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Abstract. The use of CAE (Computer Aided Engineering) software, commonly applied to
the design and verification of a great variety of manufactured products, is totally reliant on
accurate numerical simulations. Classic mesh-based methods, e.g., Finite Element (FEM)
and Finite Volume (FVM), are usually employed for such simulations, where the role of the
mesh is crucial for both accuracy and time consumption issues. This is especially true for
complex 3D domains which are typically encountered in most practical problems. Meshless,
or meshfree, methods have been recently introduced in order to replace the usual mesh with
much simpler node distributions, thus purifying the data structures of any additional geometric
information. Radial Basis Function-Finite Difference (RBF-FD) meshless methods have been
shown to be able to easily solve problems of engineering relevance over complex-shaped domains
with great accuracy, with particular reference to fluid flow and heat transfer problems. In this
paper the RBF-FD method is employed to solve heat transfer problems with incompressible,
steady-state laminar flow over 3D complex-shaped domains. The required node distributions
are automatically generated by using a meshless node generation algorithm, which has been
specifically developed to produce high quality node arrangements over arbitrary 3D geometries.
The presented strategy represents therefore a fully-meshless approach for the accurate and
automatic simulation of thermo-fluid problems over 3D domains of practical interest.

1. Introduction
Traditional CAE (Computer Aided Engineering) software usually rely on classic mesh-based
methods, e.g., Finite Element (FEM) [1] and Finite Volume (FVM)[2] for solving boundary value
problems over generic 3D domains. These methods are based on well understood mathematical
models, which have proved to be reliable and accurate in the hands of adequately experienced
users. With time, their widespread adoption has brought to the surface a number of inherent
limitations, for example the need for processing and storage of the so called connectivity
information. The main consequences are [3]:

• the cost of the mesh creation and the size of the consequent data structure,

• the inability to allow large geometric deformation of the domain.

The first one refers to both computational and economical costs; indeed the generation of a
mesh often require the intervention of an experienced human worker, and operator costs now
outweigh those of CPU time for the computer [3]. Such an operation becomes necessary for
instance when high level of accuracy is demanded and therefore some local refinement of the
mesh is needed at certain spots of the domain. The second weakness becomes of interest in
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many practical cases, for example when the solver is paired with some optimization algorithm
and the geometry is deformed multiple times.

For those reasons the so-called meshless or meshfree methods have recently been proposed
as an alternative to the mesh-based ones for the solution of partial differential equations over
complex-shaped domains [3–6]. The common characteristic is the use of the so-called field nodes:
at first a set of nodes is scattered over the domain, then shape functions are constructed for
each internal node.

In this paper an implementation of the Radial Basis Function-generated Finite Difference
(RBF-FD) meshless method [4, 7–11] is used to solve thermo-fluid problems over 3D geometries.
The main advantages of this method is that no connectivity information is stored or processed,
this implies the overcoming of all the limitations of the mesh-based methods enumerated so far.
Furthermore, the employed node generation process lends itself to being automatically executed
in parallel and therefore is particularly suitable for High Performance Computing applications.
The employed code is developed using Julia programming language [12], which allows extensive
code reuse and excellent computational performance already at the development stage.

In order to illustrate the numerical properties of the proposed method and its usability in the
field of CFD simulations, several computations for a natural convection problem over a complex
3D geometry at a Rayleigh number RaD = 103 will be presented.

2. Governing equations
Let us consider an incompressible fluid with density ρ, kinematic viscosity ν, thermal diffusivity
α, thermal conductivity k and volumetric temperature expansion coefficient β. The resulting
nondimentional conservation equations of mass, momentum and energy are

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p+

√
Pr

RaD
∇2u + kT, (2)

∂T

∂t
+ u · ∇T =

1√
Pr·RaD

∇2T, (3)

where k is the unit vector along the vertical direction z. In the above equations, length, velocity
u = (u, v, w), time t, pressure p and temperature T are made dimensionless by taking respectively
D, U0 =

√
gβD∆T , D/U0, ρU2

0 and ∆T as reference quantities, where g is the gravitational
acceleration. Pr = ν/α is the Prandtl number and RaD = Pr ·gβD3∆T/ν2 is the Rayleigh
number. The chosen values for the presented computations are Pr = 0.71 and RaD = 103,
leading to a steady-state solution with the presented geometry.

