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ABSTRACT

In this note, we study Togliatti systems generated by invariants of the

dihedral group D2d acting on k[x0, x1, x2]. This leads to the first fam-

ily of non-monomial Togliatti systems, which we call GT-systems with

group D2d. We study their associated varieties SD2d
, called GT-surfaces

with group D2d. We prove that there are arithmetically Cohen–Macaulay

surfaces whose homogeneous ideal, I(SD2d
), is minimally generated by

quadrics and we find a minimal free resolution of I(SD2d
).

1. Introduction

Togliatti systems were introduced in [13], where the authors related the ex-

istence of homogeneous artinian ideals failing the weak Lefschetz property to

the existence of projective varieties satisfying at least one Laplace equation.

Precisely, a Togliatti system is an artinian ideal Id ⊂ k[x0, . . . , xn] generated

by r ≤ (
n+d−1
n−1

)
forms F1, . . . , Fr of degree d which fails the weak Lefschetz

property in degree d − 1. The name is in honour of E. Togliatti who gave a

complete classification of rational surfaces parameterized by cubics and satisfy-

ing at least one Laplace equation of order 2 (see [22] and [23]). Since then, this

topic and related problems have been the focus of attention of many works, as

one can see in [1], [2], [4], [5], [6], [11], [12], [14], [15] and [21]. Notwithstanding,

most expositions and results deal with monomial Togliatti systems, while the

non-monomial case remains barely known.

Recently, in [12] and [5] the authors studied GT-systems, a new family of

monomial Togliatti systems having a special geometric property. A GT-system

is a Togliatti system Id whose associated morphism ϕId : Pn → P
μId

−1 is a

Galois covering with cyclic group Z/dZ. This geometric property establishes a

new link between Togliatti systems and invariant theory. Precisely in [4] and [6],

the authors apply invariant theory techniques to investigate both GT-systems

and their images Xd = ϕId(P
n), the so-called GT -varieties. These varieties are

actually monomial projections of the Veronese variety νd(P
n) ⊂ P

(n+d
d )−1 of Pn

from the linear space 〈I−1
d 〉 generated by the Macaulay’s inverse system of Id.

Interest in these varieties relies on the following two problems. The first one is

to determine whether Xd is an arithmetically Cohen–Macaulay (in short a CM)
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monomial projection of νd(P
n). This contributes to the longstanding problem,

posed by Gröbner in [8], to determine when a projection of νd(P
n) is a CM.

The second one is the classical problem of finding a minimal free resolution

of the homogeneous ideal of a projective variety. In this note, we extend the

notion of GT-systems and GT -varieties, as presented in [4], to the action of any

finite group, including non abelian ones. This sheds new light on the study of

non-monomial Togliatti systems. In this work, we focus on the dihedral group

action on k[x0, x1, x2]. We show that the invariant theory point of view used

in [4] provides enough techniques to study the GT-system I2d associated to the

dihedral group and to tackle the geometry of the GT-surfaces SD2d
defined by

the GT-system I2d.

More precisely, we fix integers 3 ≤ d, 0 < a < d
2 with gcd(d, a) = 1 and ε a

2dth primitive root of 1. We set e = ε2 and let

ρa : D2d → GL(3, k)

be the linear representation of D2d = 〈τ, η|τd = η2 = (ητ)2 = 1〉, the dihedral

group of order 2d, defined by

ρa(τ) =Md;a,d−a =

⎛
⎜⎝
1 0 0

0 ea 0

0 0 ed−a

⎞
⎟⎠ and ρa(η) = σ =

⎛
⎜⎝
1 0 0

0 0 1

0 1 0

⎞
⎟⎠ .

Since gcd(a, d) = 1, the finite cyclic group 〈ρa(τ)〉 of order d coincides with

〈Md;1,d−1〉 ⊂ GL(3, k). We set C2d the finite cyclic group of order 2d generated

by ε Id and let D2d = D2d ×C2d ⊂ GL(3, k) be the cyclic extension of D2d. We

denote by I2d the ideal generated by all forms of degree 2d which are invariants

of D2d. Our main goal is to relate the ideal I2d to the ring RD2d of invariants

of D2d. Using the structure of the ring RD2d , we determine a minimal set of μ2d

generators of I2d, formed by monomials and binomials, and we prove that it is a

minimal set of generators of RD2d . This allows us to establish that the ideal I2d

is a GT-system with group D2d, once proved in Lemma 4.1 that μ2d ≤ 2d+ 1

(see Theorem 2.1). As a consequence, we obtain that RD2d is the coordinate

ring of the surface SD2d
= ϕI2d(P

2) associated to the GT-system I2d. Through

this connection, we prove that SD2d
is a CM and we compute a minimal free

resolution of RD2d . In particular, we show that its homogeneous ideal I(SD2d
) is

minimally generated by quadrics and we determine a minimal set of generators.
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Let us explain how this note is organized. We begin establishing in Section 2

all the preliminary results and definitions needed in the sequel. In particular,

we define the extended notion of GT-system with respect to any finite group

acting on k[x0, . . . , xn]. Section 3 is devoted to finding a set of fundamental

invariants of D2d. We prove that RD2d is minimally generated by monomials

and homogeneous binomials of degree 2d, which we completely determine (see

Theorem 3.7) using the structure of the ring RD2d . We compute the Hilbert

function, series and polynomial of RD2d and we establish that RD2d is a level

algebra with Castelnuovo–Mumford regularity three. In Section 4, we intro-

duce a new family of non-monomial Togliatti systems that we call GT-systems

with group D2d and we study their associated varieties; we call them GT-

surfaces with group D2d. We identify the coordinate ring of any GT-surface

with group D2d with the ring RD2d . This allows us to translate geometrically

the results obtained in Section 3. We show that any GT-surface with group D2d

is a CM. In addition, the information from the Hilbert series and the regularity

allow us to compute a minimal free resolution of the homogeneous ideal I(SD2d
)

of any GT-surface SD2d
with group D2d (see Theorem 4.6). In particular, we

show that I(SD2d
) is minimally generated by quadrics. Right after, we focus on

determining a minimal set of generators.

