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Abstract. Encoding methods affect the performance of process min-
ing tasks but little work in the literature focused on quantifying their
impact. In this paper, we compare 10 different encoding methods from
three different families (trace replay and alignment, graph embeddings,
and word embeddings) using measures to evaluate the overlaps in the
feature space, the accuracy obtained, and the computational resources
(time) consumed with a classification task. Across hundreds of event
logs representing four variations of five scenarios and five anomalies, it
was possible to identify the edge2vec method as the most accurate and
effective in reducing class overlapping in the feature space.

Keywords: Trace encoding + Word embeddings + Graph embeddings -
Classification * Process Mining

1 Introduction

Process Mining (PM) is aimed at extracting knowledge from business process
event logs. Trace encoding, i.e. encoding the sequence of events in a case, is
then a crucial stage for any PM task [8]. Event logs incorporate multiple infor-
mation such as activity sequences, time spans, dependency between activities
or attribute values, replaceability between activities or resources, concurrent or
iterative behavior, and others [3,11,12,19] that can be hardly summarized in a
single representation. Encoding transforms this information into a feature space
enabling data processing. For this reason, the choice of the encoding method
can drive the successful implementation of PM tasks. A bad encoding creates
ambiguity, sparsity and complex separation boundaries [17,20]. A good encoding
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boosts performances by correctly and effectively discriminating traces and the
impact on computational costs.

The machine learning community has deeply discussed the relationship
between data encoding and the complexity of classification tasks. For example,
Ho and Basu, in [17], studied several properties, such as class ambiguity, data
sparsity, non-discriminative features, and the intrinsic complexity of class sepa-
ration boundaries. Lorena et al. [20], grouped some of these properties to support
measures of complexity of the classification problems. The Maximum Fisher’s
Discriminant Ratio (F1) and the Volume of Overlapping Region (F2) were sug-
gested to measure how effectively the feature vectors can separate classes. F1
uses the largest discriminating ratio among all the dimensions provided by the
encoding method, indicating if the problem classes can be separable using this
high-discriminant feature. F2 is related to the overlapping intervals between the
problem classes [10]. The Average Number of Principal Component Analysis
(PCA) dimensions compared to the original dimensions (T4) can be used for
evaluating dimensionality [20].

Despite trace encoding is widely discussed in the PM community [3,11,12,19],
to the best of our knowledge, we lack a study on the quality achieved by the dif-
ferent methods proposed in the literature. In this work, we compared 10 different
encoding methods (alignment, trace replay, edge2vec, node2vec, fasttext, tfidf,
count2vec, word2vec, one-hot, and hash2vec) representative of both traditional
PM methods, such a trace replay and alignment, and methods producing highly
informative but low-dimensional vectors such as graph embeddings and word
embeddings. These methods are compared against a classification problem as it
directly relates to well-known PM tasks such as trace clustering and anomaly
detection. More specifically, the Random Forest algorithm was employed to mea-
sure accuracy and time for binary classification of event logs. The F1, F2, and T4
measures were used to assess the quality of the compared encoding methods. The
classes to be identified were common PM anomalies (early, insert, late, rework,
and skip) with four different shares across five different scenarios, analyzing a
total of 100 event logs.

Our results bring important insights into the optimal representation of traces
in PM. More specifically, the paper starts by presenting the relevance of trace
encoding in the PM literature (Sect. 2). Then, we expand on the encoding meth-
ods evaluated (Sect. 3). Section 4 presents the event logs and experiments, along
with an application scenario in the classification domain. The results are pre-
sented and discussed in Sect. 5. Final remarks and conclusions are presented in
Sect. 6.

2 Related Work

As process data may be analyzed according to multiple perspectives, there exists
a considerable amount of encoding techniques that could be applied to event
logs. Traditional PM goals, such as discovering a process model, require some
level of abstractions to represent information, which can be achieved by encod-
ings. In process discovery techniques, relations from the log are extracted and



transformed into other forms of representations, such as directly-follows map-
pings [27]. Leontjeva et al. [19] presented a complex sequence encoder based
on indexes and hidden Markov models encoding. A last state encoding method
was proposed by Polato et al. [24] for time and activity prediction in processes.
Inspired by natural language processing research, Koninck et al. [11] applied
word2vec and doc2vec for representational learning in business processes. The
authors adapted these encodings to work on several business process layers,
activities, traces, logs, and models. Also using word embeddings to learn repre-
sentations, Hake et al. [16] combined word2vec and recurrent neural networks to
label nodes in business process models.

