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Finite temperature off-diagonal long-range order for interacting bosons

A. Colcelli ,1 N. Defenu ,2,3 G. Mussardo,1 and A. Trombettoni4,5,1

1SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste, Italy
2Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland

3Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
4Department of Physics, University of Trieste, Strada Costiera 11, I-34151 Trieste, Italy
5CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste, Italy

(Received 14 July 2020; revised 1 September 2020; accepted 1 September 2020; published 17 November 2020)

Characterizing the scaling with the total particle number (N) of the largest eigenvalue of the one-body density
matrix (λ0) provides information on the occurrence of the off-diagonal long-range order (ODLRO) according
to the Penrose-Onsager criterion. Setting λ0 ∼ NC0 , then C0 = 1 corresponds in ODLRO. The intermediate
case, 0 < C0 < 1, corresponds in translational invariant systems to the power-law decaying of (nonconnected)
correlation functions and it can be seen as identifying quasi-long-range order. The goal of the present paper is to
characterize the ODLRO properties encoded in C0 (and in the corresponding quantities Ck �=0 for excited natural
orbitals) exhibited by homogeneous interacting bosonic systems at finite temperature for different dimensions
in presence of short-range repulsive potentials. We show that Ck �=0 = 0 in the thermodynamic limit. In one
dimension it is C0 = 0 for nonvanishing temperature, while in three dimensions it is C0 = 1 (C0 = 0) for
temperatures smaller (larger) than the Bose-Einstein critical temperature. We then focus our attention to D = 2,
studying the XY and the Villain models, and the weakly interacting Bose gas. The universal value of C0 near
the Berezinskii-Kosterlitz-Thouless temperature TBKT is 7/8. The dependence of C0 on temperatures between
T = 0 (at which C0 = 1) and TBKT is studied in the different models. An estimate for the (nonperturbative)
parameter ξ entering the equation of state of the two-dimensional Bose gases is obtained using low-temperature
expansions and compared with the Monte Carlo result. We finally discuss a “double jump” behavior for C0, and
correspondingly of the anomalous dimension η, right below TBKT in the limit of vanishing interactions.
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I. INTRODUCTION

Off-diagonal long-range order (ODLRO) in the one-body
density matrix (1BDM) of Bose particles signals the ap-
pearance of Bose-Einstein condensation (BEC) in quantum
systems. This relation is established by the Penrose-Onsager
criterion [1] which applies in all dimensions D and at any
temperature T , irrespectively of the presence of confining
potentials. For its versatility, it constitutes a simple way to
determine whether a quantum Bose gas exhibits condensation
and coherence effects [2,3].

For D � 2 the Mermin-Wagner theorem [4,5] ensures that,
for translational invariant systems with continuous symmetry
such as interacting bosons or O(N ) spin models with N � 2,
no long-range order can be found at finite temperature. Indeed,
the theorem forbids the occurrence of spontaneous symmetry
breaking for T > 0 in low-dimensional systems, where the
symmetry of the Hamiltonian is restored by the proliferation
of long-wavelength fluctuations. For a Bose gas the Goldstone
modes are represented by the phonons, which in D = 2 de-
stroy long-range order, leaving low-temperature superfluidity
intact. In such case, due to the persistence of U (1) symmetry,
the equilibrium finite-temperature average of the bosonic field
operator �̂ vanishes, due to the lack of phase coherence [3].
This can be seen occurring when the scaling dimension of

the bosonic field �̂ becomes zero [6]. It is worth noting
that a similar effect takes place in a wide range of systems
with long-range interactions, even if the Mermin-Wagner the-
orem does not strictly apply [7,8]. A space version of the
Mermin-Wagner theorem, where a relation between the size
of a condensate and the coherence properties of the gas is
established, is discussed in Ref. [9].

A compact way to define ODLRO is to introduce the
1BDM [10]

ρ(�x, �y) = 〈�̂†(�x)�̂(�y)〉, (1)

where the field operator �̂(�x) destroys a particle at the point
identified by the D-dimensional vector �x. The 1BDM, as an
Hermitian matrix, satisfies the eigenvalue equation∫

ρ(�x, �y)φi(�y)d�y = λiφi(�x), (2)

with the eigenvalues λi being real. They denote the occupa-
tion number of the ith natural orbital eigenfunction φi, with∑

i λi = N , where N is the total number of particles. The oc-
currence of ODLRO (and therefore of BEC) is characterized
by a linear scaling of the largest eigenvalue λ0 with respect to
the total number of particles N in the system [1,11]: λ0 ∼ N .
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For a translational invariant system, the indices i in Eq. (2)
are wave vectors, which are conventionally denoted by the
vector �k. Introducing the scaling formula

λ0 ∼ NC0(T ), (3)

the Mermin-Wagner theorem implies that C0(T ) < 1 for
T > 0 and D � 2, so there is no ODLRO at finite temper-
ature. At variance, there is ODLRO/BEC whenever C0 = 1.
One can show as well that C0(T = 0) = 1 for D = 2 and
C0(T = 0) < 1 in D = 1 (for the interacting case) (see
Ref. [12]). For a translational invariant system, the absence
of ODLRO, or equivalently of BEC, in D = 2 at finite tem-
perature amounts to the following behavior of the 1BDM at
large distances:

〈�̂†(�x)�̂(�y)〉 |�x − �y| → ∞−−−−−−→ 〈�̂(�x)〉∗〈�̂(�y)〉 = 0. (4)

The existence and regimes for BEC, i.e., whether C0 = 1 or
not, in various physical systems has been the subject of a
remarkable amount of work. It would be therefore desirable
to complete such analysis with a systematic study of when C0

is smaller than 1: In this case there is no ODLRO/BEC but
nevertheless the condition 0 < C0 < 1 implies that, in transla-
tional invariant systems, the correlation function 〈�̂†(�x)�̂(�y)〉
has a power-law decay. One may refer to this situation as
quasi-long-range order.

The relation between the scaling behavior of density ma-
trices of any order (including the one-body density matrix
considered in the present work) and the types of order charac-
terizing the physical system were analyzed in Ref. [13], where
the so-called order indices were introduced and studied both
for certain fermionic and bosonic systems. Since the order
index for the nth-order reduced density matrix is defined as
α(n) = limN→∞ ln λ

(n)
0 / ln N , where λ

(n)
0 is the largest eigen-

value of the nth-order density matrix, then we can identify the
order index α(1) of the 1BDM as the exponent C0(T ) defined
in Eq. (3) from the scaling of λ0 ≡ λ

(1)
0 . The concept of order

indices can be extended to arbitrary matrices (see Ref. [14]
for a discussion), while the relation between order indices and
entanglement production is discussed in Ref. [15].

Here, we study ODLRO properties in terms of the scaling
with the particles number N of the eigenvalues λk of the
1BDM, both of the largest eigenvalue λ0 and of the others
λk �=0. Let us stress that, for a system of interacting bosons,
the index C0 may also depend on the interaction strength and,
moreover, one may expect that increasing the repulsion among
the bosons, C0 gets dampened with respect to the weak in-
teracting case, as seen explicitly in the one-dimensional (1D)
case at zero temperature [16].