Notation. Through this note k denotes an algebraically closed field of char-

acteristic zero and GL(n, k) denotes the group of invertible n×n matrices with

coefficients in k.

Acknowledgment. The authors are very grateful to the anonymous referee of

an earlier version of this work for providing insightful comments and directions

which have substantially improved this paper.

2. Preliminaries

In this section, we collect the main concepts and tools we use in the body of

this note. First, we relate the weak Lefschetz property of artinian ideals with

varieties satisfying a Laplace equation and we recall the notion of a Togliatti

system introduced in [13]. Secondly, we see that quotient varieties by finite

groups are Galois coverings and we extend the notion of GT-system from [12]

to any finite group G. Finally, we review some basic facts on the theory of

invariants of finite groups needed in the sequel.
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Weak Lefschetz property. Set R = k[x0, . . . , xn] the polynomial ring and

let I ⊂ R be a homogeneous artinian ideal. We say that I has the weak

Lefschetz property (WLP) if there is a linear form L ∈ (R/I)1 such that,

for all integers j, the multiplication map

×L : (R/I)j−1 → (R/I)j

has maximal rank, i.e., it is injective or surjective. In [13] Mezzetti, Miró-Roig

and Ottaviani proved that the failure of the WLP is related to the existence of

varieties satisfying at least one Laplace equation of order greater than 2. More

precisely, they proved:

Theorem 2.1: Let I ⊂ R be an artinian ideal generated by r forms F1, . . . , Fr

of degree d and let I−1 be its Macaulay inverse system. If r ≤ (
n+d−1
n−1

)
, then

the following conditions are equivalent:

(i) I fails the WLP in degree d− 1;

(ii) F1, . . . , Fr become k-linearly dependent on a general hyperplane H

of Pn;

(iii) the n-dimensional variety X = Im(ϕ) where ϕ : Pn ��� P(
n+d
d )−r−1 is

the rational map associated to (I−1)d, satisfying at least one Laplace

equation of order d− 1.

Proof. See [13, Theorem 3.2].

In view of this result, a Togliatti system is defined as an artinian ideal

I ⊂ R generated by r ≤ (
n+d−1
n−1

)
forms of degree d which fails the WLP in

degree d − 1. This name is in honor of Togliatti who proved that the only

smooth Togliatti system of cubics is

I = (x30, x
3
1, x

3
2, x0x1x2) ⊂ k[x0, x1, x2]

(see [3], [22] and [23]). The systematic study of Togliatti systems was initiated

in [13] and for recent results the reader can see [11], [14], [1], [15], [12], [4]

and [5]. In this paper, we will restrict our attention to a particular case of

Togliatti systems, the so-called GT-systems which we are going to introduce

now.

Galois coverings and GT-systems. Let us recall the notion of a Galois cov-

ering. A covering of a variety X consists of a variety Y and a finite morphism

f : Y → X . The group of deck transformation G := Aut(f) is defined to be



6 L. COLARTE-GÓMEZ ET AL.

the group of automorphisms of Y commuting with f . We say that f : Y → X

is a covering with group Aut(f). If the fibre of a covering f : Y → X over a

general point consists of d points we say that f is a covering of degree d.

Definition 2.2: A covering f : Y → X of a varietyX is a Galois covering if the

group Aut(f) acts transitively on the fibre f−1(x) for some x ∈ X , and hence

for all x ∈ X . We say that f : Y → X is a Galois covering with group Aut(f).

Quotient varieties by finite groups of automorphisms work particularly well

with respect to Galois coverings.

Proposition 2.3: Let X be a projective variety and G ⊂ Aut(X) be a finite

group. If the quotient variety X/G exists, then π : X → X/G is a Galois

covering.

Proof. See [4, Proposition 2.3].

For further details on quotient varieties see, for instance, [16]. In [12] and [4],

the authors studied a particular class of Togliatti systems arising from actions

of the cyclic group over R. In particular, let d ≥ 3 and 1 ≤ a < b ≤ d− 1

be integers such that gcd(a, b, d) = 1. We denote by Md;a,b the matrix

diag(1, ea, eb)⊂GL(3, k), where e is a dth root of 1. Then, let ρa,b :Cd→GL(3, k)

be the representation of Cd = 〈τ |τd = 1〉, the cyclic group of order d, given by

ρa,b(τ) =Md;a,b ⊂ GL(3, k). With this notation, they proved:

Proposition 2.4: Let Id ⊂ k[x0, x1, x2] be the ideal generated by all forms of

degree d which are invariants of ρa,b(Cd). Let μ(Id) denote the minimal number

of generators of Id. If μ(Id) ≤ d + 1, then Id is a Togliatti system. Moreover,

the associated morphism ϕId : P2 → P
μ(Id)−1 is a Galois covering with cyclic

group Z/dZ.

Proof. See [4, Corollary 3.5].

The above result motivates the following definition.

Definition 2.5: Let G be a finite group. We say that a Togliatti system

I = (F1, . . . , Fr) ⊂ R is a GT-system with group G if the associated mor-

phism ϕI : Pn → P
r−1 is a Galois covering with group G.