Recently, graph embedding techniques have been proposed to encode infor-
mation structured as graphs [15]. These techniques are suitable in PM environ-
ments as graphs can represent business process models, where nodes and edges
are activities and directly-follows relations. A graph representation of the busi-
ness process can be compared to graph representations of the traces similarly to
traditional PM conformance checking methods. Furthermore, graph embeddings
open new possibilities for PM analysis, such as capturing graph structures and
finding similarities across different process models.

Nolle et al. [22] used autoencoders for the assessment of anomalies. Autoen-
coder is a class of neural networks trained to copy its input to an output that
preserves the input’s probability density function [14]. For that, it learns the
input-output mapping ignoring the noise. The authors’ method consists of first
transforming the event log using the one-hot encoding technique. Then, the
autoencoder is trained with back-propagation using the event log both as input
and output label. However, the vector size increases linearly with the number of
activities, meaning that complex processes are encoded in huge dimensions. Also,
autoencoders involve relevant computational costs that limit their application.

3 Encoding Methods

To limit the scope of our work, we decided to investigate the control-flow per-
spective, that is, the selected encoding methods are pertinent to the analysis of
the sequence of executed activities. Moreover, autoencoders were not considered
due to their extremely high computational costs, making applications in busi-
ness processes difficult. The selected methods can be organized into three main
groups: trace replay and alignment, word embeddings, and graph embeddings.
Table 1 details the encoding methods we studied with their features, types, and
ranges.

3.1 Trace Replay and Alignment

Most PM quality measures are based on conformance checking methods, which
aim at comparing a process execution to a process model [25]. The measures
produced by conformance checking techniques can be interpreted as features.



Table 1. Encoding characteristics, produced features and their possible values

Encoding Family Feature Type Range
trace replay H PM-based trace is fit Boolean | {True, False}
fitness Numeric | [0, 1]
consumed tokens | Integer | [0, oof
remaining tokens | Integer | [0, oof
produced tokens | Integer | [0, oof
alignment |PM-based |cost Integer | [0, oof
visited states Integer | [0, oof
queued states Integer | [0, oof
traversed arcs Integer | [0, oof
fitness Numeric | [0, 1]
word2vec | Text-based | n-dimensions” Numeric | |—o0, oof
fasttext Text-based | n-dimensions™ Numeric | |—o0, oo
count2vec | Text-based |n-dimensions™ |Integer |[0, cof
one-hot Text-based | n-dimensions™ | Integer |{0, 1}
tfidf Text-based | n-dimensions™ | Numeric | [0, 1]
hash2vec Text-based | n-dimensions™ Numeric | [—1, 1]
node2vec Graph-based | n-dimensions™ Numeric | |—o0, oo
edge2vec Graph-based | n-dimensions”® Numeric | |—o0, oo

* encoding vector size is determined by a parameter
** encoding vector size is determined by the vocabulary size

More specifically, we exploited two conformance checking algorithms to encode
traces: trace replay and trace alignment.

Trace Replay. These techniques replay traces into a model trying to consume
the executed activities according to the constraints imposed by the model. By
counting the missing and remaining activities, a measure of the conformance is
produced [6].

Trace Alignment. These techniques also perform a comparison between a model
and a trace but directly relate a trace to the valid execution sequences, i.e.
allowed by the model [6]. Ultimately, an alignment can be seen as a sequence
of moves that can be synchronous if originated from both the model and the
trace, model-dependent if originated from the model only, or log-dependent if
originated from the trace only. It follows that more than one alignment is possible
when comparing a trace to a model. Thus, the technique aims at finding an
optimal alignment, minimizing the number of model- and log-moves, which are
measured by a cost function.



