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Abstract. We consider the inverse boundary value problem of determining the potential q in the equation �u + qu = 0 in
� ⊂ R

n, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension n � 3 for potentials that are
piecewise linear on a given partition of �. No sign, nor spectrum condition on q is assumed, hence our treatment encompasses
the reduced wave equation �u + k2c−2u = 0 at fixed frequency k.
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1. Introduction

The purpose of this paper is to achieve good stability estimates in the determination of the coefficient
q = 1

c2 (c = wavespeed) in the Helmholtz type equation

�u + k2qu = 0 (1.1)

in a domain �, when all possible Cauchy data u|� , ∂u
∂ν

|� are known on an open portion � of ∂�, at a
single given frequency k. In view of the well-known exponential ill-posedness of this problem [31] we
shall introduce the rather strong a-priori assumption on the unknown coefficient q of being piecewise
linear. The precise formulation will be given later on in Section 2. Uniqueness of the inverse boundary
value problem associated with the Helmholtz equation in dimension n � 3 was established by Sylvester
and Uhlmann [41] assuming that the wavespeed is a bounded measurable function.

The inverse boundary value problem associated with the Helmholtz equation has been extensively
studied from an optimization point of view primarily using computational experiments. In reflection
seismology, iterative methods for this inverse boundary value problem have been collectively referred to
as full waveform inversion (FWI). (The term ‘full waveform inversion’ was supposedly introduced by
Pan, Phinney and Odom in [34] with reference to the use of full seismograms information.) Lailly [25]
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and Tarantola [43,44] introduced the formulation of the seismic inverse problem as a local optimization
problem using a misfit functional. The misfit functional was originally based on a least-squares criterion,
but it needs to be carefully designed to fit the analysis of the inverse boundary value problem on the one
hand – possibly, using Hilbert–Schmidt operators as the data – and match actual data acquisition on the
other hand. Furthermore, we mention the original work of Bamberger, Chavent & Lailly [8,9] in the
one-dimensional case. Initial computational experiments in the two-dimensional case were carried out
by Gauthier [21].

The time-harmonic formulation was initially promoted by Pratt and his collaborators [35,37]; he also
emphasized the importance of available wide-angle reflection data in [36]. In this line of research, we
mention the more recent work of Ben-Hadj-Ali, Operto and Virieux [11].

A key question, namely, that of convergence of such iterative schemes in concert with a well-
understood regularization, was left open for almost three decades. It appears that Lipschitz stability
estimates and conditional Lipschitz stability estimates provide a platform for convergence analyses of
the Landweber iteration [18] and projected steepest descent method [19], respectively, with natural ex-
tensions to Newton-type methods.

As mentioned above, the exponential character of instability of the inverse boundary value problem
associated with the Helmholtz equation cannot be avoided. However, conditional Lipschitz stability es-
timates can be obtained: Including discontinuities in the coefficient, Beretta, De Hoop and Qiu [12]
showed that such an estimate holds if the unknown coefficient is a piecewise constant function with a
known underlying domain partition. Beretta, De Hoop, Qiu and Scherzer [13] also give a quantitative es-
timate for the stability constant revealing the precise exponential growth with the number of subdomains
in the partition. We generalize the conditional Lipschitz stability estimate to piecewise linear functions.
Moreover, we use Cauchy data rather than the Dirichlet-to-Neumann map. If we view to (1.1) as the
reduced wave equation, the coefficient q(x) equals 1

c2(x)
, where c is the variable speed of propagation

and thus q > 0. This implies that 0 might be a Dirichlet (or Neumann) eigenvalue, and even if not, it
might be close to an eigenvalue. Therefore it is not convenient for the purpose of stability estimates, to
express the boundary data in terms of the well-known D-N map (or the N-D one). We have chosen to
express errors on the boundary data in terms of the so-called angle (or distance) between the spaces of
Cauchy data viewed as subspaces of a suitable Hilbert space (see below Section 2).

Moreover, since the present estimates are obtained for measurements at one fixed frequency k > 0 we
convene from now on to set k = 1 and we shall also admit that q may be real valued but of variable sign,
thus our analysis encompasses more generally the stationary Schrödinger equation

�u + qu = 0.

Let us emphasize also that Cauchy data are a proxy to data obtained from advanced marine acqui-
sition systems. Here, airgun arrays excite waves underneath the sea surface that is accounted for by a
Dirichlet boundary condition, which are detected in possibly variable depth towed dual sensor streamers
positioned (on some hypersurface) below the airgun arrays. Dual sensors provide both the pressure and
the normal particle velocity forming Cauchy data. To allow favorable paths of (parallel) streamers, in so-
called full-azimuth acquisition, one uses two recording vessels with their own sources and two separate
source vessels1

1See, for example, the dual coil shooting full-azimuth acquisition by WesternGeco.
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One can exploit conditional Lipschitz stability estimates, via a Fourier transform, in the corresponding
time-domain inverse boundary value problem with bounded frequency data. Datchev and De Hoop [17]
showed how, via resolvent estimates for the Helmholtz equation, the prerequisites for application of
projected steepest descent and Newton-type iterative reconstruction methods to inverse wave problems
can be satisfied.

With the objective of obtaining approximate reconstructions in the class of models for which condi-
tional Lipschitz stability estimates hold, from a starting model – the error of which can be estimated as
well in this context [18] – compression plays an important role. This is elucidated in the work of De
Hoop, Qiu and Scherzer [19] using multi-level schemes based on successive refinement and arises in
mitigating the growth of the stability constants with the number of subdomains in the partition or, sim-
ply, the number parameters. Indeed, the class of piecewise linear functions provide an excellent way to
achieve compression in the presence of discontinuities. The application of wavelet bases in compressing
the successive models in iterative methods has been considered by [29,30] in wave-equation tomography
in a the framework of sparsity promoting optimization and in FWI by Lin, Abubakar & Habashy [26]
for the purpose of reducing the size of the Jacobian.

In FWI one commonly applies a ‘nonlinear’ conjugate gradient method, a Gauss–Newton method, or
a quasi-Newton method (L-BFGS; for a review, see Brossier [14]). For the application of multi-scale
Newton methods, see Akcelik [1]. In the gradient method, the step length is typically estimated by a
simple line search for which a linearization of the direct problem is used (Gauthier, Virieux & Tarantola
[21]). This estimation is challenging in practice and may lead to a failure of convergence. For this
purpose, research based on trust region has been studied by Eisenstat & Walker in [20], for FWI see
Métivier and others in [32], the method is detailed in [16]. In various approaches based on the Gauss–
Newton scheme one accounts just for the diagonal of the Hessian [39]. In certain earthquake seismology
applications, one builds the Fréchet derivative or Jacobian (sensitivity, for example by Chen et al. [15])
explicitly and then applies LSQR. We also mention the work of Métivier and others in [32] based on
Hessian vector multiplication techniques to reduce the cost of a dense Hessian computation. The use of
complex frequencies was studied in [23,38].

Coming back to the object of the present paper, let us point out that various new aspects appear in
comparison to prior results of stability under assumptions of piecewise constant or piecewise linear
coefficients [4,7,12] which require novel arguments.

I) Singular solutions. Since we admit that the underlying equation may be in the eigenvalue regime for
the Dirichlet or the Neumann boundary value problem we need to construct Green’s functions for
a boundary of mixed type which is of Dirichlet type on part of the boundary and of complex valued
Robin-type on the remaining part. This construction relies on quantitative estimates of unique con-
tinuation which take inspiration from an idea of Bamberger and Hua Duong [10] and an iterative
procedure for the approximation with the standard fundamental solution of Laplace’s equation.

II) Asymptotics. In order to determine values of the potential q and its gradient we need singular
solutions whose blow up rate is of the order up to |x|−n, for this purpose we have to estimate the
asymptotic behaviour of the previously found Green’s function up to its second derivatives.

III) Stability at the boundary. The typical initial step in stability from inverse boundary value problems
is the stability at the boundary of the unknown coefficient. For Calderón’s problem it is well-known
that the stability at the boundary for the conductivity coefficient is of Lipschitz type [3,42]. For the
potential coefficient q the situation is different. In fact we are able in general to obtain only Hölder
type stability. This fact is related to the different dimensionality of the boundary energy

∫
∂�

u∂u
∂ν
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and of the volume integral
∫
�

qu2 whereas in the conductivity case ((γ∇u) = 0) the equality∫
∂�

uγ ∂u
∂ν

= ∫
�

γ |∇u|2 provides the right balance.
Nevertheless, under the piecewise linear assumption, using the kind of bootstrap argument intro-
duced in [7] we eventually achieve the desired global Lipschitz stability.