The study of the GT-systems with cyclic group Z/dZ is presented in [4], [5],

[6] and [12]. In all these papers, the group G is abelian and the GT-system is
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monomial. In this note we study GT-systems with non-abelian finite group G,

more precisely with G the dihedral group, and we get the first examples of a

non-monomial GT-system.

Invariant theory of finite groups. A finite group of automorphisms of

the affine space An+1 can be regarded as a finite group G ⊂ GL(n+1, k) acting

on the polynomial ring R. Let us denote by

RG = {f ∈ R | g(f) = f, ∀g ∈ G}
the ring of invariants of G. The ring RG inherits the natural grading of R, that

is RG =
⊕

t≥0R
G
t , where R

G
t := Rt ∩RG. We have the following result.

Lemma 2.6: Fix t ≥ 1 and let G ⊂ GL(n+1, k) be a finite linear group acting

on R. Then

dimk R
G
t =

1

|G|
∑
g∈G

trace(g(t))

where g(t) is the linear map induced by the action of g on Rt.

Proof. See [20, Lemma 2.2.2].

Geometrically, RG is the coordinate ring of the quotient variety of A
n+1

by G. To be more precise, let {f1, . . . , ft} be a minimal set of generators of the

algebraRG, often called a set of fundamental invariants, and let k[w1, . . . , wt]

be the polynomial ring in the new variables w1, . . . , wt. Then, the quotient

variety of An+1 by G is given by the morphism π : An+1 → π(An+1) ⊂ A
t, such

that π(a0, . . . , an) = (f1(a0, . . . , an), . . . , ft(a0, . . . , an)). The ideal I(π(An+1))

of the quotient variety is called the ideal of syzygies among the invariants

f1, . . . , ft; it is the kernel of the homomorphism from R to k[w1, . . . , wt] defined

by wi → fi, i = 1, . . . , t. We denote it by syz(f1, . . . , ft). We have:

Proposition 2.7: Let G ⊂ GL(n + 1, k) be a finite group acting on A
n+1.

Let f1, . . . , ft be a set of fundamental invariants and let π : An+1 → A
t be the

induced morphism. Then,

(i) π(An+1) is the affine quotient variety byG with affine coordinate ringRG.

(ii) RG ∼= k[w1, . . . , wt]/ syz(f1, . . . , ft).

(iii) π is a Galois covering of π(An+1) with group G. The cardinality of a

general orbit G(a), a ∈ A
n+1, is called the degree of the covering.

Proof. See [19, Section 6] and Proposition 2.3.



8 L. COLARTE-GÓMEZ ET AL.

If we can find a homogeneous set of fundamental invariants {f1, . . . , ft} such

that π : Pn → P
t−1 is a morphism, then the projective version of Proposition 2.7

is true.

3. The algebra of invariants of the dihedral group

Throughout this section, we study the action of the dihedral group on the poly-

nomial ring R = k[x0, x1, x2]. We fix integers 3≤d, 0<a< d
2 with gcd(d, a) = 1

and ε a 2dth primitive root of 1. We set e = ε2 and let ρa : D2d → GL(3, k)

be the linear representation of D2d = 〈τ, ε|τd = η2 = (ητ)2 = 1〉, the dihedral

group of order 2d, defined by (see [17])

ρa(τ) =Md;a,d−a =

⎛
⎜⎝
1 0 0

0 ea 0

0 0 ed−a

⎞
⎟⎠ and ρa(η) = σ =

⎛
⎜⎝
1 0 0

0 0 1

0 1 0

⎞
⎟⎠ .

It is the direct sum of the trivial representation in GL(1, k) and a faithful

representation in GL(2, k) of D2d. Therefore, the ring RD2d of invariants is

generated by the three algebraically independent invariants x0, x1x2 and x
d
1+x

d
2

of D2d (see [18] and [19]). Thus

RD2d = k[x0, x1x2, x
d
1 + xd2] = ⊕t≥0Rt ∩RD2d

is a non-standard graded polynomial ring.

Since gcd(a, d) = 1, the finite cyclic group 〈ρa(τ)〉 of order d coincides with

Γ := 〈Md;1,d−1〉 ⊂ GL(3, k).

We set C2d the finite cyclic group of order 2d generated by ε Id and we define

Γ ⊂ GL(3, k) to be the cyclic extension of Γ, i.e. Γ = Γ× C2d. Similarly, let

D2d = D2d × C2d ⊂ GL(3, k)

be the cyclic extension of D2d. We see the ring of invariants RD2d of D2d as a

k-graded subalgebra of R and RD2d as follows:

RD2d =
⊕
t≥0

RD2d
t , where RD2d

t := RD2d

2dt = R2dt ∩RD2d .

We relate RD2d to the ring RΓ studied in [4] and this connection allows to com-

pute the Hilbert function, Hilbert polynomial and Hilbert series ofRD2d . We also

provide a complete description of a homogeneous k-basis for each RD2d
t , t≥1.
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Our main result shows that the graded k-algebra RD2d is generated in degree 1.

Let us begin with the following remarks.

Remark 3.1: The action of σ on a monomial xa0
0 x

a1
1 x

a2
2 is given by xa0

0 x
a2
1 x

a1
2 .

Therefore, the action of 〈M l
d;1,d−1σ〉 ⊂ GL(3, k) is the same as the action of

〈diag(1, ed−1, e)l〉 ⊂ GL(3, k) for any 0 ≤ l ≤ d− 1.