3.2 Word Embeddings

Word embeddings are grounded in information retrieval and natural language
processing. Neural network algorithms are exploited to create highly informative
but low-dimensional vectors modeling the context in which words of a corpus
are inserted. We applied the following text-based encodings: word2vec, fasttext,
count2vec, one-hot, tfidf and hash2vec.

Word2vec. The word embeddings come from the weights of a two-layer neural
network created to reconstruct the linguistic context of words in a corpus [21].
This way, words appearing in similar contexts generate more similar encodings
than words present in different contexts. In the process domain, a trace can be
described by its sequence of activities, which can be treated as words in a corpus.
From this perspective, a trace is a sentence and a log is a text, i.e., a sequence
of sentences. Consequently, the trace encoding is the aggregation of its activities
encodings, which is obtained by their mean.

Fasttext. Fasttext represents each word as a bag of n-gram characters, trying to
capture the morphemes of a corpus. The final vector representation of a word
is, then, retrieved by the sum of its n-gram character representations [2]. Given
this construction, the method performs well in the representation of rare words
and can generate encodings for words that do not appear in the training data.

Count2vec. The count vectorizer is a simple way of encoding words by accounting
for their frequencies in a text document. This tokenization process outputs a
matrix of word counts. The length of the features is determined by the number
of unique words in the document. For this method, the event log is interpreted
as a document and the activity frequency regulates the resulting feature vector
for each trace.

One-Hot. The one-hot encoding technique encodes categorical values in a binary
representation. For that, it first maps words into integers and, then, transforms
the generated integer values to a binary value. Like count2vec, the number of
dimensions linearly increases with the vocabulary size, with the tendency of
generating sparse features.

Tdidf. Term frequency-inverse document frequency (tdidf) is a traditional infor-
mation retrieval metric aimed at capturing the importance of a word in a doc-
ument given a collection of documents. The term frequency weights a term
occurrence proportionally to its frequency in a document. The inverse docu-
ment frequency quantifies the importance of a term as the inverse function of its
occurrence across a collection of documents.

Hash2vec. Tdidf creates a dictionary of words, which increases linearly to the
vocabulary size, often generating large and sparse representations. To overcome
this issue, the hash2vec maps a feature into an index (word) using a hash func-
tion. Then, word frequencies are computed based on previously mapped indices.
The technique allows a vector of a predetermined size, on the other hand, if a
small vector size is used, hash collisions, where different words are represented
by the same index, can take place [28].



3.3 Graph Embeddings

Graph embeddings emerged from the necessity of modeling more complex rela-
tions, such as entity links and long-term relations. Graphs are suitable for this
task due to their data representation format, enabling exploration of nodes and
edges. We applied two versions of node2vec: one encodes the nodes, while the
other encodes the edges.

Node2vec. Built on top of word2vec, node2vec aims at encoding graph data
while preserving neighborhoods and structures. The low-dimensional node rep-
resentations are based on second-order random walks that propose a trade-off
between breadth and width searches, exploring neighbors and neighborhoods.
The flexibility of node exploration allows for a richer representation of diverse
neighborhoods.

Edge2vec. Edge2vec captures the links (edges) that connect nodes. For our evalu-
ation, this behavior is interesting as process models can be represented as graphs.
This way, by grouping the edges representations, we can generate another encod-
ing using the same method.

4 Materials and Methods

This section presents the event logs, the experimental setup, and the quality
metrics used in our experimental analysis. Generated event logs and code for
experiments are publicly available!, following open-science principles.

4.1 Event Logs

Our experimental design implies relying on labeled data providing the ground
truth for the evaluation of the compared methods. We then generated synthetic
event logs following standard practices in PM research and injecting anomalies
to the generated traces. This way we achieved two goals. Traces are labeled
as anomalous or normal, making our data set suitable for supervised learning.
Heterogeneous behaviors are introduced in the event logs, making our data set
more realistic.

