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Abstract. We extend here the game-theoretic investigation made by d’Onofrio

et al (2012) on the interplay between private vaccination choices and actions

of the public health system (PHS) to favor vaccine propensity in SIR-type
diseases. We focus here on three important features. First, we consider a

SEIR–type disease. Second, we focus on the role of seasonal fluctuations of

the transmission rate. Third, by a simple population–biology approach we de-
rive - with a didactic aim - the game theoretic equation ruling the dynamics

of vaccine propensity, without employing ‘economy–related’ concepts such as
the payoff. By means of analytical and analytical–approximate methods, we

investigate the global stability of the of disease–free equilibria. We show that

in the general case the stability critically depends on the ‘shape’ of the period-
ically varying transmission rate. In other words, the knowledge of the average

transmission rate (ATR) is not enough to make inferences on the stability of

the elimination equilibria, due to the presence of the class of latent subjects. In
particular, we obtain that the amplitude of the oscillations favors the possible

elimination of the disease by the action of the PHS, through a threshold con-

dition. Indeed, for a given average value of the transmission rate, in absence of
oscillations as well as for moderate oscillations, there is no disease elimination.

On the contrary, if the amplitude exceeds a threshold value, the elimination
of the disease is induced. We heuristically explain this apparently paradoxical
phenomenon as a beneficial effect of the phase when the transmission rate is

under its average value: the reduction of transmission rate (for example during

holidays) under its annual average over–compensates its increase during peri-
ods of intense contacts. We also investigate the conditions for the persistence

of the disease. Numerical simulations support the theoretical predictions. Fi-
nally, we briefly investigate the qualitative behavior of the non–autonomous

system for SIR–type disease, by showing that the stability of the elimination

equilibria are, in such a case, determined by the ATR.

1. Introduction. Some of the most significant developments in the field of Math-
ematical Epidemiology of infectious diseases concern the role of the feedback en-
acted onto an epidemic by the available information and rumors concerning the
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spread of an infectious disease. This requires to introduce into epidemic models
new components modeling the ‘human factor’. From this it follows a radically new
viewpoint since in the classical approach to epidemic modeling the individuals are
represented as interacting particles, and the infection process is modeled by means
of the mass–action law of statistical physics [2, 6, 28, 31, 33]. However, this kind
of approximation cannot adequately represent modern vaccination scenarios where
conflicting instances determine private choices.

The scenario we are interested in is the vaccinal response of a population to an
infectious disease in the increasingly important case where the vaccination is not
mandatory. This means that, the vaccine being no more mandatory, the spread of a
large number of non-vaccinator groups is observed [26, 27, 41, 46]. Indeed, in such
a case we observe the spread of ‘pseudo–rational’ behaviors towards vaccination:
parents will tend to relate the decision to vaccinate their children to the available
information on the state of the disease. Thus the propensity to vaccinate follows
the incidence or prevalence of the disease targeted by the vaccine [7, 19, 30]. This
behavior is in reality myopic because the low prevalences of some childhood diseases
are caused by large level of vaccination [1, 5], which allowed to hugely decrease the
number of cases. Compare for example, the pre- and post- vaccine introduction
time series of notified cases of measles in UK reported in figure 1.1 of [1].

In [19, 20], a simple SIR–like vaccination model has been introduced, where the
vaccination rate is a function of the available information on the disease state.
The proposed model predicts that the elimination of the disease is an unfeasible
task, and ‘pseudo-rational’ exemption may produce very large sustained recurrent
(periodic) epidemics if the decision to vaccinate also depends on the past history of
the disease.

The modeling approach adopted in [19, 20] do not take into the account two
important observed phenomena, widely investigated in the public health and epi-
demiology literature. The first one is that the vaccination propensity is the trade
off of two opposite tendencies. On the one hand the information and rumors on
the spread of the diseases increase the propensity to vaccinate. See for example
the data concerning the rise of pertussis vaccine uptake in England and Wales fol-
lowing some large epidemic peaks [32, 4], or the classical paper by Philipson [37]
showing that in USA, between 1984 and 1990, the age in months of first dose of
anti-measles vaccine was a decreasing function of the measles prevalence. On the
other hand, the information and rumors on the vaccine side effects, which produces
a propensity reduction. This effect has, for example, widely been observed during
the (not yet fully ended) years of the MMR vaccine scare [21], when the vaccination
uptake was as low as 87% in Scotland and 80% in England and Wales [35] . The
second phenomena is that the mechanism that induces changes in human behavior
is extremely complex and its non-instantaneous dynamics has to be explicitly taken
into account. This implies, from the mathematical standpoint, that the propensity
to vaccinate has to be a state variable.

A classical game–theoretic model of behavioral change in a given population is
the imitation game. It has been adopted in [4] to model (in synergy with a SIR
epidemic model) non–mandatory vaccinations under the hypothesis that the ‘force’
against the propensity to vaccinate is irrespective of any information on vaccine
side–effects. In [17], an imitation game–based model has been proposed where
the above mentioned ‘force’ depends on the information available on the vaccine–
induced side effects. Differently from [4], in [17] it has been shown that a huge
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disproportion between the perceived risk of disease and vaccination is necessary in
order to achieve high coverages. Furthermore, it has been confirmed that voluntary
vaccination can never induce the elimination of the target disease.

In the follow up paper [18] the authors assume that even in a scenario where vac-
cinations are not mandatory the Public Health Systems (PHS) may enact strategies
of persuasion to positively impact on the dynamics of the fraction of vaccinated
subjects. This is a rather realistic scenario, see for example the IMI-funded project
aimed at raising the awareness about Ebola experimental vaccine [25]. As a conse-
quence, the imitation–game model proposed in [17] has been modified in order to
include a term representing the efforts provided by a PHS to increase the propensity
to vaccinate.

The above investigations concerning the interplay between private vaccine choices
and public health interventions suffer of two major issues. The first is that they are
aimed at being applied to childhood diseases and yet a SIR model approach is used,
which fails into exploring some important dynamics of childhood diseases. The
other piece missing is the assumption of seasonal fluctuations in the transmission
rate. This component is very important in determining the population dynamics of
infections, especially for childhood diseases [23].

The role of periodic changes of the transmission rates is a major and old issue.
Indeed, early studies by H. E. Soper on measles time-series from Glasgow showed
that seasonal variations occur in measles transmission rate [39]. He suggested that
one of main driver of these fluctuation was the congregation of children during
school terms. This hypothesis was also suggested in [29], where annual trends in
the contact rate of measles, chickenpox and mumps were analyzed. Finally, from
recent monthly data collected by WHO, it can be seen that number of cases is much
higher during school terms, while there is a sort of decline in the transmission rate
of measles during school holidays [42].

