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Biomonitoring plays a crucial role in the assessment of air quality, as it allows to estimate

of the components of

used as bioindicators.

images, by means of a

age is divided in non-

ion and classification,
Accepted 27 November 2021 the presence of pollutants, by measuring deviations from normality

an ecosystem. Lichens are among the organisms most commonly

The present study deals with the classification of lichen taxa from

machine learning process based on patch classification. A given im

overlapping patches, and each of them undergoes feature extract
eventually being associated to a category. Three different methods for extracting patch

descriptors are investigated: (i) handcrafted descriptors based on classical feature extractor
Keywords:

Computer vision

Machine learning

Neural network

Species recognition

Lichen

In-field classification

1. Introduction
Lichens are a common component o

different species can occur everywhere on

. They
algorithms, (ii) convolutional neural networks employed as feature extractors, and (iii)

scattering networks, which combine wavelet convolutions and nonlinear operators. For

each of these methods, the descriptors are used as inputs for a classification algorithm. The

whole process is evaluated in terms of classification accuracy, empirically determining the

most appropriate parameters for the different models implemented. By using the dataset

of lichens of this study, best results (~ 0.89 accuracy) are obtained with a specific hand-

crafted descriptor (dense SIFT), thus providing insights on the kind of representation which

is most suitable for the task.

f ecosystems, and

the planet, even in

quality, the total diversity of epiphytic lichens is calculated on

the basis of the number of different species (i.e., classes)

which occur in a well delimited portion of a tree trunk. Given

the difficulty of identifying lichens (the task can be performed
the Antarctica (Castello et al., 2006)
 are frequently used
by trained operators only), and given that observer error is

intrinsic in any vegetation survey (Morrison, 2016), an auto-
mated classification system could be extremely useful for
for monitoring air quality, since they are specially sensitive to
phytotoxic gasses, especially NOx and SO2 (Cislaghi & Nimis,

1997), by means of a well-established, standardised method-
supporting the monitoring of air quality carried out by envi-

ronmental agencies. Furthermore, such a system, if ported on
1

ology (Anpa, 2001; Nimis et al., 2002). For monitoring air
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Nomenclature

Adam adaptive moment estimation algorithm

BGPs binary Gabor patterns

BOVW bag of visual words

CNN convolutional neural network

CV computer vision

DA data augmentation

FN false negative

FP false positive

LBI lichen biodiversity index

LBPs local binary patterns

LSCs localized scattering coefficients

ML machine learning

ReLU rectified linear unit

SIFT scale-invariant feature transform

SVM support vector machine

TL transfer learning

TP true positive
mobile devices, could be useful formonitoring air quality even

through a citizen science approach. This study aims at

building a process for the automatic classification, from im-

ages, of different lichen taxa growing on trees, thus allowing

the automated computation of the so called lichen biodiversity

index, or LBI (Ammann et al., 1987; Bini et al., 2001). Such index

is a well-established technique for assessing air pollution, and

especially the presence of phytotoxic gasses, which are

related to anthropic disturbance (Nimis & Purvis, 2002;

Cislaghi & Nimis, 1997). Computer vision (CV) offers several

tools for recognising the content of digital images, most being

based on machine learning (ML). Given that several different

lichens species can appear next to each other in the same

portion of tree bark (Fig. 1), the following different ML-based

approaches could be pursued:

� end-to-end: the LBI itself is estimated directly from an

image;

� object detection: lichens or their distinctive parts are

treated as “objects” and the image is searched for such

objects. Then, the detected objects, their extent, and the

labels, are employed for computing the LBI;
Fig. 1 e Example of several species of lichens appearing in

the same portion of a tree bark.
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� semantic segmentation: each image is partitioned in

disjoint areas which are semantically meaningful, i.e.,

associated to different species. Then, the areas and the

corresponding labels are employed for computing the

LBI.

The end-to-end approach has been discarded due to

absence of a suitable dataset: indeed, a considerable amount

of pairs consisting of an image and the corresponding LBI is

needed. For instance, in Dyrmann et al. (2016), 10 413 images

containing 22 weed and crop species where employed to train

a model from scratch. As detailed below, we deal with 5e6

images only, per species. The inspection of some images re-

veals that the object detection approach is not suitable aswell.

