Anti-transglutaminase 6 Antibody Development in Children With Celiac Disease Correlates With Duration of Gluten Exposure *Luigina De Leo, †Daniel Aeschlimann, †Marios Hadjivassiliou, †Pascale Aeschlimann, *Nicola Salce, *Serena Vatta, *Fabiana Ziberna, *Giorgio Cozzi, *Stefano Martelossi, *§Alessandro Ventura, and *§Tarcisio Not ### ABSTRACT **Objectives:** Antibodies against transglutaminase 6 (anti-TG6) have been implicated in neurological manifestations in adult patients with genetic gluten intolerance, and it is unclear whether autoimmunity to TG6 develops following prolonged gluten exposure. We measured the anti-TG6 in children with celiac disease (CD) at the diagnosis time to establish a correlation between these autoantibodies and the duration of gluten exposure. We investigated a correlation between anti-TG6 and the presence of neurological disorders. **Methods:** Anti-TG6 (IgA/IgG) were measured by ELISA in sera of children with biopsy-proven CD and of children experiencing gastrointestinal disorders. CD patients positive for anti-TG6 were retested after 2 years of gluten-free diet (GFD). **Results:** We analyzed the sera of 274 CD children and of 121 controls. Anti-TG6 were detected in 68/274 (25%) CD patients and in 19/121 (16%) controls, with significant difference between the 2 groups (P = 0.04). None of the CD patients and of the controls testing positive for anti-TG6 were experiencing neurological disorders. Eleven of 18 (61%) CD patients with other autoimmune diseases were positive for anti-TG6. In CD patients, a significant correlation between the gluten exposure before the CD diagnosis and anti-TG6 concentration was found (P = 0.006 for IgA; P < 0.0001 for IgG). After GFD anti-TG6 concentrations were significantly reduced (P < 0.001). No significant correlation was observed between anti-TG6 and anti-TG2 serum concentrations. **Conclusions:** Anti-TG6 are more prevalent in children with untreated CD in the absence of overt neurological disorders. The synthesis of the anti-TG6 is related to a longer exposure to gluten before the CD diagnosis, and the autoimmunity against TG6 is gluten dependent and disappeared during GFD. Key Words: gluten-free diet, neurological disorders, transglutaminase 6 Accepted May 6, 2017. From the *Institute for Maternal and Child Health—IRCCS "Burlo Garofolo" Trieste, Trieste, Italy, the †Matrix Biology and Tissue Repair Research Unit, School of Dentistry, and Arthritis Research UK Biomechanics and Bioengineering Centre of Excellence, College of Biomedical and Life Sciences, Cardiff University, Cardiff, the ‡Department of Neurology, The royal Hallmshire Hospital, Sheffield, UK, and the \$University of Trieste, Trieste, Italy. Address correspondence and reprint requests to Tarcisio Not, MD, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, via dell'Istria 65/1 34100 Trieste, Italy (e-mail: tarcisio.not@burlo.trieste.it). ### What Is Known - Celiac disease patients may have neurological manifestations triggered by gluten. - Transglutaminase 6 is expressed in neurons and is targeted by autoantibodies in patients with neurological manifestations. - In the adult population anti-transglutaminase 6 antibodies are a sensitive and specific marker of gluten ataxia and are gluten dependent. ### What Is New - The prevalence of anti-transglutaminase 6 antibodies is 25% in untreated-celiac disease children without neurological manifestations and is increased (61%) in untreated-celiac disease children with other autoimmune diseases. - In the pediatric population anti-transglutaminase 6 antibodies correlate with the gluten exposure duration and disappear during gluten-free diet. eliac disease (CD) is a gluten-dependent autoimmune disorder affecting genetically predisposed individuals bearing the HLA DQ2 or DQ8. CD-related manifestations and symptoms are not confined to the gastrointestinal system and they ameliorate following strict gluten-free diet (GFD) (1). Extra-intestinal manifestations include neurological, obstetric, hepatic, cardiac, dermatological (dermatitis herpetiformis [DH]), osteoporosis, and juvenile chronic arthritis (2–7). Serum antibodies