Remark 3.2: (i) If a monomial of degree 2dt is an invariant of Γ, it is also

an invariant of 〈diag(1, ed−1, e)〉 ⊂ GL(3, k). Actually, a monomial

xa0
0 x

a1
1 x

a2
2 of degree 2dt is an invariant of Γ if and only if there exists

r ∈ {0, . . . , 2t(d − 1)} such that (a0, a1, a2) ∈ Z
3
≥0 is a solution of the

integer system ⎧⎨
⎩
a0 + a1 + a2 = 2dt,

a1 + (d− 1)a2 = rd.

Now

0 < (d− 1)a1 + a2 = da1 − (a1 − a2) = d(a1 + a2)− rd

is also a multiple of d. Hence (a0, a1, a2) is also a solution of the system⎧⎨
⎩
a0 + a1 + a2 = 2dt

(d− 1)a1 + a2 = (a1 + a2 − r)d

which implies that xa0
0 x

a1
1 x

a2
2 is an invariant of 〈diag(1, ed−1, e)〉.

(ii) Any monomial of degree 2dt of the form x2dt−2a1
0 xa1

1 x
a1
2 , a1 = 0, . . . , td,

is an invariant of Γ. There are exactly td+1 monomials of degree td of

such a form.

Next, we compute the Hilbert function HF(RD2d , t) of RD2d . Fix t ≥ 1.

Since HF(RD2d , t) is equal to the Hilbert function HF(RD2d , 2dt) of RD2d , by

Lemma 2.6 we have

HF(RD2d , t) =
1

2d

∑
g∈ρ(D2d)

trace(g(2dt)) =
1

2d
trace

( ∑
g∈ρ(D2d)

g(2dt)
)
,

where g(2dt) is the restriction of g to R2dt. We choose the set of all monomials

of degree 2dt as a basis B of R2dt, namely B = {m1, . . . ,mN}, where

N = dimkR2dt =

(
2dt+ 2

2

)
.
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Proposition 3.3: With the above notation,

HF(RD2d , t) =
2dt2 + (d+ gcd(d, 2) + 2)t+ 2

2
.

Proof. Let mi be a monomial in B of degree 2dt. We denote by M the matrix

which represents the linear map ∑
g∈ρ(D2d)

g(2dt)

in the above basis. We distinguish two cases.

Case 1: mi ∈ RΓ. Then by Remark 3.2,

M(i,i) =

⎧⎨
⎩
2d if σ(mi) = mi,

d if σ(mi) 
= mi.

Case 2: mi /∈ RΓ. If ξ is a dth root of unity, we have the equality

1 + ξ + · · ·+ ξd−1 = 0.

This, in addition to Remark 3.2, gives M(i,i) = 0.

Let μc
2dt be the number of monomials of degree 2dt in RΓ. Thus, we have

obtained that

(2d)HF(RD2d , t) = d(μc
2dt + td+ 1).

By [4, Theorem 4.5], μc
2dt is equal to the Hilbert function HF(RΓ, 2t) of the

ring RΓ in degree 2t. By [4, Theorem 4.11]

μc
2dt = 2dt2 + 2t+ gcd(2, d)t+ 1,

which completes the proof.

From the above result, we directly obtain the Hilbert polynomial HP(RD2d , t)

and the Hilbert series HS(RD2d , z) of the ring RD2d .

Proposition 3.4: With the above notation, the Hilbert polynomial and the

Hilbert series of RD2d are given by the following expressions:

(i) HP(RD2d , t) = 1
2 (2dt

2 + (d+ gcd(d, 2) + 2)t+ 2),

(ii) HS(RD2d , z) = 1
(1−z)3 (

d−gcd(d,2)
2 z2 + 3d+gcd(d,2)−2

2 z + 1).

Next, we use the relation between the two rings RD2d and RΓ to determine a

k-basis of any vector space RD2d
t , t ≥ 1, and to find a k-algebra basis of RD2d .

Fix t ≥ 1 and consider RD2d
t .
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Proposition 3.5: A k-basis B2dt of the vector space RD2d
t is formed by:

(i) the set of td+ 1 monomial invariants

x2dt0 , x2dt−2
0 x1x2, x

2dt−4
0 x21x

2
2, . . . , x

td
1 x

td
2

of Γ of degree 2dt; and

(ii) the set of all binomials xa0
0 x

a1
1 x

a2
2 + xa0

0 x
a2
1 x

a1
2 of degree 2dt such that

a1 
= a2 and xa0
0 x

a1
1 x

a2
2 ∈ RΓ.

Proof. By Remark 3.2(i), there are exactly 1
2 (μ

c
2dt−td−1) binomials of the form

xa0
0 x

a1
1 x

a2
2 + xa0

0 x
a2
1 x

a1
2 ∈ RΓ of degree 2dt with a1 
= a2. Since the forms in (i)

and (ii) are k-linearly independent, the result follows from Proposition 3.3.

We illustrate the above result with a couple of examples.

Example 3.6: (i) For d = 3 and D2·3 = 〈M3;1,2, σ〉, we have:

B2·3 = {x60, x30x31 + x30x
3
2, x

4
0x1x2, x

6
1 + x62, x0x

4
1x2 + x0x1x

4
2, x

2
0x

2
1x

2
2, x

3
1x

3
2},

HF(RD2·3 , 1) = 7.