The outline of the paper is as follows. In Section 2 we provide the basic set up. We introduce the spaces
of local Cauchy data and their metric structure as subspaces of a Hilbert space in Section 2.1. Next, in
Section 2.2 we present the a-priori assumptions on the domain and on the potential and we state our
main stability result theorem 2.2. In Section 3.1 we state the main propositions which provide the main
tools for the proof of theorem 2.2 which is completed in Section 3.2. Section 4 contains the proofs of
the various propositions previously stated. Section 4.1 contains the construction of the Green’s function
for the mixed Dirichlet–Robin boundary value problem and the estimates of its asymptotic behavior.
Section 4.2 contains the quantitative estimates of unique continuation adapted for the singular solution
S̃Uk

introduced in Section 3. We conclude in Section 4.3 with the stability estimates at the boundary for
the potential q and its normal derivative.

2. Main result

2.1. Definitions and preliminaries

In several places within this manuscript it will be useful to single out one coordinate direction. To this
purpose, the following notations for points x ∈ R

n will be adopted. For n � 3, a point x ∈ R
n will be

denoted by x = (x ′, xn), where x ′ ∈ R
n−1 and xn ∈ R. Moreover, given a point x ∈ R

n, we shall denote
with Br(x), B ′

r (x) the open balls in R
n, Rn−1 respectively centred at x with radius r and by Qr(x) the

cylinder

Qr(x) = B ′
r

(
x ′) × (xn − r, xn + r).

In the sequel, we shall make a repeated use of quantitative notions of smoothness for the boundaries
of various domains. Let us introduce the following notation and definitions.

Definition 2.1. Let � be a domain in R
n. We say that a portion � of ∂� is of Lipschitz class with

constants r0, L if there exists P ∈ � and there exists a rigid transformation of Rn under which we have
P = 0 and

� ∩ Qr0 = {
x ∈ Qr0 |xn > ϕ

(
x ′)},

� = {
x ∈ Qr0 |xn = ϕ

(
x ′)},

where ϕ is a Lipschitz function on B ′
r0

satisfying

ϕ(0) = ∣∣∇x′ϕ(0)
∣∣ = 0; ‖ϕ‖C0,1(B ′

r0
) � Lr0.

It is understood that ∂� is of Lipschitz class with constants r0, L if it is finite union of portions of
Lipschitz class with constants r0, L.
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Definition 2.2. Let � be a domain in R
n. We say that a portion � of ∂� is a flat portion of size r0 if

there exists P ∈ � and there exists a rigid transformation of Rn under which we have P = 0 and

� ∩ Qr0/3 = {x ∈ Qr0/3|xn = 0}
� ∩ Qr0/3 = {x ∈ Qr0/3|xn > 0}(
R

n \ �
) ∩ Qr0/3 = {x ∈ Qr0/3|xn < 0}.

(2.1)

Let us define the space of local Cauchy data on � for H 1(�) solutions to

�u + qu = 0 in �, (2.2)

having zero trace on ∂� \ �.

Definition 2.3. Let � be a domain in R
n with Lipschitz boundary ∂� and � a non-empty open portion

of ∂�. Let us introduce the subspace of H
1
2 (∂�)

H
1
2

co(�) = {
f ∈ H

1
2 (∂�)| supp f ⊂ �

}
. (2.3)

We recall that its closure with respect to the H
1
2 (∂�)-norm is the space H

1
2

00(�) (see [27,45]).
We define the Cauchy data associated to q with first component vanishing on ∂� \ � to be the space

C�
q (∂�) defined by

C�
q (∂�) = {

(f, g) ∈ H
1
2

00(�) × H− 1
2 (∂�)|∃u ∈ H 1(�) weak solution to

�u + qu = 0 in �,

u|∂� = f, ∂νu|∂� = g
}
. (2.4)

Analogously, we consider the subspace of H
1
2 (∂�),

H
1
2

00(∂� \ �)

and the closed subspace of H− 1
2 (∂�) of functionals vanishing on H

1
2

00(�) functions

H
− 1

2
00 (∂� \ �) = {

ψ ∈ H− 1
2 (∂�)|〈ψ, ϕ〉 = 0, for any ϕ ∈ H

1
2

00(�)
}
. (2.5)

Here 〈ψ, ϕ〉 denotes the duality between the complex valued spaces H− 1
2 (∂�), H

1
2 (∂�) based on the

L2 inner product

〈ψ, ϕ〉 =
∫

∂�

ψϕ.
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We denote by H
1
2 (∂�)|� and H− 1

2 (∂�)|� the restrictions of H
1
2 (∂�) and H− 1

2 (∂�) to � respec-
tively. Note that H

1
2 (∂�)|� can be interpreted as the quotient space of H

1
2 (∂�) through the equivalence

relation

ϕ ∼ ψ iff ϕ − ψ ∈ H
1
2

00(∂� \ �).

The same reasoning applies to H− 1
2 (∂�)|� , that is

H− 1
2 (∂�)|� = H− 1

2 (∂�)/H
− 1

2
00 (∂� \ �).

We can now define the local Cauchy data that will be considered here.

Definition 2.4. The local Cauchy data associated to q having zero first component on ∂�\� are defined
by

C�
q (�) = {

(f, g) ∈ H
1
2

00(�) × H− 1
2 (∂�)|�|∃u ∈ H 1(�) weak solution to

�u + qu = 0 in �,

u|∂� = f,

〈∂νu|∂�, ϕ〉 = 〈g, ϕ〉, ∀ϕ ∈ H
1
2

00(�)
}
.

For the sake of completeness, let us also introduce the general local Cauchy data Cq(�) with no zero
Dirichlet condition on ∂� \ �

Cq(�) = {
(f, g) ∈ H

1
2 (∂�)|� × H− 1

2 (∂�)|�|∃u ∈ H 1(�) weak solution to

�u + qu = 0 in �,

u|∂� − f ∈ H
1
2

00(∂� \ �),

〈∂νu|∂�, ϕ〉 = 〈g, ϕ〉, ∀ϕ ∈ H
1
2

00(�)
}
.

Observe also that H
1
2

00(�) × H− 1
2 (∂�)|� is a Hilbert space with the norm

∥∥(f, g)
∥∥

H
1
2

00 (�)⊕H
− 1

2 (∂�)|�
= (‖f ‖2

H
1
2

00 (�)

+ ‖g‖2

H
− 1

2 (∂�)|�

) 1
2 . (2.6)

We recall that given closed subspaces S1, S2 of a Hilbert space (H, ‖ · ‖), the distance (aperture)
between S1, S2 is defined as

d(S1, S2) = max

{
sup

h∈S2,h�=0
inf
k∈S1

‖h − k‖H

‖h‖H

, sup
k∈S1,k �=0

inf
h∈S2

‖h − k‖H

‖k‖H

}
, (2.7)

see for instance [2]. From now on, given two potential qi , i = 1, 2, we will simply denote the local
Cauchy data C�

qi
(�) with Ci , i = 1, 2. We recall also that it is known that when d(S1, S2) < 1, then the

6
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two quantities within the maximum in (2.7) coincide (see [24]). Then, since we are interested in Cauchy
data spaces C1, C2 corresponding to potentials q1, q2 respectively, when C1 and C2 are close to each other,
it is sensible to set

d(C1, C2) = sup
(f2,g2)∈C2\{(0,0)}

inf
(f1,g1)∈C1

‖(f1, g1) − (f2, g2)‖
H

1
2

00 (�)⊕H
− 1

2 (∂�)|�
‖(f2, g2)‖

H
1
2

00 (�)⊕H
− 1

2 (∂�)|�
. (2.8)

Note also that properly speaking the above quantity is a distance between the closures C1 and C2. We
notice that it could be proved that the subspaces C1 and C2 are indeed closed, but this fact is not much
relevant in the present context.

Let us also recall some more or less well-known calculations. Let ui ∈ H 1(�) be solutions to (2.2)

when q = qi , i = 1, 2 respectively and such that ui |∂� ∈ H
1
2

co(�). Green’s identity yields∫
�

(q1 − q2)u1u2 = 〈∂νu2, u1〉 − 〈∂νu1, u2〉. (2.9)

Notice that a complex valued function ui is a solution to (2.2) when q = qi (real valued) if and only
if so is ui . Notice also that, if vi is any other such solution with q = qi , we have

〈∂νvi, ui〉 − 〈∂νui, vi〉 = 0, for every i = 1, 2. (2.10)

Hence, for any v2 solving �v2 + q2v2 = 0 in �,∫
�

(q1 − q2)u1u2 = 〈
∂νu2, (u1 − v2)

〉 − 〈∂νu1 − ∂νv2, u2〉, (2.11)

from such an identity one easily deduces∣∣∣∣∫
�

(q1 − q2)u1u2 dx

∣∣∣∣ � d(C1, C2)
∥∥(u1, ∂νu1)

∥∥
H

1
2

00 (�)⊕H
− 1

2 (∂�)|�
(2.12)

× ∥∥(u2, ∂νu2)
∥∥

H
1
2

00 (�)⊕H
− 1

2 (∂�)|�
. (2.13)

2.2. Conditional Lipschitz stability

2.2.1. Assumptions about the domain �

1. We assume that � is a domain in R
n and that there is a positive constant B such that

|�| � Brn
0 , (2.14)

where |�| denotes the Lebesgue measure of �.