3. Numerical method
In order provide a better explanation of the RBF-FD meshless method, we can describe it as
the succesive application of four steps:

(i) generation of node distributions,

(ii) RBF interpolation or function approximation,

(iii) collocation technique,

(iv) solution procedure.

Each of the aforementioned steps will be briefly presented as follows. Interested readers might
find a more detailed discussion on the very same method in [13].
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3.1. Node distributions
Node distributions are represented by a certain number N of 3D points fulfilling a prescribed
spacing function s and which are required to be scattered within the domain Ω and on its
boundary ∂Ω, where the latter is assumed to be concretely available in the form of a .stl

(stereolithography) file. This process can be further divided in two stages:

• generation of a volumetric node distribution within Ω (nodes are not placed on ∂Ω yet)
that satisfies a certain spacing s on average,

• iterative refinement of the initial node distribution through a node-repel approach that
provides a suitable node distribution also on ∂Ω.

In the second step the nodes are moved according to mutual repulsion forces that arise
between neighbors. Whenever one of them is pushed outside Ω, it is projected onto the nearest
point on the boundary ∂Ω. This projection operation is efficiently performed by exploiting an
octree data structure [14, 15] for the boundary triangles of the stereolithography surface.

3.2. RBF Interpolation
The value of a generic function ζ at any point is approximated applying the Radial Point
Interpolation Method (RPIM) using Radial Basis Functions (RBFs) augmented with polynomial
terms [3]. This means that the value ζ(x) taken by such function at the point x ∈ Ω can be
locally approximated by the quantity ζh(x), defined as follows:

ζ(x) ≈ ζh(x) :=

n̄∑
i=1

αiϕ(‖x− xi‖2) +

m∑
j=1

βjpj(x), (4)

where:

• {ϕ(‖x − xi‖2) : i = 1, . . . , n̄} is a set of n̄ RBFs, each of which is associated to the
corresponding node xi. The set of the considered nodes is local, i.e. x1, . . . , xn̄ are the
n̄ nearest nodes to x. For brevity of notation, ϕ(x, xi) will be used instead of ϕ(‖x− xi‖2).

• the multiquadratic Radial Basis Functions [16] are used, defined as ϕ(r) :=
√

1 + (εr)2

• {pj : j = 1, . . . ,m} is a complete polynomial basis of degree P .

The calculation of the weights {α1, . . . , αn̄} and {β1, . . . , βm} depends on the position of
the stencil, that is, if some nodes of the stencil belongs to the boundary ∂Ω, then boundary
conditions must be taken into account. When none of the nodes belonging to the stencil lies on
the boundary ∂Ω, then the weights are estimated assuming that the values of the function u
at the nodes of the stencil are known, this translates into a linear system of n̄ equations of the
form:

ζh(xi) = ζ(xi), i = 1, . . . , n̄ (5)

where the definition of ζh(x) can be substituted at each row. In order to make the system
solvable, other m equations are attained by enforcing the following additional orthogonality
conditions:

n̄∑
i=1

αipj(xi) = 0, j = 1, . . . ,m (6)

On the other hand, when some boundary nodes are included in the stencil, instead of assuming
the true value of the function ζ in the corresponding equation, the appropriate boundary
condition are imposed. In the case of Robin b.c. (i.e. aζ + b ∂ζ/∂n = g) applied to the ith

node of the stencil, the corresponding equation becomes:

a(xi) ζ
h(xi) + b(xi)