First, five different process models were generated using the PLG2 tool [5].
PLG2 performs a random generation of process models capable of representing
several business process behaviors such as sequential, parallel, and iterative con-
trol flows. For that, the tool combines traditional control-flow patterns [26], e.g.,
sequence, parallel split and synchronization. The patterns are progressively com-
bined, given a predetermined set of rules, to simulate real-world scenarios. The
five generated process models define five different base scenarios differing because
of the number of activities and gateways [9]. The next step was to simulate the
process model to generate the log. For that, we applied the Perform a simple

! https://github.com/gbrltv/business_process_encoding.
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simulation of a (stochastic) Petri net ProM plug-in?. The number of simulated
cases was set to 1000, and the arrival rate of new cases was set to 30 min. The
other hyperparameters were unchanged. As a post-processing step, we injected
anomalies by perturbing regular traces. Injecting anomalies into event logs is a
common practice in the literature [1]. For that, we applied the anomalies pro-
posed by Nolle et al. [23]: 1. skip: a sequence of 3 or less necessary events is
skipped;2. insert: 3 or less random activities are inserted in the case;3. rework:
a sequence of 3 or less necessary events is executed twice;4. early: a sequence of
2 or fewer events executed too early, which is then skipped later in the case;5.
late: a sequence of 2 or fewer events executed too late.

The anomalies were applied in normal traces, replacing their occurrence.
Moreover, to analyze to which extent anomalies affect the encodings, we injected
different percentages of anomalies for each scenario: 5%, 10%, 15%, and 20%.
Given five scenarios (our base models), five anomalies, and four anomaly per-
centages, a total of 100 event logs were generated. To facilitate the interpreta-
tion of the logs, we added two additional attributes: label and description. Case
labels represent if a case belongs to a normal execution or one of the anomalous
types. Furthermore, the description is a natural language sentence describing the
anomaly and its impact on the case. Descriptive statistics about the generated
event logs are listed in Table2. The different scenarios are of increasing com-
plexity, scenario 3 contains the longest traces and, consequently, logs composed
of more events.

Table 2. Event log statistics demonstrating different levels of complexity. 20 event logs
with 1k cases were generated for each scenario

Log name | #gateways | #events | trace size | #activities
scenario 1| 8 10k-11k | 9-13 22
scenario 2 | 12 26k 26-30 41
scenario 3 | 22 43k—-44k | 42-50 64
scenario 4 | 30 11k-13k | 3-30 83
scenario 5 | 34 18k—-19k | 4-37 103

4.2 Trace Encoding

Since trace replay and alignment require a process model, we generated a model
using the Inductive Miner Directly Follows algorithm [18]. Process model and
encodings were extracted using the PM4Py library®. For word embeddings, we
used the Gensim* library to compute word2vec and fasttext and the Scikit-learn

2 http://www.promtools.org/doku.php.
3 https://pmdpy.fit.fraunhofer.de/.
* https://radimrehurek.com/gensim/.
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library® compute the remaining encodings. For the graph embeddings, a graph
model is expected as input. Thus, we generated a directly-follows graph using
the event log to capture node and edge frequency. The encodings were extracted
with the node2vec® library. For all encoding methods, the recommended standard
hyperparameters were used.

4.3 Feature Vector Measures and Classification Algorithm

In our experiments, we computed F1, F2 and T4 measures using the ECoL
(Eztended Complexity Library) R package, available at Github” and CRANS®,
using standard hyperparameters. Although multiple PM tasks could exploit trace
encoding, we drove our evaluation using a binary classification task for anomaly
detection. This is a basic supervised approach that can be easily evaluated and
whose connections to other tasks are well known. We used the Random For-
est classification algorithm [4] following the Scikit-learn implementation with
standard parameters. The Random Forest was chosen due to its high predictive
performance and wide use in related papers. The traditional holdout method was
used to divide the data into train and test sets, with an 80%/20% proportion.
Each classification was performed 30 times to compute a mean accuracy value,
eliminating possible eccentric performances. Moreover, the meantime consump-
tion for the performed executions was computed.

5 Results and Discussion

This section presents the results obtained in evaluating the impact of the studied
encoding methods from several complementary perspectives.