Indeed, although some lichens are associated to distinctive

parts that can be treated as objects, some others are mainly

characterised by a textured appearance, which prevents the

identification of object-like features. Thus, a semantic seg-

mentation approach has been chosen. Specifically, motivated

by the availability of a dataset of isolated instances of different

species (collected for other purposes than training an ML

system), a patch-based classification approach has been

selected: given an image, it is divided into non-overlapping

rectangular patches, each to be associated with a specific

category. Thus, the problem is reduced to an image classifi-

cation problem, to be solved for each of the patches. Figure 2

reports an example, where three patches are associated with

three distinct species of lichens. The chosen approach has two

valuable consequences: A) it implicitly augments the dataset,

since several patches can be extracted from each available

image, and employed for training and evaluating the classifier,

and B) it provides information (a set of labeled patches) that

can be used directly to estimate the LBI.1 In this paper, the

problem of associating a class label to a single patch is

considered, and the terms “patch” and “image” are used as

synonyms unless otherwise specified. The problem is faced by

means of a classifier operating on a descriptor extracted from

the image. As for the descriptor extraction, three different

approaches are investigated: classical descriptors, convolu-

tional neural networks (employed as feature extractors) and

scattering networks.
2. Related work

Image classification is a process that assigns a label to a whole

image. It is different from other CV processes, such as object

detection (finding occurrences of a given kind of object in a an

image), object recognition (finding a specific instance of an ob-

ject), and semantic segmentation. Image classification is a well

investigatedfield, andoneof themost successful applicationsof

CV (see for instance (Szeliski, 2010) for the classical approaches,

and (Goodfellow et al., 2016) for some of the more recent).

Traditionally, theproblemof imageclassificationhasbeenfaced

bymeansofML.A through reviewof thedifferent approaches to

the problem is outside the scope of the present paper. The basic

principle, shared bymost of the approaches is that the problem
1 provided that some additional information about the actual
size of the captured area is available.
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Fig. 2 e An example of patch-based classification approach, in which three different patches are shown: a single label is

associated to each of them.
is formulated in terms of supervised learning, i.e. a learning

problem in which a labeled dataset is available, containing ex-

amples of images along with the associated label. A learning

machine (classifier) is thus trainedbasedonthatdataset inorder

to learn an inference rule for associating the proper output

(label) to the input. As for the input, it can be a descriptor of the

image,or the image itself.Classicalapproachesemployavariety

of descriptors, which can be handcrafted, e.g (Lowe, 2004), or

automatically built from the dataset itself, such as visual code-

books (FeieFei & Perona, 2005). More recent approaches, based

onconvolutional neuralnetworks (CNNs), donot relyonexplicit

descriptors, but, instead, delegate the classifier itself to build an

internal representation of the input (the image), to be employed

for the classification (Rawat & Wang, 2017). The activation

values of the neurons belonging to a layer, in correspondence to

acertain input, canbe thoughtofas features extracted fromthat

input; in other words, they can be employed as descriptors for

feeding any classifier (even if the network has been trained on a

different dataset). Based on that, several schemes of transfer

learning (TL) (Tanetal., 2018)arepossible, includingfine-tuninga

given pre-trained network to a specific dataset. As of today,

image classification has been employed in many fields ranging

frommedicine to industrialmanufacturing. Imageclassification

has been applied to botany aswell,mostly aiming at identifying

organisms. For instance, in Soon Jye et al. (2017), artificial neural

networks and support vector machine classifiers, both trained

on handcrafted descriptors, were exploited to perform classifi-

cation of threedifferent species of the genus Ficus. However, not

only classification issues are addressed. As an example, Saleem

et al. (2020) performed detection of plant disease by using

differentmodelsbasedonCNNs.Theaimwas thatof identifying

sick leaves, and damaged portions of them. Although there are

several studies on vascular plants, which often led to the pub-

lication of apps for classification through smartphones, studies

focusing on lichens are scarce. In Kanmani and Rajiv Kannan

(2017), a pattern recognition methodology was used to extract

descriptors for training an artificial neural network. Another

study (Galanty et al., 2021), used a pre-trained CNN, called

SqueezeNet (Iandola et al., 2016), to perform classification of 12

different lichenspecies,achievinganaccuracyof� 0:61.Lichens

are important to monitor air quality also because they change
3

theirmorphology, and can also die, on the basis of the presence

and abundance of several pollutants. Preetha et al. (2021) used

this fact tomonitor the level of pollutants present around smart

cities. Inparticular, they exploitedResNetarchitecture (Heet al.,

2016) to classify lichen images (all images refer to the genus

Xanthoria) into four different pollution levels: Not Polluted,

Moderately Polluted, Heavily Polluted, Extremely Polluted. They

achieved an accuracy of� 0:953; however, they did not actually

face the problem of lichen species classification.
3. Dataset

3.1. Data collection

Several lichen species were selected on the basis of: i) fre-

quency in surveys aimed at estimating the LBI; ii) amount of

available high quality images in the image archive of ITALIC

(Nimis & Martellos, 2002), the Information System on Italian

Lichens (http://italic.units.it); the mentioned archive has been

chosen for two main reasons: first, the present work is part of

a research project focused on lichens occurring in Italy, and,

second, ITALIC is known to be reliable in terms of correct

identification of each of the images of the archive; iii) an

expert assessment for selecting species with different growth

form (crustose, fruticose and foliose lichens), reproductive

strategy (sorediate, or reproducing sexually, by apothecia),

and colors.

After a first selection, the list was limited to 20 species, for

which at least 5 high quality images were available. Nomen-

clature follows Nimis (2016).

