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We introduce an approach to sensitivity analysis of quantitative risk models, for the purpose of
identifying the most influential inputs. The proposed approach relies on a change of measure derived by
minimising the χ2-divergence, subject to a constraint (‘stress’) on the expectation of a chosen random 
variable. We obtain an explicit solution of this optimisation problem in a finite space, consistent with
the use of simulation models in risk management. Subsequently, we introduce metrics that allow for
a coherent assessment of reverse (i.e. stressing the output and monitoring inputs) and forward (i.e.
stressing the inputs and monitoring the output) sensitivities. The proposed approach is easily applicable
in practice, as it only requires a single set of simulated input/output scenarios. This is demonstrated
by application on a simple insurance portfolio. Furthermore, via a simulation study, we compare the
sampling performance of sensitivity metrics based on the χ2- and the Kullback-Leibler divergence, 
indicating that the former can be evaluated with lower sampling error.

1. Introduction

1.1. Problem statement

Insurance and financial firms often employ complex quantita-
tive models to analyse and evaluate the risks pertaining to their 

benz et al., 2012), as well as the non-linearity of the aggregation 
function (e.g. Hong, 2009; Tsanakas and Millossovich, 2016), which 
may itself be numerically demanding in its evaluation at particular 
simulated scenarios (Risk and Ludkovski, 2016; Floryszczak et al., 
2016).

Our main focus in this paper is to develop an approach to sen-
sitivity analysis, which enables users to rank model inputs by their 
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organisations; see McNeil et al. (2015) for an overview of rele-
vant methods and techniques. In insurance risk management ap-
plications, such models are typically implemented via Monte Carlo 
simulation. Scenarios are generated from modelled sources of un-
certainty (risk factors) and are mapped via an aggregation function
to model outputs of interest (e.g. the portfolio loss). Thus, aggre-
gating risk factors allows the calculation of the probability dis-
tribution of model outputs. As the intricacy of such models in-
creases, it becomes harder to develop insights from them and un-
derstand clearly the relationship between inputs and outputs (see, 
e.g. Tsanakas and Millossovich, 2016). The complexity of quanti-
tative risk models arises from the potential high-dimension and 
stochastic dependence of risk factors (e.g. Denuit et al., 2005; Ar-
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importance, while being applicable to the simulation models used 
by insurers and financial firms. Sensitivity analysis generates in-
sights into models and supports robust decision making; for com-
prehensive reviews see Christopher Frey and Patil (2002); Saltelli 
(2002); Saltelli et al. (2008); Borgonovo and Plischke (2016); Ra-
bitti and Borgonovo (2020).

We propose a sensitivity analysis framework relying on a 
change of measure, which requires only a single set of Monte-
Carlo simulations, thus avoiding multiple model runs. The given 
set of simulations defines an (empirical) baseline probability mea-
sure. The model is stressed by a change of measure that should 
reflect specified distortions on the distributions of risk factors, with 
the stressed model remaining close to the baseline model. Specif-
ically, working in a discrete probability space, we derive a change 
of measure by minimising the χ2-divergence (Csiszár, 1967) with 
respect to the baseline model, subject to a constraint on the ex-
pectation of a model component (e.g. risk factor, model output, or 
a function thereof). The constraint reflects the desired stress on 
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the variable of interest. We derive an explicit analytical solution to 
the relevant optimisation problem, which allows easy and efficient 
implementation.

Focusing on risk management applications, we use the terms 
reverse and forward sensitivity analysis, when the change of mea-
sure is, respectively, derived by stressing a model output or input. 
While forward sensitivity analysis refers to the well-understood 
problem of monitoring the impact of input changes on outputs, 
reverse sensitivity analysis (Pesenti et al., 2019) offers a generali-
sation of the reverse stress testing approach often used in risk reg-
ulation (EIOPA, 2019). We develop a framework that combines the 
two analyses by, first, stressing the model output and evaluating 
the optimal χ2-divergence and, second, maximising the expecta-
tions of input factors one at a time, while constraining the χ2-
divergence to the level obtained from the first step. By requiring 
that for both the reverse and forward stresses the χ2-divergence 
is the same, we ensure that under all stresses applied the level of 
distortion to the baseline model is comparable and derived from 
an output stress specification, which is itself interpretable in risk 
management terms. In our view, this approach ensures the consis-
tency of reverse and forward sensitivity analyses.

The changes in the distributions of inputs and output, under 
the reverse and forward stresses, are quantified via two novel 
sensitivity measures that we introduce in this paper. These sen-
sitivity measures are associated with the above reverse/forward 
framework and enable the ranking of input factors, based on their 
importance in the model. We note that similar sensitivity mea-
sures can be defined if, in the relevant optimisation problems, we 
replace the χ2-divergence with a different divergence measure – 
e.g. Kullback-Leibler divergence (Csiszár, 1975; Breuer and Csiszár, 
2013). By a numerical study we show that sensitivity measures 
based on the χ2-divergence are obtained with lower sampling er-
ror, compared to the case when the Kullback-Leibler divergence is 
used.