B4·3 = {x120 , x90x31 + x90x
3
2, x

10
0 x1x2, x

6
0x

6
1 + x60x

6
2, x

7
0x

4
1x2 + x70x1x

4
2,

x80x
2
1x

2
2, x

3
0x

9
1 + x30x

9
2, x

4
0x

7
1x2 + x40x1x

7
2, x

5
0x

5
1x

2
2 + x50x

2
1x

5
2, x

6
0x

3
1x

3
2,

x121 + x122 , x0x
10
1 x2 + x0x1x

10
2 , x

2
0x

8
1x

2
2 + x20x

2
1x

8
2, x

3
0x

6
1x

3
2 + x30x

3
1x

6
2,

x40x
4
1x

4
2, x

9
1x

3
2 + x31x

9
2, x0x

7
1x

4
2 + x0x

4
1x

7
2, x

2
0x

5
1x

5
2, x

6
1x

6
2},

HF(RD2·3 , 2) = 19.

(ii) For d = 4 and D2·4 = 〈M4;1,3, σ〉, we have:

B2·4 = {x80, x40x41 + x40x
4
1, x

6
0x1x2, x

8
1 + x82, x

2
0x

5
1x2 + x20x1x

5
2,

x40x
2
1x

2
2, x

6
1x

2
2 + x21x

6
2, x

2
0x

3
1x

3
2, x

4
1x

4
2},

HF(RD2·4 , 1) = 9.

B4·4 = {x160 , x120 x41 + x120 x
4
2, x

14
0 x1x2, x

8
0x

8
1 + x80x

8
2, x

10
0 x

5
1x2 + x100 x1x

5
2,

x120 x
2
1x

2
2, x

4
0x

12
1 + x40x

12
2 , x

6
0x

9
1x2 + x60x1x

9
2, x

8
0x

6
1x

2
2 + x80x

2
1x

6
2, x

10
0 x

3
1x

3
2,

x161 + x162 , x
2
0x

13
1 x2 + x20x1x

13
2 , x

4
0x

10
1 x

2
2 + x40x

2
1x

10
2 , x

6
0x

7
1x

3
2 + x60x

3
1x

7
2,

x80x
4
1x

4
2, x

14
1 x

2
2 + x21x

14
2 , x

2
0x

11
1 x

3
2 + x20x

3
1x

11
2 , x

4
0x

8
1x

4
2 + x40x

4
1x

8
2, x

6
0x

5
1x

5
2,

x121 x
4
2 + x41x

12
2 , x

2
0x

9
1x

5
2 + x20x

5
1x

9
2, x

4
0x

6
1x

6
2, x

10
1 x

6
2 + x61x

10
2 , x

2
0x

7
1x

7
2, x

8
1x

8
2},

HF(RD2·4 , 2) = 25.
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The next goal is to prove that B2d is a set of fundamental invariants of D2d.

To achieve it, we use the natural structure of RD2d as a subring of RD2d . We

set y0=x0, y1 = x1x2 and y2 = xd1+x
d
2, as we have seen that RD2d = k[y0, y1, y2]

with deg(y0) = 1, deg(y1) = 2 and deg(y2) = d. With this notation, for any

t ≥ 1 we have that RD2d
t = k[y0, y1, y2]2td is the k-vector space with monomial

basis

A2dt = {yb00 yb11 yb22 | b0 + 2b1 + db2 = 2td}.

In particular, for t = 1 we have the change of basis ρ : k[y0, y1, y2]2d → RD2d
1

(1)

⎧⎨
⎩
yb00 y

b1
1 y

b2
2 �→ xb00 x

b1
1 x

b1
2 (xd1 + xd2)

b2 , if 0 ≤ b2 ≤ 1,

y22 �→ (x2d1 + x2d2 ) + 2xd1x
d
2.

Theorem 3.7: B2d is a set of fundamental invariants of D2d.

Proof. We see that for any t ≥ 2, any monomial yb00 y
b1
1 y

b2
2 ∈ A2dt is divisible by

a monomial of A2d. Then by induction, it follows that A2d is a set of generators

of RD2d ⊂ RD2d . Using (1), we obtain that B2d is a minimal set of generators

of RD2d .

Letm = yb00 y
b1
1 y

b2
2 ∈ A2dt be a monomial of degree b0+2b1+db2 = 2dt, t ≥ 2.

On one hand, we may suppose that b0 < 2d, b1 < d and b2 < 2. Otherwise, y2d0 ,

yd1 or y22 divide m and the result follows. On the other hand, if b2 = 0, b0 < 2d

and b1 < d, then we have deg(m) = 2d and t = 1. Therefore it only remains

to prove the case b0 < 2d, b1 < d and b2 = 1 with b0 + 2b1 + d = 4d. Since

b0 + 2b1 = 3d and b1 < d, this implies that b0 ≥ d and then yd0y2 ∈ A2d divides

m, as required.

As a consequence, RD2d ⊂ R is a graded k-algebra generated in degree 1

and ρ induces an isomorphism of graded k-algebras ρ : k[A2d] → k[B2d]. The

following example illustrates Theorem 3.7.