3.2. Data processing

In summary, there are 20 different classes, representing the 20

species, each with a number of images ranging from 5 to 6, as

shown in Table 1. Since the dataset is small in terms of

available number of images per class, a patch classification

approach has been chosen. Each image belonging to original

dataset was divided into rectangular pieces, called patches.

Each patchwas then labelledwith the same class as the image

http://italic.units.it
https://doi.org/10.1016/j.biosystemseng.2021.11.023
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Table 1 e Content of the dataset, in terms of number of images for each lichen species. For each species, scientific name,
number of images initially available, and number of images obtained after data processing are reported. The column called
acronym associates an acronym to each species.

Species Original dataset Patch-based dataset Acronym

Lecanora chlarotera (Nyl). 6 92 Lc

Caloplaca cerina (Hedw.) Th. Fr. 6 91 Cc

Physconia grisea (Lam.) Poelt. 5 80 Pg

Lecanora argentata (Ach.) Malme 5 80 La

Ramalina fastigiata (Pers.) Ach. 5 80 Rfas

Phaeophyscia orbicularis (Nech.) Moberg 5 80 Po

Candelariella xanthostigma (Ach.) Lettau 5 80 Cx

Flavoparmelia caperata (L.) Hale 5 80 Fc

Chrysothrix candelaris (L.) J.R. Laundon 5 80 Cca

Ramalina farinacea (L.) Ach. 5 79 Rfar

Melanelixia glabratula (Lamy) Sandler & Arup 5 79 Mg

Physcia biziana (A. Massal.) Zahlbr. 5 78 Pb

Arthonia radiata (Pers.) Ach. 5 78 Ar

Xanthomendoza fallax (Hepp) Søchting, K€arnefelt. & S.Y. Kondr. 5 78 Xfa

Candelariella reflexa (Nyl.) Lettau 5 78 Cr

Flavoparmelia soredians (Nyl.) Hale 5 78 Fs

Xanthomendoza fulva (Hoffm.) Søchting, K€arnefelt. & S.Y. Kondr. 5 77 Xfu

Hyperphyscia adglutinata (Flørke) H. Mayrhofer & Poelt 5 75 Ha

Lecidella alaechroma (Ach.) M. Choisy 5 72 La

Gyalolechia flavorubescens (Huds.) Søchting, Frøden & Arup 5 64 Gf

Total 102 1579
from which the patch belonged. That approach produced a

larger dataset, consisting of a collection of individual patches.

More specifically, for each original image, the following steps

were performed:

1. the original image was resized (using bilinear interpo-

lation), to 1000 � 1000 pixel, in order to obtain images of

the same size (same width and height). In doing this,

aspect ratio was not preserved. However, given the

aspect ratio of the original images (having a mean of

about 1.26 z 5/4, and a standard deviation of 0.30), that

change did not lead to exaggerated distortions, which

could misrepresent the image of the lichen;

2. the regions closer to the borders were trimmed out,

since the lichens are mostly located in the center of the

images; Thus, intermediate images of dimension

800 � 800 were obtained;

3. from the intermediate images, 16 non-overlapping

patches, each of size 200 � 200, were extracted.

An example of patch extraction is represented in Fig. 3. The

final dataset was obtained after a further selection, to reject
Fig. 3 e An example of patch extraction, in which
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patches not containing the specific lichen. The content of the

dataset is summarised in Table 1. A total of 1579 patches were

obtained, from 102 original images. The number of patches

per species ranges from 64 to 92.
4. Methods

4.1. Classic methods

Classic methods are those based on handcrafted descriptors.

As opposed to learned descriptors, they are designed in

advance, possibly exploiting a priori knowledge on the specific

domain of application. It has been shown that such methods

can be quite effective with small datasets (Napoletano, 2017),

thus they have been employed in the present study.

4.1.1. Overview of the process
The whole process relies on two functional blocks, namely a

feature extractor and a classifier, and encompasses two pha-

ses, i.e. training and inference phase. The feature extractor

computes a descriptor for each image belonging to the
16 patches are created from an initial image.
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training set. Descriptors, along with the associated labels, are

employed for training the classifier. During the inference

phase, the feature extractor computes the descriptor of an

input image, and the trained classifier employs that descriptor

to predict a label. An overview of the entire process is repre-

sented in Fig. 4, for the training phase (top) and the inference

phase (bottom).

The employed descriptors can be broadly categorised as:

� global descriptors, which describe an image as a whole (in

terms of color, texture and other characteristics). As

they focus on global characteristics of an image, these

kind of descriptors are not able to capture its local

aspects;

� local descriptors, which describe neighbourhoods of

properly chosen points within an image. A set of vectors

is obtained from each image, each vector being the

description of a neighbourhood.

When employing local descriptors, it is necessary to collect

all the local features into a unique descriptor of the image, to

be compared with descriptors of other images. To this end, a

well-known and effective approach is the bag of visual words

(BOVW) technique (Sivic & Zisserman, 2003). The main idea of

BOVW is to apply clustering, to quantize local descriptors of

the whole dataset into visual words (the centroids of the

resulting clusters). For each image, the final descriptor is the

frequency histogram of the visual words.