7
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2. We fix an open non-empty subset � of ∂� (where the measurements in terms of the local Cauchy
data are taken).

3.

�̄ =
N⋃

j=1

D̄j ,

where Dj , j = 1, . . . , N are known open sets of Rn, satisfying the conditions below.

(a) Dj , j = 1, . . . , N are connected and pairwise nonoverlapping polyhedrons.
(b) ∂Dj , j = 1, . . . , N are of Lipschitz class with constants r0, L.
(c) There exists one region, say D1, such that ∂D1 ∩ � contains a flat portion �1 of size r0 and for

every i ∈ {2, . . . , N} there exists j1, . . . , jK ∈ {1, . . . , N} such that

Dj1 = D1, DjK
= Di. (2.15)

In addition we assume that, for every k = 1, . . . , K , ∂Djk
∩ ∂Djk−1 contains a flat portion �k

of size r0 (here we agree that Dj0 = R
n \ �), such that

�k ⊂ �, for every k = 2, . . . , K.

Let us emphasise that under such an assumption, for every k = 1, . . . , K , there exists Pk ∈ �k

and a rigid transformation of coordinates (depending on k) under which we have Pk = 0 and

�k ∩ Qr0/3 = {x ∈ Qr0/3|xn = 0},
Djk

∩ Qr0/3 = {x ∈ Qr0/3|xn > 0},
Djk−1 ∩ Qr0/3 = {x ∈ Qr0/3|xn < 0}.

(2.16)

2.2.2. A-priori information on the potential q

We shall consider a real valued function q ∈ L∞(�), with

‖q‖L∞(�) � E0, (2.17)

for some positive constant E0 and of type

q(x) =
N∑

j=1

qj (x)χDj
(x), x ∈ �, (2.18a)

qj (x) = aj + Aj · x, (2.18b)

where aj ∈ R, Aj ∈ R
n and Dj , j = 1, . . . , N are the given subdomains introduced in Section 2.2.1.

Definition 2.5. Let B, N , r0, L, E0 be given positive numbers with N ∈ N. We will refer to this set
of numbers, along with the space dimension n, as to the a-priori data. Several constants depending on
the a-priori data will appear within the paper. In order to simplify our notation, any quantity denoted by
C, C1, C2, . . . will be called a constant understanding in most cases that it only depends on the a priori
data.

8
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Remark 2.1. Observe that the class of functions of the form (2.18a)–(2.18b) is a finite dimensional
linear space. The L∞-norm ‖q‖L∞(�) is equivalent to the norm

|||q||| = max
j=1,...,N

{|aj | + |Aj |
}

modulo constants which only depend on the a-priori data.

Theorem 2.2. Let �, Dj , j = 1, . . . , N and � be a domain, N subdomains of � and a portion of ∂�

as in Section 2.2.1 respectively. Let q(i), i = 1, 2 be two potentials satisfying (2.17) and of type

q(i) =
N∑

j=1

q
(i)
j (x)χDj

(x), x ∈ �, (2.19)

where

q
(i)
j (x) = a

(i)
j + A

(i)
j · x,

with a
(i)
j ∈ R and A

(i)
j ∈ R

n, then we have∥∥q(1) − q(2)
∥∥

L∞(�)
� Cd(C1, C2), (2.20)

where Ci denotes the space of Cauchy data C�
qi
(�), for i = 1, 2 and C is a positive constant that depends

on the a-priori data only.

Remark 2.3. An analogous result to the one obtained in theorem 2.2 could be similarly obtained if the
local Cauchy data (with vanishing condition on ∂� \ � on the first component) considered here are to
be replaced by the general local data with no vanishing condition on the first component as introduced
in definition 2.4. Our present choice is motivated by the fact that the solutions that shall be actually used
for the purpose of the stability estimates do indeed satisfy such zero trace condition.

3. Proof of the main result

The proof of our main result (theorem 2.2) is based on an argument that combines asymptotic type of
estimates for a Green’s function of the third kind for the operator

L = � + q(x) in � (3.1)

(Propositions 3.4, 3.5), with q satisfying (2.17)–(2.18b), together with a result of unique continuation
(Proposition 3.6) for solutions to

Lu = 0, in �.

Our idea in estimating q(1) − q(2) exploits this singular behaviour on one hand estimating from below
the blow up of some singular solutions (we shall introduce below) SUk

and some of its derivatives if

9



124 G. Alessandrini et al. / Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data

q(1) − q(2) is large at some point. On the other hand we use estimates of propagation of smallness to
show that SUk

needs to be small if q1 − q2 is small. We shall give the precise formulation of these results
in what follows.

3.1. Piecewise linear potential

We collect here a series of auxiliary results. Most of the proofs are postponed to the following section.

3.1.1. Asymptotics at interfaces
We will find convenient to introduce Green’s function not precisely for the physical domain � but for

an augmented domain �0.
We recall that by assumption 3(c) of Section 2.2.1 we can assume that there exists a point P1 such that

up to a rigid transformation of coordinates we have that P1 = 0 and (2.1) holds with � = �1.
Denoting by

D0 =
{
x ∈ (

R
n \ �

) ∩ Br0 ||xi | <
2

3
r0, i = 1, . . . , n − 1,

∣∣∣∣xn − r0

6

∣∣∣∣ <
5

6
r0

}
,

it turns out that the augmented domain �0 = �∪D0 is of Lipschitz class with constants r0
3 and L̃, where

L̃ depends on L only. Given r > 0, we set

�0 =
{
x ∈ �0||xi | � 2

3
r0, xn = −2

3
r0

}
, (3.2)

(�0)r = {
x ∈ �0| dist(x, ∂�0) > r

}
. (3.3)

In this section we shall introduce a mixed boundary value problem for � + q in �0 which is always
well posed, independently of any a-priori condition on q, besides the assumption of being real valued
and bounded. This shall enable us to construct a Green’n function for �+q in �0. The underlying ideas
of such construction can be traced back to an idea by Bamberger and Hua Duong [10].

The main result is as follows.

Proposition 3.1. Let q ∈ L∞(�0), for any y ∈ �0 there exists a unique distributional solution G(·, y)

to the problem⎧⎪⎨⎪⎩
�G(·, y) + q(·)G(·, y) = −δ(· − y), in �0,

G(·, y) = 0, on ∂�0 \ �0,

∂νG(·, y) + iG(·, y) = 0, on �0.

(3.4)

In particular we have∣∣G(x, y)
∣∣ � C|x − y|2−n, for any x, y ∈ �, x �= y, (3.5)

where C > 0 is a constant depending on the a priori data only.

In what follows we shall make a repeated use of the solution to (3.4) in the special case q = 0.

10
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Definition 3.1. We denote by G0 = G0(x, y) the Green’s function for the Laplacian and mixed boundary
conditions which solves in the distributional sense⎧⎪⎨⎪⎩

�G0(·, y) = −δ(· − y), in �0,

G0(·, y) = 0, on ∂�0 \ �0,

∂νG0(·, y) + iG0(·, y) = 0, on �0.

(3.6)

Remark 3.2. The existence and uniqueness of a distributional solution G0 ∈ L1(�0) to (3.6) is a
consequence of the standard theory on boundary value problem for the Laplace equation. It is also well-
known that

G0(·, y) ∈ H 1
(
�0 \ Bε(y)

)
, for every ε > 0 (3.7)

and ∣∣G0(x, y)
∣∣ � C|x − y|2−n, for any x, y ∈ (�0) r0

4
, x �= y, (3.8)

where C > 0 is a constant depending on the a priori data only.
Estimate (3.8) holds also when x and y approach ∂�. Indeed, by adapting the change of variable argu-

ments in Lemma 4.5 in [40], we may consider an homogeneous Neumann condition on �0 instead. The
latter, together with the techniques carried over in [6, Prop. 8.3], enables to perform an even extension
G̃0 of G0 across �0. We define the set �⊥

0 = {x ∈ R
n||xi | = 2

3r0, − 19
24r0 � xn � − 13

24r0} and we observe
that the extension G̃0 satisfies an homogeneous Dirichlet condition on �⊥

0 and it is Lipschitz continuous
up to �⊥

0 . Finally, the results in [28] allow us to conclude that∣∣G0(x, y)
∣∣ � C|x − y|2−n, for any x, y ∈ �0, x �= y, (3.9)

where C > 0 is a constant depending on the a priori data only.

Proposition 3.3. For any y ∈ �0 and every r > 0 we have that∫
�0\Br (y)

∣∣∇G(·, y)
∣∣2 � Cr2−n, (3.10)

where C > 0 is a constant depending on n, r0, L and on ‖q‖L∞(�0).