5.1 Accuracy Performance

One of the main goals when choosing an encoding method is to support high
predictive performance. Figure 1 presents the accuracy results (along with their
standard deviation) aggregated over the event logs of all the scenarios presented
in Table 2. Trace replay and alignment methods obtained very similar results, an
average accuracy of 91.93% and 92.62%, respectively. The word embedding fam-
ily obtained average accuracy varying from 88.72% (one-hot) to 94.16% (tfidf),
with the latter being the best performing text-based encoding. The best perfor-
mances were achieved with methods of the graph embedding family. Node2vec
reached an average accuracy of 94.18% while edge2vec obtained 96.08%, the best
overall performance.

Trace replay and alignment methods rely on the comparison of an event
log to a model. Since the model is induced from the event log, anomalies may

® https://scikit-learn.org/stable/.

5 https://github.com/eliorc/node2vec.

7 https://github.com/Ipfgarcia/ECoL.

8 https://cran.r-project.org/package=ECoL.
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Fig. 1. Average accuracy obtained using all encoding methods across binary problems
related to anomaly detection (early, insert, late, rework and skip) affected by four
different levels of compromised samples (5%, 10%, 15% and 20%).

have been modeled as normal transitions. Ideally, a model could be constructed
from a filtered event log, without anomalies. However, in reality, often event
data is not labeled, and manually detecting anomalies is a resource-consuming
task. Nonetheless, these methods produce the most interpretable features, eas-
ily understandable by process stakeholders. This characteristic has gained more
attention in data mining research, as black-box models may not offer sufficient
basis for their choices. Overall, the trade-off between performance and inter-
pretability plays an important role when applying trace encodings.

Word embeddings present a wider range of performances. One-hot encoding
and count2vec appear with the worst results. Both methods are grounded in
word frequencies and fail to encode global information, such as accounting dif-
ferences between traces in the same log. Besides, the ordering of the traces is lost
by these methods. This way, counting frequencies demonstrate to be a shallow
method that does not meet business process modeling requirements. Word2vec
and fasttext, which are more recent advancements in text processing, capture
activities context by considering their neighborhood. These methods allow for a
better overall trace description and, consequently, higher accuracy values. More-
over, fasttext performs slightly better than word2vec, probably a result of its
consideration of n-grams when encoding a word. Hash2vec and ifidf are the best
performing methods within this family. Both methods propose a frequency anal-
ysis that also covers inter-trace behavior, i.e., global event log characteristics.
Even though these encodings do not consider the ordering, their performance
surpasses methods that capture context information. This implies that trace
context, i.e., activities neighborhood, from a text analysis perspective, is not so
determinant as a descriptor when compared to weighted frequencies. A possible



explanation for the inferior performance obtained by word2vec and fasttext is
that these methods require a rich corpus for training their models. According
to Table 2, the richest log, in the number of unique activities, only contains 103
words. This highly limits the capacity of capturing context information. In most
cases, the set of activities in a business process is considerably smaller than the
vocabulary of a document collection. This way, in the business process domain,
modern word embedding techniques are not necessarily the best. Finally, the
length of the event log also plays a role in this performance since a higher num-
ber of traces may increase the encoding quality of context-based methods.

The graph embedding family was the best performing for the classification
task. Node2vec and edge2vec are built on top of word2vec, thus, the goal is also
to capture context information. Further, the graph structure is capable of rep-
resenting many complex behaviors. Therefore, their performance overcomes all
other families. Within graph embeddings, edgeZvec displays an accuracy con-
siderably higher than mode2vec. This happens because node2vec is limited to
encode node (activity) behavior only. On the other hand, edge2vec encodes the
connections within activities and long-term relations are captured.