∂ζh

∂n
(xi) = g(xi), xi ∈ ∂Ω (7)
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where a, b, g are all known functions defined on the boundary. By substituting the definition of
ζh given in Equation (4) and reordering the terms in order to isolate the unknown coefficients
α’s and β’s, we get:

n̄∑
k=1

αk

(
a(xi)ϕ(xi, xk) + b(xi)

∂ϕ

∂n
(xi, xk)

)
+

m∑
j=1

βj

(
a(xi)pj(xi) + b(xi)

∂pj
∂n

(xi)

)
= g(xi) (8)

We can now enforce the orthogonality conditions of Equation (6) and thus obtain a linear
system of the form:

[
ΦBC PBC

P T 0

]
︸ ︷︷ ︸

M

{
α
β

}
=

ζg
0

 (9)

where the block matrix P T comes from Equation (6), {α1, . . . , αn̄, β1, . . . , βm} is the vector of
unknowns and both ΦBC and PBC come from Equation (4) but have boundary conditions (8)
enforced at the appropriate rows.

3.3. Collocation Techinque
Given a linear partial differential equation L(ζ) = f in the unknown field ζ, the RBF expansion
(4) is made valid at each node xi which does not lie on the boundary. The following sparse
linear system is obtained: [

C
] {
ζh
}

= q − f (10)

where ζh = {ζh(x1), . . . , ζh(xNI
)} is the vector of unknown scalar values ζh(xi) evaluated at all

NI inner nodes, i.e. those contained in Ω, while the vector q comes from the enforcement of
boundary conditions at the interpolant level.

3.4. Solution Procedure
At each time step, the computation of velocity, pressure and temperature through Equations
(1)-(3) is decoupled using a projection scheme with a three-level Gear scheme for the time
discretization while the buoyancy term is modeled with the Boussinesq approximation. A
tentative velocity u∗ is computed from the linearized nondimensional momentum equation:

3u∗ − 4ul + ul−1

2∆t
+ ul∇u∗ = −∇pl +

√
Pr

RaD
∇2u∗ + kT l, (11)

where l is the time level and ∆t is the nondimensional time step size.
The tentative velocity u∗ is then forced to satisfy the continuity equation (1) by means of an

irrotational correction ul+1 = u∗ − ∇Φ, leading to the Poisson equation ∇2Φ = ∇ · u∗ in the
auxiliary variable Φ. The pressure is then updated as pl+1 = pl + Φ/∆t and the temperature is
computed from the discretized nondimensional energy equation:

3T l+1 − 4T l + T l−1

2∆t
+ ul+1∇T l+1 =

1√
Pr·RaD

∇2T l+1. (12)

The previous equations are discretized in space with the same RBF-FD scheme presented in
Section 3.2. Sparse linear systems like the one in Equation (10) are attained for each component
of velocity and for temperature.

In the current implementation such linear systems are preconditioned with an Incomplete
LU factorization (ILU) [17] (package IncompleteLU in Julia) of the sparse matrix C whenever
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Figure 1. .stl surface of the 3D object (left) and distribution of the boundary nodes on the
same object (right).

is needed. The Poisson equation for the velocity correction is also preconditioned through
an ILU factorization which can be performed only once at the beginning of the simulation.
ILU preconditioning is then followed by the application of the Biconjugate Gradient Stabilized
Method [18] (package IterativeSolvers in Julia) using a relative error of 10−10. The
computational time required for each time step ranges from 2 seconds for N ≈ 100, 000 nodes
and P = 2 to 18 seconds for N ≈ 500, 000 nodes and P = 4 on a laptop equipped with a
quad-core Intel i7-6700HQ 2.6GHz processor with 16 GB of RAM memory.