against the autoantigen transglutaminase type 2 (anti-TG2) are a hallmark of active CD and represent the first-line serological testing for CD diagnosis. In addition to TG2, two more transglutaminase enzymes, type 3 and This work was funded by IRCCS Burlo Garofolo (Grant 03/15) Italy and Ryder Briggs Trust, UK Drs De Leo and Aeschlimann contributed equally to the article. Dr Aeschlimann serves as a scientific advisor/collaborator to Zedira (without financial incentives) but receives royalties from Zedira for patents. The remaining authors report no conflicts of interest. type 6, are involved in two distinct gluten-dependent disorders: DH (8) and gluten-ataxia (GA) (9), respectively. Patients experiencing these 2 clinical conditions have serological evidence of these specific autoantibodies and some evidence for a causative role has been demonstrated (10,11). Like anti-TG2 antibodies in CD, both the anti-TG3 and anti-transglutaminase 6 (TG6) antibodies are gluten dependent and their blood plasma titers decrease significantly in response to a GFD, with concomitant clinical amelioration for patients experiencing DH (12) or GA (13). These specific autoantibodies can be useful in the diagnosis of such extra-intestinal manifestations. Untreated adult CD patients may also have anti-TG6 antibodies (range 14%-38%) (9,13,14). It is, however, not clear whether these patients are susceptible to the development of neurological dysfunction if they continue on a gluten-containing diet (GCD) or if indeed they have subtle neurological dysfunction often missed due to lack of neurological evaluation. It is also unclear whether these patients have anti-TG6 antibodies from childhood or whether they go on to produce them later in life. Anti-TG6 antibodies among children with untreated CD have never been investigated, and only a single case of a child with CD and epilepsy in association with anti-TG6 (15) was reported. In this case, a dramatic response to the GFD was observed. In this study, we investigated the prevalence of the anti-TG6 antibodies in children with newly diagnosed CD. We compared the serum concentration of anti-TG6 with the serum concentration of anti-TG2 at the time of diagnosis and following treatment with a GFD, and investigated a potential correlation with the duration of exposure to GCD before the diagnosis. ### **METHODS** # Subjects and Study Design The study was performed retrospectively on sera collected from children with biopsy-proven CD diagnosed using the ESP-GHAN criteria (16) at the Institute for Maternal and Child Health, IRCCS Burlo Garofolo (Trieste, Italy) between September 2011 and December 2013. Informed consent for the study was obtained from the parents of 274 children with biopsy-proven CD (178 F, 96 M). In of all of the CD patients, intestinal biopsies the typical features of gluten-sensitive enteropathy (villus atrophy, crypt hyperplasia, and intraepithelial T lymphocytes density >25 T cells/100 epithelial cells) were present. As a control group, we tested the serum samples from 121 children (69 F, 52 M; median age 11 years, range 1–16) experiencing various gastrointestinal disorders (44 with gastroenteritis, 17 with esoinophilic esophagitis, 13 with gastroesophageal reflux, 41 with recurrent abdominal pain, and 6 with foreign body ingestion) who had also undergone gastrointestinal endoscopy and biopsy. Serum samples were stored at -30° C, and all of the samples were thawed once before being analyzed. All of the subjects that tested positive for the anti-TG6 antibodies were retested after 24 months of GFD. Moreover, the CD-related HLA DQ2/8 haplotypes were evaluated among all of the CD patients and any control group subjects who tested positive for anti-TG6 by PCR. Positive anti-TG6 antibody results were correlated with the presence of ataxia or epilepsy by investigating patient records. Written informed consent was obtained from the parents of the children enrolled. The study was approved by the independent ethical committee of the Institute of Child Health IRCCS "Burlo Garofolo" (CE/V-04/2015). # **Serology and HLA Typing** Serum IgA/IgG anti-TG2 were measured using