5.2 Time Usage

Time costs of an encoding method can directly influence its selection since costly
methods are prohibitive to real-life event logs with huge volume of data. In our
experiments, we considered the time consumed during the classification task.
Figure 2 presents the time variation among all methods. Trace replay and align-
ment obtained similar results, with trace replay (0.258s) being the fastest and
most stable method. Graph embeddings were the most time-costly, with an aver-
age of 0.349s. The edge2vec method, which uses edge information, was the slow-
est, spending an average of 0.391s. Text-encoding family reveals to be faster,
except for the word2vec method that required an average of 0.341 s and resulted
the most unstable, obtaining the highest standard deviation (0.07s).

alignment I-—D:I—i ]
trace replay }—HQ

node2vec I»—I:I:I—i "we ¢
edgezvec = S IR
count2vec }—[D—-I““M

fasttext — 1 te0 0
hash2vec }—Dj—i

one-hot 1000 0000 0

tfidf — I ¢

worazvec — =

0.25 0.30 0.35 0.40 0.45 0.50
Time (seconds)

Encoding Method

Fig. 2. Average time required in the classification task for each trace encoding across
all scenarios.
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It is important to note that concerning the time dispensed to perform the
encoding procedure, our results confirmed what is well known in the literature.
However, due to space limits, we do not report these results in detail in this
paper. Trace replay and alignment are time costly, mainly alignment [13], fol-
lowed by graph embeddings [15]. The high cost of alignment is related to the
multi-step approximation required to find an optimal alignment. Moreover, the
alignment procedure has a computational complexity that grows exponentially
to the number of states and transitions, becoming impractical in most scenar-
ios. On the other hand, when dealing with graph embeddings representation,
node2vec generates random walks, which require several iterations (time perspec-
tive). Methods from the word embedding family, such as one-hot and fasttext
are less costly and can be employed in tasks focused on light-weight processing,
such as online PM [7].

5.3 Encoding Representativeness

The capacity to represent knowledge towards providing low ambiguity between
classes and reduce the inherent complexity to the problem guides a high-quality
encoding method. Moreover, this capacity is made by constructing a short and
highly informative feature vector. In our experiments, we measured the Maxi-
mum Fisher’s Discriminant Ratio (F1), the Volume of Overlapping Region (F2),
and the Ratio of the PCA dimensions to the original dimensions (T4).

Using F1, we can assess how informative the encoding methods are to sep-
arate the classes of the analyzed problems. Figure3 presents a scatter plot of
the F1 values for all the encoding methods in the studied scenarios with the
average value indicated by the cross. The values that represent good quality are
the lower ones. From the F1 perspective, it is possible to observe trace replay,
node2vec, edge2vec and fasttext, as the methods with low overlapping of a single
feature in particular cases.

alignment
trace replay x
node2vec
edge2vec D Sl
count2vec
fasttext
hash2vec
one-hot b &
tfidf p £ ]
word2vec s ]

Encoding Method

0.75 0.80 0.85 0.90 0.95 1.00
F1 (overlapping measure)

Fig. 3. Maximum Fisher’s Discriminant Ratio (F1) values, for the studied scenarios.
F1 measures the overlap in classes of the best-disjunct feature.
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Fig. 4. Volume of Overlapping Region (F2) of the feature values distributions within
the problem classes. Low F2 values implies low overlapping.

Encoding quality comparison can be performed by observing the overlapping
of the feature values distribution produced by each encoding method. This evalu-
ation is supported by F2, where higher values refer to higher overlap between the
classes. As Fig. 4 shows, edge2vec achieved the lowest metric value, i.e., the most
disjoint representation. On the other hand, alignment and one-hot encodings
generated the most overlapping distributions.

Scenarios with high F1 and F2 values can lead to difficulties in choosing
a proper classification algorithm and even demanding hyperparameter tuning
to achieve accurate results in classification tasks. Conversely, low F1 and F2
values imply a broader set of algorithms and hyperparametrizations that can
discriminate the classes of the problem.

Some encoding methods depend on hyperparameters to determine their fea-
ture vector dimension. Using default values, we compared the relevance of dimen-
sions settled by each encoding method to describe most of the data variability
through T4. T4 takes advantage of the PCA projection of principal components
to identify the number of features capable of representing more than 95% of data
variability. The higher the T4 value, the more the encoded features are needed
to describe data variability, representing a concise problem description. Lower
values represent a waste of features to explain data variability (Fig.5).