3.5. Convergence Criterion
The convergence to steady-state is declared when the RMS time derivative for the computed
velocity fields u = {u, v, w} and temperature field T becomes smaller than 5 · 10−5, where the
RMS time derivative ḞRMS for a generic field F over the domain Ω is defined by:

ḞRMS =

√
1

µ(Ω)

∫
Ω

(
∂F

∂t

)2

dΩ ≈

√√√√ 1∑
i s

3
i

∑
i

(
F l+1
i − F li

∆t

)2

s3
i (13)

where µ(Ω) is the measure of the domain Ω and the index i runs over each internal node.

4. Geometry, boundary conditions and auxiliary computations
A complex-shaped 3D object with characteristic length D, represented in Figure 1, is enclosed
in a cubic cavity with side length W = 5D. The 3D object is centered with respect to the cavity
in the x− y plane, while the distance between the bottom cavity wall and the lower surface of
the object is D, as visible in Figure 4. The following boundary conditions are enforced:

• no-slip condition u = 0 on all boundary surfaces;

• T = 1 on the surface of the 3D object;

• T = 0 on the inner walls of the cubic cavity;

• ∂Φ

∂n
= 0 on all boundary surfaces;

In order to ensure the uniqueness of the calculated auxiliary variable Φ, an additional
condition is imposed in the form of a Lagrange multiplier. The complete problem for Φ assumes
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therefore the following form: 

∇2Φ + λ = ∇ · u∗ in Ω

∂Φ

∂n
= 0 on ∂Ω∫

Ω
Φ = 0

(14)

Since boundary layers are expected at the surface of the object, the following spacing function
is employed to obtain refined node distributions in the proximity of such geometry:

s(x) = smax −
smax − smin,j

d(x)
λ + 1

(15)

where smax is the asymptotic maximum spacing and smin,j is a minimum spacing attained on
each triangle of the original .stl surface. d(x) is the distance of point x from the closest .stl
triangle, denoted in Equation (15) with the index j, and λ is a parameter used for controlling
the transition from smin,j to smax.
In the presented case the value of smax is chosen in order to attain a sought number of nodes, then
smin is chosen to be smin = 0.8smax on vertical and bottom walls of the domain, smin = 0.65smax
on the top wall and smin = 0.1smax on the surface of the object, while λ = 0.1. An example of a
boundary node distribution over the object is depicted in Figure 1 for a total number of nodes
N ≈ 185, 000.

The mean Nusselt number over the surface Γ of the considered object is given by:

NuD =
1

µ(Γ)

∫
Γ

∂T

∂n
dΓ ≈ 1∑

b s
2
b

∑
b

∂T

∂n

∣∣∣
b
s2
b (16)

where the index b runs over each boundary node on Γ.

5. Results
In order to highlight the convergence properties of the employed RBF-FD approach, several
simulations are carried out for different node distributions using a total number of nodes ranging
from N ≈ 100, 000 nodes to N ≈ 740, 000 nodes. Three polynomial degrees P = 2, 3, 4 are
employed. Convergence curves for P = 2 and P = 3 are shown in Figure 2 in terms of normalized
RMS errors for the flow variables u = {u, v, w}, T and p. The normalized RMS error err(F ) of
a generic field F is defined as:

err(F ) =

√
1

µ(Ω)

∫
Ω

(
F − F̄

max(F )

)2

dΩ (17)

where the reference solution F̄ is a highly accurate solution obtained with polynomial degree
P = 4 on a fine node distribution with N ≈ 545, 000 nodes.

The convergence curves depicted in Figure 2 show that the resulting order of accuracy for
P = 2 ranges from 2.1 to 2.5 for each flow variable, while for P = 3 the resulting order of
accuracy ranges from 3.2 to 3.7, as expected. The orders of accuracy for larger polynomial
degrees P > 3 are therefore expected to be greater than or equal to P for the present problem,
although this assumption could not be verified due to the large memory requirements for P ≥ 4
on 3D problems with the present RBF-FD implementation, which makes it unsuitable for a
personal (laptop) computer.
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Figure 2. Convergence curves for the flow variables u = {u, v, w}, T and p for P = 2 (left) and
P = 3 (right).