Proof. The proof can be obtained in a straightforward fashion by combining Caccioppoli inequality
with (3.5). �

Proposition 3.4. For every x, y ∈ (�0)r0, x �= y we have that

∣∣G(x, y) − (x, y)
∣∣ �

⎧⎪⎨⎪⎩
C, if n = 3,

C(| log |x − y|| + 1), if n = 4,

C|x − y|4−n, if n � 5,

(3.11)

11
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and

∣∣∇yG(x, y) − ∇y(x, y)
∣∣ � {

C(| log |x − y|| + 1), if n = 3,

C|x − y|3−n, if n � 4.
(3.12)

Our next goal is to analyze the asymptotics of ∇2
yG(x, y) (∇2

y = Hessian matrix). To this purpose it
is necessary to use accurately the fine structure of q as a piecewise linear function. We are especially
interested to the case when x, y are near to an interface of q. More precisely, we examine the case when
x and y are on the opposite sides of the interface and y approaches orthogonally the interface.

Proposition 3.5. Let Ql+1 be a point such that Ql+1 ∈ Br0
8
(Pl+1)∩�l+1 with l ∈ {1, . . . , N −1}. There

exist a constant C > 0 depending on n, r0, L and ‖q‖L∞(�0) such that following inequality hold true for
every x ∈ Br0

16
(Ql+1) ∩ Djl+1 and every = Ql+1 − ren, where r ∈ (0, r0

16)∣∣∇2
y

(
G(x, y) − (x, y)

)∣∣ � Cr2−n. (3.13)

3.1.2. Quantitative unique continuation
We consider the operator Li given by

Li = � + q̃(i)(x) in �0, i = 1, 2, (3.14)

where q̃(i) is the extension on �0 of q(i) obtained by setting q̃(i)|D0 = 1, for i = 1, 2. For every y ∈ �0,
we shall denote with Gi(·, y) the Green function solution to (3.4) when q = q̃(i) for i = 1, 2. We also
define the set

D̂0 =
{
x ∈ D0| dist(x, �1) �

r0

3

}
.

Let K ∈ 1, . . . , N be such that

E = ∥∥q(1) − q(2)
∥∥

L∞(�)
= ∥∥q(1) − q(2)

∥∥
L∞(DK)

(3.15)

and recall that there exist j1, . . . , jK ∈ 1, . . . , N such that

Dj1 = D1, . . . , DjK
= DK,

with Dj1, . . . , DjK
satisfying assumption 3(c). For simplicity, let us rearrange the indices of these sub-

domains so that the above mentioned chain is simply denoted by D1, . . . , DK, K � N . We also denote

Wk =
k⋃

i=0

Di, Uk = �0 \ Wk, for k = 1, . . . , K (3.16)

and for any y, z ∈ Wk

S̃Uk
(y, z) =

∫
Uk

(
q̃(1) − q̃(2)

)
G̃1(·, y)G̃2(·, z), for k = 1, . . . , K. (3.17)

12
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It is a relatively straightforward matter to see that for every y, z ∈ Wk with k = 0, . . . , K we have
that S̃Uk

(·, z), S̃Uk
(y, ·) ∈ H 1

loc(Wk) are weak solutions to(
� + q(1)(x)

)
S̃Uk

(·, z) = 0, in Wk, (3.18)(
� + q(2)(x)

)
S̃Uk

(y, ·) = 0, in Wk. (3.19)

It is expected that some derivatives of S̃Uk
(y, z) blow up as y, z approach simultaneously one point of

∂Uk. The following estimate for S̃Uk
(y, z) holds true, for k = 1, . . . , K .

Proposition 3.6 (Estimates of unique continuation). If, for a positive number ε0, we have∣∣S̃Uk
(y, z)

∣∣ � r0ε0, for every (y, z) ∈ D̂0 × D̂0, (3.20)

then the following inequalities hold true for every r � 2r1

∣∣S̃Uk
(yk+1, yk+1)

∣∣ � C(E + ε0)

(
ε0

E + ε0

)r2β2N1 (
1 + r2γ

)
, (3.21)

∣∣∂yj
∂zi

S̃Uk
(yk+1, yk+1)

∣∣ � C(E + ε0)

(
ε0

E + ε0

)r2β2N1 (
1 + r2γ

)
r−2, (3.22)

∣∣∂2
yj

∂2
zi
S̃Uk

(yk+1, yk+1)
∣∣ � C(E + ε0)

(
ε0

E + ε0

)r2β2N1 (
1 + r2γ

)
r−4, (3.23)

for any i, j = 1, . . . , n, where yk+1 = Pk+1 − 2rν(Pk+1), ν is the exterior unit normal to ∂Dk at Pk+1,
β = ln(8/7)

ln 4 , r1 = r0
16 , γ = 2 − n

2 , and the constants N1, C > 0 depend on the a-priori data only.

Note that γ < 0 only when n > 4, hence the term r2γ becomes irrelevant if n = 3, 4.

3.2. Lipschitz stability for piecewise linear potentials

Proof of theorem 2.2. Let DK be the subdomain of � satisfying (3.15) and let D1, . . . , DK be the
chain of domains satisfying assumption 3(c). For any k = 1, . . . , K we shall denote by DT f and ∂νf

the n − 1 dimensional vector of the tangential partial derivatives of a function f on �k and the normal
partial derivative of f on �k respectively. We denote by Ci the local Cauchy data, for i = 1, 2. Let us
also simplify our notation by replacing C

q(i) with We shall also denote

ε0 = d(C1, C2), δl = ∥∥q̃(1) − q̃(2)
∥∥

L∞(Wl )

and introduce for any number b > 0, the concave non decreasing function ωb(t), defined on (0, +∞),

ωb(t) =
{

2be−2| log t |−b, t ∈ (0, e−2),

e−2, t ∈ [e−2, +∞).
(3.24)

13
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We recall (see (4.34) and (4.35) in [7]) that for any β ∈ (0, 1) we have that

(0, +∞) � t → tωb

(
1

t

)
is a nondecreasing function (3.25)

and

ωb

(
t

β

)
�

∣∣log eβ−1/2
∣∣bωb(t), ωb

(
tβ

)
�

(
1

β

)b

ωb(t). (3.26)

Furthermore, we set ω(0)
α (t) = tα with 0 < α < 1 and we shall denote the iterated compositions

ω
(1)
b = ωb, ω

(j)

b = ωb ◦ ω
(j−1)

b , j = 2, 3, . . . . (3.27)

We begin by noticing that for each l = 1, 2, . . . ‖q̃(1)
l − q̃

(2)
l ‖L∞(Dl) can be evaluated in terms of the

quantities∥∥q̃
(1)
l − q̃

(2)
l

∥∥
L∞(�l∩B r0

4
(Pl))

, (3.28)∣∣∂ν

(
q̃

(1)
l − q̃

(2)
l

)
(Pl)

∣∣, (3.29)

where r0 > 0 is the constant introduced in Section 2.1. In fact, let us denote

αl + βl · x = (
q̃

(1)
l − q̃

(2)
l

)
(x), x ∈ Dl (3.30)

and choose {ej }j=1,...,n−1 orthonormal vectors starting at Pl and generating the hyperplane containing
the flat part of �l . By computing q̃

(1)
l − q̃

(2)
l on the points Pl , Pl + r0

5 ej , j = 1, . . . , n − 1 and taking
their differences we obtain

|αl + βl · Pl| +
n−1∑
j=1

|βl · ej | � C
∥∥q̃

(1)
l − q̃

(2)
l

∥∥
L∞(�l∩B r0

4
(Pl))

. (3.31)

Next we notice that

|βl · ν| = ∣∣∂ν

(
q

(1)
l − q

(2)
l

)
(Pl)

∣∣. (3.32)

Hence each of the components of βl can be estimated and eventually also |αl|. In conclusion

|αl| + |βl| � C
(∥∥q̃

(1)
l − q̃

(2)
l

∥∥
L∞(�l∩B r0

4
(Pl))

+ ∣∣∂ν

(
q

(1)
l − q

(2)
l

)
(Pl)

∣∣). (3.33)

Hence our task will be to estimate the quantities∥∥q̃
(1)
l − q̃

(2)
l

∥∥
L∞(�l∩B r0

4
(Pl))

and
∣∣∂ν

(
q

(1)
l − q

(2)
l

)
(Pl)

∣∣

14
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iteratively with respect to l (see for example [4]). When l = 1 this corresponds to a stability estimate at
the boundary for the potential q and its normal derivative of the following type

∥∥q̃
(1)

1 − q̃
(2)

1

∥∥
L∞(�l∩B r0

4
(P1))

+ ∣∣∂ν

(
q

(1)

1 − q
(2)
l

)
(P1)

∣∣ � C(ε0 + E)

(
ε0

ε0 + E

)η1

, (3.34)

for some constant η1, 0 < η1 < 1, resulting in

δ1 � C(ε0 + E)

(
ε0

ε0 + E

)η1

, 0 < η1 < 1.