As for the classifier, a Support Vector Machine (SVM), has

been employed, as it is well-known to be effective and effi-

cient in pattern recognition (Burges, 1998).

4.1.2. Descriptors
The employed descriptors are:

� Local binary patterns (LBPs) (Ojala et al., 2002), which are

based on the comparisons of each pixel of interest with

its surrounding neighbourhood, and extracting values

called LBPs. The whole descriptor is the frequency
images, labels

feature
extracto r

descriptors

feature
extracto r

input
image

descriptor

Training phase

Inference phase

Fig. 4 e Overview of the process when using classic methods, fo

While the feature extractor varies according to the chosen desc

Gaussian kernel.
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histogram of these values, across a set of image loca-

tions, and it is rotation invariant (but not scale

invariant).

� Scale Invariant Feature Transform (SIFT) (Lowe, 2004),

which extracts features for salient points of the image,

called keypoints: for each of them, the process computes

a descriptor based on gradients statistics of a neigh-

bourhood of the specific point. That algorithmmanages

to achieve both rotation and scale invariance.

� Dense SIFT (Rassem & Khoo, 2011), similar to SIFT, but

descriptors are extracted from regularly spaced points.

Rotation invariance is preserved, while scale invariance

is lost: to obtain the latter, descriptors are extracted at

multiple scales, and all the obtained results are

employed in the BOVW technique.

� Gabor-based descriptor (Aljahdali et al., 2012), based on

Gabor filtering. It exploits convolution with elements

from a Gabor filters bank, encompassing different ori-

entations and scales, to extract a feature vector.

� Binary Gabor patterns (BGPs) (Zhang et al., 2012), which

can be seen as a mixture between LBPs and Gabor

filtering. For each point of interest, the process applies

convolutions with elements from a Gabor filters bank

(in which only different orientations are considered) to

its neighbourhood, and extracts a value, which is rota-

tion invariant. To obtain invariance to scale, Gabor fil-

ters banks at different scales are considered, and their

outputs are concatenated.

In order to deal with color images, channels are considered

separately, extracting a feature vector from each one, and

concatenating them together.

4.2. CNNs-based method

CNNs (LeCun et al., 2010) operate on an image by applying sets

of linear spatial filters, followed by some nonlinear and/or

undersampling (pooling) operators. The set of filters are

organised in subsequent layers, and their coefficients are
classifier
(training )

trained 
classifier

label
trained 

classifier

r the training phase (top) and the inference phase (bottom).

riptor, the classifier is always an SVM equipped with a
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Fig. 5 e Overview of the convolutional neural network used to perform classification of lichen species.
learnt during the training of the network, which consists in

the minimisation of a cost function evaluated on the training

set. Figure 5 shows an example of CNN architecture. As it is

well-known, CNNs can perform remarkably well in image

classification tasks, often surpassing classic methods. How-

ever, when the dataset is small (as in the case at hand), CNNs

often struggle to provide high generalisation capability and

the risk of overfitting is significant (Goodfellow et al., 2016). To

overcome these issues, several techniques have been pro-

posed in the past, such as data augmentation and transfer

learning.

4.2.1. Data augmentation
Data augmentation (DA) aims at increasing the size of the

dataset, by applying some transformations to the original

images (Shorten & Khoshgoftaar, 2019). DA supports in

reducing the overfitting, and achieving specific invariances. In

the case of lichens images, rotation, horizontal flipping,

(moderate) shearing and (moderate) rescaling can be consid-

ered harmless, but useful, transformations. Thus, the dataset

has been augmented by performing:

� random rotation by a uniformly sampled value from the

range [ � 40�, 40�];
� horizontal flipping;

� random shearing, with shear range equal to 0.2, which

is the shear angle in counter-clockwise direction in

degrees;

� random rescaling, with a rescaling factor ranging from

0.8 to 1.2.

To implement these techniques, ImageDataGenerator from

Tensorflow (Abadi et al., 2015) has been used: it ensures that

the model receives new variations of the images at each iter-

ation of the training phase, but it only returns the transformed

images and does not add it to the original corpus of images.

4.2.2. Model architecture
Given the heavy overparameterization of the CNNs, with a

small dataset, it is almost impossible to build a model from

scratch: in this context, transfer learning can be employed. TL

is not restricted to neural networks. Rather, it is a general
6

approach, whose basic idea is that some learned features are

important regardless the specific task. In practice, part of a

network, trained on a large generic dataset, is used as a

component of a task-specific architecture.

The model employed in the present study is based on the

well-known architecture VGG16 (Simonyan & Zisserman,

2014), where the filters have been set to a very small recep-

tive field: 3 � 3. Only the convolutional part of the net was

exploited, built in the following way:

� 2 blocks formed by 2 convolutional layers and a max-

pooling layer;

� 3 blocks formed by 3 convolutional layers and a max-

pooling layer.

