010]. Similarly, when

S models an individual’s credit card purchases, S̃ models the products purchased by the individual
during a visit to a shop, which may be known by a shop employee [Terrovitis and Mamoulis 2008].

S̃ may be specified by the data provider [Bernardini et al. 2020a] or the data custodian [Terrovitis
et al. 2017], according to policies. Note that from Td (S ′), the adversary can also learn the following
(see Figure 1): the length n = |S |, the maximal string depth d , and the suffixes of S of length at
most d − 1. Thus, we did not include such information in K explicitly.

An adversary may not be able to uniquely infer S , based on their knowledgeK . This is because

they have to distinguish S among the set of strings that are d-equivalent to S and have S̃ as sub-
string. In fact, the probability that the adversary infers S , based solely on their knowledge K , is
defined as follows.

Definition 16 (Inference Probability of S). The inference probability of S , based on the knowledge
K , is defined as P (IS | K ) = 1/|AK |, where IS is the event “the adversary infers S” and AK is the
set of strings consistent with Td (S ′) having S̃ as substring.

P (IS | K ) is defined based on the following: (I) the fact that the adversary can construct all

strings that are consistent with Td (S ′) and contain S̃ as substring (see Section 7.1.1), and (II) the
random worlds assumption [Bacchus et al. 1996] (i.e., each such instance is equally likely). This
assumption is followed by most related works (see the work of Xiao et al. [2010] and references
therein).

We aim at constructing a Td (S ′), for some S ′ ∼d S chosen at random, that an adversary cannot
use to infer S with sufficiently largeP (IS | K ). We also requireTd (S ′) to have maximald to support
the operations discussed in Section 3 on larger substrings, thereby providing higher utility. This
leads to the following computational problem.

Problem 2. Given a string S of length n, a substring S̃ of S , and a privacy threshold 1 < z ≤ nc ,

for some constant c ≥ 1, construct a Td (S ′) such that (I) S ′ ∼d S , (II) d is maximal, and (III) P (IS |
K ) ≤ 1

z
, for K = (Td (S ′), S̃ ); otherwise, output FAIL if no such d exists.

7.1.1 Construction Algorithm. We next show how the z-RC algorithm for constructing a z-RSDS
can be applied in an extended way to solve Problem 2. In this case, we need to account for AK , a
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modified version ofAd : a string S ′ is inAK if and only if it is d-equivalent to S and contains S̃ as
a substring. In the graph formulation of the problem, we need to ensure that a path representing

S̃ must always be visited. Thus, we modify the z-RC algorithm as follows.
Let αK = |AK |. Consider a binary search iteration for some value of d , in which we must check

whether αK ≥ z. We first construct the weighted de Bruijn graph GS,d . If |S̃ | ≤ d, all strings in

Ad contain S̃ as a substring by construction and so we do not need to modify the algorithm for

such an S̃ . Intuitively, in this case, knowledge of S̃ is of no use to the adversary. We thus consider

the case when |S̃ | > d . A substring S̃ of length |S̃ | is represented by a pathv1v2 . . .vh inGS,d , with

h = |S̃ | −d +2, as the first nodev1 represents a prefix of |S̃ | of length d −1, and each traversed edge
appends one letter to this prefix. We remove the edges of a path v1v2 . . .vh in GS,d representing

some occurrence of S̃ in S , |S̃ | > d . (There may be multiple such paths.) We add a shortcut edge

e
S̃
= (v1,vh ) directed from node v1 to node vh to represent an occurrence of string S̃ . We refer to

this procedure as collapsing the path v1v2 . . .vh . Let us denote the resulting graph by G
S,d, S̃ (see

Figure 12 vs. Figure 3).

Lemma 17. (a) If S ∼d S ′ and S̃ is a substring of S ′, then S ′ corresponds to an Eulerian path inG
S,d, S̃

that starts from vertex s and ends at vertex t � s (if s = t , then it corresponds to an Eulerian cycle

starting from s). (b) αK is equal to the number of non-equivalent Eulerian paths (respectively, cycles)

in G
S,d, S̃ .

Proof. (a) Trivial. (b) We first observe that G
S,d, S̃ is Eulerian (respectively, semi-Eulerian) by

construction, because GS,d is Eulerian (respectively, semi-Eulerian) and the preceding procedure
does not change the parity of any vertex. Indeed, consider path v1v2 . . .vh in GS,d representing

the string S̃ , which we replace with a shortcut edge e
S̃
. Exactly one outgoing and one incoming

edge is removed from each v2, . . . ,vh−1; one outgoing edge is removed from v1 and replaced with
outgoing edge e

S̃
, and one incoming edge is removed from vh and replaced with e

S̃
incoming.