Probably, the most important effect of seasonal variations of disease transmission
is the onset of nonlinear resonances [38], among which there are biennial periodic
epidemics and chaos [36]. All these investigations suggest that the choice of a
constant transmission rate may be too unrealistic for certain diseases. For this
reason, we will consider a periodic contact rate and will study its impact on the
spread of childhood diseases.

A difficulty that arises from considering a time–varying contact rate is that the
resulting model is non-autonomous. Therefore some well established methods that
work for autonomous models cannot be used any longer. In particular, the ex-
plicit expression of the basic reproduction number (from now on, BRN) cannot be
computed by applying sic et simpliciter the well known next–generation approach
(see e.g. [6, 14, 40]). On the other hand, it is also well known that the BRN
computed by assuming the average value of the oscillating rates fails in predicting
stability/instability [12, 15]. Recently, an effective numerical algorithms for com-
puting the BRN as well as an approximated formula for the case of sinusoidally
varying contact rates has been provided by N. Bacaër [3]. Based on the early works
of Bacaër, the BRN and its computation is also given for a large class of epidemic
models in periodic environment in [44].

The aim of the present work is to investigate the possible interplays between
seasonal variations of the transmission rates in childhood diseases and the actions
of PHS to favor vaccination described in [18] in the framework of the SEIR epi-
demic model. Our basic questions are the following: Does the presence of seasonal
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fluctuations negatively interfere with the action of PHS? Or is there any form of
synergy? Given the complexity of dealing with non–autonomous nonlinear dynam-
ical systems, even in finite dimensions, our study was done by adopting analytical,
approximate–analytical and numerical tools.

The paper is organized as follows: in Section 2 after concisely summarizing some
key properties of the SEIR epidemic model, we introduce the SEIRp model. Note
that the modeling approach we used to build the new model is radically different
from the one used to infer the SIRp model in [18]. Here we adopt a statistical-
mechanics/sociophysics based approach to infer the game–theoretical approach,
whereas the SIRp model in [18] was built through a pay-off based economic in-
terpretation of the game theory. In Section 3 we provide a qualitative analysis of
the SEIRp model which includes equilibria and their stability and the uniform per-
sistence analysis. The effective BRN at the mixed–state equilibrium is studied in
Section 4 in both cases of periodic and piecewise constant fluctuations of the trans-
mission rate. The analytical results are then supported by numerical simulations,
in Section 5. Concluding remarks, in Section 6, close the paper.

2. From the SEIR to the SEIRp model.

2.1. Key facts on the SEIR model with time-periodic contact rate. When
modeling a disease spreading in a population, the disease transmission rate may be
seen as the product of the per capita contact rate of infectious individuals (say, ĉ)
and the probability that a contact between a susceptible individual and an infectious
individual results in transmission (say, p̂) [31]. Here we represent the fluctuation of
the transmission rate as the result of fluctuations in one or both the terms ĉ and p̂.
Therefore, we describe the transmission term as

β(t) = β c(t)

where β is the (positive constant) baseline transmission rate and c(t) is a positive
time periodic fluctuation function such that 〈c(t)〉 = 1.

For the sake of precision, we assume that the force of infection is of the standard
mass-action type [9]:

F = βc(t)
Y (t)

N(t)
,

where N represents the size of the target population at time t and Y (t) represents
the size of the infectious sub-population at time t.

Let us now consider the following SEIR (Susceptibles – Exposed – Infectious –
Removed) model:

Ṡ = µ(1− S)− βc(t)SI
Ė = βc(t)SI − (µ+ ρ)E

İ = ρE − (µ+ ν)I,

(1)

where the parameters µ, ρ and ν are positive constants and represent, respectively,
the life expectancy at birth, the latency rate and the rate of recovery from the
disease. The state variables (S(t), E(t), I(t)) denote the fractions at time t of:
susceptible subjects (S), of latent subjects that have been infected but that are
not yet infectious (E), and, finally, the fraction of infectious subjects (I). The
dynamics of the fraction R(t) of removed individuals (i.e. subjects that, after having
been infectious, can no more transmit the disease) is governed by the linear ODE:

Ṙ = νI − µR.
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We remark that if we had assumed a full mass action-type force of infection
F = βc(t)Y , the model with fraction state variable would have a contagion rate
given by Nβc(t)SI. However, since we are considering a disease that does not induce
disease-specific deaths, the analysis we are going to illustrate would be unchanged
(apart, of course, a numerical scaling for the constant β).

It can be easily checked that model (1) admits the disease-free equilibrium:

DFE = (1, 0, 0).

According to the Floquet theory [10, 11], this equilibrium will be locally stable or
unstable depending on the position in the complex plane of the Floquet eigenvalues
(i.e. the characteristic multipliers of the periodic system (1)) associated with the
matrix:

A(β, c(·)) =

(
−(µ+ ρ) βc(t)

ρ −(µ+ ν)

)
. (2)

If the eigenvalues fall into the unit circle of the complex plane, then the linearized
system is locally asymptotically stable, if they fall outside of it, then the linearized
system is unstable.

If the DFE is locally stable, then there is self–limitation of the epidemics and a
public health control is only useful to accelerate this process. Note that the most
extreme case of local stability is the one where β = 0 (i.e. suppressed transmission
of the disease).

Thus here we will consider the more interesting case of unstable DFE, i.e. we
suppose that the function βc(t) is such that at least one of the two eigenvalues of
the above Floquet matrix is external to the unit circle.

We will investigate the free vaccination scenario, where the public health author-
ities enact a strategy that favor the propensity to vaccinate. The more traditional
case concerning the implementation of mandatory vaccination of newborns will be
also mentioned.

2.2. The SEIRp model. We consider a population where it is possible to distin-
guish among parents who are pro–vaccine, and vaccinate their children, and parents
that are against vaccination. We assume that the population of parents is propor-
tional to the total (constant) population. We denote the fractions of the two groups
at time t as p(t) and A(t), respectively, and p(t) +A(t) = 1 for all t.

The imitation game, following the key idea on which this important concept is
based, is a double contagion of ideas process [16, 43]:

ṗ = −α∗Ap+ θ∗pA

Ȧ = α∗Ap− θ∗pA, (3)

In practice, the opinions of the anti-vaccination group have a force of infection of
the type

FA = α∗A,

and those of the pro-vaccination group have a force of infection of the type:

FP = θ∗p.

In the seminal papers by Bauch [4], who directly writes an imitation game equation,
it is implicitly assumed that the transmission rate of the group A is amplified by
the perception of the disease-related adverse events, which results in the assumption
that θ∗ is in reality an increasing function of the prevalence of the disease. In [4]
the rate α∗ is constant. In [17], d’Onofrio and co-workers go a step beyond by
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assuming that the exchange of group from p to A is helped by the information on
vaccine-related side-effects, thus leading to assume that α is not constant, but an
increasing function of p. With our notation this means that the system (3) has to
be rewritten as follows:

ṗ = −α(p)pA+ θ(I)pA

Ȧ = α(p)pA− θ(I)pA.
(4)

Both the functions α(p) and θ(I) are, in general, assumed to be increasing and
positive functions [18] although later we will limit ourselves to the linear case.