In the present work, we are going to characterize ODLRO,
and possible deviations from it, in translational invariant
bosonic systems interacting via short-range repulsive poten-
tials in one, two and three dimensions at finite temperature.
With “possible deviations” we also mean a study of the be-
havior of the index Ck (T ), defined as

λk ∼ NCk (T ), (5)

where k �= 0. The study of Ck �=0(T ) gives an insight about
the possible quasi-fragmentation of the system, i.e., how the

particles occupy the other, k �= 0, states. Notice that in litera-
ture usually one refers to fragmentation when more than one
eigenvalue of the 1BDM scales with N . So, one can refer to
the case in which at least two Ck are larger than zero (and at
least one is smaller than 1) as a quasi-fragmentation.

We observe that there is a mesoscopic condensate (i.e.,
quasi-long-range order), with a finite value for the condensate
fraction λ0

N for finite values of N , for 0 < C0(T ) < 1. In this
case the condensate fraction of course vanishes for N → ∞
but, even though the system is not a true BEC, one would ob-
serve nevertheless a clear peak in the momentum distribution
in an experiment with ultracold gases: The reason is that the
number of particles which are typically used in these appara-
tus are of order N ∼ 103–105, and therefore the condensate
fraction λ0

N ∼ NC0 (T )

N could be very close to the unity for C0(T )
close to 1. For C0(T ) = 0 there will be no order at all, and the
system qualitatively behaves, from the point of view of the
eigenvalues of the 1BDM, like a Fermi gas.

The plan of the paper is the following. In Sec. II we
discuss the relation between the 1BDM and the momentum
distribution, setting the notation for the following sections.
The cases D = 3 and D = 1 are discussed respectively in
Secs. III and IV: these two cases provide the reference frame
and the warming up for the discussion of the finite temperature
ODLRO properties of two-dimensional Bose gases in Sec. V.
In Sec. V we also present a study of the ODLRO in the XY and
the Villain models. Our conclusions are presented in Sec. VI.

II. MOMENTUM DISTRIBUTION OF HOMOGENEOUS
SYSTEMS

The advantage of studying how the largest eigenvalue
scales with the number of particles, instead of the large dis-
tance behavior of the 1BDM, becomes evident once we define
another important quantity: the momentum distribution. To
introduce this quantity, let us initially consider the Fourier
transform �̂(�k) of the field operator �̂(�x):

�̂(�k) = 1

(2 π )D/2

∫
d�x ei�k·�x�̂(�x)

and the momentum distribution n(k) given by

n(�k) = 〈�̂†(�k)�̂(�k)〉
= 1

(2 π )D

∫
d�x

∫
d�y ei�k·(�x−�y)〈�̂†(�x)�̂(�y)〉. (6)

For a homogeneous system, ρ(x, y) = 〈�̂†(�x)�̂(�y)〉 depends
only on the distance among two points, therefore writing the
relative distance vector as �r = �x − �y, we can rewrite ρ(�x, �y) =
ρ(�r) and assume ρ(�r) = ρ(|�r|) ≡ ρ(r). Passing to center of
mass and relative coordinates, since

∫
d �R = LD where L de-

notes the size of the system (e.g., L is the circumference of a
ring in one-dimensional geometry), Eq. (6) can be rewritten
as

n(�k) =
(

L

2π

)D ∫
ei�k·�rρ(r)d�r . (7)

The integral in the right-hand side depends of course on the
dimension D. Notice that the momentum distribution peak is
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simply given by the integral of the 1BDM

n(�k = 0) =
(

L

2π

)D ∫
ρ(r)d�r, (8)

and, as expected, the large distance asymptotic of the 1BDM
determines the small momenta behavior of the momentum
distribution.

For a homogeneous, isotropic system the quantum number
labeling the occupation of natural orbitals clearly depends on
the wave vector modulus |�k| ≡ k. In particular, the Galilean
invariance tells us that the effective single-particle states φk (�x)
may be written as plane waves, i.e., φk (�x) = 1

LD/2 ei�k·�x, there-
fore from Eqs. (2) and (7) we obtain that the dimensionless
momentum distribution, n(�k)/LD, coincides with the eigen-
value equation of the one-body density matrix, apart from
a (1/2 π )D factor. Therefore, for a homogeneous system we
have a one-to-one correspondence between the scaling of the
eigenvalues of ρ(r) and the scaling of the dimensionless mo-
mentum distribution:

λk ∼ NCk (T ) ∼ n(k)

LD
. (9)

The advantage of characterizing the different types of order
in terms of the exponent Ck (T ) instead of the large distance
behavior of the 1BDM is now clear and it stems from the fact
that, in the experiments, it is easier to analyze the momentum
distribution peak instead of looking at what happens to ρ(�x, �y)
for very large (ideally infinite) distances |�x − �y| → ∞, since
one should discern with high precision if the 1BDM is zero or
not at large distances.

Since a complete closed form for the density matrix is not
in general available for all interaction strengths and tempera-
tures, we cannot directly compute the eigenvalues of ρ(�x, �y)
and then study their scaling with N . In order to obtain this
information we will use the following procedure. From the
large distance asymptotic behavior of the 1BDM, whose ex-
pression for different configurations of the system is usually
available in the literature, we first make it a periodic function
of period L by adding terms which have the same scaling
behavior of the density matrix in the range r ∈ [0, L

2 ), and
which represent the reflected parts in the range ( L

2 , L]. In
this way we construct a fully symmetric and circulant matrix,
whose eigenvalues are known to be real, as required, since
they represent the occupation numbers of the system. Finally
we perform the Fourier transform of this symmetrized density
matrix and obtain in this way the behavior of the momentum
distribution. Writing k as k = 2π

L l with l ∈ N, the scaling
of the largest eigenvalue of the 1BDM can be identified just
imposing l = 0 and tracking its N dependence. In this way,
we are able to explicitly compute the exponent C0(T ) of the
system. On the other hand, choosing l ∝ L the behavior of
the Fourier transform in the limit N → ∞ at fixed density
n = N/LD yields the expression for the exponents Ck �=0(T ) via
Eq. (9).

In the following, we aim to characterize the deviations
from ODLRO at finite temperature for homogeneous inter-
acting Bose gases in different dimensions. After discussing
the explicit expression for C0, we will also discuss the finite

FIG. 1. Power C0(T/TC ) with which the momentum distribution
peak of a homogeneous three-dimensional Bose gas scales with
respect to the total number of particles N at different temperatures.

nonzero momenta landscape, ruling out the possibility of hav-
ing quasi-fragmentation in bosonic interacting systems with
repulsive interactions. Our findings provide a counterpart to
the corresponding results for fragmentation in macroscopi-
cally occupied states with eigenvalues scaling with N [17].