Moreover, since the multiplicity of any substring U of length d is given by the multiplicity of the
edge from nodeU [0 . .d−2] to nodeU [1 . .d−1], the multiplicities of d-substrings are not affected
by this transformation.

To show that the number of non-equivalent Eulerian paths (respectively, cycles) in G
S,d, S̃ is

at most αK , consider any Eulerian path (respectively, cycle) in G
S,d, S̃ . By definition, there is at

least one occurrence of S̃ given by edge e
S̃
, and it thus represents a string that belongs to AK .

Symmetrically, to show that αK is at most the number of non-equivalent Eulerian paths (respec-
tively, cycles) in G

S,d, S̃ , consider a string U ∈ AK . Among the (possibly multiple) Eulerian paths

(respectively, cycles) in GS,d that representU , consider one that has v1v2 . . .vh as subpath as rep-
resentative of its equivalence class: such path exists because of Observation 8 and the properties
of weighted de Bruijn graphs. This path corresponds to the path in G

S,d, S̃ , where v1v2 . . .vh is
replaced with v1vh . �

Theorem 18. Problem 2 can be solved in O (nω logd ) time.

Proof. The correctness of the construction algorithm follows by Lemma 17 and the fact that it
is correct to apply binary or exponential search due to the monotonicity of αK (the monotonicity
proof is almost identical to that of Lemma 5 and is thus omitted).

For a given d , finding a path v1v2 . . .vh in GS,d and replacing it with v1vh can be done while

constructing GS,d at no extra cost. Recall that v1v2 . . .vh represents some occurrence of string S̃
in S , and that all occurrences of S̃ in S can be found inO (n) time using the suffix tree of S [Weiner
1973]. The time complexity thus follows from the proof of Theorem 1. �
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Fig. 12. G
S,d, S̃ with S = abaabbabba, d = 3, S̃ = babb, and αK = 4.

7.2 Adversary Model II: Negative Adversarial Knowledge

In this section, we consider the case where an adversary possesses negative knowledge. The ad-
versary model is somewhat dual to the one defined in Section 7.1. Specifically, in our model, the
adversary possesses the following negative knowledge.

Definition 19 (Negative Adversarial Knowledge). A pair K̄ = (Td (S ′),R), where S ′ ∼d S and R is
a non-empty string that does not occur in S .

It should be clear that the background knowledge in Definition 19 may be used to reverse the
z-RSDS, and it should therefore be modeled and taken into account in the construction of a z-RSDS.
A procedure that is entirely analogous to the one described in Section 7.1.1 can be used to ensure
that the z-RSDS remains sufficiently unlikely to reverse, as we explain next.

We now have to account forAK̄ , which is again a modified version ofAd : a string S ′ is inAK̄
if and only if it is d-equivalent to S and does not contain R as a substring. The inference probability
P (IS | K̄ ), based on the negative knowledge K̄ , is defined in much the same way as the one for
positive adversarial knowledge: P (IS | K̄ ) = 1/|AK̄ |. Once again, the problem is to construct a
Td (S ′) such that S ′ ∼d S , d is maximal and P (IS | K̄ ) ≤ 1/z.

Problem 3. Given a string S of length n, a string R that does not occur in S , and a privacy threshold

1 < z ≤ nc , for some constant c ≥ 1, construct a Td (S ′) such that (I) S ′ ∼d S , (II) d is maximal, and

(III) P (IS | K̄ ) ≤ 1
z

, for K̄ = (Td (S ′),R); otherwise, output FAIL if no such d exists.

Let α K̄ = |AK̄ |, and consider a binary search iteration for some value of d , in which we must
check whether α K̄ ≥ z. We construct a graph GS,d,R exactly as if R was required to occur in S ′,
as described in Section 7.1.1. By definition, all strings corresponding to non-equivalent Eulerian
paths in GS,d,R contain at least one occurrence of R: the complement of such set in Ad is the
set of d-equivalent strings that do not contain any occurrence of R, which is precisely what we
aim at. The following lemma thus connects α K̄ with the number of non-equivalent Eulerian paths
(respectively, cycles) inGS,d andGS,d,R . The proof is similar to the one of Lemma 17 and is therefore
omitted.

Lemma 20. α K̄ is equal to the difference between the number αd of non-equivalent Eulerian paths

(respectively, cycles) inGS,d and the number αK of non-equivalent Eulerian paths (respectively, cycles)

in GS,d,R .