Remark 1. Assuming a linear form for θ one formally obtains a term of the type
const × I × p × A, which resembles a triple mass action. In reality it is only a
formal ‘side-effect’ of the assumption of linear dependence of θ on the state variable
I. Similarly, assuming α as a linear function of p leads to a term of the form
const×p2×A, which could be formally read as a nonstandard contagion (of ideas!)
rate. Again, this is simply a formal effect of the assumption of linear dependence
of α on p.

The action of Public Health (PH) authorities can be modeled as convincing
people in the anti-vaccine subset to get vaccinate, and it can in first approximation
be modeled as an additional transfer rate from the group that has no propensity to
vaccinate to the group that has propensity to vaccinate, yielding:

ṗ = −α(p)pA+ θ(I)pA+ γ(t)A

Ȧ = α(p)pA− θ(I)pA− γ(t)A.
(5)

where γ(t) is a positive function that, generally speaking, captures the effectiveness
of actions enacted by the PH agencies (as information, education, availability of
vaccination infrastructures...) in influencing the perceptions regarding both vacci-
nation and disease consequences. These various actions enacted by the PHS induce
a flux (from the group A to the group p) which is different from the one generated
by the exchange of ideas typical of the imitation-games.

Since A = 1−p, one can write down the following extension of an imitation-game
equation:

ṗ = p(1− p)(θ(I)− α(p)) + γ(t)(1− p), (6)

which had been qualitatively proposed (without our inference based on the mu-
tual influence of two groups, one in favor and one contrary to vaccination) in [18].
Namely, in [18] the imitation-game based model introduced in [17]

ṗ = p(1− p)(θ(I)− α(p))

was extended by the heuristic addition of the new term +γ(t)(1− p) based on the
actions of PHS in favor of vaccination propensity. These actions were considered
modulated: more intense when p ≈ 0, less intense if p ≈ 1.

We now couple the equations (5) with the SEIR epidemic model (1) and assume
that

θ(I) = k0θ I, α(p) = k0αp,

where θ and α are positive constant, k0 is a positive scale factor (useful in the
practice, and to compare with [18], but not strictly necessary from the mathematical
viewpoint) and

γ(t) = k0γ,
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where γ is a positive constant (the case of a time–varying function γ(t) is considered
in [8], where this function is obtained as output of an optimal control problem, in
the case of constant transmission rate). We obtain:

Ṡ = µ(1− p)− βc(t)SI − µS
Ė = βc(t)SI − (µ+ ρ)E

İ = ρE − (µ+ ν)I
ṗ = k0(1− p)((θ I − αp)p+ γ).

(7)

Remark 2. Note that vaccine-related side-effects, although rare, do exist, thus the
case α = 0 is purely hypothetical. Indeed, as it is immediate to verify, it would lead
to a purely hypothetical scenario where p(t) is an increasing function that tends to
the equilibrium value with 100% vaccination propensity. Similarly the case θ = 0 is
equally unrealistic because there is always perception of the fact that disease have
serious consequences for the health. Note that in the case α > 0, θ = 0 and γ = 0
would lead to a state with no vaccinations at all (p(t)→ 0).

3. Qualitative analysis of the SEIRp model.

3.1. Pure–vaccinator equilibrium (PVE). Let

Ω = {(S,E, I, p) ∈ R4
+ : 0 ≤ S + E + I ≤ 1, 0 ≤ p ≤ 1}. (8)

It is easy to check that any solution of (7) starting in Ω does not leave it by crossing
one of its faces. Therefore Ω is a positively invariant region. It is also easy to check
that model (7) admits a pure–vaccinator, disease–free equilibrium (PVE), given by

E1 = (0, 0, 0, 1) (9)

The following stability result holds for the PVE:

Theorem 3.1. If γ ≥ α, then the PVE, E1, is globally asymptotically stable in Ω.
If γ < α, then it is unstable.

Proof. Since γ ≥ α, the following differential estimates hold:

ṗ = k0(1− p)((θI − αp)p+ γ) ≥ k0(1− p)((θI − αp)p+ α)
≥ k0(1− p)(−αp+ α) = k0α(1− p)2.

On the other hand, it is easy to check that the solution of the differential equation:

q̇(t) = k0 α(1− q)2,

is given by the family

q(t) = 1− 1

k0αt+ C
,

where C is a real valued constant. Since q(t) → 1 when t → +∞, from the
comparison principle it follows:

lim inf
t→+∞

p(t) ≥ 1.

Moreover, being 0 ≤ p(t) ≤ 1, we get p(t) → 1 when t → +∞. As a consequence,
since for all ε > 0 it exists a tε such that p(t) < 1− ε for t > tε, and being

Ṡ < µ(ε− S),

it follows that for t > tε, we get 0 < S(t) < ε, i.e. S(t)→ 0 when t→ +∞. In view
of the differential inequality:

Ė ≤ βc(t)ε− (µ+ ρ)E



306 BRUNO BUONOMO, GIUSEPPE CARBONE AND ALBERTO D’ONOFRIO

we easily infer that also E(t) tends to zero, and the same holds for I(t).
This prove the global stability of E1 in Ω.
Finally, linearizing around E1:

(S,E, I, p) = E1 + (s, e, i, y)

one gets the following equation for the linear dynamics of p: y′ = k0(α−γ)y. Hence
if γ < α, then E1 is unstable.

The condition γ > α has a simple epidemiological interpretation: it implies that
the flux induced from group A to group p by the PHS actions is able to over-
compensate the flux from group p to group A. This can be seen by rewriting the
imitation-game equation as follows:

ṗ = θIp(1− p) + (γ − αp)(1− p). (10)

We have:

γ > α⇒ γ − αp > 0,

implying that both addenda at the r.h.s. of (10) are positive, and in turn that
p(t)→ 1.

3.2. The mixed state equilibrium (MSE). Model (7) may also admit another
disease–free equilibrium, the mixed–state equilibrium (MSE), given by

E2 = (1− p2, 0, 0, p2),

where

p2 =

√
γ

α
. (11)

Clearly, the MSE exists only if γ < α.
Note that for all p2 ≤ p ≤ 1 it follows:

Ṡ + Ė + İ < µ(1− p2)− µ(S + E + I).