III. THREE DIMENSIONS

Let us begin with the case of a three-dimensional homo-
geneous Bose gas. It is well known that, below the critical
temperature TC , a BEC takes place and the lowest allowed
state for the gas is then macroscopically occupied [10]. This
amounts to saying that the momentum distribution of the
system is constituted by two parts: a nonsingular part, relative
to the occupation of the single-particle states according to the
Bose-Einstein distribution, and a singular part ∝N0δ(�k) which
refers to the macroscopic occupation N0 ∝ N of the lowest
energy state, also called the condensate state. Therefore, at
T < TC ODLRO is found and the exponent will be C0 = 1
in the condensed phase. For temperatures above the critical
TC there is no more condensation and the singular part of the
momentum distribution, i.e., the Dirac delta peak, disappears
together with the system ordering. From all of these facts one
can conclude that

C0(T ) =
{

1, for T < TC

0, for T > TC,
(10)

as shown in Fig. 1.
In the weakly interacting Bose gas, one may use the Bo-

goliubov approximation [10] to obtain the scaling of the
momentum distribution at �k �= 0. Indeed, at this approxima-
tion level, the nonsingular part of the momentum distribution
at T < TC reads

n(�k)

LD
= 1

(2π )3

1

eε(k)/kBT − 1
, (11)

where ε(k) =
√

gn
m h̄2k2 + ( h̄2k2

2m )
2

is the Bogoliubov disper-

sion relation and g = 4π h̄2a
m weights the interaction among

particles in terms of the s-wave scattering length a. Therefore
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for ε(k)/kBT  1 we obtain

n(�k)

LD
� 1

(2π )3
e−h̄2k2/2mkBT ∝ e−(l/L)2 ∝ N0, (12)

where in the second equality we used k ∝ l/L, and in the
last one we acknowledged that l ∝ L in order to have a finite
momentum k in the thermodynamic limit. A similar procedure
may be used to show the absence of quasi-fragmentation also
for T > TC , yielding

Ck �=0(T ) = 0 (13)

at any temperature for the three-dimensional Bose gas. Notice
that this result has been obtained using Bogoliubov theory and
it may not be applicable to gases with nonweak interactions
[18,19]. However, since the exponents C are not expected to
increase for larger interactions, one may reasonably conclude
that this result is valid also for larger interactions.

IV. ONE DIMENSION

We now turn to the study of a one-dimensional homo-
geneous Bose gas [20,21], within the framework of the
Lieb-Liniger model [22], where the interaction between parti-
cles is represented by a repulsive δ potential. The Lieb-Liniger
Hamiltonian for N bosons of mass m then reads

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ 2c
∑
i< j

δ(xi − x j ), (14)

leading to the definition of the dimensionless coupling con-
stant

γ = 2mc

h̄2n
, (15)

where n = N/L is the density of the gas and L is the size of the
system (with periodic boundary conditions this would be the
circumference of the ring in which the system is enclosed). As
is well known, the Lieb-Liniger model is exactly solvable by
the Bethe-ansatz technique [22,23] which provides an exact
expression for the many-body eigenfunctions [24,25]. Never-
theless, a closed expression for the 1BDM for every coupling
γ and particle number N is not known. One should then rely
both on approximations [26,27] and numerical approaches
[16,28], which are suitable for working at large particle num-
bers.

At T = 0, techniques coming from bosonization [29–31]
provide an expression for the large distance behavior of the
density matrix for any values of the interaction strengths
[24,32]. In this case, the density matrix is written in terms of
the dimensionless parameter called the Luttinger parameter,
which for the Lieb-Liniger model reads K = vF /s, where
vF = h̄πn/m is the Fermi velocity and s is the sound velocity
of the Lieb-Liniger gas, which depends on γ and can be
obtained via Bethe ansatz [21,33]. At leading order, the large
distance asymptotic of the 1BDM reads

ρ(r)

n
� B0

(nr)1/2K , (16)

where B0 is a numerical prefactor [34]. Symmetrizing its ex-
pression in order to retrieve periodic boundary conditions, and

then performing the integral between 0 and L, we get access
to the dimensionless momentum distribution peak scaling

n(k = 0)

L
= n1−1/2K B0

2π

[∫ L/2

0

dr

r1/2K
+

∫ L

L/2

dr

(L − r)1/2K

]

∝ N1−1/2K , (17)

which implies

C0(T = 0, γ ) = 1 − 1

2K (γ )
, (18)

in agreement with Ref. [16]. We verified that Eq. (17) also
holds also if we symmetrize the density matrix according to
the formula

ρ(r) � n1−1/2K B0[
L
π

sin
(

πx
L

)]1/2K . (19)

Notice that C0(T = 0, γ ) depends only on γ through the
Luttinger parameter, i.e., it depends on the ratio c/n and not
on the interaction strength and the density separately. The
power C0(T = 0, γ ) varies between 1 for γ → 0, to the value
1/2 obtained for the Tonks-Girardeau gas [35–37]. For very
small values of the interaction parameter, say γ ≈ 10−4, one
gets C0 ≈ 0.99, which is very close to unity. Therefore the
condensate fraction, λ0/N , for a finite number of particles
can be large and this could be seen in experiments with Rb
atoms (when this occurs, one can say it is in the presence of a
mesoscopic condensate).

Since λ0 scales less than linearly with N and at the same
time we should have

∑
k λk = N , in principle we could expect

that at least for small values of k there may exist some Ck �=0

different from zero. However, as we are going to show in the
following, this is not the case in the thermodynamic limit. To
obtain the behavior of the momentum distribution at nonzero
momenta, we have to perform the Fourier transform, for which
we get

n(k)

L
∝

∫ L/2

0

eikr

r1/2K
dr +

∫ L

L/2

eikr

(L − r)1/2K
dr

∝ L1−1/2K
1F2

(
1

2
− 1

4K
;

1

2
,

3

2
− 1

4K
; −π2l2

4

)
,

where 1F2(a; b1, b2; c) is the generalized hypergeometric
function and we used the fact that kL = 2π l with l ∈ N. Ex-
panding the hypergeometric function for large l and keeping
only the leading term, we obtain

n(k)

L
∝ L1−1/2K l−1+1/2K ∝ N0, (20)

where in the last equality we used the fact that l needs to
grow like L in the thermodynamic limit in order to have a
fixed finite momentum k. Therefore the power Ck �=0 for the
one-dimensional gas at zero temperature and any interaction
strength is simply vanishing,

Ck �=0(T = 0, γ ) = 0, (21)

and there is no quasi-fragmentation of the mesoscopic con-
densate. The same result can be found also using Eq. (19).

In Ref. [16] it was verified that the largest eigenvalue of
the density matrix indeed scales with the exponent in Eq. (18)
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by directly computing ρ(r) using an interpolation method,
which allows one to get a simple expression for the density
matrix valid at any distance and interaction strengths. The
power-law scaling shows very good agreement, confirming
that the method sketched above to get access to the power C is
correct. We have then used the same interpolation scheme to
get access to the N dependence of the k �= 0 eigenvalues of the
1BDM [38]. Apart from oscillations at small particle numbers
arising from a competition between the growth of l and L, for
very large values of N the eigenvalues λk �=0 saturate and the
power Ck �=0 is indeed vanishing, confirming our prediction.