an ELISA (Eurospital, Trieste, Italy) following the manufacturer's instructions with normal values <7 U/I for both A and G immunoglobulin isotype. Serum IgA/IgG anti-TG6 were measured by means of an ELISA assay as previously described (17). A measurement >75 U/mL for IgA or >34 U/mL for IgG was considered positive. The susceptibility alleles for CD were determined by PCR with allele-specific primers identifying DQ2 and DQ8, using Eu-Gene-Risk kit (Eurospital). The assays were performed by operators (L.D.L., D.A., P.A., S.V., F.Z.) blinded to the subjects' clinical and hospital laboratory data. The immune assays and biopsy analysis were performed by operators blinded to the subjects' clinical and laboratory data. # **Statistical Analysis** Correlation between the anti-TG6 antibody serum concentrations and age at time of CD diagnosis were evaluated by using nonparametric Spearman rank test, whereas the correlation between the anti-TG6 antibody and the anti-TG2 antibody serum concentrations were evaluated by using linear regression analysis. Statistical comparison between the serological data of the different groups was performed using the Fischer's exact test, and the sequential serum samples were also compared using Wilcoxon signed-rank test. A value of P < 0.05 was considered significant. ### **RESULTS** ## **Serum Autoantibody Analysis** Children with biopsy-proven CD (274: 178 F, 96 M; median age 7 years, range 1–17) and children (121: 69 F, 52 M; median age 11 years, range 1–16) experiencing other gastrointestinal disorders (control group: 44 with gastritis, 17 with eosinophilic esophagitis, 13 with gastroesophageal reflux, 41 with recurrent abdominal pain, and 6 with foreign body ingestion) were investigated for TG2 and TG6 autoantibodies. All of the CD patients tested positive for HLA DQ2 or DQ8 and anti-TG2 autoantibodies. Serum IgA anti-TG2 in this group ranged from 8 to 280 U/I (mean concentration 60 ± 52 U/I, normal values <7 U/I) and serum IgG anti-TG2 from 0 to 500 U/I $(39 \pm 62 \text{ U/I}, \text{ normal values } < 9 \text{ U/I})$. In 6 patients with total IgA deficiency, IgG anti-TG2 titers above the threshold value were detected (mean concentration 82 ± 25 U/I). Anti-TG6 antibodies were found in 68/274 (25%) CD patients (36 tested positive for IgG, 25 for IgA, and 7 for both IgA and IgG) (Fig. 1). There was a significant difference compared to controls (P = 0.04). There was no mention of any neurological disorder in either patients positive or negative for anti-TG6 antibodies. This was based on retrospective evaluation of the patients' records. Eighteen of 274 CD patients were experiencing other autoimmune diseases (thyroiditis, type 1 diabetes, DH) and 11 of them (61%) tested positive for anti-TG6 (9 for IgG and 2 for IgA). No statistically significant correlation was observed between anti-TG6 and anti-TG2 serum antibody concentrations (Fig. 2), in line with data from other patient cohorts (9,11). There was a significant correlation between the duration of the gluten exposure before the CD diagnosis and serum concentration of both IgA (P = 0.006) and IgG (P < 0.0001) anti-TG6 antibodies (Fig. 3). None of the controls tested positive for the anti-TG2 antibodies (mean concentration 1.5 ± 2 for IgA, 3.5 ± 2 for IgG U/I) and their intestinal biopsies did not demonstrate the CD-related abnormalities. Two of 121 subjects belonging to subjects with gastrointestinal disorders (control group) were affected by IgA deficiency, and anti-TG6 IgA were thus measured in 119 patients. Anti-TG6 antibodies were found in 19/121 (16%) subjects in the control group (12 tested positive for IgG, 5 for IgA, and 2 for both IgA and IgG) (Fig. 1). Among the 19 subjects positive for anti-TG6 antibodies, 8 were experiencing recurrent abdominal pain (42%), 4 from gastritis (21%), 4 from gastroesophageal reflux (21%), and 3 **FIGURE 1.** Serum concentration of IgA and IgG anti-TG6 antibodies in the study groups. The cutoff limits for both IgA (>74 U/mL) and IgG (>34 U/mL) are indicated by the thin lines. CD = children with celiac disease. **FIGURE 2.