On the other hand, we know that the PVE equilibrium E1 is unstable if γ < α. It
is easy to check that the plane p(t) = 1 is a stable manifold for E1. Therefore, for
any x0 = (S0, E0, I0, p0) in the interior of Ω, it is not possible that p(t, x0)→ 1 for
t → ∞. Therefore, there exists a time t̃ > 0 such that any solution of (7) starting
in the interior of Ω will be confined in the region

Ω2 = {(S,E, I, p) ∈ R4
+ : 0 ≤ S + E + I ≤ 1− p2, p2 ≤ p ≤ p̃}. (12)

where

p̃ = sup
(t,x0)∈(t̃,+∞)×Ω̊

p(t, x0) < 1.

In the following we will obtain sufficient conditions, expressed in terms of the
function c(t) guaranteeing that the MSE is globally attractive. Before stating this
result, it is useful to recall an important property of linear cooperative system.

Consider the following linear system:

y′(t) =

(
−(µ+ ρ) βc(t)ψ

ρ −(µ+ ν)

)
y(t); y(0) = y0 (13)

where y = (y1, y2)
Tr

and y1(0) ≥ 0, y2(0) ≥ 0, ψ ∈ [0, 1] (for ψ = 1 the matrix
reduces to (2)). System (13) is cooperative [13, 24], since

∂y2y
′
1(t) = βc(t)ψ > 0; ∂y1y

′
2(t) = ρ > 0
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Using the Kamke’s theorem [13] it follows the following property:

ψ1 < ψ2 ⇒ yψ1

j (t, y0) ≤ yψ2

j (t, y0), j = 1, 2 (14)

More compactly: yψ1(t, y0) < yψ2(t, y0), where we have used the notation: yψ(t; y0)
= y(t; y0, ψ).

The property (14) implies that if ψ increases then the eigenvalues cannot go back
inside the unit circle. This can be easily checked. Indeed, assume that one of the
eigenvalues is on the unit circle in correspondence of ψ = ψ1 and the eigenvalues
are both inner to the unit circle for ψ = ψ2, with ψ2 > ψ1. Then yψ2(t)→ (0+, 0+).
However this implies a contradiction since on the one hand yψ1(t) does not tend to
zero and in the other hand yψ1(t) < yψ2(t).

Finally, the eigenvalues of the Floquet matrix associated to (13) are inside the
unit circle for ψ = 0, whereas at least one of the two eigenvalues is outside the unit
circle for ψ = 1. Due to the continuity of the eigenvalues with respect to continuous
parameters of the Floquet matrix, from the above analysis it follows that it exists
a threshold value ψcr(c(·)) ∈ (0, 1), which depends on the function c(·), and which
is such that for ψ < ψcr(c(·)) the eigenvalues are internal to the unit circle.

Remark 3. In order to simplify the notation, from now on we will omit all depen-
dencies on c(·).

Now, set pcr = 1− ψcr, where ψcr is the above mentioned threshold value for ψ.
We are in position to state the following result:

Theorem 3.2. If α(1 − ψcr)2 < γ < α, i.e. if p2 > pcr, then the MSE, E2, is
globally asymptotically stable in Ω2.

Moreover, if γ < α(1− ψcr)2, i.e. if p2 < pcr, then the MSE, E2, is unstable.

Proof. Consider the following differential inequality:

ṗ = k0(1− p)((θI − αp)p+ γ) > k0(1− p)(−αp2 + γ).

This implies that

lim inf
t→+∞

p(t) = p2, (15)

and, in turn,

lim sup
t→+∞

S(t) = 1− p2.

since Ṡ ≤ µ(1− p2)− µS. This last limit means that for all ε > 0 it exist a tε such
that for t > tε it is

Ė < −(µ+ ρ)E + βc(t)(1− p2 + ε),

implying that for t > tε
(E, I) < y1−p2+ε(t, yε),

where

yε = (E, I)(tε).

Therefore it can be chosen ε small enough to have ε < p2 − pcr, which implies that

lim
t→+∞

(E(t), I(t)) = (0, 0),

and in turn:

lim inf
t→+∞

S(t) = 1− p2.

As a consequence, E2 is GAS in Ω2, as in the first claim.
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Linearizing at MSE by setting

(S,E, I, p) = (1− p2 + yS , yE , yI , p2 + yp)

one easily obtains that the behaviour of the linearized system is determined by the
linear equations for (yE , yI), which have the same matrix of system (13). Thus,
by the above illustrated analysis of system (13) it immediately follows the second
claim.

Summarizing the above theorems, it exists a threshold value

γcr = α(1− ψcr)2,

such that: i) if γ < γcr then E2 is unstable; ii) if γcr < γ < α then E2 is GAS in
Ω2; iii) if γ ≥ α then E1 is GAS in Ω2.

Remark 4. We stress here that the above mentioned threshold values for the
parameters ψ, γ and p depends on the whole periodic function c(t), since they are
related to the Floquet analysis of the linearization matrix at E2.

3.3. Uniform persistence. The SEIp model (7) admits a globally asymptotically
stable equilibrium, the MSE, when γ > γcr, where γcr = α(1−ψcr)2 (Theorem 3.2).
In this section we will show that system (7) is uniformly persistent when γ < γcr,
according to the definition given in [48], for T -periodic semiflow. More precisely,
let X0 and ∂X0 be open and closed subsets of a complete metric space X with
metric d, and let T > 0. Assume also that X0 is positively invariant. An T -periodic
semiflow Q(t) is said to be uniformly persistent with respect to (X0, ∂X0) if there
exists η > 0 such that for any x ∈ X0, lim inft→+∞ d(Q(t)(x0), ∂X0) ≥ η.

In our case, we begin by taking

X = {(S,E, I, p) ∈ R3
+ × [0, p̃]}, X0 = {(S,E, I, p) ∈ X : E > 0, I > 0},

and denote

∂X0 := X/X0 = {(S,E, I, p) ∈ X : E = 0 and I ≥ 0 or I = 0 andE ≥ 0}. (16)

Then, we introduce the Poincaré map:

P : x0 ∈ X → u(T, x0) ∈ X,
where u(t, x0) is the unique solution of system (7) corresponding to initial data
x0 = (S0, I0, E0, p0) ∈ X.

Denote with ‖ · ‖ a norm in R4. We need to prove the following result:

Lemma 3.3. If γ < γcr, then there exists δ∗ > 0 such that ∀x0 ∈ X0,

lim
n→+∞

sup
k≥n
‖ P k(x0)− E2 ‖≥ δ∗.

Proof. When γ < γcr, it can be seen ([44], Theorem 2.2) that r
(
ΦF−V (T )

)
> 1,

where the matrices F and V are given in the appendix A, the matrix ΦF−V (T )
is the fundamental solution matrix of the linear ordinary differential system x′ =
(F (t)− V (t))x, and r

(
ΦF−V (T )

)
is the spectral radius of ΦF−V (T ). Set Vε =

V −Mε, where the matrix Mε is the perturbation matrix

Mε(t) =

(
0 εβc(t)
0 0

)
for all ε > 0. From Lemma 2.1 in [44] it follows that

lim
ε→0

r
(
ΦF−Vε

(T )
)

= r
(
ΦF−V (T )

)
.
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Therefore, we can choose ε small enough to have :

i) r
(
ΦF−Vε(T )

)
> 1, (17)

and

ii) ε < 1− p2.