In the finite-temperature (T �= 0) case, several results are
available for the asymptotic behavior of the density matrix of
the Lieb-Liniger gas [39–41]. In Ref. [41] an expression for
the 1BDM as a sum of exponential functions is given in the
form

ρ(r)

n
=

∑
i

B̄ie
−r/ξ [v̄i], (22)

where B̄i are distance independent amplitudes and ξ [v̄i] the
correlation length (shown to be always positive), depend-
ing on the temperature-dependent functions v̄i defined in
Ref. [41], where it is also shown that the result in Eq. (22)
reduces to Eq. (16) in the T = 0 case, as it should. We may
now take the Fourier transform of the symmetrized version of
Eq. (22), and obtain

n(k)

L
= 1

2 π

∑
i

B̄i

(∫ L/2

0
e−r/ξ [v̄i]dr +

∫ L

L/2
e−(L−r)/ξ [v̄i]dr

)

∝ e−L/ξ [v̄i],

where the last proportionality is valid both at zero and nonzero
momentum k. Since L = N/n, analyzing the N leading de-
pendence only, we have that for N → ∞ the dimensionless
momentum distribution is just a constant for any k, leading to
the finite-temperature result:

Ck (T �= 0, γ ) = 0, (23)

which indicates complete absence of ordering.
In Fig. 2 we summarize the behavior of the exponent C0

for a homogeneous one-dimensional Bose gas for different
temperatures. An inset shows the relation between C0 and
the interaction parameter γ in the zero-temperature case, i.e.,
Eq. (18).

V. TWO DIMENSIONS

Properties of two-dimensional systems stand on their own
and are between those of 1D, where C0 vanishes at finite
temperature, and of 3D models, where C0 = 1 below the BEC
critical temperature. As discussed in the Introduction, no or-
dinary phase transition takes place in 2D, due to the lack of
ODLRO. However, 2D systems often feature the BKT topo-
logical phase transition named after Berezinskii, Kosterlitz,
and Thouless who first discussed it in the two-dimensional
XY model [42–44]. This transition is related to the presence
of vortex and antivortex spin configurations at finite temper-
atures. At low T , below the BKT temperature TBKT, vortex
and antivortex pairs with vanishing total winding numbers

FIG. 2. Exponent C0(T ) with which the largest eigenvalue of the
1BDM of a homogeneous one-dimensional Bose gas scales with
respect to the total number of particles N at different temperatures.
Only for T = 0 does one have that C0 is nonvanishing and depends
on the dimensionless interaction parameter γ via (18), as shown in
the inset.

(neutrality condition) are present in the system and the corre-
lation function between two distant spins decay as power law,
indicating a phase with quasi-long-range order, also called
BKT phase.

A simple estimate of TBKT in the XY model is the Peierls
value TBKT = πJ

2kB
[45], where J is the interaction strength

among the spins. In the low-temperature BKT regime the
only relevant configurations are the spin waves, and the spin-
wave approximation shall describe the system properly. As the
temperature increases, the presence of free vortices with non-
vanishing winding numbers becomes energetically favored,
and, therefore, vortices and antivortices may unbind from each
other. For temperatures above TBKT, the presence of such topo-
logical excitations destroys the quasi-long-range order and the
correlation functions become exponentially decaying [45–47].
An important statistical model used to approximatively de-
scribe the two-dimensional XY model is the one proposed
by Villain [45,48]. While in the XY model the spin waves
interact with the vortices, in the Villain model the spin waves
are decoupled from the vortices degrees of freedom, making
its Hamiltonian simply quadratic. Both models have the same
topological characteristics and they belong to the same uni-
versality class, as one can see from the critical behavior of
the anomalous dimension η of the two systems. The Villain
model well describes the low-temperature phase of the XY
model, since the Hamiltonian is essentially constituted by two
decoupled harmonic oscillator terms; one for the spin waves
and one for the vortices. Notice that the Villain model can be
used both as a model per se and also as a convenient way to
approximate the XY model [49].

Let us pause here to comment on the qualitative similarity
of the low-dimensional (D = 1 and D = 2) systems studied
in this work. In the thermodynamic limit at low temperatures,
both for the one- and the two-dimensional cases, the systems
can be described by field-theoretical models with Hamilto-
nians made up of two decoupled harmonic oscillator terms.
These quadratic Hamiltonians are the Luttinger liquid and the
Villain Hamiltonian for the one- and two-dimensional cases,
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respectively. Therefore bosonization in D = 1 systems plays
to a certain extent a similar role as the spin-wave approxi-
mation in D = 2 systems, both of them describing systems
with quasi-long-range order in the low-temperature phase and
the absence of order above their critical temperatures (which
is vanishing in D = 1). Nevertheless, the phase transitions
that characterize the models are for short-range models in-
trinsically different in the one- and two-dimensional cases. In
D = 2 this phase transition is related to the formation of single
independent topological excitations, which cannot happen in
D = 1 geometries. Moreover in one dimension there is no
phase transition at all at finite T , since the quasi-long-range
order is limited to the zero-temperature limit.

Let us analyze the BKT phase transition in terms of the ex-
ponent C0. At the BKT critical point the two-point correlation
function scales as [50]

ρ(r) ∼ 1

rD−2+η
, (24)

where η is the anomalous dimension critical exponent, that
depends on the system under consideration. What is universal
is the value at T = 0, for which η(T = 0) = 0, and that at
T = TBKT, which is given by η(T = TBKT) = 1/4 [51]. The
behavior of η between 0 and TBKT is not universal.

From the knowledge of the behavior of the anomalous
dimension—that will be discussed below—one can find an
expression for the power C0 with which the dimensionless
momentum distribution peak scales. One has

n(k = 0)

L2
= 1

2π
lim

L→∞

[∫ L/2

0

dr

rη−1
+

∫ L

L/2

dr

(L − r)η−1

]
,

∝ L2−η, (25)

where we symmetrized the density matrix in Eq. (24) in
the radial coordinate variable r, passing to polar coordinates
and performing the trivial integration over the azimuth angle.
Since fixing the density n = N

L2 in the large particle number
limit implies that L ∝ √

N , we can then extract the power
C0(T/TBKT) with which the largest eigenvalue of the 1BDM
scales, and it reads

C0 = 1 − η

2
. (26)

Notice that for the XY and Villain models the condensate
fraction λ0

N is the magnetization density of the spin system and
therefore Penrose-Onsager ODLRO manifests in a complete
magnetization of the system, while having C0 = 0 is equiva-
lent to saying that there exist no correlation and order between
the spin variables.