Table 3 shows the T4 values of all encoding methods obtained in the different
scenarios. Graph embeddings obtained the lowest T4 values. Node2vec obtained
0.02, delivering feature vectors capable of describing the data variability with
few samples. On the other hand, trace replay and alignment presented vectors of
dimension closer to the original samples. Several word embedding methods build
feature vectors with adaptive sizes to better represent the problem. Among them,
tfidf was able to obtain competitive results, reaching an average T4 of 0.21. In
some scenarios, tfidf was superior to both trace replay and alignment.

12
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Fig. 5. Ratio of the PCA dimension to the original dimension (T4) of all encoding
methods. High T4 means more original features are relevant.

Table 3. Encoding methods dimensionality and T4 values (mean and standard devi-

ation)

Encoding method | T4 Dimensions
trace replay 0.18 (£0.04) |5
alignment 0.21 (£0.04) | 5
word2vec 0.09 (£0.04) | 100
fasttext 0.14 (£0.07) | 50
count2vec 0.18 (£0.10) | 22-103*
one-hot 0.17 (£0.10) | 22-103*
thidf 0.21 (£0.10) | 22-103*
hash2vec 0.08 (£0.04) 128
node2vec 0.02 (£0.01) 128
edge2vec 0.03 (£0.03) | 128

* encoding vector size is determined by the

vocabulary size

Complex scenarios, such as Scenarios 4 and 5, required higher dimensionality
in the feature space. When dealing with simple scenarios, e.g., Scenario 1, a small
number of features is required for all encoding methods. Thus, the demand for
dimensions, i.e., larger feature vectors, is strictly related to complex problems.
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5.4 Encoding Ranking
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Fig. 6. Ranking of each metric across all encoding methods. The rank ranges from 1
to 10, where the best-ranked position is 1 and the worst-ranked is 10.

Figure 6 presents a heatmap created by ranking each encoding method across
mean values of accuracy (Acc), time, F1, F2, and T4. For a concisely and
resource-friendly encoding method considering just the classification task, we
can take advantage of the trace replay and alignment methods. Regarding F1
and F2 metrics, the graph embeddings present high performance, mostly with
edge2vec being the best and second-best in F1 and F2, respectively. This perfor-
mance demonstrates a great encoding capability proposed in this method. More-
over, fasttert regularly ranks well in these two metrics, showing high informative
and quality encodings. Word2vec has the second-best F2 (low overlap between
features) while, at the same time, has the worst F1. This means that the encod-
ing does not produce a unique, highly descriptive feature, and it depends on the
conjunction of its created features to encode behavior. Trace replay being the
best F1 demonstrates its capability of proposing quality encodings.

We need to emphasize that word and graph embedding families can reduce
time considerably by performing a feature selection procedure. Also, count2vec,
tfidf and one-hot can dynamically adapt the feature vector and word2vec, fast-
text, hash2vec, node2vec and edge2vec have their feature vector size according
to user definition. This means parameters for controlling the trade-off between
computational time and accuracy are made available by most techniques. Addi-
tionally, the complexity of the encoding process needs to be considered. Encod-
ing generation is more time and resource-consuming than the classification task.
This way, methods such as alignment, which are known to be slow [13], have
their applicability hindered in most real situations. At the same time, medium

14



performance methods, such as fasttert and hash2vec, demand less computational
resources. This way, a trade-off between all the presented perspectives must be
considered when choosing an encoding for business processes.

6 Conclusion

In this work, we compared ten trace encoding methods across 100 event logs
depicting several scenarios with different levels of complexity. We assessed encod-
ings in classification tasks towards collecting feature vector metrics such as over-
lapping (F1 and F2) and dimension (T4). Moreover, we considered accuracy
and time outcomes to support a general comparison. Overall, the experiments
show that encoding significantly contributes to the results of a classification algo-
rithm. Also, a good encoding method can improve a wide range of algorithms
without need of tuning. In fact, our experiments suggest that an improper trace
encoding can bring additional complexity, obtaining a suboptimal classification
performance. In future work, we expect to expand the encoding families, e.g.,
deep learning encoding approaches. Finally, it is important to study anomalies
with more attention and spot their effect on the metrics and performance of
different PM tasks.
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