The bound (3.34) is proven in Section 4.3. We proceed to estimate δ2 by proving

∥∥q̃
(1)

2 − q̃
(2)

2

∥∥
L∞(�l∩B r0

4
(P2))

+ ∣∣∂ν

(
q

(1)

2 − q
(2)

2

)
(P2)

∣∣ � C(ε0 + E)ωη2

(
ε0

ε0 + E

)
, (3.35)

for some constant η2, 0 < η2 < 1, where ωb is the function defined in (3.24). We recall that for every
y, z ∈ D0 we have∫

∂�

(
G̃1(x, y)∂νG̃2(x, z) − G̃2(x, z)∂νG̃1(x, y)

)
dS(x) (3.36)

= S̃U1(y, z) dx +
∫
W1

(
q̃(1) − q̃(2)

)
(x)G̃1(x, y)G̃2(x, z) dx,

and for every i = 1, . . . , n∫
∂�

(
∂yi

G̃1(x, y)∂ν∂zi
G̃2(x, z) − ∂zi

G̃2(x, z)∂ν∂yi
G̃1(x, y)

)
dS(x) (3.37)

= ∂yi
∂zi

S̃U1(y, z) +
∫
W1

(
q̃(1) − q̃(2)

)
(x)∂yi

G̃1(x, y)∂zi
G̃2(x, z) dx,

where dS(x) denotes surface integration with respect to the variable x. Here an argument of propagation
of smallness allows to get estimates on �2. In order to estimate q̃(1) − q̃(2) we can repeat the argument
already used in [12] to prove (3.37) and obtain (omitting the details)

∥∥q̃
(1)

2 − q̃
(2)

2

∥∥
L∞(�2∩B r0

4
(P2))

� C(ε0 + E)

∣∣∣∣ln(
ε0

ε0 + E

)∣∣∣∣− 1
4

, (3.38)

where r0 > 0 is the constant introduced in Section 2.1. In comparison to [12], we have the additional
task to estimate∣∣∂ν

(
q

(1)

2 − q
(2)

2

)
(P2)

∣∣.
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In this case we detail the procedure. Let us consider for any i, j = 1, . . . , n∫
∂�

(
∂2
yiyj

G̃1(x, y)∂ν∂
2
zizj

G̃2(x, z) − ∂2
zizj

G̃2(x, z)∂ν∂
2
yiyj

G̃1(x, y)
)
dS(x)

= ∂2
yiyj

∂2
zizj

S̃U1(y, z) +
∫
W1

(
q̃(1) − q̃(2)

)
(x)∂2

yiyj
G̃1(x, y) · ∂2

zizj
G̃2(x, z) dx. (3.39)

From (3.36) we obtain∣∣S̃U1(y, z)
∣∣ � ε0

(∥∥G̃1(·, y)
∥∥

H
1
2

00 (�)
+ ∥∥∂νG̃2(·, z)

∥∥
H

− 1
2 (∂�)|�

)
× (∥∥G̃2(·, z)

∥∥
H

1
2

00 (�)
+ ∥∥∂νG̃1(·, y)

∥∥
H

− 1
2 (∂�)|�

)
+ δ1

∥∥G̃1(·, y)
∥∥

L2(W1)

∥∥G̃2(·, z)
∥∥

L2(W1)

� C(ε0 + δ1)r
2−n
0 , for every y, z ∈ D̂0. (3.40)

Let ρ0 = r0

C
, where C is the constant introduced in Proposition 3.5, let r ∈ (0, 2r1) (where r1 was

introduced in Proposition 3.6) and denote

y2 = P2 + rν,

then for every i, j = 1, . . . , n

∂2
yiyj

∂2
zizj

S̃U1(y2, y2) = I
ij

1 (y2) + I
ij

2 (y2), (3.41)

where

I
ij

1 (y2) =
∫

Bρ0 (P2)∩D2

(
q(1) − q(2)

)
(·)∂2

yiyj
G̃1(·, y2)∂

2
zizj

G̃2(·, y2),

I
ij

2 (y2) =
∫

�\(Bρ0 (P2)∩D2)

(
q(1) − q(2)

)
(·)∂2

yiyj
G̃1(·, y2)∂

2
zizj

G̃2(·, y2).

If for k = 1, 2 we denote by |Ik(y2)| the Euclidean norm of matrix Ik(y2) = {I ij

k (y2)}i,j=1,...,n, we
have ∣∣I2(y2)

∣∣ � CEρ−n
0 , (3.42)

where C depends on λ and n only (see [4]) and∣∣I1(y2)
∣∣

� 1

n

n∑
i,j=1

{∣∣∣∣∫
Bρ0 (P2)∩D2

(
∂ν

(
q

(1)

2 − q
(2)

2

)
(P2)

)
(x − P2)n∂

2
yiyj

G̃1(x, y2)∂
2
zizj

G̃2(x, y2) dx

∣∣∣∣
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−
∫

Bρ0 (P2)∩D2

∣∣(DT

(
q

(1)

2 − q
(2)

2

)
(P2)

) · (x − P2)
′∣∣∣∣∂2

yiyj
G̃1(x, y2)

∣∣∣∣∂2
zizj

G̃2(x, y2) dx
∣∣

−
∫

Bρ0 (P2)∩D2

∣∣(q(1)

2 − q
(2)

2

)
(P2)

∣∣∣∣∂2
yiyj

G̃1(x, y2)
∣∣∣∣∂2

zizj
G̃2(x, y2) dx

∣∣}
and, noticing that up to a transformation of coordinates we can assume that P2 coincides with the origin
O of the coordinates system and by Theorem 3.5, this leads to

∣∣I1(y2)
∣∣ � C

{∣∣∂ν

(
q

(1)

2 − q
(2)

2

)
(O)

∣∣ ∫
Bρ0 (O)∩D2

∣∣∇2
y(x, y2)

∣∣2|xn| dx

− E

∫
Bρ0 (O)∩D2

∣∣∇2
y(x, y2)

∣∣|x − y2|2−n|xn| dx

− E

∫
Bρ0 (O)∩D2

|x − y2|4−2n|xn| dx

}
−

∫
Bρ0 (O)∩D2

∣∣DT

(
q

(1)

2 − q
(2)

2

)∣∣∣∣x ′∣∣∣∣∇2
y G̃1(x, y2)

∣∣∣∣∇2
z G̃2(x, y2)

∣∣ dx

−
∫

Bρ0 (O)∩D2

∣∣(q(1)

2 − q
(2)

2

)
(O)

∣∣∣∣∇2
y G̃1(x, y2)

∣∣∣∣∇2
z G̃2(x, y2)

∣∣ dx. (3.43)

Therefore, by combining (3.43) together with (3.41) and (3.42), we obtain

∣∣I1(y2)
∣∣ � C

{∣∣∂ν

(
q

(1)

2 − q
(2)

2

)
(O)

∣∣ ∫
Bρ0 (O)∩D2

|x − y2|−2n|xn| dx

− 2E

∫
Bρ0 (O)∩D2

|x − y2|3−2n dx

− (ε0 + E)

∣∣∣∣ln(
ε0

ε0 + E

)∣∣∣∣− 1
4
∫

Bρ0 (O)∩D2

|x − y2|1−2n dx

− (ε0 + E)

∣∣∣∣ln(
ε0

ε0 + E

)∣∣∣∣− 1
4
∫

Bρ0 (O)∩D2

|x − y2|−2n dx

}
,

which leads to

∣∣∂ν

(
q

(1)

2 − q
(2)

2

)∣∣r1−n �
∣∣I1(y2)

∣∣ + C

(
(ε0 + E)

∣∣∣∣ln(
ε0

ε0 + E

)∣∣∣∣− 1
4

r−n + 2Er3−n

)
, (3.44)

where∣∣I1(y2)
∣∣ � ∣∣∂2

yn
∂2
zn

S̃U1(y2, y2)
∣∣ + CEρ−n

0 . (3.45)
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Thus by combining the last two inequalities we get

∣∣∂ν

(
q

(1)

2 − q
(2)

2

)∣∣r1−n �
∣∣∂2

yn
∂2
zn

S̃U1(y2, y2)
∣∣ + C

{
E

(
ρ−n

0 + r3−n
)

+ (ε0 + E)

∣∣∣∣ln(
ε0

E + ε0 + δ1

)∣∣∣∣− 1
4

r−n

}
(3.46)

and by recalling that by Proposition 3.6 we have

∣∣∂2
yj

∂2
zi
S̃U1(y2, y2)

∣∣ � C

(
ε0 + δ1

E + ε0 + δ1

)r2β2N1

(ε0 + E)
(
1 + r4−n

)
r−4,

where β, N1 are the constants introduced in Proposition 3.6, we obtain

∣∣∂ν

(
q

(1)

2 − q
(2)

2

)∣∣ � C

{(
ε0 + δ1

E + ε0 + δ1

)r2β2N1

(ε0 + E + δ1)r
pn + Er2

+ (ε0 + E)

∣∣∣∣ln(
ε0

ε0 + E

)∣∣∣∣− 1
4

r−1

}
, (3.47)

for any r , 0 < r < 2r1, where r1 is as above and

pn =
{

−1 n � 4,

n − 5 n = 3.