Since the value of the anomalous dimension for such sys-
tems at the critical temperature is equal to 1/4, one has

C0(T = TBKT) = 7
8 , (27)

and C0 jumps to zero for T > TBKT, reflecting the universal
jump for the superfluid stiffness [51]. A study of small cor-
rections (found to be ≈0.02%) to the Nelson-Kosterlitz jump
of the superfluid stiffness is in Refs. [52,53]. Using spin-wave
approximation, one finds that at T = 0 there is ODLRO and
therefore C0(0) = 1. Notice that at T = 0 ODLRO is allowed

FIG. 3. CV
0 (T/TBKT) vs T/TBKT for the Villain square lattice

model. The red intermediate solid line represents the predicted value
for C0 using Eq. (30) in Eq. (26), while the black solid and dashed
lines represent, respectively, the low-temperature behaviors given
respectively by Eqs. (31) and (32).

because there is no entropy contribution to the free energy of
the system and the Mermin-Wagner theorem does not apply.

A. Villain model

In the case of the square lattice planar Villain model, one
expects that the anomalous dimension should be of the form
ηV � kBT

2πA at low temperatures, since the theory is quadratic
and the spin-wave approximation shall apply everywhere, in
particular very close to the critical point, where vortex config-
urations become relevant. Using as definition for the partition
function of the Villain model the standard one given, e.g.,
in [54], the value for A will be provided in the following.
Villain [48] proposed a correction term to account for vortex
contributions to the anomalous dimension close to the critical
point. Assuming that the interaction between the vortices can
be neglected, this correction yields [48]

ηV = kBT

2πA
+ π2kBT

e−π2A/kBT

πA − 2kBT
. (28)

Using the BKT renormalization group flow equations, the
value for the critical temperature of the Villain models is
found to be [54]

kBTBKT

A
= 1

0.74
� 1.351, (29)

in agreement with the result obtained from the high-precision
Monte Carlo simulation performed in Ref. [54] up to L = 512
lattice sites. Substituting Eq. (29) into Eq. (28), we have an
estimate for the behavior of the anomalous dimension of the
square lattice Villain model in terms of the dimensionless ratio
T/TBKT, which reads

ηV (T/TBKT) = A T

TBKT
+ π2

2

e−B TBKT/T(−1 + D TBKT
T

) , (30)

where A ≈ 0.215, B ≈ 7.304, and D ≈ 1.162.
Introducing Eq. (30) into Eq. (26), one obtains the results

plotted as the red intermediate solid line in Fig. 3. Notice that
according to the approximation in Eq. (28), one has ηV (T =
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TBKT) � 0.236, i.e., CV
0 (1) = 0.882, with “V ” referring to

the Villain model. This result differs from the one coming
from Monte Carlo simulations [54], ηV = 0.2495 ± 0.0006,
for about 5%. Low-temperature predictions for the exponent
CV

0 (T ) may be formulated in two ways:
(1) Disregarding the second term in the right-hand side

of Eq. (28), which may be safely neglected in the low-
temperature regime at T � TBKT [48], which yields, via
Eq. (26),

CV
0 (T/TBKT) � 1 − 1

2

(
T

2 π TBKT

1

0.74

)
(31)

with TBKT obtained by Monte Carlo simulations [see Eq. (29)].
(2) Using the Peierls argument kBTBKT

A = π
2 , one has

CV
0 (T/TBKT) � 1 − 1

2

(
T

TBKT

1

4

)
. (32)

These two behaviors are reported as black solid and dashed
lines, respectively, in Fig. 3. Notice from the plot that the low-
T behavior of Eq. (31) is good even in regions close to TBKT,
where the corrective term introduced by Villain starts to play
a role. The predictions of (32), which at variance do not take
into account the effect of vortices, do not match with the same
accuracy with the expected results already from T ≈ 0.5TBKT.

B. XY model

For the two-dimensional classical XY model, whose
Hamiltonian reads H = −J

∑
i, j cos (φi − φ j ) (with the sum

on nearest neighbour sites), the critical temperature has been
evaluated using Monte Carlo techniques obtaining [55–58]

kBTBKT

J
= 0.893 ± 0.001, (33)

while recent approximate, semianalytical, functional
renormalization group (FRG) results give kBTBKT =
(0.94 ± 0.02)J [59]. The anomalous dimension is found to be
equal to

ηXY = kBT

2πJs(T )
,

where Js(T ) is the superfluid (or spin) stiffness of the model,
and has been recently calculated for the XY model in a square
lattice in Ref. [60] using simulations up to 256 lattice sites.

Therefore we may now compute the k = 0 Fourier trans-
form of the spin-spin correlation function as in Eq. (25). From
Eq. (26), one has

CXY
0 (T ) = 1 − ηXY

2
. (34)

Using the Villain approximation we can obtain an expres-
sion for the behavior of the anomalous dimension for the XY
model. The Villain approximation, indeed, is based on the
fact that there exist a (nonexact) map between the interaction
parameter A and the spin-spin interaction parameter J , which
relates the Villain Hamiltonian to the XY model [48]. This
mapping reads

A

kBT
= −1

2

{
ln

[
I1

(
J

kBT

)
I0

(
J

kBT

)
]}−1

, (35)

FIG. 4. CXY
0 (T/TBKT) vs T/TBKT. Blue points are the numeri-

cal values of C obtained from Eq. (34) with anomalous dimension
ηXY = T

2πJs (T ) and using the superfluid stiffness results of Ref. [60].

The universal jump from C0(TBKT) = 7
8 to C0(T > TBKT) = 0 is ev-

ident. The bottom red solid line comes from the Villain prediction
Eq. (36). Finally the black solid and dashed lines represent the low-
temperature predictions of Eqs. (37) and (38), respectively.

where In(x) are the modified Bessel functions of the first kind
of degree n. We may therefore substitute this expression into
the approximation given in Eq. (28). We find

ηXY = − 1

π
ln

[
I1

(
J

kBT

)
I0

(
J

kBT

)
]

+ π2

2
e(π2/2){ln[I1( J

kBT )/I0( J
kBT )]}−1

×
{

−1 + π

π + 4 ln
[
I1

(
J

kBT

)] − 4 ln
[
I0

(
J

kBT

)]
}

. (36)

Using the mapping of Eq. (35), the Monte Carlo results of
Ref. [54] for the critical temperature of the Villain model, i.e.,
Eq. (29), translates into

kBTBKT

J
= 0.842,

which is pretty close to the Monte Carlo results of
Refs. [55–58] reported in Eq. (33). The equation which relates
A to J seems then to be reliable within a ≈6% accuracy even
very close to the critical point.

Similarly to what we have done for the Villain model, a
low-temperature prediction can be made by neglecting the
second term in the right-hand side of Eq. (36). Using Eq. (34)
we get

CXY
0 (T ) � 1 + 1

2π
ln

[
I1

(
J

kBT

)
I0

(
J

kBT

)
]
. (37)

On the other hand, one can also employ the low-temperature
expansion results: Js (T )

J � 1 − kBT
4J , which is known to be

consistent with several approaches, such as self-consistent
harmonic approximation [61], Monte Carlo simulations [62],
and FRG [59]. This procedure leads to the expression

CXY
0 (T/TBKT) � 1 − 1

π

T/TBKT
4J

kBTBKT
− T/TBKT

. (38)
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In Fig. 4 we report as blue points the behavior of (34)
for ηXY = kBT

2πJs (T ) with respect to the dimensionless quantity
T/TBKT obtained using the results of Ref. [60]. The bottom
red solid line represents the Villain approximation prediction
given in Eq. (36) with TBKT given by Eq. (33), while the black
solid and dashed lines represent the low-temperature behav-
iors in Eqs. (37) and (38), respectively. Figure 4 confirms the
validity of the low-temperature expansion in Eq. (38) in the
range T ∈ [0, 0.8TBKT], while Eq. (38) remains reliable up to
TBKT.