In Fig. 5, the convolutional layers are represented in light

orange, while the pooling layers in dark orange. The Tensor-

flow implementation of VGG16 (Abadi et al., 2015), trained on

ImageNet (Deng et al., 2009), has been adopted. In order to

perform classification, the following layers (in blue and purple

in Fig. 5) were appended to the convolutional part of the base

net:

� a flattening layer;

� a batch-normalization layer;

� a dense layer with 512 units and rectified linear unit

(ReLU) activation function;

� a dropout layer with dropout probability p ¼ 0.5;

� a dense layer with 128 units and ReLU activation

function;

� a dropout layer with p ¼ 0.3;

� an output layer with 20 units (each corresponding to a

class) and Softmax activation function.

4.3. Scattering networks

Scattering networks (Bruna & Mallat, 2013), or Scatnets, are the

lastmethod employed and evaluated in this study. Contrary to

CNNs, they do not exhibit heavy overparameterization, hence

they are a reasonable choice in the case of data scarcity.

Scatnets can be thought of as a mixture of classic methods

and data-driven methods: their structure resembles that of

https://doi.org/10.1016/j.biosystemseng.2021.11.023
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CNNs, in the sense that they are based on cascade of convo-

lutions with spatial filters. However, differently from CNNs,

filters are fixed, thus their coefficients are not learnt during

training. More precisely, filters are fixed waveforms of small

spatial support, called wavelets, and their application is fol-

lowed by a non linear operator (the modulus); through these

operations, Scatnets extract a set of coefficients called localized

scattering coefficients (LSCs), which are used to perform classi-

fication. The fixed filters, as in (Bruna&Mallat, 2013), have the

form of a complex Morlet wavelet, which is essentially a com-

plex periodic function modulated by a Gaussian. More pre-

cisely, the filters have the form:

jðuÞ ¼ ðcosðuuÞþ isinðuuÞ�KÞe�juj2=ð2s2Þ (1)

where i is the imaginaryunit,sdefines thewidthof theGaussian

window,u is a spatial frequency, and K is chosen to ensure zero

mean. A family of rotated and spatially scaled version of the

wavelet (1) is built; notice that, although the spatial frequency u

of the base wavelet is fixed, thanks to the spatial scaling, the

family encompasses elements of different spatial frequencies.

Figure 6 reports themodulus of some elements of the family of

filters. For each element of that family, the scatter transformwith

the image is computed, which is defined as

cu2R2; ðx+jlÞðuÞ ¼ ∬
R2xðvÞj*

lðu�vÞdv

where + and * denote convolution and complex conjugation,

respectively. Then, the L1-norm is calculated, obtaining the so

called scattering coefficients:

Z
jx+jljdu¼kx+jlk1

where jl denotes the specific element of the wavelet family.

The L1-norm is a representation of the scatter transform

which is both translation-invariant and stable to both additive

noise and deformations. In practice, the LSCs are extracted, by

filtering the complex modulus of the scatter transform with a

scaled Gaussian (Bruna & Mallat, 2013), and then by

computing the integral. More coefficients are computed by

composing these operations several times, thus obtaining a
Fig. 6 e The modulus of some elements of the family of

oriented filters employed in the Scatnet approach.
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cascade structure. The Scatnet structure is depicted in Fig. 7,

in which the following operators are defined:

� given a path p ¼ (l1, l2, …, ln), where each element li

represents a specific wavelet, the compositions of

scatter transforms and modulus operations are defined

as the U operator:

U½p�x ¼ j…����x+jl1

��+jl2

��…��+jln

��;
Notice that U[∅]x ¼ x.

� then, the LSCs are computed, represented by the

convolution of the output of the U operator with a

scaled Gaussian filter 42J

S½p�xðuÞ ¼
Z

U½p�xðvÞ � 42J ðu� vÞ2J dv ¼ U½p�x+42J ðuÞ;

where

42J ¼ 2�2J4
�
2�Ju

�
;

and parameter J represents the size of the spatial windows, to

be fixed in the experimentation phase.

The main characteristics of the Scatnets are:

� they do not need too much data, as they are based on

fixed filters;

� they give a representation of the image which is

invariant to rotations and stable to deformations

(Mallat, 2012).
4.3.1. Model architecture
LSCs are exploited as input to a CNN. As said above, the reason

for such an architecture is to merge a handcrafted approach,

based on Scatnets, and a data-driven one, based on CNNs. The

wholemodel is depicted in Fig. 8; it is a deep network, inwhich

the first part (the olive colored block on the left) is fixed, while

the second part is trained based on data. To deal with RGB

images, LSCs are extracted for each channel, and the obtained

results are concatenated together. The CNN part of the

network is composed as follows:

� a block (named “first convolutional block” in Fig. 8)

formed by a convolutional layer with 256 filters of size 3

and ReLU activation function, followed by a batch-

normalization layer;