** Linear regression analysis regarding the relationship between the serum concentrations of anti-TG6 antibodies and of anti-TG2 antibodies in celiac disease (CD) patients. No statistically significant relationship between the serum antibody concentrations against the two antigens was found. **FIGURE 3.** Correlation analysis of age (corresponding to time of gluten exposure) at celiac disease (CD) diagnosis with the IgA and the IgG anti-TG6 serum concentrations. A statistically significant relationship was found with both IgA and IgG anti-TG6. from eosinophilic esophagitis (16%). The CD-related HLA was present in 6 of 19 (31%, all 6 tested positive for HLA DQ2). None of the controls were experiencing neurological disorders. # Celiac Disease Patient Follow-up After Glutenfree Diet Forty of 68 (59%) children with CD that tested positive for anti-TG6 antibodies (18 tested positive for IgG, 17 for IgA, and 5 for both IgA and IgG) were re-tested after 24 months of GFD. Thirty-eight of 40 (95%) tested negative for anti-TG2 antibodies and 36/40 (90%) tested negative for anti-TG6 antibodies, with significant decrease in both IgA and IgG antibody serum concentration before and after the GFD (P < 0.001) (Fig. 4). Two of the 4 subjects still positive for anti-TG6 did not follow GFD and were positive for anti-TG2 antibodies as well (IgA 40 and 65 U/I, IgG 39 and 25 U/I). ### **DISCUSSION** In adult patients with CD presenting with neurological manifestations there is a significant difference of age at presentation when compared with adult patients with CD presenting to a gastroenterologist with the classic symptoms (53 vs 42 years) (14). This therefore raises the question as to whether the respective underlying autoimmune responses develop at different consecutive phases in life, particularly in light of the fact that neurological problems are rarely seen in children with CD. Given that neurological manifestations are associated with an autoimmune response to TG6 (2,9,13), we investigated whether children presenting with CD had circulating autoantibodies to TG6. Here, we show for the first time that such autoantibodies can be detected in young children at time of presentation with considerable frequency, suggesting that autoantibodies to different transglutaminase isozymes are **FIGURE 4.** Celiac disease (CD) patients tested positive for IgA/IgG Celiac disease (CD) patients tested positive for IgA/IgG anti-TG6 at the diagnosis time during the gluten-containing diet (GCD) and after 24 months of gluten-free diet (GFD). CNS = central nervous system; ELISA = enzyme-linked immunosorbent assay; ESPGHAN = European Society for Pediatric Gastroenterology, Hepatology and Nutrition; HLA = human leukocyte antigen; IgA = immunoglobulin A; IgG = immunoglobulin G; TG3 = transglutaminase type 3 enzyme. developed simultaneously and not during different phases of life, that is, as a late-stage disease sequelae. Interestingly, our data show a significantly higher prevalence/concentration of anti-TG6 antibodies among children with a longer exposure to GCD before the CD diagnosis. Moreover, these auto-antibodies are gluten dependent, with elimination of anti-TG6 antibodies in 90% of patients following the GFD. This is in line with what is seen in pediatric CD patients who are positive for other organ-specific autoantibodies (eg, anti-thyroid peroxidase antibodies, glutamic acid decarboxylase antibodies, anti-insulin antibodies) (18). Such autoantibodies may disappear following a GFD (18,19), raising the possibility that in some instances gluten-dependent T cells can drive multiple immune responses and hence, that GFD could potentially prevent the development of neurological deficits or secondary autoimmune diseases such as type 1 diabetes and autoimmune thyroiditis in patients with genetic gluten intolerance. We have found the prevalence of anti-TG6 antibodies to be 25%. This compares to a prevalence of 38% in adult patients of Caucasian descent with newly diagnosed CD but from a different geographical region (UK) (14). The geographical selection (ethnicity) may well be an important factor as differences in the prevalence of anti-TG6 antibodies among adult patients