Now, let δ < ε. For the continuity from the initial conditions there exists δ∗ :
= δ∗(δ) > 0 such that for all x0 ∈ X0 with ‖ x0 − E2 ‖≤ δ∗, it follows

‖ u(t, x0)− u(t, E2) ‖=‖ u(t, x0)− E2 ‖< δ, ∀t ≥ 0.

Assume for contradiction that there exists x0 ∈ X0 such that:

lim
n→+∞

sup
k≥n
‖ P k(x0)− E2 ‖≤ δ∗.

Without loss of generality, we assume that ‖ Pn(x0) − E2 ‖< δ∗ for all n ≥ 0. By
the propriety of composition of semiflows it follows:

u(t+ nT, x0) = Q(t+ nT )(x0) = Q(t)Q(nT )(x0) = Q(t)(Pn(x0)),

and therefore

u(t+ nT, x0) = u(t, Pn(x0)).

Furthermore, for all t ≥ 0 we can write t = nT + t′ with n =
[
t
T

]
and t′ ∈ [0, T ].

It follows:

‖ u(t, x0)− E2 ‖=‖ u(t′, Pn(x0))− E2 ‖, ∀t ≥ 0.

For this reason, from ‖ Pn(x0)− E2 ‖< δ∗ it follows :

‖ u(t, x0)− E2 ‖=‖ u(t′, Pn(x0))− E2 ‖< δ < ε, ∀t ≥ 0. (18)

Recall that for all t ≥ 0, u(t, x0) is the solution (S(t), E(t), I(t), p(t)) of (7) with
initial condition x0. Therefore from (18), it follows:

|S(t)− (1− p2)| < ε =⇒ S(t) > 1− p2 − ε, ∀t ≥ 0.

This last condition implies the following differential inequality:

Ė > βc(t)(1− p2 − ε)I − (µ+ ρ)E,

which allows to consider the comparison system:

Ė = βc(t)(1− p2 − ε)I − (µ+ ρ)E

İ = ρE − (µ+ ν)I,

which can be expressed in matrix form as:

dz

dt
= (F (t)− Vε(t)) z(t), (19)

where z = (E, I)Tr. Now, setting :

q =
1

T
ln r

(
ΦF−Vε

(T )
)
,

from Lemma B.1, it follows that the existence of a T–periodic non negative function
v(t) such that J(t) = v(t)eqt, is a solution of system (19).

In view of (17), it follows q > 0, and hence J(t)→ +∞ when t→ +∞. Therefore,
from the comparison principle it follows that I(t) and E(t) are not bounded and
this is a contradiction.

Now we can state the uniform persistence result.
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Theorem 3.4. If γ < γcr, then there exists η > 0 such that every solution x(t) =
(S(t), E(t), I(t), p(t)) of model (7) with initial condition x0 = (S0, E0, I0, p0) ∈ X0

satisfies:

lim inf
t→+∞

(I(t), E(t)) ≥ (η, η).

Proof. The proof is based on checking that all the requirements of the strong re-
pellers theorem (Theorem 1.3.1 in [48]) are satisfied. We begin by proving that the
Poincaré map is uniformly persistent with respect to (X0, ∂X0). Following [34], we
consider the set:

M∂ = {x0 ∈ ∂X0 : Pn(x0) ∈ ∂X0,∀n ∈ N}.

From (16) we have that: {(S, 0, 0, p) : S ≥ 0, 0 ≤ p ≤ p̃} ⊂M∂ . Then, any solution
starting in ∂X0 satisfies S(t) > 0, E(t) = 0, I(t) = 0, 0 ≤ p ≤ p̃, for all t > t̃. This
implies that

M∂ = {(S, 0, 0, p) : S ≥ 0, 0 ≤ p ≤ p̃}.
Now, clearly E2 is a fixed point of P and {E2} is an invariant set and isolated.
Recalling that:

WS(E2) = {x0 ∈ X : lim
n→+∞

‖ Pn(x0)− E2 ‖= 0},

from Lemma 3.3 it follows:

WS(E2) ∩X0 = ∅.
Furthermore, it is easy to check that the orbits in M∂ approaches E2. Finally, the
existence of the region (8) ensures that P has a global attractor, i.e. a positively
invariant set which attracts all the positive orbits in X. This proves that if γ < γcr,
all the conditions required by Theorem 1.3.1 (and Remark 1.3.1) in [48] are satisfied.
Therefore we deduce that P is uniformly persistent respect to (X0, ∂X0).

Finally, being P compact and point dissipative, from Theorem 3.1.1 in [48] it
follows that there exists η > 0 such that :

lim inf
t→+∞

d(Q(t)(x0), ∂X0) ≥ η, ∀x0 ∈ X0,

which means

lim inf
t→+∞

(E(t), I(t)) ≥ (η, η), ∀x0 ∈ X0.

4. The effective basic reproduction number (BRN) at MSE.

4.1. Periodic fluctuation function c(t). The aim of this section is to compare
the impact of the periodic fluctuation on the condition p2 > pcr implying the GAS
of E2 (see Theorem 3.2).

It is well known that the classical threshold condition for the disease elimination,
R0 < 1, becomes R0(1 − π) < 1 for SIR model with mandatory vaccination of
newborns, where π denotes the fraction of vaccinated newborns [6]. In other words,
one can define an ‘effective’ BRN, say Reff = R0(1− π), smaller than the original
one. Note also that the elimination condition for the SIR model can be read as
follows: π > π∗ := 1− 1/R0. Similarly, for the SEIR model with constant contact
rate, where the BRN is:

RSEIR =
β

µ+ ν

ρ

µ+ ρ
,
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in case of constant mandatory vaccination the elimination condition reads as follows
Reff < 1 i.e.

π > p∗ := 1− 1

RSEIR
(20)

For the SEIR model, in the case of constant contact rate (i.e. absence of oscillations)
the GAS condition for E2 can be written as follows:

RSEIR(1− p2) < 1,

that is: p2 > p∗.
In the case of periodically varying transmission rate, the effective BRN of the

SIR epidemic model is

Reff =
〈β(t)〉
µ+ ν

(1− π),

thus the elimination solely depends on the average value of the transmission rate.
However, if the transmission rate is time-periodic then the computation of the BRN
is much more complex for both the SEIR model (with or without vaccination) and
the SEIRp model, since it depends on the ‘shape’ of c(t).