Notice that, in contrast with the case of positive adversarial knowledge, it may happen that R is
not represented by any path in GS,d : in this case, we simply set α K̄ = αd , as no string S ′ ∼d S has
R as a substring. Figure 13 illustrates an example where R is actually represented in GS,d : the four
strings S ′ ∼d S that do not have R as a substring are, in fact, the ones depicted in Figure 12. The
following theorem can be proved much the same way as Theorem 18.
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Fig. 13. GS,d,R with S = abaabbabba, d = 3, R = baba, and so αK̄ = αd − αK = 6 − 2 = 4.

Theorem 21. Problem 3 can be solved in O (nω logd ) time.

7.3 Generalization to a Collection of Patterns

Both the model of positive and the model of negative adversarial knowledge can be straightfor-
wardly extended to the case of multiple disjoint pattern occurrences in S . We begin by defining
the notion of disjoint pattern occurrences in S , as follows.

Definition 22 (Disjoint Pattern Occurrences). Given a string S and a pair of strings (S1, S2), we call
(i1, i2) disjoint pattern occurrences of S1 and S2 in S , when S1 occurs at position i1 in S , S2 occurs at
position i2 in S , and the intervals [i1, i1 + |S1 | − 1] and [i2, i2 + |S2 | − 1] are disjoint.

Formally, in the positive adversarial knowledge model, the adversary possesses the following
knowledge: a collection S of k patterns such that there exists an ordering S1, S2, . . . , Sk of these
patterns that forms a sequence of pairwise disjoint pattern occurrences in S.

The case of multiple disjoint pattern occurrences we consider is of practical importance. It can
correspond to a collection of adversary observations within multiple disjoint time frames; each
time frame corresponds to a pattern, and thus the patterns satisfy Definition 22. In fact, the exam-
ples of attacks discussed in Section 7.1 naturally generalize to multiple patterns. For example, Si

can model the diagnoses assigned to an individual during the i-th hospital visit of the individual.
It can be readily verified that a solution for the case when an adversary possesses a collection S

can be obtained by repeating the procedure of collapsing patterns in the de Bruijn graph to obtain
GS,d,S : this is possible because all such patterns are edge-wise disjoint, thanks to the condition
that any two patterns have disjoint pattern occurrences in S . In the example of Figure 14, the
knowledge of two non-overlapping substrings of S is sufficient to uniquely identify S , thus to make
the construction algorithm fail for any z > 1. Note that in this example, the adversary knows an
additional string S2 compared to the example of Figure 12, and this additional knowledge makes
the construction algorithm fail.

The negative adversarial knowledge model can be extended in a similar way. In this case, the
adversary possesses the following knowledge: a collection of patterns R = {R1,R2, . . . ,Rk } such
that no permutation of these patterns occurs in S with pairwise disjoint occurrences. Since this
condition is precisely complementary to the positive knowledge for multiple patterns, we follow
the same strategy as for the negative knowledge model for one pattern: we construct the graph
GS,d,R , compute the number of non-equivalent Eulerian paths in this graph, and subtract it from
αd .

8 A z-RSDS FOR DECISION QUERIES

Let us recall that a non-empty string R that does not occur in a string S is called absent from S ,
and it is called minimal absent if furthermore all proper substrings of R do occur at least once
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Fig. 14. GS,d,S1,S2
with S = abaabbabba, d = 3, S1 = babb, S2 = abaa, and so the only Eulerian path in the

graph spells S itself.

in S . Minimal absent words (MAWs) are used in many applications [Silva et al. 2015; Pratas
and Silva 2020; Fici et al. 2006; Garcia et al. 2011; Chairungsee and Crochemore 2012; Ota and
Morita 2010; Crochemore et al. 2000] and their theory is well developed [Mignosi et al. 2002; Fici
and Gawrychowski 2019; Fici et al. 2019], also from an algorithmic and data structure point of
view [Ayad et al. 2019; Barton et al. 2014, 2015; Charalampopoulos et al. 2018a, b; Crochemore
et al. 1998, 2020; Fujishige et al. 2016; Mieno et al. 2020]. For example, it is well known that, given
two strings S and S ′, one has S = S ′ if and only if S and S ′ have the same set of MAWs [Mignosi
et al. 2002].

We now prove that all strings in the same d-equivalence class have precisely the same set of
MAWs of length up to d (and therefore any two distinct d-equivalent strings must have some
longer MAW not in common).

Lemma 23. Let S be a string and R a MAW of S of length at most d . If S ′ is d-equivalent to S , then

R is a MAW of S ′.