with CD have been identified (38% in adult CD patients from the UK vs 14% in adult CD patients from Finland) (13,14). This may be 1 possible explanation to variations in the prevalence of neurological manifestations among patients with gluten-related disorders in different countries. The overall prevalence of anti-TG6 antibodies in our control group was 16% (specificity 84%), which is higher than what has been found in healthy controls (4%) (13,17). This is likely to relate to the fact that most of these controls experienced other gastrointestinal disorders associated with chronic inflammation with only 6 (with foreign body ingestion) being free from gastrointestinal disease, none of which were positive for anti-TG6 antibodies. It remains to be seen whether some of these patients who carry the genetic gluten intolerance (HLA DQ2/8) may develop CD in the future. Of interest is also our finding that 11/18 (61%) CD patients experiencing autoimmune diseases (thyroiditis, diabetes, DH) tested positive for anti-TG6 antibodies, a significantly higher prevalence compared to the CD population as a whole. This raises the possibility that the presence of anti-TG6 antibodies may be a marker of 'multiple' autoimmunity, perhaps signifying a different stage of the immune response. Our finding of autoantibodies to different transglutaminase isozymes in children at presentation is consistent with the current view that B cells/plasma cells targeting TG6 originate independently from those targeting TG2 and not due to epitope spreading. This is supported by the fact that TG6 can generate gluten peptide derivatives that drive both T- and B-cell responses (20), anti-TG6 antibodies can be the only autoantibodies present in patients with genetic gluten intolerance (9), and analysis of clonal antibodies from celiac patients established that anti-transglutaminase antibodies are isozyme specific (21). Hence, not surprisingly, the serum concentration of anti-TG6 antibodies among untreated CD patients examined here showed no correlation to the presence of high anti-TG2 antibody serum concentration. This is consistent with the observation that anti-TG6 antibodies are present in up to 67% of adult CD patients who present with neurological dysfunction as opposed to 38% in adults with CD who present to gastroenterologists, yet the prevalence of TG2 antibodies in the 2 groups is similar (91%–97%) (14). A similar observation can also be seen in patients with DH where the immunological response targets TG3. Circulating anti-TG3 antibodies were found in 86% of patients with DH as opposed to 24% in patients with CD, whereas TG2 antibodies showed a similar prevalence in both DH (86%) and CD (92%) patients (12). The role of circulating transglutaminase isozymespecific autoantibodies in development of extraintestinal disease has indeed been demonstrated in animal models (10,11). The absence of neurological dysfunction among children with CD positive for anti-TG6 may be due to a number of factors. First, our assessment of any neurological problems was retrospective and based just on the clinical records. None of the patients were evaluated by a neurologist or underwent full neurological examination and brain imaging to look for any evidence of neurological dysfunction. Secondly, neurological manifestations in children with CD are said to be rare when compared with the adult population. An immune response targeting TG2 drives overt tissue destruction in the gut (due to antigen abundance) in short succession but this is not the case for an immune response targeting TG6. Hence, extraintestinal manifestation may be slow progressing or latent. It is also likely that neurological problems that are subclincal are missed for prolonged periods; hence, the typically late diagnosis. In the case of TG6 autoantibodies, it is of course also possible that circulating autoantibodies by themselves are not sufficient to precipitate neurotoxicity as the CNS is shielded by the blood-brain barrier, but that an additional event is necessary for which there is an increased risk with age. The implication of this finding is that patients with the classic