Here we will consider a classical idealized period waveform for c(t):

c(t) = 1 + σcos(ωt+ χ). (21)

In order to estimate the BRN we need the following result:

Proposition 1. ([3], par. 5.1.2) If the contact rate is given in the form (21) and the
model consists of two infected compartments x1 and x2, whose equations linearized
at DFE are expressed as1

ẋ1 = a2 (1 + σcos(ωt+ χ))x2 − b1x1

ẋ2 = a1x1 − b2x2,
(22)

where ai, bi, i = 1, 2 are positive constant, then the following estimate of the BRN
holds:

R0 ≈
a1a2

b1b2

(
1− b1b2

ω2 + (b1 + b2)2

σ2

2

)
. (23)

Now, let us consider the Jacobian matrix of the system (7) evaluated at E2:

J(E2) =


−µ 0 −βc(t)(1− p2) −µ
0 −(µ+ ρ) βc(t)(1− p2) 0
0 ρ −(µ+ ν) 0
0 0 k0θ(1− p2)p2 −2k0αp2(1− p2)

 .

Therefore, the linearized equations corresponding to the ‘infected’ compartments at
E2 are:

Ė = β(1− p2)c(t)I − (µ+ ρ)E

İ = ρE − (µ+ ν)I

Being in the form (22) we can use (23) to obtain:

Reff ≈ RSEIRφ(σ)(1− p2), (24)

where

φ(σ) = 1− ξσ2,

1A model taking the form (22) is a special case of ‘cyclic’ model, see [3].
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and

ξ =
1

2

(ρ+ µ)(µ+ ν)

ω2 + ((ρ+ µ) + (µ+ ν))2
.

Note that: i) The effective BRN Reff depends on the ‘shape’ of c(t) via the
function φ, as well as on γ, of course. The knowledge of the average value β is
not sufficient to assess the stability/instability; ii) φ is smaller than one; iii) φ is a
decreasing function of σ.

This last point has an interesting implication: compared to the case of constant
transmission rate, the elimination threshold is smaller in case of fluctuating trans-
mission rate, i.e.:

pcr(σ) = 1− 1

RSEIRφ(σ)
< p∗,

where p∗ is given in (20).
Summarizing, since:

pcr(σ) < p∗

it follows that the role of σ in determining the behavior of MSE is as follows:

• If γ ≥ α then the pure vaccinator equilibrium, PVE, is GAS.
• If 1 > p2 > p∗ (or equivalently: α > γ > γ∗ = αp2

∗) then the MSE is GAS,
independently from the oscillations of the transmission rate. Indeed, since
p2 > p∗ and φ(σ) < 1 it follows that

Reff ≈ RSEIRφ(σ)(1− p2) < RSEIR(1− p2) < 1.

• If pcr(σ) < p2 < p∗ (equivalently: γcr(σ) < γ < γ∗, with γcr(σ) = αp2
cr(σ))

then the MSE is GAS, and in this case the GAS does depend on σ.
• If p2 < pcr(σ) then the MSE is unstable and the disease is persistent.

Remark 5. The above considerations are only valid, of course, for those σ ∈ (0, 1)
such that the approximation (24) is valid (see [3]).

It is of some interest to study the somewhat reverse case where γ (and, as a
consequence, p2) is given. In such a case the following question arises: which is the
impact on the stability of the MSE of the oscillation amplitude σ? Of course, first
of all we must assume that γ < γ∗ (i.e. p2 < p∗), otherwise the dynamics of I(t) is
determined: I(t)→ 0+ independently from the initial conditions and from σ.

From the GAS condition:

RSEIRφ(σ)(1− p2) < 1, (25)

one obtains

σ > σc =

√
1

ξ

(
1− 1

RSEIR(1− p2)

)
, (26)

Condition (25) can be also writtenRSEIR(1−p2) < 1/(1−ξσ2) and, since σ ∈ (0, 1),
it follows:

RSEIR(1− p2) <
1

1− ξ
.

Again from σ ∈ (0, 1), we get that if

γ < γcr(1) = α

(
1− Rξ
RSEIR

)2

, (27)

where Rξ = 1/(1− ξ), then the disease is persistent.
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Remark 6. (Comparison with the SIR model). One could wonder whether sea-
sonal fluctuations of the transmission rate have some relevant dynamical effects
also in case of SIR modeling approach. The answer is negative. In fact, in case
of a SIRp model (see equations (4)-(6) in [18]) it can be proved, by following the
same reasoning of the previous sections, that if γ > α, then the PVE is globally
asymptotically stable. On the other hand, if γ < α, and RSIR(1 − p2) < 1, i.e. if
p2 > 1−1/RSIR, then the MSE is GAS. Indeed, we observe that also in the SIR case

we get S(t) ≤ (1−p2), which implies the inequality İ(t) ≤ I(βc(t)(1−p2)−(µ+ν)),
from which, remembering that 〈c(t)〉 = 1, the claim easily follows.

Remark 7. (Mandatory vaccination scenario). Assume that a fraction π of the
newborns are vaccinated on mandatory-basis. Then the first equation in (7) changes

in the following: Ṡ = µ(1− π−S)− βc(t)SI. Reasoning as in the proof of theorem
3.2, it is easy to show that if π > pcr = 1 − ψcr, then the elimination equilibrium
point EEP = (1− π, 0, 0) is globally asymptotically stable in Ω.

4.2. Piecewise constant fluctuation function c(t). As remarked above, the in-
vestigation on the BRN given in the previous subsection is only an approximate
investigation, and the result is valid only for small–medium values of σ. Neverthe-
less, the result is stimulating: even in some cases when p2 < p∗ (i.e. when stable
elimination is not possible in the case of constant transmission rate) the presence of
oscillations in the contact rate is able to stabilize the MSE, through the threshold
condition (26). This behavior could also led to think to a paradoxically beneficial
effect of the increase of β(t).

As a matter of fact, no stabilizing effects can be observed in the time interval
when the instantaneous effective BRN,

Reff (t) = RSEIR(1− p2)c(t),

is larger than one. Indeed, it is evident that the beneficial stabilizing effect of the
oscillations can take place only in the phase when

Reff (t) = RSEIR(1− p2)c(t) < RSEIR(1− p∗),

and

c(t) <
1− p∗
1− p2

. (28)

This reasoning is very heuristic, but it can be made more rigorous by considering
another important model of transmission rate, the piecewise constant transmission
rate, which mimics the effects of the alternation of large vs. low average contacts
during, respectively, the working periods vs. the holidays.