Proof. Let us first assume that the length of R is exactly d . Given a de Bruijn graphG of order d ,
we call edge (u,v ) fake-feasible if it does not exist inG but it could exist inG (i.e., ifu andv overlap
by d − 2 letters). It holds that a string R of length d is a MAW of S if and only if R = u ·v[d − 2] and
(u,v ) is a fake-feasible edge in the de Bruijn graph G of order d of string S . This follows by the
definition of MAWs: all proper substrings of R (in particular, its longest proper prefix u and suffix
v) do occur in S but R does not. Since all strings in the d-equivalence class of S have the same G,
it follows that they have the same set of fake feasible edges and hence the same set of MAWs of
length d . The statement follows from the fact that if two strings are d-equivalent, then they are
also (d − 1)-equivalent [Karhumäki et al. 2013]. �

Example 24. All strings in Figure 3 have the same MAWs of length up to 3, namely aaa and bbb.
Let us remark that Lemma 23 is not a characterization of a d-equivalence class: aaa and bbb are
also the MAWs of length up to 3 of string aabaababba, which is not d-equivalent to the strings of
Figure 3.

Let us now describe an application of Lemma 23. We start with a straightforward fact.

Fact 25. A string X occurs in a string Y if and only if no MAW of Y occurs in X . Equivalently, a

string X does not occur in a string Y if and only if a MAW of Y occurs in X .

Let S be a string of length n and d be an integer so that the number of distinct strings that are
d-equivalent to S is at least z. (Note that S is d-equivalent to itself.) Then Lemma 23 and Fact 25
tell us that the set of MAWs of S of length up to d suffices to construct a z-RSDS over S for d that
answers decision pattern matching queries of length m ≤ d in the optimal O (m) time per query.
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In particular, we can construct the Aho-Corasick (AC) automaton [Aho and Corasick 1975; Dori
and Landau 2006] of the set of MAWs of S of length up to d in O (M ) time, where M is the total
length of these MAWs. Then, given a string P of length m, we check if any MAW of S of length
up to d occurs in P in O (m) time. By Fact 25, we give a positive answer if no MAW of S of length
up d occurs in P . The size of this z-RSDS is the size of the AC automaton, which is O (M ) and
can be sublinear in |S | = n. Note that M can be computed in O (n) time using the data structure
presented in the work of Charalampopoulos et al. [2018a]. Thus, ifM < n, we can construct the AC
automaton instead of the z-RSDS presented in Section 3. The data structure of Charalampopoulos
et al. [2018a] can also enumerate the set of MAWs of S of length up to d in the optimal O (n +M )
time.

Let us conclude this section with an example.

Example 26. Recall that all strings in Figure 3 have the same MAWs of length up tod = 3, namely
aaa and bbb, and let z = 6. The AC automaton of {aaa, bbb} is a z-RSDS over S answering decision
pattern matching queries of length m ≤ d = 3. Given, for instance, query P = aba, we check that
the AC automaton does not locate any occurrence of {aaa, bbb} in P , and thus we return a positive
answer. Given queryQ = aaa, we check that the AC automaton locates an occurrence of aaa from
{aaa, bbb} at position 0 of Q , and thus we return a negative answer. Note that M = 6 < n = 10.

9 FINAL REMARKS

We have introduced the notion of z-RSDSs and presented such data structures for text indexing.
Let us remark that the algorithmic contribution of this work is computing the maximal d and
constructing a string S ′ ∼d S . From thereon, one could:

• Employ any privacy-preserving technique over S ′ (e.g., Bernardini et al. [2020a, c]) to ensure
that certain privacy-utility trade-offs are maintained. Such a technique could hide sensitive
patterns that are still present in S ′ while maintaining the utility of S ′ in data analysis tasks.
• Construct any compressed index over S ′ (e.g., Grossi and Vitter [2005]; Kosolobov and

Sivukhin [2019]). Such an index could answer queries of length m ≤ d and output FAIL

for queries of lengthm > d by storing d using logd extra bits.

There are at least five directions for future work:

(1) Improve the time complexity of the construction (Theorem 1).
(2) Improve the time complexity of the construction (Theorem 1) for certain values of z.
(3) Design a space-efficient construction algorithm.
(4) In Problem 1, the z-RSDS is truncated at a maximal uniform string depth d . Another related

problem definition would be to truncate the z-RSDS at maximal non-uniform string depths.
(5) In Section 8, we proposed a small z-RSDS for decision pattern matching queries of length at

most d , when d is given. An open problem is to efficiently compute the maximal such d .
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