presentation of gastrointestinal symptoms are more likely to be diagnosed with CD than those with extraintestinal manifestations. Extraintestinal manifestations are a late phenomenon, perhaps associated with only mild gastrointestinal disease as a consequence of a different bias of the immune response. Evidence in support of this comes from the fact that the prevalence of DH in Finland has dramatically decreased since the introduction of CD screening programs (22). It remains to be seen whether patients with anti-TG6 antibodies and no enteropathy who do not go on a GFD may be at risk for developing neurological dysfunction after prolonged exposure to gluten. Careful follow-up of those patients in the control group that are positive for anti-TG6 may be advised and of interest. ### **REFERENCES** - 1. Green PHR, Cellier C. Celiac disease. N Engl J Med 2007;357:1731-43. - Hadjivassiliou M, Sanders DS, Grünewald RA, et al. Gluten sensitivity: from gut to brain. Lancet Neurol 2010;9:318–30. - Ludvigsson JF, Montgomery SM, Ekbom A. Celiac disease and risk of adverse fetal outcome: a population-based cohort study. *Gastroenter-ology* 2005:129:454–63. - Not T, Faleschini E, Tommasini A, et al. Celiac disease in patients with sporadic and inherited cardiomyopathies and in their relatives. Eur Heart J 2003;24:1455–61. - 5. Lepore L, Martelossi S, Pennesi M, et al. Prevalence of celiac disease in patients with juvenile chronic arthritis. *J Pediatr* 1996;129:311–3. - Rita Korponay-Szabo I, Simon-Vecsei Z, De Leo L, et al. Glutendependent intestinal autoimmune response. Curr Pharm Des 2012;18:5753–8. - 7. Collin P, Salmi TT, Hervonen K, et al. Dermatitis herpetiformis: a cutaneous manifestation of coeliac disease. *Ann Med* 2017;49:23–31. - Sárdy M, Kárpáti S, Merkl B, et al. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 2002;195:747–57. - Hadjivassiliou M, Aeschlimann P, Strigun A, et al. Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. *Ann Neurol* 2008;64:332–43. - Zone JJ, Schmidt LA, Taylor TB, et al. Dermatitis herpetiformis sera or goat anti-transglutaminase-3 transferred to human skin-grafted mice mimics dermatitis herpetiformis immunopathology. *J Immunol* 2011;186:4474–80. - 11. Boscolo S, Lorenzon A, Sblattero D, et al. Anti transglutaminase antibodies cause ataxia in mice. *PLoS One* 2010;5:e9698. - Reunala T, Salmi TT, Hervonen K, et al. IgA antiepidermal transglutaminase antibodies in dermatitis herpetiformis: a significant but not complete response to a gluten-free diet treatment. Br J Dermatol 2015;172:1139–41. - Hadjivassiliou M, Aeschlimann P, Sanders DS, et al. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. *Neurology* 2013;80: 1740-5. - Hadjivassiliou M, Rao DG, Grinewald RA, et al. Neurological dysfunction in coeliac disease and non-coeliac gluten sensitivity. Am J Gastroenterol 2016;111:561–7. - Johnson AM, Dale RC, Wienholt L, et al. Coeliac disease, epilepsy, and cerebral calcifications: association with TG6 autoantibodies. *Dev Med Child Neurol* 2013;55:90–3. - Husby S, Koletzko S, Korponay-Szabó IR, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 2012;54:136–60. - Stenberg R, Hadjivassiliou M, Aeschlimann P, et al. Anti-transglutaminase 6 antibodies in children and young adults with cerebral palsy. *Autoimmune Dis* 2014;2014:237107. - Ventura A, Neri E, Ughi C, et al. Gluten-dependent diabetes-related and thyroid-related autoantibodies in patients with celiac disease. *J Pediatr* 2000;137:263–5. - Hadjivassiliou M, Aeschlimann D, Grünewald RA, et al. GAD antibody-associated neurological illness and its relationship to gluten sensitivity. Acta Neurol Scand 2011;123:175–80. - Stamnaes J, Dorum S, Fleckenstein B, et al. Gluten T cell epitope targeting by TG3 and TG6; Implications for dermatitis herpetiformis and gluten ataxia. *Amino Acids* 2010;39:1183–91. - Iversen R, Di Niro R, Stamnaes J, et al. Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. *J Immunol* 2013;190: 5981–91. - Salmi TT, Hervonen K, Kautiainen H, et al. Prevalence and incidence of dermatitis herpetiformis: a 40-year prospective study from Finland. Br J Dermatol 2011;165:354–9.