Although such a representation is considered to be more realistic than the sinu-
soidally oscillating contact rate, its waveform must also be considered an idealization
[22]. Indeed, on the one hand it is discontinuous, thus mimicking the decrease of
contacts during holiday terms, but, on the other hand, it does not take into account
the time–varying factors that contribute to the transmission but are not only related
to the average number of contacts. This is confirmed by the fitting of transmission
rate of measles to data from England and Wales [22], which suggests that this rate
is a time–continuous function although there are remarkable fluctuations between
holidays and School terms (see also Figure 1 in [23] and the related discussion).
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Here, we consider a simplified model where there is a unique period of holidays,
yielding:

c(t) =

{
cL if (t;mod : T ) ∈ (0, fT )

cH if (t;mod : T ) ∈ (fT, T ),

with cL < cH . We can consider that the period [0, T ] is split in two phases. The
second phase is such that the effective BRN is constant and larger than one. On
the contrary, in the first phase the effective BRN, although constant, can be less
than one provided that (28) holds, i.e. it must be:

cL <
1− p∗
1− p2

. (29)

For example, if we very roughly approximate our sinusoid with a square-wave (where
f = 1/2) of amplitude σ, this would implies cL = 1 − σ (and cH = 1 + σ) leading
to the following necessary condition for stable elimination:

σ > 1− 1− p∗
1− p2

,

i.e. a threshold effect on the amplitude of the oscillations.
In the general case, applying the constraint 〈c(t)〉 = 1 yields: fcL+(1−f)cH = 1.

Let us now introduce the new parameter η such that cL = ηcH . Hence η is a
measure of how much the contact rate reduces during the holidays with respect to
the working period. Then one gets

cL =
η

ηf + (1− f)
,

and

cH =
1

ηf + (1− f)
.

Thus, the piecewise contact rate will depend (apart of the period T , which however
is set to be one year) on two parameters, η and f , both varying in (0, 1). Therefore,
the necessary condition (29) becomes

η <
1− f

1−p2
1−p∗ − f

. (30)

Of course (30) is only a necessary condition, and the specturm of the Floquet matrix
associated to the linearized system for (E, I) at the disease elimination equilibrium
MSE has to be computed.

Defining the matrix:

A(U) =

[
−(µ+ ρ) βψU

ρ −(µ+ ν)

]
,

where ψ = 1−
√
γ/α, the Floquet matrix is given by:

F = e(1−f)TA(cH) × efTA(cL), (31)

which can be analytically computed together with its eigenvalues. However the
symbolical computations leads to very complex formula for the spectrum of F that
does not yield insights on the impact of the various parameters on the stability,
although it allows precise numerical computations.
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5. Numerical simulations. In this section, we support the analytical results ob-
tained in the previous sections by providing numerical simulations in the noteworthy
case γ < α.

5.1. Periodic fluctuation function c(t). We consider the fluctuation function
(21). Choosing one year as time unit, it follows that the period is T = 1 and the
pulsation ω = 2π. In order to represent a maximum value in correspondence of
school term and a minimum value for school holidays, we set χ = −0.8.

The numerical simulation of model (7) are then performed by using the following
values for the parameters: µ−1 = 78 years, ρ−1 = 10 days, ν−1 = 7 days, RSEIR =
10. As in [18], for convenience of simulations we define γ̄ := γ/θ, ᾱ = α/θ, k̄ = k0θ
and we set ᾱ = 1.6382× 10−4, k̄ = 5× 107.

As shown in subsection 4.1, the quantity γcr(1) in (27) is useful to discriminate
the dynamical behavior of the SEIRp system (7) when the approximation (23) is
valid. More precisely, for γ < γcr(1) the system is persistent, whereas the behavior
for γ ∈ (γcr(1), γ∗) is strongly dependent on σ.

However, just due to the approximation, the usefulness of these predictions is
limited. Therefore, it is important to evaluate the actual behavior of the system
around the MSE by computing the effective BRN, say R(p2, σ), where p2 is given
in (11).

We computed this important parameter by employing the numerical algorithm
proposed by N. Bacaer in [3]. Figure 1 shows the relation between R(p2, σ) and σ
(given the value of γ̄) or γ̄ (given the value of σ).

We see in panels (a) and (b) of Figure 1 that the BRN decreases as σ increases.
In Figure 1(a), we assumed γ > γcr(1) and we obtained that effectively there is a

threshold value σ̂ for which the BRN is one and such that for σ > σ̂ the MSE is GAS
(see right panel of Figure 2), whereas for σ < σ̂ MSE is unstable and there is the
onset of oscillations (see left panel of Figure 2). However, when γ < γcr(1), (Figure
1(b)), the seasonal variation is not enough to reduce the effective reproduction
number under one. All this suggests that the approximate formula (23) gives useful
–albeit qualitative– indications about the stability threshold.

In Figure 1(c) the relation between the effective BRN and γ̄ is shown (for σ =
0.3). We see that R(p2, σ = 0.3) is greater than one for values of γ̄ lower than the
threshold γcr(1) ≈ 1.45 · 10−4.

In Figure 3, left panel, γ̄ is assumed to be over the threshold, so that the MSE is
GAS. In Figure 3, right panel, the value of γ̄ is under the threshold and the system
is oscillating (see also the above mentioned right panel of Figure 2).

5.2. Piecewise constant fluctuation function c(t). As we have mentioned in
subsection 5.1, for the specific piecewise constant fluctuation function c(t) the Flo-
quet matrix and its eigenvalues can be analytically computed leading to formulas
that, although too complex to disentangle the weight of key parameters, yet allow
‘exact’ numerical analysis without having to simulate differential equation.

We have found that the stabilization can be obtained only for values of p2 very
close to the threshold p∗ defined in (20), even when considering the square–wave
approximation of the sinusoidal transmission rate, which corresponds to the case
f = 1/2. For example, assuming p2 = 0.99p∗ we obtained that although the
necessary threshold was η < 0.63 about (i.e. σ > 0.22), the actual condition leading
to the stabilization of the MSE is much sharper: η < 0.18 about (i.e. σ > 0.69
about). A more realistic representation of school holidays can be obtained taking
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Figure 1. Sinusoidal fluctuations of the transmission rate. The effective

BRN of system (7)-(21), R(p2, σ), as function of γ̄ and σ. Figure (a): R(p2, σ)
vs σ with γ̄ = 1.4 × 10−4. Figure (b): R(p2, σ) vs σ with γ̄ = 1.2 × 10−4.

Figure (c): R(p2, σ) vs γ̄ with σ = 0.3. The other parameter values are taken

as described in Section 5.1.

Figure 2. The stabilizing role of seasonality. Left panels: dynamics of

model (7)-(21) for σ = 0.3. Right panels: dynamics of model (7)-(21) for
σ = 0.95. The initial conditions are S0 = 1/R0, E0 = 9×10−6, I0 = 8×10−6,

p0 = 0.95. The other parameter values are taken as described in Section 5.1,
and γ̄ = 1.41× 10−4.
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Figure 3. Extinction (left panels) and uniform persistence (right panels) of

disease. Left panels: dynamics of model (7)-(21) for γ̄ = 1.5 × 10−4. Right
panels: the dynamics of model (7)-(21) for γ̄ = 1.2×10−4. The initial condition

are S0 = 1/R0, E0 = 9×10−6, I0 = 8×10−6, p0 = 0.95. The other parameter

values are taken as described in Section 5.1, and σ = 0.3.