By minimizing (3.47) with respect to r we obtain

∣∣∂ν

(
q

(1)

2 − q
(2)

2

)∣∣ � C(ε0 + δ1 + E)ωη2

(
ε0 + δ1

ε0 + δ1 + E

)
, for some η2, 0 < η2 < 1 (3.48)

and by combining (3.48) together with

ε0 + δ1

ε0 + δ1 + E
� Cω(0)

η1

(
ε0

ε0 + E

)
(3.49)

and by the properties of the modulus ωb, we obtain (3.35). By proceeding by iteration on l in order to
estimate q

(1)
l − q

(2)
l for l = 1, . . . , K , we replace (3.36), (3.37) and (3.39) by∫

∂�

(
G̃1(x, y)∂νG̃2(x, z) − G̃2(x, z)∂νG̃1(x, y)

)
dS(x)

= S̃Ul−1(y, z) +
∫
Wl−1

(
q̃(1) − q̃(2)

)
(x)G̃1(x, y)G̃2(x, z) dx, (3.50)

18



G. Alessandrini et al. / Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data 133∫
∂�

(
∂yi

G̃1(x, y)∂ν∂zi
G̃2(x, z) − ∂zi

G̃2(x, z)∂ν∂yi
G̃1(x, y)

)
dS(x)

= ∂yi
∂zi

S̃Ul−1(y, z) +
∫
Wl−1

(
q̃(1) − q̃(2)

)
(x)∂yi

G̃1(x, y)∂zi
G̃2(x, z) dx (3.51)

for any i = 1, . . . , n and∫
∂�

(
∂2
yiyj

G̃1(x, y)∂ν∂
2
zizj

G̃2(x, z) − ∂2
zizj

G̃2(x, z)∂ν∂
2
yiyj

G̃1(x, y)
)
dS(x)

= ∂2
yiyj

∂2
zizj

S̃Ul−1(y, z) +
∫
Wl−1

(
q̃(1) − q̃(2)

)
(x)∂2

yiyj
G̃1(x, y) · ∂2

zizj
G̃2(x, z) dx (3.52)

for any i, j = 1, . . . , n respectively. Note that (3.50) leads to∣∣S̃Ul1(y, z)
∣∣ � C(ε0 + δl−1)r

2−n
0 , for every y, z ∈ D̂0, (3.53)

where C depends on L, λ, n. By repeating the same argument applied for the special case l = 2 we
obtain

∥∥q̃
(1)
l − q̃

(2)
l

∥∥
L∞(�l∩B r0

4
(Pl))

+ ∣∣∂ν

(
q(1) − q(2)

)
(Pl)

∣∣ � C(ε0 + E)ωηl

(
ε0

ε0 + E

)
, (3.54)

for some ηl , 0 < ηl < 1 and observing that

δl � δl−1 + ∥∥q
(1)
l − q

(2)
l

∥∥
L∞(Dl)

,

we obtain for every l = 2, 3, . . .

δl � δl−1 + C(ε0 + δl−1 + E)ωηl

(
ε0 + δl−1

ε0 + δl−1 + E

)
,

hence trivially

ε0 + δl

ε0 + δl + E
� Cωηl

(
ε0 + δl−1

ε0 + δl−1 + E

)
. (3.55)

Using the properties of the logarithmic moduli ωb, (3.54) and the induction step (3.55) we arrive at

∥∥q(1) − q(2)
∥∥

L∞(�)
� C(ε0 + E)ω(K−1)

ηK

(
ε0

ε0 + E

)
,

therefore

E � C(ε0 + E)ω(K−1)
ηK

(
ε0

ε0 + E

)
. (3.56)
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Assuming that E > ε0e
2 (if this is not the case then the theorem is proven) we obtain

E � C

(
E

e2
+ E

)
ω(K−1)

ηK

(
ε0

E

)
,

which leads to

1

C
� ω(K−1)

ηK

(
ε0

E

)
,

therefore

E � 1

ω
(−(K−1))
ηK ( 1

C
)
ε0,

where here, with a slight abuse of notation, ω
(−(K−1))
1
C

denotes the inverse function of ω(K−1)
ηK

. �

4. Proof of technical propositions

4.1. Asymptotic estimates

Proof of Proposition 3.1. Let us consider the following inhomogeneous boundary value problem.
Given f ∈ L2(�0), we wish to find v ∈ H 1(�0) such that⎧⎪⎨⎪⎩

�v + qv = f, in �0,

v = 0, on ∂�0 \ �0,

∂νv + iv = 0, on �0.

(4.1)

in the weak sense. Let us also consider the adjoint problem (recall that q is real valued).⎧⎪⎨⎪⎩
�w + qw = g, in �0,

w = 0, on ∂�0 \ �0,

∂νw − iw = 0, on �0.

(4.2)

It is well-known [22] that the Fredholm alternative applies and we have existence for (4.1) if and only
if we have uniqueness for (4.2) and viceversa. In fact we can prove uniqueness for either of the two. We
consider the homogeneous problem⎧⎪⎨⎪⎩

�z + qz = 0, in �0,

z = 0, on ∂�0 \ �0,

∂νz ± iz = 0, on �0.

(4.3)
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Using z̄ as a test function we obtain∫
�0

|∇z|2 −
∫

�0

q|z|2 ± i

∫
�0

|z|2 = 0, (4.4)

which in turn implies z = 0 on �0. Consequently also ∂νz = 0 on �0. From the uniqueness for the
Cauchy problem, it follows that z ≡ 0 in �0. Hence the solution to (4.1) exists and is unique. We now
show that (4.1) is also well-posed in H 1(�0). From the weak formulation of the problem (4.1) we have∫

�0

|v|2 = − Im

(∫
�0

f v̄

)
, (4.5)∫

�0

|∇v|2 = − Re

(∫
�0

f v̄

)
+

∫
�0

q|v|2. (4.6)

We define

ε2 =
∫

�0

|v|2 +
∫

�0

|∂νv|2, (4.7)

η2 =
∫

�0

|f |2, (4.8)

δ2 =
∫

�0

|v|2, (4.9)

E2 =
∫

�0

|∇v|2. (4.10)

From (4.5) and the Schwartz inequality it follows that∫
�0

|v|2 � ηδ (4.11)

which, combined with the impedance condition and Poincaré inequality, implies that

ε2 � 2ηE. (4.12)

Moreover, by (4.6) we have that

E2 � ηδ + ‖q‖L∞(�0)δ
2. (4.13)

We claim that there exists a constant C1 > 0 depending on n, r0, L and ‖q‖L∞(�0) such that

E2 � C1η
2. (4.14)
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In order to prove our claim, we distinguish two cases. If δ2 � η2, then (4.14) follows from (4.13).
Otherwise, we observe that by well-known estimates for the Cauchy problem (see for instance [5]) it
follows that

δ2 �
(
E2 + ε2 + η2

)
ω

(
ε2 + η2

E2 + ε2 + η2

)
, (4.15)

where ω(t) � C| log(t)|−μ with C, 0 < μ < 1 depending on n, r0, L and ‖q‖L∞(�0). By (4.12) and
(4.13) the above inequality leads to

δ2 �
(
3ηδ + ‖q‖L∞(�0)δ

2 + η2
)
ω

(
ε2 + η2

E2 + ε2 + η2

)
. (4.16)

From (4.16) we have that

1 �
(
4 + ‖q‖L∞(�0)

)
ω

(
ε2 + η2

E2 + ε2 + η2

)
, (4.17)

which leads to

ω−1

(
1

4 + ‖q‖L∞(�0)

)(
E2 + ε2 + η2

)
� ε2 + η2. (4.18)

Again from (4.12) we have that

ω−1

(
1

4 + ‖q‖L∞(�0)

)
E2 � 2ηE + η2. (4.19)

By Schwartz inequality we readily obtain

E2 � Cη2 (4.20)

which, together with (4.12), gives

‖v‖H 1(�0)
� C‖f ‖L2(�0)

. (4.21)

We set J = [n−1
2 ] and we define iteratively the following kernels{

R0(x, y) = G0(x, y),

Rj (x, y) = ∫
�0

G0(x, z)q(z)Rj−1(z, y) dz,
(4.22)

for every j = 1, . . . , J . Note that for every j = 1, . . . , J we have⎧⎪⎨⎪⎩
�Rj(·, y) = −q(·)Rj−1(·, y), in �0

Rj(·, y) = 0, on ∂�0 \ �0

∂νRj (·, y) + iRj (·, y) = 0 on �0

(4.23)
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and also by standard estimate [33]∣∣Rj(x, y)
∣∣ � C|x − y|2j+2−n, for every j = 0, . . . , J − 1. (4.24)

Now, if n is even∣∣RJ (x, y)
∣∣ � C

(∣∣log |x − y|∣∣ + 1
)
, (4.25)

where if n is odd∣∣RJ (x, y)
∣∣ � C. (4.26)

In either case ‖RJ (·, y)‖Lp(�0) � C for every p < ∞. We let RJ+1(·, y) = v(·) the solution to (4.1),
when f (·) = −q(·)RJ (·, y). Therefore∥∥RJ+1(·, y)

∥∥
H 1(�0)