C. Bose gas

Under certain conditions a two-dimensional Bose gas can
be mapped onto the XY model and from this mapping one
can derive the decay of correlation functions and the ordering
type of the bosonic system [63–66]. Indeed, when density
fluctuations are strongly suppressed the effective low-energy
Hamiltonian of a two-dimensional Bose gas is equivalent to
the continuous version of the Hamiltonian of the XY model
on the lattice. The BKT phase of the XY model corresponds
then to the superfluid state of the Bose gas and quasi-long-
range order is present. Above the critical temperature the
normal state appears and superfluidity breaks down. This
abrupt change of phase is characterized by a universal jump
of the superfluid density (stiffness), which switches between
its low-temperature value ρs = 2m2kBT

π h̄2 to ρs = 0 for T > TBKT

[51,52].
In Refs. [67,68] it has been shown that the asymptotic be-

havior of the 1BDM of a two-dimensional weakly interacting
Bose gas at finite temperatures scales as

ρ(r) ∼ 1

rm2 kBT /2π h̄2ρs
, (39)

where ρs is the superfluid density of the gas. The superfluid
density of the system assumes the form [64]

ρs = 2m2kBT

h̄2π
f (X ), (40)

where X = h̄2(μ−μc )
mkBTU measures the distance from the critical

point, with μ the chemical potential and the critical value μc

given by

μc = mkBTU

h̄2π
ln

(
h̄2ξμ

mU

)
. (41)

The function f (X ) in Eq. (40) is a dimensionless universal
function, which has been numerically determined in Ref. [64].
The variable U appearing in X is the interparticle interaction
strength, so that mU

h̄2 � 1 and X  1 correspond to the weakly
interacting limit, while the constant ξμ appearing in Eq. (41)
is given by ξμ = 13.2 ± 0.2 [64].

Applying the same procedure used for the Villain and the
XY models, we obtain the following exponent C0 for the scal-
ing of the dimensionless momentum distribution peak with
respect to the number of particles of the two-dimensional Bose
gas:

CBose
0 (X ) = 1 − 1

8 f (X )
. (42)

FIG. 5. CBose
0 (T/TBKT) vs T/TBKT for different interactions mU

h̄2 .
Points are the numerical value of C0 obtained from numerical simula-
tions performed in Ref. [64], while dashed lines are drawn as a guide
for the eyes. In each case the universal jump from C0(TBKT) = 7

8 to
C0(T > TBKT) = 0 is evident.

The jump of the superfluid stiffness ρs at criticality implies
that f (X ) will jump from 0 to 1 at X = 0, i.e., at the critical
point. Therefore, the exponent C0 will jump from the universal
value 7

8 to 0 at the critical BKT temperature. The relation
between the exponent C0 and the ratio T/TBKT is constructed
from the expression [64]

T

TBKT
(X ) = 1

1 + 2πλ(X )/ ln(h̄2ξ/mU )
, (43)

where λ(X ) = [X + θ (X ) − θ0]/2 with θ (X ) found via nu-
merical simulations for system sizes up to 512 in Ref. [64].
The (nonperturbative) constant ξ in Eq. (43) is given by [64]

ξ = 380 ± 3, (44)

and θ0 = 1
π

ln( ξ

ξμ
) is then found to be θ = 1.07 ± 0.01.

Knowing the relation between T/TBKT and X and the re-
lation between CBose

0 and X , we can then track down the
dependence of the exponent C0 with which the dimensionless
momentum distribution peak scales with the number of par-
ticles N for different temperatures. We report its behavior in
Fig. 5 for different values of the interaction U .

An important comment about Fig. 5 is that in the limit of
the dimensionless interaction parameter mU

h̄2 → 0, the expo-
nent C0 tends to be closer (with respect to higher values of U )
to the unity up to temperatures closer to TBKT. In other words,
the smaller is U , the closer to 1 is C0 at fixed T/TBKT < 1.
Going even closer to TBKT from below, the decrease to the
value 7

8 happens abruptly for mU
h̄2 � 0 at T � TBKT. Since C0

has to be 7/8 at T = TBKT, this is associated to a kind of
double jump occurring for T → T −

BKT for U → 0, since in this
limit C0 reaches a value different from (and larger than) 7/8
coming from low-temperature/large-X expansion that we are
going to shortly introduce, then it abruptly jumps from this
value to 7/8 and then jumps from 7/8 to 0. More comments
on the double jump occurrence are below.

Finally, it is worth noting that the values for mU
h̄2 = 1, re-

ported in Fig. 5, are out of the validity range for the weak
interacting gas. Then, the mean-field arguments of Ref. [64]
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cannot be applied anymore, and one should take into account
quantum fluctuations.

Low-temperature predictions may also be formulated, sim-
ilarly to what we did for the Villain and XY models, but with
some subtleties to be worked out. In the low-T regime (i.e.,
far from the critical point), it is X → ∞ and the function θ (X )
satisfies [64]

θ (X ) − 1

π
ln θ (X ) = X + 1

π
ln(2ξμ), (45)

which is a transcendental equation admitting two values for
θ for a single value of X . These two solutions can be distin-
guished in terms of the behavior of θ (X ) for X → ∞. The
first set is the one having a vanishing value of θ (X → ∞) and
it is given by

θ (X → ∞) = e−πX

2ξμ

, (46)

which is the solution of − 1
π

ln θ (X ) = X + 1
π

ln(2ξμ) as well
as a solution of Eq. (45) for X → ∞. This first set is not inter-
esting for us and we look for a function θ (X ) which diverges
for large X . This represents the second set of solutions and
one has

θ (0)(X → ∞) = X + 1

π
ln(2ξμ), (47)

which is the zeroth-order solution of Eq. (45) without the
logarithmic term in the left-hand side. In the low-T regime
one may also write [64]

f (0)(X → ∞) = π

2
θ (0)(X ) − 1

4
= 2πX + 2 ln(2ξμ) − 1

4
,

(48)
where the last identity follows from Eq. (47). Reminding
one that λ(X ) = [X + θ (X ) − θ0]/2 and using Eq. (47), one
has an expression also for the λ(X ) function in the low-
temperature regime at the zeroth order of approximation:

λ(0)(X → ∞) = X + 1

2π
ln

[
2(ξμ)2

ξ

]
. (49)

Therefore, substituting into Eq. (43), one can write an expres-
sion for X (at the zeroth order in terms of the variable T/TBKT)
reading

X (0) = − 1

2π
ln

[
2(ξμ)2

ξ

]
+ 1

2π
ln

(
h̄2ξ

mU

)(TBKT

T
− 1

)
.