Figure 4. The stabilizing role of seasonality in case of piecewise contact
rate. Plot of the Spectral Radius of the Floquet Matrix F versus the parameter

η = cL/cH measuring the reduction of contacts. Parameters γ and α are such
that p2 = 0.99p∗. Left Panel: f = 0.5 (i.e. c(t) = cL for half year); right panel:

f = 0.25 (i.e. c(t) = cL for one quarter of year). The other parameter values
are taken as described in Section 5.1.

f = 1/4 (for example, this is the case of Italy, where until the seventies of the past
century, the school holidays term were from mid June to the beginning of October).
In this case the threshold for η is approximately 0.04, whereas the threshold of the
necessary condition is much larger (approx. 0.84).

In Figure 4, we plot the spectral radius of the Floquet matrix F defined in (31)
for f = 1/2 (left panel) and f = 1/4 (right panel).

6. Concluding remarks. In this work we have faced the task of a more realis-
tic modeling of a public health campaign aimed at convincing parents to vaccinate
their children against a childhood infectious disease. This problem has been origi-
nally considered in [18] for SIR type diseases with constant contact rate. Here we
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have reconsidered the problem and have proposed two important, epidemiology–
motivated, changes.

The first is the description of the dynamics of the disease spread by including
a compartment of latent individuals, who are infected but not infectious yet. The
second key point is that we take into account of the impact of regular fluctuations
of the transmission rate.

First, we have obtained the conditions ensuring the global stability of a pure–
vaccinator equilibrium, where all the individuals are vaccinated and, as a conse-
quence, there are no more susceptibles in the population. Then, we have stud-
ied the existence and the global stability of a mixed state equilibrium, which is
a disease-free equilibrium where, differently from the PVE, the equilibrium value
of the vaccinating fraction (or ‘propensity’) is less than 1. This implies a residual
‘reservoir’ of susceptible individuals that could be infected. In the case where the
conditions ensuring the global stability of the MSE are not satisfied, we have shown
that the disease remains permanent in the population.

Particularly interesting is the case where the MSE is globally stable. Indeed, in
such a case for sinusoidally varying transmission rates the approximate expression
(23) of the BRN suggests an apparent paradox: given a value of γ insufficient to
guarantee the GAS of the MSE in absence of oscillations, there may be a minimum
amplitude of the sinusoidal oscillations such that the MSE is GAS.

We have explained this apparent paradox heuristically. To this aim, we have
considered another important fluctuation function to describe the time–dependence
of the transmission rate: a piecewise constant function oscillating between two
constant levels. The phase of increase of the transmission rate does not favor sta-
bilization. In other words, seasons with an increased number of contacts, and/or
an increased probability of transmission per contact, do not favor disease elimina-
tion. On the contrary, they favor instability. The stabilization is evidently obtained
thanks to the phase where the number of contacts, and/or the probability of in-
fection per contact, is decreased. This phase can be able sometime to - roughly
speaking - ‘over-compensate’ the destabilizing effects of the complementary phase.
The analysis of the piecewise constant varying transmission rate case allowed us to
find a necessary condition for the fluctuation–induced disease elimination.

The actual threshold values can be exactly computed since the Floquet matrix
is analytical. In the case of sinusoidal fluctuations, the Floquet Matrix, as well
as its spectrum, may be computed numerically. We have found that the predic-
tions obtained by means of the approximate expression of the BRN (see (23)) are
qualitatively valid, at least in the range of parameters we considered.

As remarked in section 4.1 we have shown that adding fluctuations to the trans-
mission rate in the SIRp model, as considered in [18], no fluctuations–induced sta-
bilization of the MSE is observed. In other words, the stabilization occurs due to
the combined presence of the fluctuations and of the latency phase in the disease
transmission.

The interest of showing that the elimination threshold in the case of oscillating
transmission rate is lower than the one obtained for the static case of constant
transmission rate goes beyond its mathematical interest. Indeed, a lower elimination
threshold for γ means a lower expenditure, so that the saved money could be devoted
to other Public Health activities.

It is of interest to summarize the above analytical and numerical findings by
noting that, in presence of latent compartment, in no cases the scenarios were ruled
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by the average transmission rate. In all cases, indeed, the results depended of the
whole ‘waveform’ of the periodic function c(t). Thus it is fundamental to infer from
epidemiological data the full time variation of the transmission rate, and not only
its average value.

Finally, we briefly mention that in no cases we found chaotic or even period-
doubling solutions. This might be linked with the fact that the vaccination with
dynamic rate p(t), whose dynamics is such that ∂I(ṗ) > 0, can ‘read’ as a feedback
control. And this involuntary ‘control’ is able to suppress chaos.

We are planning to follow this research along two lines of investigation. The first
is to assess the impact of time changes in the public health effort to increase the
vaccine propensity, i.e. γ(t). Could fluctuations in γ(t) allow a further stabilization?
Moreover, could such oscillations induce nonlinear resonances in the system ?

The second line joins the present study with our work concerning the optimal
control of the SIRp model [8]. It would be worth investigating the economic impact
of the SEIR structure and of the oscillations in the transmission rate. A major
issue will be to find the optimal time–profile of the function γ(t) ensuring the
minimization of the global expenditure by the PHS.
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Appendix A. Useful matrices. In the framework of the next–generation ap-
proach (see e.g. [6, 14, 40]) the transmission vector F and in–out vector V of (7)
are defined as follows:

F(t, S,E, I, p) =

(
βc(t)SI

0

)
; V(t, S,E, I, p) =

(
(µ+ ρ)E

−ρE + (µ+ ν)I

)
.

From these we can compute:

F (t) =

(
∂Fi(E2)

∂xj

)
i,j=1,2

=

(
0 βc(t)(1− p2)
0 0

)

V (t) =

(
∂Vi(E2)

∂xj

)
i,j=1,2

=

(
0 µ+ ρ
−ρ µ+ ν

)
Setting x = (E, I)Tr, linearized equations of E and I can be expressed as follows:

dx

dt
= (F (t)− V (t))x. (32)

Appendix B. Solutions of linear T -periodic ordinary differential systems.

Lemma B.1. [47] Let A(t) be a continuous, cooperative, irreducible, and T -periodic
k × k matrix function, ΦA(·)(t) be the fundamental solution matrix of the linear

ordinary differential system x′ = A(t)x, and r
(
ΦA(·)(T )

)
be the spectral radius of

ΦA(·)(T ). Denote:

q =
1

T
ln r

(
ΦA(·)(T )

)
Then, there exists a positive, T -periodic function v(t) such that eqtv(t) is a solution
of x′ = A(t)x.
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