� amax-pooling layer with both stride and size equal to 2;

� two convolutional blocks, each formed by a convolu-

tional layer with 512 filters of size 3 and ReLU activation

function, followed by a batch-normalization layer;

� an adaptive pooling layer, that reduces dimension of

filters to 512 � 2 � 2;

� a flattening layer;

� a final output layer with Log-Softmax activation

function.

https://doi.org/10.1016/j.biosystemseng.2021.11.023
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Fig. 7 e Overview of the structure of a Scatnet (image from Bruna & Mallat (2013)). Starting from an initial image, in the first

layer the U operator is computed for each element of the Wavelet family, and then all the LSCs are extracted. The process is

then repeated in following layers, until the maximum depth of the net (fixed a priori) is reached.

Fig. 8 e Overview of the structure used to perform classification of lichens trough LSCs, extracted with the scattering

network. Each convolutional block includes also a batch normalization layer.
5. Experiments and results

The outcome of each method is analyzed individually. Then

they are compared, highlighting their advantages and disad-

vantages.Thedatasethasbeendivided into traindata (70%), and

test data (30%). Models are evaluated on the basis of their accu-

racy, which ranges from 0 (no element from test dataset was

correctly classified) to 1 (all elements from test dataset were

correctly classified). Other useful and well-known metrics to

evaluate the results are precision, recall, and F1-score, defined as:

precision ¼ TP
TPþ FP

; recall ¼ TP
TPþ FN

;

F1� score ¼ 2
precision� recall
precisionþ recall

;

where TP stands for true positive, FP for false positive, and FN

for false negative. Useful insights can be obtained by

observing how they vary for the different species of lichens.
8

Thus, for some models, metrics distribution is discussed as

well.

5.1. Classic methods

The parameter values for each descriptor were set empirically,

by exploiting a random search among a reasonable range for

each parameter, with the aim of finding the ones maximising

accuracy. As a result, the parameters were set as follows:

� for LBPs, for each pixel of interest the number of points

that forms the neighbourhood was fixed to 8, and the

distance from the central point (the radius) to 2;

� for SIFT, the number of visual words was fixed to 600;

� for dense SIFT: the number of visual words was set to

600, and grid density, i.e., the distance at which points

are taken to extract descriptors, was set to 4. Through

convolutions with Gaussian filters with different stan-

dard deviation, images at several scales were taken into

account, in order to partially achieve invariance to

https://doi.org/10.1016/j.biosystemseng.2021.11.023
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scale: standard deviations were set empirically to

s 2 {0.53, 1.06, 1.6, 2.13, 2.7};

� for Gabor based descriptors, 8 different orientations were

considered, calculated as

q ¼ j
m

p j ¼ 0;…;7

and 3 scales defined by the parameters

U ¼ 0:25� ffiffiffi
2

p �k
k ¼ 0;…;2 s ¼ Uffiffiffi

2
p ;

where U refers to the frequency of the Gabor function, while s

is the standard deviation of the Gaussian envelope.

� For BGPs, the settings of Zhang et al. (2012), were

adopted, i.e. 8 orientations

q ¼ fqj ¼ jp
�
8 : j¼0;1;…;7g

and 3 different scales {(Uk, sk): k ¼ 0, 1, 2}:

ðU0;s0Þ ¼ ð1:3;1:42Þ ðU1; s1Þ ¼ ð5:2; 0:4Þ

ðU2;s2Þ ¼ ð22;0:22Þ;
where sk and Uk have the samemeaning of the previous point.

The best result in terms of accuracy (Table 2) was achieved

by dense SIFT, which outperformed other approaches, and

especially its sparse version (the SIFT). Since both the ap-

proaches rely on the same kind of descriptor, the only differ-

ence being the locations of the interest points, it seems

reasonable to conclude that for facing the particular classifi-

cation problem considered in this study, a large set of uni-

formly sampled feature points, rather than a small set of

keypoints, is preferable. Furthermore, the dense SIFT ach-

ieved remarkably consistent performance over the different

classes. Indeed, the standard deviation of the accuracy with

respect to different species is much smaller than the value

obtained with other descriptors. This is also clear from the

confusion matrix in Fig. 9, in which almost all the species are

well recognised, with a few exceptions. Candelariella Reflexa

(Cr) has an accuracy of 0.65 only, as evidenced also by low

values of precision and recall (Fig. 10).
Table 2e Results obtained by employing classicmethods,
with different descriptors. The rightmost column reports
the standard deviation of the accuracy across the 20
different species of lichens.

Method Accuracy Precision Recall Standard deviation

LBPs 0.54 0.51 0.50 0.18

SIFT 0.52 0.54 0.51 0.2

dense SIFT 0.89 0.89 0.9 0.09

Gabor-based 0.83 0.77 0.78 0.16

BGPs 0.82 0.85 0.84 0.17

For each column, the best result (highest accuracy, precision, recall,

and lowest standard deviation) is reported in bold.
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5.2. CNN-based model

As far as input data are concerned, the netwas forced to accept

RGB images of size 100� 100. The CNNused to perform lichens

classification was trained using two different approaches:

� by training only the dense layers that were attached to

the base VGG16 net, thus leaving unaltered the weights

relative to the convolutional part of the structure, for a

total of 24 37 268 trainable parameters.