(50)

Finally, inserting Eq. (50) into Eq. (48), we may substitute the
equation for f (0)(X → ∞) into Eq. (42) to obtain an analyti-
cal expression for the exponent CBose

0 at low temperatures:

CBose(0)
0 (T/TBKT) � 1 + 1

2

[
1 − ln(2ξ )

− ln

(
h̄2ξ

mU

)(TBKT

T
− 1

)]−1

, (51)

where the superscript (0) denotes we are at the lowest order
in the considered approximation. One can obtain higher-order
solutions by substituting the expression in Eq. (47) in the

FIG. 6. Comparison of low-temperature predictions for
CBose

0 (T/TBKT) vs T/TBKT with numerical results for the two
different interactions mU

h̄2 = 10−12, 0.25. Bottom green (top yellow)
points are the numerical values from numerical simulations
performed in [64], respectively, for mU

h̄2 = 0.25 ( mU
h̄2 = 10−12), while

dashed lines are drawn as a guide for the eye. Low-temperature
predictions from third-order approximation are reported in black
solid lines for two different interaction strengths: the line below
(above) is for mU

h̄2 = 0.25 ( mU
h̄2 = 10−12). Red solid lines (standing

above the black ones for both interaction strengths) represent the
predictions for T � TBKT from Eq. (62).

logarithmic term of the Eq. (45) and solve for θ (X ), which
will now be the solution at the first order of approximation,
i.e., it reads

θ (1)(X ) = X + 1

π
ln(2ξμ) + 1

π
ln θ (0)(X ). (52)

Following the same procedure sketched above for the
zeroth-order case, we obtained the following analytical
form for CBose

0 at low temperatures at first-order
approximation:

CBose(1)
0 (T/TBKT)

� 1 + 1

2

{
1 − 2 ln

[
2mU

h̄2

(
h̄2ξ

2mU

)TBKT/T
]

+W

(
4πmU

h̄2

(
h̄2ξ

2mU

)TBKT /T
)}−1

, (53)

where W (z) is the Lambert or product logarithm function.
Higher-order solutions may be obtained following the same
recipe, but from the second-order case is not possible to write
an analytical expression for X in terms of T/TBKT. Therefore,
one can work out only the numerics in order to obtain the
low-temperature behavior of the exponent CBose( j�2)

0 (T/TBKT).
In the present work the third-order approximation has been
also investigated, but we envisage no particular difficulty in
going beyond.

In Fig. 6 we report the comparison between the low-
temperature expansions with the values for CBose

0 obtained
from the numerical Monte Carlo results of Ref. [64] in the
very small interaction limit mU

h̄2 = 10−12, and for the interme-
diate interaction case mU

h̄2 = 0.25. The agreement is good up

184510-9



A. COLCELLI et al. PHYSICAL REVIEW B 102, 184510 (2020)

to 3% even for T = TBKT, where

CBose(3)
0 (1) � 0.912, (54)

independently of the interaction parameter. It is important
to notice that for smaller values of U the low-temperature
predictions for the exponent CBose

0 are valid for a larger range
of temperatures, since for very weak interactions the variable
X is very large even at T ≈ TBKT. So, decreasing U the range
of validity of the low-temperature predictions increase up to
a value which becomes increasingly close to TBKT. Indeed,
for mU

h̄2 = 10−12 the low-T prediction remains reliable up to
T ≈ 0.9TBKT.

This implies that for U → 0, and in practice mU
h̄2 extremely

small, there will be the above-mentioned double jump phe-
nomenon for the exponent CBose

0 which will pass near below
TBKT from a value close to the quantity in Eq. (54), 0.912, to
7
8 = 0.875 for T = TBKT. Then the second Nelson-Kosterlitz
jump will lead CBose

0 to pass from 7/8 to zero. It can be seen
that there is not appreciable change in this result if one goes
to higher orders of approximation. Despite being not too large
in absolute value, the first jump should be appreciable in
experiments or simulations, one problem being that one has
to go possibly to very small values of mU

h̄2 . We observe that the
prediction of the double jump is based on the validity of the
low-T expansion and its extension near TBKT for U very small,
and when T is scaled in units of TBKT, which in turn depends
on U . Therefore it could be that further corrections near TBKT

may soften the first jump, making it a very steep decrease.
Notice, that due to Eq. (26), the value C0 = 0.912 corresponds
to η = 0.176, which is pretty far from the universal value
η = 0.25, so that going to very small U one should appreciate
such relatively large variation of η near TBKT. Further simula-
tions would be extremely useful to better quantify such steep
decrease of η close to TBKT.

Interestingly enough, at low temperatures, the Bose gas
can be described by the corresponding results for the XY
model. Therefore, posing CXY

0 = CBose(0)
0 , i.e., equating the

low-temperature result of the XY model in Eq. (38) to the
low-temperature result for the 2D Bose gas in Eq. (51) for
any rescaled temperature T/TBKT, one obtains the following
value for the parameter ξ :

ξ = 1
2 e1+(π/2)(T −1), (55)

where T ≡ 4J/kBT (XY )
BKT . When the dimensionless interaction

strength satisfies the equation

mU

h̄2 = 1

2
e1−(π/2) = 0.283, (56)

the low-T predictions in Eq. (51) equal Eq. (38), valid respec-
tively for the 2D Bose gas and the XY model. Since for the
XY model it is kBT (XY )

BKT /J = 0.893 ± 0.001, one finds

ξ = 321 ± 3, (57)

which should be compared with the Monte Carlo result ξ =
380 ± 3. The comparison shows that this result (that depends
only on the critical temperature of the 2D XY model) is not
entirely unreasonable, given the nonperturbative nature of the
parameter ξ and the well-known failure of mean-field calcula-
tions to determine it and in general the difficulty of obtaining
analytical estimates for it.

Predictions can be made also for T � TBKT, i.e., X → 0+.
We write the function θ (X ) as

θ (X → 0) = bX + 1

π
ln

(
ξ

ξμ

)
, (58)

where b is a constant to be determined by fitting the values of
θ (X ) for small X coming from Monte Carlo simulations with
the law in Eq. (58). It is found b = 1.29 ± 0.05.

For the function f (X ) is found instead [43,44,64]

f (X → 0) = 1 +
√

2κ ′X , (59)

with κ ′ = 0.61 ± 0.01. For λ(X ), from Eq. (58), is simply
found that

λ(X → 0) = b − 1

2
X, (60)

and therefore, following the same reasoning of the low-T case,
from Eq. (43) it follows that

X = ln
( h̄2ξ

mU

)
π (b − 1)

(
TBKT

T
− 1

)
. (61)

Finally we can substitute the above expression for X into
Eq. (59) and then into Eq. (42) to obtain an expression for
CBose

0 for T � TBKT which reads

CBose
0 (T → TBKT) � 1 − 1

8

[
1 +

√
2κ ′

π (b − 1)
ln

(
h̄2ξ

mU

)

×
(

TBKT

T
− 1

)]−1

. (62)

We report its behavior in red solid lines in Fig. 6 along
with numerical Monte Carlo results of CBose

0 obtained from
Ref. [64] for different interactions. The agreement is good
only for values X � 0 and the analytical prediction of Eq. (62)
gets rapidly worse for decreasing temperatures.