Example 3.8: We express the invariants of B4·3 in terms of B2d (see Example

3.6(i)). We have

A2·3 = {y60 , y30y2, y40y1, y22 , y0y1y2, y20y21 , y31},
A4·3 = {y120 , y100 y1, y80y21 , y60y31 , y40y41 , y20y51 , y61, y90y2, y70y1y2, y50y21y2, y30y31y2,

y0y
4
1y2, y

6
0y

2
2 , y

4
0y1y

2
2 , y

2
0y

2
1y

2
2 , y

3
1y

2
2, y

3
0y

3
2 , y0y1y

3
2 , y

4
2}.
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Expressing all monomials of A4·3 as products of monomials of A2·3 and applying

(1) we obtain the following factorizations:

x120 = (x60)(x
6
0)

x100 x1x2 = (x60)(x
4
0x1x2)

x80x
2
1x

2
1 = (x60)(x

2
0x

2
1x

2
2)

x60x
3
1x

3
2 = (x60)(x

3
1x

3
2)

x40x
4
1x

4
2 = (x40x1x2)(x

3
1x

3
2)

x20x
5
1x

5
2 = (x20x

2
1x

2
2)(x

3
1x

3
2)

x61x
6
2 = (x31x

3
2)

2

x90x
3
1 + x90x

3
2 = x60(x

3
0x

3
1 + x30x

3
2)

x60x
6
1 + x60x

6
2 = x60(x

6
1 + x61)

x70x
4
1x2 + x70x1x

4
2 = x40x1x2(x

3
0x

3
1 + x30x

3
2)

x40x
7
1x2 + x40x1x

7
2 = x40x1x2(x

6
1 + x62)

x50x
5
1x

2
2 + x50x

2
1x

5
2 = x20x

2
1x

2
2(x

3
0x

3
1 + x30x

3
2)

x20x
8
1x

2
2 + x20x

2
1x

8
2 = x20x

2
1x

2
2(x

6
1 + x62)

x30x
6
1x

3
2 + x30x

3
1x

6
2 = x31x

3
2(x

3
0x

3
1 + x30x

3
2)

x91x
3
2 + x31x

9
2 = x31x

3
2(x

6
1 + x62)

x0x
7
1x

4
2 + x0x

4
1x

7
2 = x31x

3
2(x0x

4
1x2 + x0x1x

4
2)

x30x
9
1 + x30x

9
2 = (x61 + x62)(x

3
0x

3
1 + x30x

6
2)− x31x

3
2(x

3
0x

3
1 + x30x

3
2)

x121 + x122 = (x61 + x62)
2 − 2(x31x

3
2)

2

x0x
10
1 x2 + x0x1x

10
2 = (x0x

4
1x2 + x0x1x

4
2)(x

6
1 + x62)− x31x

3
2(x0x

4
1x2 + x0x1x

4
2).

Notice that these decompositions are not unique, for instance x80x
2
1x

2
2 can also

be factored as (x40x1x2)
2.

We end this section with a corollary regarding the Cohen–Macaulayness

of RD2d .

Corollary 3.9: (i) RD2d is a Cohen–Macaulay level algebra with Cohen–

Macaulay type 1
2 (d− gcd(d, 2)) and Castelnuovo-Mumford regularity 3.

(ii) RD2d is Gorenstein if and only if d = 3 or 4.
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Proof. Since RD2d is the ring of invariants by the action of the linear finite

group D2d on R, it is Cohen–Macaulay (see [10, Proposition 12]). The other

results follow from that and Proposition 3.4.

4. Togliatti systems associated to the dihedral group

In this section, we describe Togliatti systems I2d associated to D2d and we study

the geometry of their associated varieties. As far as we know, the GT-systems

described in previous works were all monomial and it is worthwhile to point

out that I2d is the first large class of non-monomial GT-systems. Namely, we

prove that the ideal generated by the set of fundamental invariants B2d (see

Proposition 3.5 and Theorem 3.7) of D2d is a GT-system with group D2d. We

connect the ring RD2d to the coordinate ring of the associated varieties of these

GT-systems.

Let I2d ⊂ R be the homogeneous ideal generated by B2d and we set

μ2d := HF(RD2d , 1).

We denote by ϕI2d : P2 → P
μ2d−1 the morphism induced by I2d. Our first goal

is to show that I2d is a non-monomial GT-system with group D2d. We set

SD2d
:= ϕI2d(P

2)

and call it a GT-surface with group D2d. The ring of invariants RD2d is

then the coordinate ring of SD2d
(see Proposition 2.7 and Theorem 3.7). We

study the homogeneous ideal I(SD2d
) of SD2d

, which is the prime ideal syz(B2d)

of syzygies among B2d. We compute a minimal free resolution of I(SD2d
) and,

as a consequence, we prove that I(SD2d
) is minimally generated by quadrics.

Lemma 4.1: For all d ≥ 3,

μ2d ≤ 2d+ 1.

Proof. From Proposition 3.3,

μ2d =
2d+ d+ 2 + gcd(d, 2) + 2

2
≤ 3d+ 6

2
,

which is smaller than or equal to 2d+ 1 for all d ≥ 3.
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Proposition 4.2: The ideal I2d is a GT-system with group D2d.

Proof. First, notice that I2d is an artinian non-monomial ideal. Precisely,

x2d0 , x
2d
1 + x2d2 and xd1x

d
2 form a homogeneous system of parameters of RD2d .

And secondly, since B2d is a set of fundamental invariants of D2d (see Theorem

3.7), by Proposition 2.7 it follows that ϕI2d is a Galois covering with group D2d.

Now, by Lemma 4.1, I2d is generated by μ2d ≤ 2d + 1 homogeneous forms of

degree 2d. Hence, by Theorem 2.1 it only remains to see that it fails the weak

Lefschetz property from degree 2d−1 to 2d. Let L ∈ (R/I2d)1 be a linear form,

and let us consider

F2d−1 :=
∏

g∈D2d
g �=Id

g(L).

By construction, for any element g ∈ D2d we have that

g(LF2d−1) = LF2d−1.

Thus LF2d−1 is an invariant of D2d and the result follows from Theorem 3.7.

In the rest of this section, we deal with the geometry of SD2d
. Let us begin

with some properties which follow directly from the results we obtained in

Section 3.

