SUPPLEMENTARY INFORMATION

An explosive component in a December 2020 Milan earthquake suggests outgassing of deeply recycled carbon

Marco Giovanni Malusà^{1*}, Enrico Brandmayr², Giuliano Francesco Panza², Fabio Romanelli³, Simona Ferrando⁴ and Maria Luce Frezzotti^{1*}

¹Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy.

² Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Rome, Italy.

³ Department of Mathematics and Geosciences, University of Trieste, via Weiss 4, 34128 Trieste, Italy.

⁴ Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Torino, Italy.

* Corresponding authors (email: marco.malusa@unimib.it; maria.frezzotti@unimib.it)

Supplementary Information includes:

Supplementary Figures

Supplementary Figure 1: Seismic stations used in the inversion and synthetic to observed signal correlation

Supplementary Tables

Supplementary Table 1: Event location and Moment Tensor Solution after INPAR and Genetic algorithm

Supplementary Table 2: Elastic parameters of the ambient rocks of the earthquake source used to compute volume change

Supplementary Table 3: Computed volume change and equivalent sphere radius for different cases

Supplementary References

Supplementary Figure 1. Seismic stations used in the inversion and synthetic to observed signal correlation. The map shows the location of seismic stations used in the final inversion (blue stars), the event epicenter (red dot), and the best double-couple mechanism retrieved after inversion. The diagram illustrates the correlation between synthetic and observed records at each station. The epicentral distance (Dist) and the starting time (Dt) of the temporal window corresponding to each inverted signal are indicated on the left, the maximum amplitudes and correlation values (Cor) are shown on the right. Solid lines = data. Dotted lines = synthetic waveforms. Both synthetic and observed records are filtered at a cut-off frequency of 0.10 Hz. Image generated using Inkscape 1.0 (https://inkscape.org).

Date (yyyy-mm-dd)	2020-12-17	
UTC Time (hh.mm.ss)	15.59.22	
Lon (°)	9.03±.17 E	
Lat (°)	45.53±.12 N	
Depth (km)	66±20	
Strike (°)	104	
Dip (°)	87	
Rake (°)	-179	
M _{0tot} (Nm)	8.0E+15	
M _{0iso} (Nm)	2.8E+15	
M _w	4.6	

Supplementary Table 1. Event location and Moment Tensor Solution after INPAR and Genetic algorithm

Supplementary Table 2. Elastic parameters of the ambient rocks of the earthquake source used to compute volume change (velocity is obtained from surface wave tomography ^{1, 2}, density is obtained from gravimetric inversion ³)

V _P	Vs	Density	λ	μ
(km s ⁻¹)	(km s⁻¹)	(kg m⁻³)	(Pa)	(Pa)
8.1	4.5	3250	8E+10	6.6E+10

Supplementary Table 3. Computed volume change and equivalent sphere radius for different cases

Case	ΔV (m³)	Equivalent sphere radius (m)
Pure fluid	3.4E+04	20
Crack-like	2.2E+04	17
Compact source	1.3E+04	15

Supplementary References

- Malusà, M. G., Frezzotti, M. L., Ferrando, S., Brandmayr, E., Romanelli, F., & Panza, G.F. Active carbon sequestration in the Alpine mantle wedge and implications for longterm climate trends. *Scientific Reports* 8(1), 1-8 (2018).
- Brandmayr, E. Raykova, R. B., Zuri, M., Romanelli, F., Doglioni, C. & Panza, G.F. The lithosphere in Italy: structure and seismicity. *J. V. Expl.* 36, doi:10.3809 /jvirtex.2010.00224 (2010).
- Brandmayr, E., Marson, I., Romanelli, F., & Panza, G. F. (2011). Lithosphere density model in Italy: no hint for slab pull. Terra Nova, 23(5), 292-299.