� by training the whole structure, for a total of 1 71 51 956

trainable parameters. In this case, parameters related to

the convolutional part of the structure have been fine-

tuned, while the ones related to the dense layers are

trained from scratch.

Categorical crossentropy was employed as loss function,

whileAdamoptimiserwas adopted,with learning rate equal to

2� 10�5. Themodelwas trained for amaximumof 100 epochs,

using early stopping as termination criterion. The term epoch

refers to one cycle of training, in which the network is pre-

sented all the training data. In an epoch, all the data are used

exactly once. The training is essentially a gradient-descent

based numerical optimisation in which the network weights

areadjusted inan iterativemanner, to reduce theoverall loss; it

requires pass-throughs of the whole training set into the

network since, to enforce convergence of the weights, only

small adjustments are performed at each iteration. The best

result (Table 3) was achieved with the second approach (albeit

with a slightly increased standard deviation). This suggests

that, in order tobuild aneffectivemodel for the classificationof

lichens, specific features need to be extracted: pre-trained

weights obtained from generic datasets are not enough to

reach acceptable results. The need for specific features is

confirmed by the analysis of Figs. 11 and 12, which show how

accuracy and loss vary through epochs. When the last dense

layers only are tuned, test performance are always better than

train performance, both in accuracy and loss. In other words,

the chosenmodel and the employed training algorithmare not

capable of overfitting the training data. As for the model, a

possible explanation for that observation is that the features

extracted by the convolutional part of the net, are not suffi-

ciently expressive for describing properly the lichens. Thus,

pre-trained networks are of limited use in this case.

5.3. Scattering networks

The initial wavelet filter (1) was set to have s ¼ 0.85 and u ¼ 3p
4

as parameters. In order to create the wavelet filter bank, four

parameters were tuned:

� number of the scales, fixed empirically to 2;

� number of rotations, fixed empirically to 4;

� spatial windows of the Gaussian filter, fixed empirically

to be the same value of the number of scales.

� depth of the net, in terms of number of layers: this value

has been fixed to 2, as it has been proven that it is

enough to extract the majority of information from an

image (Bruna & Mallat, 2013).

https://doi.org/10.1016/j.biosystemseng.2021.11.023
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Fig. 9 e Confusion matrix obtained using the model based on Dense Sift descriptor.

Fig. 10 e Distribution of the precision, recall, and F1-score among different species, using dense SIFT method to extract

descriptors.
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Table 3 e Results obtained using CNN based model.

Training Accuracy Precision Recall Standard deviation

dense layers 0.73 0.72 0.74 0.16

whole net 0.82 0.79 0.84 0.18

For each column, the best result (highest accuracy, precision, recall,

and lowest standard deviation) is reported in bold.
The resulting output, for a fixed image of the dataset, was

of dimension (25, 25, 75), and served as input for the CNN

(Section 4.3.1). For what concerns the training phase, cross-

entropy was used as loss function, with stochastic gradient

descent as optimiser, withmomentum equal to 0.9, and initial

learning rate equal to 0.01, decreased by a factor of 0.2 every 20

epochs. The model was trained for a maximum of 100 epochs,

using early stopping as termination criterion. The same data

augmentation as in Section 4.2.1 was applied. Kymatio pack-

age (Andreux et al., 2020) was used to implement Scatnet, and

Pytorch (Paszke et al., 2019) for the entire net. The average

accuracy obtained was � 0:83, with both precision and recall

� 0:84, and a standard deviation � 0:16: thus, the Scatnet

approach outperformed the one based on transfer learning

and CNN. Almost all the species were quite well discriminated

(Fig. 13), with a few exceptions. As an example, Gyalolechia

Flavorubescens was predicted correctly only 33% of the time,

and this means that this species has a high percentage of false

negatives, and thus a low recall value (Fig. 14). In general,

there is much more fluctuation in the quality of the
Fig. 11 e Variation of accuracy (left) and loss (right) through epo

training performance is reported in blue, the test one in orange

legend, the reader is referred to the Web version of this article.

Fig. 12 e Variation of accuracy (left) and loss (right) through epoc

is reported in blue, the test one in orange. (For interpretation o

referred to the Web version of this article.)
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classification in comparison to themodel based on dense SIFT

descriptor.
6. Discussion

The best result was obtained using a classicalmethod, namely

the dense SIFT descriptor, with an accuracy of � 0:89.