� C (4.27)

and by relatively standard regularity estimates in the interior and at the boundary (see the arguments in
Remark 3.2)∣∣RJ+1(x, y)

∣∣ � C, for any x, y ∈ �0, x �= y. (4.28)

If we form

G(x, y) = G0(x, y) +
J+1∑
j=1

Rj(x, y), (4.29)

then we end up with the desired solution to (3.4). �

Proof of Proposition 3.4. It is evident that G0(x, y) − (x − y) is harmonic in either variables x ∈
�0, y ∈ �0. Hence standard interior regularity yields∣∣G0(x, y) − (x − y)

∣∣ + ∣∣∇y

(
G0(x, y) − (x − y)

)∣∣ � C, (4.30)

for any x, y ∈ (�0)r0 . In order to prove (3.11) and (3.12) it then suffices to estimate R(x, y) = G(x, y)−
G0(x, y) and its y-derivatives. Note that a crude estimate of R could be derived from (4.24), (4.25),
(4.26), (4.28) and (4.29). Finer estimates are obtained as follows. By Green’s identity we have

R(x, y) =
∫

�0

G(x, z)q(z)G0(z, y) dz. (4.31)

By combining (4.31) together with (3.5) and [33, Chap. 2] we obtain

∣∣R(x, y)
∣∣ �

⎧⎪⎨⎪⎩
C, if n = 3,

C(| log |x − y|| + 1), if n = 4,

C|x − y|4−n, if n � 5.

(4.32)
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We now estimate ∇yR. When x �= y we can differentiate under the integral sign and obtain

∣∣∂yi
R(x, y)

∣∣ =
∣∣∣∣∫

�0

G(x, z)q(z)∂yi
G0(z, y) dz

∣∣∣∣
�

∫
�0\Br0 (x)

∣∣G(x, z)q(z)∂yi
G0(z, y)

∣∣ dz

+ C

∫
Br0 (x)

|x − z|2−n|z − y|1−n dz, (4.33)

hence we have used the pointwise bound on G achieved in (3.5) and the above stated asymptotics on
∇yG0. The first integral is bounded by a constant, the second one can be estimated (see [33, Chap. 2])
by

C
(| log |x − y| + 1

)
if n = 3 (4.34)

and by

C|x − y|3−n if n � 4. (4.35)

�

Proof of Theorem 3.5. We fix l ∈ {1, . . . , N − 1}. Furthermore, we observe that up to a transformation
of coordinates we can assume that Ql+1 coincides with the origin 0 of the coordinates system. We denote

R(x, y) = G(x, y) − (x − y),

then we have⎧⎪⎨⎪⎩
�xR(x, y) + q(x)R(x, y) = −q(x)(x − y), in �0,

R(x, y) = −(x, y), on ∂�0 \ �0,

∂νx
R(x, y) + iR(x, y) = −∂νx

(x − y) − i(x − y), on �0.

(4.36)

By Green’s identity we arrive at

R(x, y) =
∫

�0

(∂νz
+ i)(z − y)G(z, x) dσ(z) (4.37)

+
∫

∂�0\�0

(z − y)G(z, x) +
∫

�0

(z − y)q(z)G(z, x) dz.

We denote

R̂(x, y) =
∫

B r0
8

(z − y)q(z)G(z, x) dz. (4.38)
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With the stated assumptions on x and y, it is a straightforward matter to show that∣∣∇2
y

(
R(x, y) − R̂(x, y)

)∣∣ � C. (4.39)

Let us investigate R̂. We set

B = Br0
8
, B ′ = B ′

r0
8
, (4.40)

B+ = {x ∈ B : xn > 0}, B− = {x ∈ B : xn < 0}, (4.41)

q+ = q
∣∣
B+, q− = q

∣∣
B−, [q] = (

q+ − q−)|B ′ . (4.42)

We compute

∂yi
R̂(x, y) = −

∫
B

∂zi
(z − y)q(z)G(z, x) dz

= −
∫

∂B

(z − y)q(z)G(z, x)ei · ν dS(z)

+
∫

B ′


(
z′ − y

)[
q
(
z′)]G(

z′, x
)
ei · en dz′

+
∫

B

(z − y)
(
∂zi

q(z)G(z, x) + q(z)∂zi
G(z, x)

)
dz. (4.43)

Note that ∂zi
q is well-defined on B \ B ′. By further differentiation

∂2
yiyj

R̂(x, y) (4.44)

= −
∫

∂B

∂yj
(z − y)q(z)G(z, x) dS(z)

+
∫

B ′
∂yj


(
z′ − y

)[
q
(
z′)]G(

z′, x
)
ei · en dz′

+
∫

B

∂yj
(z − y)

(
∂zi

q(z)G(z, x) + q(z)∂zi
G(z, x)

)
dz.

The first integral on the right hand side of the above equality is readily seen to be bounded. The third
one is dominated by∫

B

1

|z − y|n−1|z − x|n−1
dz � C|x − y|2−n (4.45)

and, since |x − y|2 = |xn + r|2 + |x ′|2 � r2, we can bound it as follows∫
B

1

|z − y|2|z − x|2 dz � Cr2−n. (4.46)
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The second integral, the one on B ′, is nontrivial only when i = j = n. Therefore,∣∣∂2
yiyj

R(x, y)
∣∣ � C|x − y|2−n for all (i, j) �= (n, n). (4.47)

Now

∂2
yn

R(x, y) = �yR(x, y) − �′
yR(x, y), (4.48)

where �′
yR(x, y) = ∑n−1

i=1 ∂2
yi
R(x, y). By the symmetry of G, we also have R(x, y) = R(y, x), hence

�yR(x, y) + q(y)R(x, y) = −q(y)(x − y). (4.49)

Therefore,

∂2
yn

R(x, y) = −q(y)
(
R(x, y) + (x, y)

) − �′R(x, y) (4.50)

and consequently∣∣∂2
yn

R(x, y)
∣∣ � C|x − y|2−n. (4.51)

Combining (4.47) and (4.51) together we get the desired bound for the full Hessian of R and the thesis
follows. �

4.2. Propagation of smallness

Lemma 4.1. Let v be a weak solution to

�v + qv = 0 in Wk, (4.52)

where q is either equal to q̃(1) or equal to q̃(2). Assume that for given positive numbers ε0, E0 and real
number γ , v satisfies∣∣v(x)

∣∣ � ε0 for every x ∈ D̂0 (4.53)

and ∣∣v(x)
∣∣ � C(ε0 + E0)

(
1 + dist(x,Uk)

)γ
, for every x ∈ Wk, (4.54)

for some positive constant C. Then the following inequality holds true for every 0 < r < r1

∣∣v(yk+1)
∣∣ � C

(
ε0

ε0 + E0

)rβN1

(ε0 + E0)
(
1 + rγ

)
, (4.55)

where yk+1 = Pk+1 −2rν(Pk+1), where ν is the exterior unit normal to ∂Dk at Pk+1, β = ln(8/7)

ln 4 , r1 = r0
16

and the constants C, N1 depend on the a priori data only.
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Proof. By Proposition 3.9 in [12], which is based on an iterated use of the three spheres inequality for
elliptic equations, we infer that

∣∣v(yk+1)
∣∣ � C

(
ε0

ε0 + E0

)rβN1

(ε0 + E0)
(
1 + r(1−τr )γ

)
, (4.56)

where τr = ln(
12r1−2r

12r1−3r
)

ln(
6r1−r

2r1
)

∈ (0, 1). By noticing that there exist positive constants C1 and C2 such that

C1r
γ � r(1−τr )γ � C2r

γ , (4.57)

the thesis follows. �

Proof of Theorem 3.6. We observe that for any y, z ∈ Wk we have

∣∣SUk
(y, z)

∣∣ � C
∥∥q̃(1) − q̃(2)

∥∥
L∞(�0)

(
dist(y,Uk) dist(z,Uk)

)2− n
2 , (4.58)

for any y, z ∈ Wk. By (4.58) and applying twice lemma 4.1 first to v(·) = SUk
(·, z), with z ∈ (D0) r0

4

and then to v(·) = SUk
(y, ·), with y ∈ B3r1−r (xk+1), we find that

∣∣S̃Uk
(y, z)

∣∣ � C

(
ε0

E + ε0

)r2β2N1 (
1 + r2γ

)
, (4.59)

for any y, z ∈ B3r1−r (xk+1), where xk+1 = Pk+1 − 3r1ν(Pk+1), ν is the exterior unit normal to ∂Dk and
γ = 2 − n

2 .
By considering S̃Uk

(y, z) as a function of 2n variables where (y, z) ∈ R
2n, (4.59) leads to

∣∣S̃Uk
(y1, . . . , yn, z1, . . . , zn)