Table 1. Mean Nusselt number.

NuD

N P = 2 P = 3 P = 4 Fluent

100,000 3.85 3.91 3.87 -
116,666 3.88 3.92 3.89 4.36*
136,110 3.89 3.95 3.92 -
158,794 3.95 4.01 3.98 -
185,258 3.97 4.02 4.00 -
216,133 4.00 4.06 4.03 4.36*
252,154 4.03 4.08 4.06 -
294,178 4.05 4.10 4.08 -
343,206 4.08 4.13 4.12 -
400,404 4.10 4.15 4.14 -
467,136 4.12 4.17 4.16 4.37*
544,989 4.13 4.18 4.17 -
635,816 4.15 4.20 - -
741,782 4.18 - - -

* using inflation layers with patch-conforming
mesh from .stl model

The computed values of the mean Nusselt number NuD for different number of nodes N and
polynomial degrees P = 2, 3, 4 are reported in Table 1, where mean Nusselt numbers computed
with Ansys Fluent 2020R1 are also reported for comparison. In the latter case inflation layers
(Wed6 elements) via patch-conforming meshing are employed at the object surface. Despite the
refined node distribution, i.e., reduced node spacing near the object surface, the NuD values
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Figure 3. Visual comparison of contour plots of local Nusselt number at the object surface:
RBF-FD (top row) vs. Ansys Fluent (bottom row).

show a slow convergence to the reference value NuD = 4.37, regardless of the polynomial degree
P . This is mainly due to the fact that the generated node distributions are isotropic, i.e., node
spacing is independent upon the spatial directions, therefore boundary layers are not efficiently
solved as with inflation layers.

A graphical, qualitative comparison between RBF-FD (P = 3, N ≈ 640, 000 nodes) and
Ansys Fluent (470, 000 elements) is depicted in Figure 3 in terms of local Nusselt number at
the object surface. The comparison highlights a very good agreement, to graphical accuracy, in
the surface distribution of the local Nu number between the computed results and the reference
ones. Figure 4 depicts the computed temperature field on the x − z plane at y = W/2 = 2.5
together with the velocity vector plot projected on the same plane, highlighting the classic
natural convection flow originated by the temperature differential between the object surface
and the cavity walls.

At last, due to its relevance for practical applications, we report a comparison between the
computational times required by the geometrical discretizations of the employed computational
domain. The node generation for the RBF-FD meshless approach, as described in subsection
3.1, required 4s for the octree phase and an average of 5s/105 nodes for the iterative refinement
phase, while the average time for the mesh generation in ANSYS Meshing was 6s/105 cells.

6. Conclusions
In this work the RBF-FD meshless method is applied to the simulation of heat transfer problems
with incompressible laminar flow over a 3D complex-shaped domain.

The major strength of the proposed method lies in its potential convenience for the end user.
The node generation algorithm is capable of coping with very complex geometries without any
need for human intervention, furthermore, by choosing the order of the polynomial basis P , it
is possible to decide the order of accuracy of the method (see Figure 2). While the code still
is at the development stage, the good level of parallelization allowed by the Julia programming
language already allows an efficient solution of large systems of equations (e.g. N ≈ 750, 000),
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Figure 4. Temperature contour plot and velocity vector plot projected on the x − z plane (T
ranges between T = 0 on the cube faces and T = 1 on the object surface).

thus leading to reliable results in terms of accuracy also on a personal computer.
Future developments of the code will be aimed at addressing its limitations with the presented

implementation, such as the need for directional node refinement close to boundary walls, and
adding important features such as turbulence models.

We believe that the RBF-FD method has the potential to reach and outperform the accuracy
allowed by the best traditional CAE solvers and to make the design process far more convenient
and democratic by overcoming the need to generate a mesh.
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