Proposition 4.3: SD2d
is an arithmetically Cohen–Macaulay surface of degree

deg(SD2d
) = 2d, regularity 3, codimension 1

2 (3d + gcd(d, 2) − 2) and Cohen–

Macaulay type 1
2 (d− gcd(d, 2)). In particular, SD2d

is Gorenstein if and only if

d = 3, 4.

Proof. See Corollary 3.9.

Our next goal is to determine a minimal free resolution of I(SD2d
). In partic-

ular, we obtain that I(SD2d
) is generated by quadrics. Let us begin introducing

some new notation.

We set

Wd :=
{
w(r,γ) | 0 ≤ r ≤ 2(d− 1) and max

{
0,
⌈ (r − 2)d

d− 2

⌉}
≤ γ ≤ r

}
,

a set of variables ordered lexicographically. As we will see explicitly in No-

tation 4.5, each pair (r, γ) as in Wd uniquely determines the exponents of an

element in B2d (see Remark 3.2 and Proposition 3.5). Hence, the cardinality
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of Wd is

μ2d = d+ 2 +
d+ gcd(2, d)

2
.

We exhibit a few examples.

Example 4.4: (i) For d = 3,

B2·3 = {x60, x30x31 + x30x
3
2, x

4
0x1x2, x

6
1 + x62, x0x

4
1x2 + x0x1x

4
2, x

2
0x

2
1x

2
2, x

3
1x

3
2}

and

W3 = {w(0,0), w(1,0), w(1,1), w(2,0), w(2,1), w(2,2), w(3,3)}.
(ii) For d = 4,

B2·4 = {x80, x40x41 + x40x
4
1, x

6
0x1x2, x

8
1 + x82, x

2
0x

5
1x2 + x20x1x

5
2, x

4
0x

2
1x

2
2,

x61x
2
2 + x21x

6
2, x

2
0x

3
1x

3
2, x

4
1x

4
2}

and

W4 = {w(0,0), w(1,0), w(1,1), w(2,0), w(2,1), w(2,2), w(3,2), w(3,3), w(4,4)}.
(iii) For d = 5,

B2·5 = {x100 , x50x51 + x50x
5
2, x

8
0x1x2, x

10
1 + x102 , x

3
0x

6
1x2 + x30x1x

6
2, x

6
0x

2
1x

2
2,

x0x
7
1x

2
2 + x0x

2
1x

7
2, x

4
0x

3
1x

3
2, x

2
0x

4
1x

4
2, x

5
1x

5
2}

and

W5 = {w(0,0), w(1,0), w(1,1), w(2,0), w(2,1), w(2,2), w(3,2), w(3,3), w(4,4), w(5,5)}.
Notation 4.5: We denote by

S = k[w(r,γ)]w(r,γ)∈Wd

the polynomial ring. The homogeneous ideal I(SD2d
) is the kernel of the ring

homomorphism ϕd : S → k[B2d] defined as follows:

ϕd(w(r,γ))

=

⎧⎨
⎩
x2d−2γ
0 xγ1x

γ
2 =: m(r,γ) if r = γ.

x
(2−r)d+(d−2)γ
0 (x

rd−(d−1)γ
1 xγ2 + xγ1x

rd−(d−1)γ
2 )=:m(r,γ)+m(r,γ) otherwise.

The information from the Hilbert function of SD2d
and the regularity allows

us to determine a minimal free resolution of SD2d
. Set

C := codim(SD2d
) =

3d+ gcd(d, 2)− 2

2
,
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and

h := deg(SD2d
)− C − 2 =

d− gcd(d, 2)− 2

2
.

Theorem 4.6:With the above notation, I(SD2d
) has a minimal freeS-resolution

0 → SbC,2(−C − 2) →
⊕
l=1,2

SbC−1,l(−C + 1− l) →
⊕
l=1,2

SbC−2,l(−C + 2− l)

→ · · · →
⊕
l=1,2

SbC−h,l(−C + h− l) → SbC−h−1,1(−C + h)

→ · · · → Sb1,1(−2) → S → S/I(S2d) → 0

where

bi,j−i :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i
(

C
i+1

)
+ (C − i− h)

(
C
i−1

)
if 1 ≤ i ≤ C − h− 1, j = i+ 1,

i
(

r
i+1

)
if C − h ≤ i ≤ C, j = i+ 1,

(i − C + h+ 1)
(
C
i

)
if C − h ≤ i ≤ C, j = i+ 2.

0 otherwise.

Proof. For d = 3, 4 we compute explicitly the resolutions of SD2·3 and SD2·4 in

Example 4.8(i),(ii). For all d ≥ 5 we check that C + 3 ≤ 2d ≤ 2C and then we

apply [24, Corollary 3.4(ii)]. Clearly 2d ≤ 3d+ gcd(d, 2) − 2 for all d ≥ 3. On

the other hand,

C + 3 =
3d+ gcd(d, 2) + 4

2
≤ 2d

if and only if 3d+ gcd(d, 2) + 4 ≤ 4d if and only if gcd(d, 2) + 4 ≤ d. The last

inequality holds for all d ≥ 5.

Corollary 4.7: I(SD2d
) is minimally generated by

9d2 + 2d+ 8

8

quadrics if d is even and by

9d2 − 4d+ 3

8

quadrics if d is odd.

Let us illustrate Theorem 4.6 with some examples, which we compute using

the software Macaulay2 ([7]).
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Example 4.8: For d = 3, SD2d
has codimension C = 4 and degree

deg(SD2d
) = 6, so h = 0. A minimal free resolution of I(SD2·3 ) over

S = k[w(r,γ)]w(r,γ)∈W3 is

0 → S(−6) → S9(−4) → S16(−3) → S(−2)9 → S → S/I(SD2·3) → 0.