Remarkably, a similar approach, i.e., the sparse SIFT

descriptor, achieved quite poor results, when compared to the

dense version of the same algorithm, thus suggesting that a

dense feature extraction from images is needed to obtain

relevant information for the task of identifying lichens. The

model based on CNNs did not outperform classic methods,

although it performed well. A possible reason is data scarcity,

which has not been sufficiently mitigated for by the data

augmentation techniques applied. The model based on LSCs

achieved quite good results in terms of performance and sta-

bility, but it did not outperform dense SIFT descriptor. How-

ever, its structure is appealing from a computational point of

view, since it is based on fixed filter and has few trainable pa-

rameters. A recent study (Galanty et al., 2021), considered a

classificationproblem involving 12different species, achieving

an accuracy of � 0:61. Such accuracy is hardly comparable to

the one achieved in the present paper, since Galanty et al.

(2021) worked on whole images instead of patches (as in the

present study).Nevertheless, the rather lowaccuracy achieved

by Galanty et al. (2021) testifies that the problem is indeed a

difficult one, and advocates for specific techniques.
chs, when fine-tuning only the dense part of the CNN: the

. (For interpretation of the references to color in this figure

)

hs, when we train the whole net: the training performance

f the references to color in this figure legend, the reader is

https://doi.org/10.1016/j.biosystemseng.2021.11.023
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Fig. 13 e Confusion matrix obtained using the model based on Scattering networks.

Fig. 14 e Distribution of precision, recall, and F1-score with respect to different species, using model based on scattering

networks.

12

https://doi.org/10.1016/j.biosystemseng.2021.11.023
https://doi.org/10.1016/j.biosystemseng.2021.11.023


We believe that the present work, albeit preliminary, rep-

resents an advancement toward the effective practical appli-

cation of automated lichens classification in fieldwork. To this

aim, however, a considerable amount of further work still

needs to be carried out. On the one hand, the set of considered

species needs to be enlarged, and the adequacy of the pro-

posed techniques must be assessed on the new classification

problem. On the other, the computational effort at inference

time required by the model has to be taken into account for

the model to be deployed on mobile devices. Whether the

application of some model reduction techniques such as, e.g.,

pruning (Zullich et al., 2021) will be necessary, is a matter of

further investigation. Clearly, deploying the classification

system on mobile devices would make possible to use citizen

science for environmental monitoring. The automation of the

training pipeline, to allow non-machine learning experts not

only to employ an automated classification system, but also to

train it or fine-tune it to newly acquired data is a further

(challenging) aim that would allow to refine the system or to

adapt it to similar tasks, based on new data.

We conclude the discussion by recalling that, to properly

use lichens as bioindicators, it is necessary to count the

number of different taxa per unit area. Thus, the estimation of

the extent of the surface captured in an image is of funda-

mental importance. Since the present study is a preliminary

one, such an issue was not taken into account. However,

addressing it could be a relatively easy task, given that mod-

ern mobile devices are equipped with sensors capable of

acquiring depth images, thus allowing a solution by exploiting

three-dimensional data. Alternatively, the actual size of the

captured area could be roughly estimated by a separate neural

network trained on labelled examples of the exact lichen

species combinedwith information on the size of lobes and on

the distance of the subject to the camera. The use of lichens

diversity for estimating the LBI requires the correct identifi-

cation of the taxa occurring in a given portion of a tree trunk

(Anpa, 2001). The identification of lichens in the field is often a

challenging task, and can require the investigation of

anatomic features, such as spores shape and size, to achieve

an identification at the specific or infraspecific level. Human

operators monitoring the LBI can collect samples for per-

forming a more detailed identification in a laboratory, since it

was evidenced (Brunialti et al., 2002) that the average score of

correct identification by operators in the field can sometimes

be below 50%. Arguably, an automated system will never be

able to achieve the same results of human operators by the

sole analysis of images taken in the field. However, even if not

always capable of identifying all the taxa occurring in an

image to the species level, a machine learning-based auto-

mated system can certainly provide an estimation of the

lichen diversity based upon morphology alone. Plus, it will be

capable to provide an output far quicker than any human

operator. Thus, the application of a machine learning-based

system for monitoring the morphological diversity of lichen

taxa occurring on tree trunks could provide a first estimate of

LBI in a very limited amount of time, without the need for

trained operators, and even involving volunteers in citizen

science activities. After a first estimate, authorities interested

in a more detailed estimate can involve experts in those areas

which are highlighted as critical in the first estimate. Such a
13
combined approach could allow for a wider coverage of LBI

and air quality investigation, while at the same time focusing

efforts and fundings in critical areas only.
7. Conclusion

Wehave reported the first (to our knowledge) horizontal study

aimed at achieving an automated image-based lichens clas-

sification, testing different approaches ranging from classical

image descriptors to convolutional neural networks to a

combination of descriptors and convolutional neural net-

works. The study considered 20 species and employed a

patch-based classification approach tomitigate the scarcity of

data. All the methods resulted in good accuracy, the best (~

0.89) being the one obtained by the classical dense SIFT

descriptor. We have also briefly discussed the possible impact

of the proposed methodology and results on lichen biodiver-

sity index assessments.
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