∣∣ � C

(
ε0

E + ε0

)r2β2N1 (
1 + r2γ

)
, (4.60)

for any x = (y1, . . . , yn, z1, . . . , zn) ∈ B3r1−r (xk+1)×B3r1−r (xk+1). Now observing that S̃Uk
(y1, . . . , yn,

z1, . . . , zn) is a solution in Dk × Dk of the elliptic equation

(�y + �z)S̃Uk
(y, z) + (

q1(y) + q2(z)
)
S̃Uk

(y, z) = 0, (4.61)

we have that given yk+1 = Pk+1 − 2rν(Pk+1) by Schauder interior estimates∥∥∂yi
∂zj

S̃Uk
(y1, . . . , yn, z1, . . . , zn)

∥∥
L∞(B r

2
(yk+1)×∈B r

2
(yk+1)

� C

r2

∥∥S̃Uk
(y1, . . . , yn, z1, . . . , zn)

∥∥
L∞(Br (yk+1)×∈Br(yk+1)
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and ∥∥∂2
yi
∂2
zj

S̃Uk
(y1, . . . , yn, z1, . . . , zn)

∥∥
L∞(B r

4
(yk+1)×∈B r

4
(yk+1)

� C

r2

∥∥∂yi
∂zj

S̃Uk
(y1, . . . , yn, z1, . . . , zn)

∥∥
L∞(B r

2
(yk+1)×∈B r

2
(yk+1)

,

for any i, j = 1, . . . , n, where C > 0 is a constant depending on the a priori data only. �

4.3. Stability at the boundary

Proof of estimate (3.34). We choose a coordinate system {x1, . . . , xn} centred at P1 with xn in the di-
rection of the normal ν and recall that for every y, z ∈ D0 we have∫

∂�

(
∂yn

G̃1(x, y)∂xn
∂zn

G̃2(x, z) − ∂zn
G̃2(x, z)∂xn

∂yn
G̃1(x, y)

)
dS(x)

=
∫

�

(
q̃(1) − q̃(2)

)
(x)∂yn

G̃1(x, y)∂zn
G̃2(x, z) dx = ∂yn

∂zn
S̃U0(y, z). (4.62)

and ∫
∂�

(
∂2
yn

G̃1(x, y)∂xn
∂2
zn

G̃2(x, z) − ∂2
zn

G̃2(x, z)∂xn
∂2
yn

G̃1(x, y)
)
dS(x)

=
∫

�

(
q̃(1) − q̃(2)

)
(x)∂2

yn
G̃1(x, y)∂2

zn
G̃2(x, z) dx = ∂2

yn
∂2
zn

S̃U0(y, z). (4.63)

By combining (4.62) together with (2.6), (2.12), we obtain∣∣∣∣∫
∂�

(
∂yn

G̃1(x, y)∂xn
∂zn

G̃2(x, z) − ∂zn
G̃2(x, z)∂xn

∂yn
G̃1(x, y)

)
dS(x)

∣∣∣∣
� Cε0

(
d(y) d(z)

)− n
2 , for everyy, z ∈ D0, (4.64)

where d(y) denotes the distance of y from � and C is a constant that depends on L, λ and n only.
Let ρ0 = r0

C
, where C is the constant introduced in Proposition 3.4, let r ∈ (0, r1), where r1 has been

introduced in Proposition 3.6 and denote

y1 = P1 + rν.

We set y = z = y1 and obtain∫
�

(
q̃(1) − q̃(2)

)
(x)∂yn

G̃1(x, y)∂zn
G̃2(x, z) dx

=
∫

Bρ0 (P1)∩D1

(
q̃(1) − q̃(2)

)
(x)∂yn

G̃1(x, y)∂zn
G̃2(x, z) dx

+
∫

�\(Bρ0 (P1)∩D1)

(
q̃(1) − q̃(2)

)
(x)∂yn

G̃1(x, y)∂zn
G̃2(x, z) dx, (4.65)
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which leads to

ε0r
−n �

∣∣∣∣∫
Bρ0 (P1)∩D1

(
q

(1)

1 − q
(2)

1

)
(·)∂yn

G̃1(x, y1)∂zn
G̃2(x, y1)

∣∣∣∣
−

∣∣∣∣∫
�\(Bρ0 (P1)∩D1)

(
q(1) − q(2)

)
(·)∂yn

G̃1(x, y1)∂zn
G̃2(x, y1)

∣∣∣∣. (4.66)

Let x0 ∈ �1 ∩ Br0
4 (P1)

such that (q
(1)

1 − q
(2)

1 )(x0) = ‖q̃(1) − q̃(2)‖L∞(�1∩B r0
4 (P1)

) and recall that (q
(1)

1 −
q

(2)

1 )(x) = α1 + β1 · x, therefore we obtain

ε0r
−n �

∣∣∣∣∫
Bρ0 (P1)∩D1

(
q

(1)

1 − q
(2)

1

)(
x0

)
∂yn

G̃1(x, y1)∂zn
G̃2(x, y1)

∣∣∣∣
−

∣∣∣∣∫
Bρ0 (P1)∩D1

β1 · (x − x0
)
∂yn

G̃1(x, y1)∂zn
G̃2(x, y1)

∣∣∣∣ − CEρ2−n
0 (4.67)

and then

∥∥q̃
(1)

1 − q̃
(2)

1

∥∥
L∞(�1∩B r0

4
(P1))

∣∣∣∣∫
Bρ0 (P1)∩D1

∂yn
G̃1(x, y1)∂zn

G̃2(x, y1) dx
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�

∫
Bρ0 (P1)∩D1

|β1|
∣∣x − x0

∣∣∣∣∂yn
G̃1(x, y1)

∣∣∣∣∂zn
G̃2(x, y1)

∣∣ dx + CEρ2−n
0 + ε0r

−n. (4.68)

For n = 3, by combining (4.68) together with (3.12), we obtain

∥∥q̃
(1)

1 − q̃
(2)

1

∥∥
L∞(�1∩B r0

4 (P1)
)

∫
Bρ0 (P1)∩D1

∣∣∇(x − y1)
∣∣2

dx

� C

{
E

∫
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∣∣∇(x − y1)
∣∣ log |x − y1| dx + E

∫
Bρ0 (P1)∩D1

(
log |x − y1|

)2
dx

+ E

∫
Bρ0 (P1)∩D1

∣∣x − x0
∣∣|x − y1|−4 dx + Eρ−1

0 + ε0r
−3

}
, (4.69)

which leads to∥∥q̃
(1)

1 − q̃
(2)

1

∥∥
L∞(�1∩B r0

4 (P1)
)

∫
Bρ0 (P1)∩D1

|x − y1|−4 dx

� C

{
E

∫
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|x − y1|−3 dx + E

∫
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|x − y1|−2 dx

+ E

∫
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|x − y1|−3 dx + Eρ−1
0 + ε0r

−3

}
, (4.70)
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therefore

∥∥q̃(1) − q̃(2)
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L∞(�1∩B r0
4 (P1)

)
� C

{
Er log

(
ρ0

r

)
+ Er2 + Eρ−1

0 r + ε0r
−2

}
� C

{
Erθ + εr−2

}
, (4.71)

for some θ , 0 < θ < 1 and by optimizing with respect to r

∥∥q̃(1) − q̃(2)
∥∥

L∞(�1∩B r0
4 (P1)

)
� Cε

θ
θ+2
0 (E + ε0)

2
θ+2 . (4.72)

For n � 4, by combining (4.68) together (3.12), we obtain
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(1)

1 − q̃
(2)

1
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L∞(�1∩B r0
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)
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+ E
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+ E

∫
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∣∣|x − y1|2−2n dx + Eρ2−n

0 + ε0r
−n

}
, (4.73)

which leads to∥∥q̃
(1)

1 − q̃
(2)

1

∥∥
L∞(�1∩B r0

4 (P1)
)

∫
Bρ0 (P1)∩D1

|x − y1|2−2n dx

� C

{
E
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+ E

∫
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−n

}
, (4.74)

therefore∥∥q̃(1) − q̃(2)
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L∞(�1∩B r0
4 (P1)

)
� C

{
Er2 + Er4 + Er + Eρ2−n
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{
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(4.75)

and by optimizing with respect to r

∥∥q̃(1) − q̃(2)
∥∥

L∞(�1∩B r0
4 (P1)

)
� Cε

1
3
0 (E + ε0)

2
3 . (4.76)
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We proceed by estimating ∂ν(̃q
(1) − q̃(2))(P1). By combining (4.63) together with (2.6), (2.12), we

obtain∣∣∣∣∫
∂�

(
∂2
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∂2
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)
dS(x)
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� Cε0
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)− n
2 −1

, for every y, z ∈ D0, (4.77)

and setting y = z = y1 in (4.77), we obtain∫
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where
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We have∣∣I1(y1)
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Noticing that up to a transformation of coordinates we can assume that P1 coincides with the origin
O of the coordinates system and recalling Theorem 3.5, this leads to
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− E
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Therefore, by combining (3.43) together with (3.41) and (3.42), we obtain∣∣I1(y1)
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which implies
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and ∣∣I1(y1)
∣∣ � ∣∣∣∣∫
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Thus by combining together the last two inequalities we get
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therefore∣∣∂xn
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and by optimizing with respect to r we get
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