For d=4, SD2d
has codimension C=6 and degree deg(SD2d

)=8, so h=0.

A minimal free resolution of I(SD2·4 ) over S=k[w(r,γ)]w(r,γ)∈W4 is

0 → S(−8) → S20(−6) → S64(−5) → S90(−4)

→ S64(−3) → S20(−2) → S → S/I(SD2·4) → 0.

For d = 5, SD2d
has codimension C = 7 and degree deg(SD2d

) = 10,

so we have h = 1 and a minimal free resolution of I(SD2·5) over

S = k[w(r,γ)]w(r,γ)∈W5 is

0 → S2(−9) → S7(−8)⊕S6(−7) → S70(−6) → S154(−5) → S168(−4)

→ S98(−3) → S26(−2) → S → S/I(SD2·5) → 0.

Our next aim is to describe a minimal set of generators of I(SD2d
). We define

a new set of indeterminates z(r,γ), we set S′ = k[z(r,γ)] and we consider the

linear change of variables induced by ρ (see (1)):

(2)

⎧⎨
⎩
z(r,γ) = w(r,γ), if w(r,γ) 
= w(2,0),

z(2,0) = w(2,0) + 2w(d,d),

which gives an isomorphism ρ̃ : k[z(r,γ)] → S of polynomial rings. We have the

following commutative diagram:

S′ k[A2d]

S k[B2d]

ψd

ϕd

ρ̃ ρ

where

ψd(z(r,γ)) = ρ−1(ϕd(w(r,γ)))

if z(r,γ) 
= z(2,0) (see (1)) and

ψd(z(2,0)) = y22 .
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In particular, ψd sends bijectively the variables z(r,γ) to the monomials of

A2d = {yb00 yb11 yb22 | b0 + 2b1 + db2 = 2d}

by the formula ψd(z(r,γ)) = y
d(2−r)+(d−2)γ
0 yγ1y

r−γ
2 . We obtain the following

result.

Theorem 4.9: (i) ker(ψd) is a binomial ideal of S′ minimally generated

by quadrics.

(ii) I(SD2d
) = ρ̃(ker(ψd)), and a minimal set of generators of I(SD2d

) con-

sists of the following sets of binomials and trinomials:

{w(r1,γ1)w(r2,γ2) − w(r3,γ3)w(r4,γ4) | (ri, γi) 
= (2, 0), r1 + r2 = r3 + r4,

γ1 + γ2 = γ3 + γ4},

{(w(2,0) + 2w(d,d))w(γ1,γ1) − w(r2,γ2)w(r3,γ3) | (ri, γi) 
= (2, 0),

γ1 + 2 = r2 + r3, γ1 = γ2 + γ3}.
Proof. (i) ker(ψd) is generated by the set of binomials of the form

l∏
i=1

z(rji ,γji
) −

l∏
i=1

z(rmi
,γmi

), l ≥ 2,

such that
l∏

i=1

ψd(z(rji ,γji
)) =

l∏
i=1

ψd(z(rmi
,γmi

))

(see [9, Theorem 1]). From this and Corollary 4.7, it follows that ker(ψd) is

minimally generated by binomials of degree 2. Precisely, since we have

ψd(z(r,γ)) = y
d(2−r)+(d−2)γ
0 yγ1y

r−γ
2 ,

these binomials are

(3) {z(r1,γ1)z(r2,γ2) − z(r3,γ3)z(r4,γ4) | r1 + r2 = r3 + r4, γ1 + γ2 = γ3 + γ4}.

(ii) Since ρ̃ and ρ are isomorphisms of k-algebras, from the above commutative

diagram we have that I(SD2d
) = ρ̃(ker(ψd)). Applying ρ̃ to (3), we obtain the

description of the minimal set of generators in (ii).

We end this note with an example.
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Example 4.10: Fix d = 4. We compute the homogeneous ideal I(SD2·4) using

the software Macaulay2. It is minimally generated by the 15 binomials and 5

trinomials of degree 2 that we list below.

w(0,0)w(2,2) − w2
(1,1) w(1,0)w(3,3) − w(1,1)w(3,2)

w(0,0)w(3,3) − w(1,1)w(2,2) w(1,0)w(3,3) − w(2,1)w(2,2)

w(0,0)w(3,2) − w(1,0)w(2,2) w(1,0)w(4,4) − w(2,1)w(3,3)

w(0,0)w(2,1) − w(1,0)w(1,1) w(1,0)w(4,4) − w(2,2)w(3,2)

w(0,0)w(4,4) − w(1,1)w(3,3) w(1,1)w(4,4) − w(2,2)w(3,3)

w(0,0)w(4,4) − w2
(2,2) w(2,1)w(4,4) − w(3,2)w(3,3)

w(1,0)w(2,2) − w(1,1)w(2,1) w(2,2)w(4,4) − w2
(3,3)

w(1,0)w(3,2) − w2
(2,1)

w2
(1,0) − w(0,0)w(2,0) − 2w(0,0)w(4,4)

w(1,0)w(2,1) − w(1,1)w(2,0) − 2w(1,1)w(4,4)

w(1,0)w(3,2) − w(2,0)w(2,2) − 2w(2,2)w(4,4)

w(2,1)w(3,2) − w(2,0)w(3,3) − 2w(3,3)w(4,4)

w2
(3,2) − w(2,0)w(4,4) − 2w2

(4,4)
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