Equating the two behaviours in Eqs. (51) and (62) we can
find how the temperature with which the two curves intersect
depends on the dimensionless interaction parameter mU

h̄2 . Sub-
stituting this expression back to either (51) or (62), it is found
that the value for CBose

0 at which the two limiting behaviors
intersect is independent on the interaction strength, and reads

CBose(0)
0

= 1 − 1

8

[
1 +

√
2κ ′

π (b − 1)

√
5 − ln(2ξ ) + 16κ ′

π (b − 1)

− 4

√
2κ ′

π (b − 1)

√
5 − ln(2ξ ) + 8κ ′

π (b − 1)

]−1

� 0.914.

This intersection value can also be obtained using the first-
order approximation formula CBose(1)

0 , for which one gets
0.915.

Let us now study the scaling exponent Ck �=0 for the eigen-
values of the 1BDM corresponding to nonvanishing momenta.
As in the previous section, we have to compute the Fourier
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transform of the symmetrized asymptotic behavior of the den-
sity matrix, hence

n(k)

L2
∝ lim

L→∞

∫ 2π

0
eikr cos(θ )dθ

[∫ L/2

0

dr

rη−1
+

∫ L

L/2

dr

(L − r)η−1

]

= lim
L→∞

[∫ L/2

0

J0(kr)

rη−1
dr +

∫ L

L/2

J0(kr)

(L − r)η−1
dr

]
,

where we passed to polar coordinates symmetrizing on the
radial component as was done for the XY model case, J0(x)
is the Bessel function of the first kind, and η = m2kBT

2π h̄2ρs
for

the weakly interacting Bose gas, while η = T
2πJs (T ) for the

XY model. Focusing only on the first half of the integration
interval [69] we obtain

n(k)

L2
∝ L2−η

1F2

(
1 − η

2
; 1, 2 − η

2
; −π2l2

4

)
, (63)

where we used kL = 2π l with l ∈ N. Expanding the hyper-
geometric function for large l and focusing only the leading
term, we obtain finally

n(k)

L2
∝ L2−ηlη−2 ∝ N0, (64)

where in the last proportion we wrote l ∝ L in order that k
remains finite in the thermodynamic limit and L ∝ √

N , since
the density n = N/L2 is fixed. Therefore we simply have

Ck �=0(T ) = 0, (65)

both for the XY and the two-dimensional Bose gas systems
for zero and finite temperatures.

VI. CONCLUSIONS

The goal of the present paper has been to characterize off-
diagonal long-range order (ODLRO) properties of interacting
bosons at finite temperatures through the study of the eigen-
values’ scaling of the one-body density matrix (1BDM) vs
the number of particles N . For translational invariant systems,
denoting by λk the eigenvalues of the 1BDM and by λ0 the
largest among them, one can define the scaling exponents Ck

from the relation λk ∼ NCk . The exponents Ck depend on the
temperature T and on the strength of the interaction (which
we assume short ranged), and on the dimension D as well.
According to the Penrose-Onsager criterion, C0 = 1 corre-
sponds to ODLRO, while at variance the opposite limit C0 = 0
corresponds to the single-particle occupation of the natural
orbital associated to λ0. The intermediate case, 0 < C0 < 1, is
associated for translational invariant systems to the power-law
decaying of nonconnected correlation functions and it can be
seen as identifying quasi-long-range order.

After introducing some basic definitions and properties
of the 1BDM, we discussed how to obtain the expo-
nents Ck directly from the large distance behavior of the
1BDM. The ODLRO in the three-dimensional case for tem-
peratures below the Bose-Einstein critical temperature has
been described, as well as quasi-long-range order in the

one- and two-dimensional Bose gases for different inter-
actions and temperatures, discussing the connection of the
Mermin-Wagner theorem with the occurrence of mesoscopic
condensation. We showed that in 1D it is C0 = 0 for nonva-
nishing temperature, while in 3D it is C0 = 1 (C0 = 0) for
temperatures smaller (larger) than the Bose-Einstein critical
temperature. We then focused on the two-dimensional case.
We presented the application of our methods to the XY and
Villain models, where ODLRO is translated as a magnetiza-
tion of the system, and to the 2D Bose gases. A universal
jump of the power C0 from 7

8 to 0 is found at the Berezinskii-
Kosterlitz-Thouless temperature TBKT, reflecting the universal
jump for the superfluid stiffness. The dependence of C0 be-
tween T = 0 (at which C0 = 1) and TBKT is studied in the
different models. We found a weak dependence of it when
the reduced temperature T/TBKT is used. An estimate for the
(nonperturbative) parameter ξ entering the equation of state
of the 2D Bose gases was obtained using low-temperature
expansions and compared with the Monte Carlo result. We
also unveiled a “double jump”–like behavior for C0, and cor-
respondingly of the anomalous dimension η, right below TBKT

in the limit of vanishing interactions. When the dimensionless
parameter mU/h̄2 is very small, the validity region of the
low-temperature expansion enlarges towards TBKT as soon as
mU/h̄2 decreases. When such regime is reached, then C0 tends
to the value ≈0.912, and again moving towards TBKT from
below it abruptly (or, at least, in a very steep way) decreases
to the universal value 7/8, then jumping again to 0. We pre-
sented a detailed discussion of the weakly interacting regime
and we commented how the double jump behavior could be
appreciable for very low values of the parameter mU/h̄2. Then
we analyzed the behavior of Ck �=0, finding that in none of the
cases presented is there quasi-fragmentation, i.e., Ck �=0 = 0.

Our investigation is based both on the homogeneity of
space and the thermodynamic limit, and therefore it will be
interesting to study in a future work whether adding a confin-
ing external potential could change our predictions and how
a finite number of particles affects the results. Moreover, it
would be of interest to consider long-range interactions [70]
and the presence of disorder, where rigorous results are avail-
able in literature [71,72]. We also mention that for 2D anyonic
gases, despite the presence of considerable literature (see, e.g.,
[73–76], and references therein), to the best of our knowledge
no results for the scaling exponents Ck (T ) are available to
date.

Finally, we observe that for interacting fermions ODLRO
is, of course, not present for the 1BDM, but it may exist for the
2BDM in the presence of attractions, so that it would be inter-
esting to perform a parallel study to the one presented here for
fermionc systems. In particular, in two-dimensional attractive
Fermi gases at the BEC-BCS crossover, the scaling behavior
of the 2BDM has been recently connected to the presence of
quantum anomaly and the ODLRO analysis may clarify its
relation to the finite temperature superfluid transition [78,79].
Moreover, the recently achieved direct measurements of mo-
mentum correlations in one-dimensional Fermi systems [80]
would provide an excellent experimental counterpart to the
study of ODLRO in these systems, where several theoreti-
cal evidences of dynamical critical scaling have been found
[81–85].
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