1.2. Review of literature

In recent years, the literature on sensitivity analysis has largely 
focused on global methods, which reflect the model behaviour 
over the entire range of the input distribution; for comprehen-
sive reviews see Christopher Frey and Patil (2002); Saltelli (2002); 
Saltelli et al. (2008); Borgonovo and Plischke (2016). Major ad-
vances in sensitivity analysis can be accredited to Sobol (1993); 
Homma and Saltelli (1996); Saltelli et al. (2008). The range of 
sensitivity analysis methods available in the literature is substan-
tial, with variance-based (Saltelli et al., 2008, 2010) and moment-
independent methods (Borgonovo, 2007) being the most common. 
Recently, local and global sensitivity methods have been applied 
to evaluate the comparative importance of demographic and finan-
cial factors in an annuity portfolio (Rabitti and Borgonovo, 2020). 
Variance-based measures implicitly assume that knowledge of the 
second moment is sufficient to determine the uncertainty of an in-
put factor, which is problematic in the case of heavy tails (Liu et 
al., 2006). Efforts towards overcoming this shortcoming include the 
use of conditional Kullback-Leibler divergences, in order to quan-
tify the importance of a model input (Auder and Iooss, 2008; Liu 
et al., 2006).

In this paper, we use the χ2-divergence as a criterion for 
deriving stressed probability measures, under which the model’s 
behaviour is examined. Hence our approach is more closely re-
lated to the literature involving divergence minimisation (under 
moment constraints) or moment maximisation (under divergence 
constraints). Specifically, we build on the reverse sensitivity test-
ing approach proposed by Pesenti et al. (2019), where the stressed 
probability measures are derived by minimising the Kullback-
Leibler divergence, subject to a constraint on risk measures such 
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as Value-at-Risk and Expected Shortfall. Working with the χ2-
divergence, we explore problems analogous to the ones stated in 
Breuer and Csiszár (2013), who use Kullback-Leibler divergence in 
the context of model uncertainty. Model uncertainty is also ad-
dressed in Glasserman and Xu (2014), by bounding the worst-case 
model error under a divergence constraint. However, in contrast 
to those papers, our focus is on understanding the sensitivities to 
risk factors within a given model rather than the study of model 
uncertainty.

Recently, Borgonovo et al. (2021) have defined sensitivity mea-
sures that reflect the divergence between the unconditional dis-
tribution of model output and the conditional distribution, given 
an input factor, and have shown that several well-known sensitiv-
ity measures fall into this category. While our paper also utilises 
divergence measures and shares some conceptual parallels with 
Borgonovo et al. (2021), it does not fall neatly under that frame-
work, as the impact of a random variable is assessed by stressing 
its moment and then minimising divergence, rather than condi-
tioning. Our use of the χ2-divergence is motivated by the fact that 
the Radon-Nikodym derivative obtained when using the Kullback-
Leibler divergence is typically exponential in form and, hence, 
when heavy-tailed distributions are used in a model, it might lead 
to issues with existence or (in a Monte Carlo setting) conver-
gence. Related concerns are found in Glasserman and Xu (2014), 
who use the α-divergence (of which the χ2-divergence is a spe-
cial case), when distributions are heavy-tailed. Similarly, Dey and 
Juneja (2010) minimise a related divergence measure under linear 
constraints in a portfolio selection problem.

1.3. Structure of the paper

The rest of the paper is organised as follows. In Section 2, 
we discuss the Kullback-Leibler and χ2-divergences. In Section 3, 
we provide the main result of the paper, relating to minimising 
χ2-divergence, under a moment constraint. Furthermore, exten-
sions and variations of the optimisation problem are considered. 
Finally, the reverse and forward sensitivity analysis framework is 
presented and the related sensitivity measures are defined. In Sec-
tion 4, we apply our results to a simple non-linear insurance port-
folio model. Furthermore, a simulation study is presented, where 
we assess the extent of simulation error in the evaluation of our 
sensitivity measures, when either χ2- or Kullback-Leibler diver-
gence is used. Brief conclusions are stated in Section 5.

2. Preliminaries

Let P and Q be two probability measures defined on a common
measurable space (�, A). Q � P indicates the absolute continuity 
of Q with respect to P and, in this case, we write the Radon-

Nikodym derivative of Q with respect to P as 
dQ

dP
. We denote the 

expectation operator under P and Q by E and EQ , respectively.
In the paper, we use special cases of the f -divergence (Ali and 

Silvey, 1966; Liese and Vajda, 2006; Cambou and Filipović, 2017), 
as measures of discrepancy between two probability measures.

Definition 2.1. Let f : (0, ∞) → R be a convex function and sup-
pose that Q � P . The f -divergence of Q with respect to P , de-
noted by D f (Q ||P ), is defined as

D f (Q ||P ) =
∫
�

f

(
dQ

dP

)
dP = E

[
f

(
dQ

dP

)]
.

The f -divergence is non-negative, monotone and jointly convex. 
The Kullback-Leibler (KL-) divergence, first introduced by Kullback 



and Leibler (1951), and the χ2-divergence (Csiszár, 1967; Liese and 
Vajda, 2006) are two special cases corresponding to f (u) = u log u
and f (u) = u2 − 1, respectively.

Definition 2.2. The KL-divergence of Q with respect to P with 
Q � P , is defined as

D K L(Q ||P ) =
∫
�

dQ

dP
log

(
dQ

dP

)
dP =EQ

[
log

(
dQ

dP

)]
.

The KL-divergence is positive, i.e. D K L(Q ||P ) > 0, except if 
Q = P when it becomes 0. It is also in general asymmetric i.e., 
D K L(Q ||P ) �= D K L(P ||Q ).

Definition 2.3. The χ2-divergence of Q with respect to P with 
Q � P is defined as

Dχ2(Q ||P ) =
∫
�

((
dQ

dP

)2

− 1

)
dP = E

[(
dQ

dP

)2
]

− 1

= var

(
dQ

dP

)
.

In Saraswat (2014) it is shown that Dχ2 (Q ||P ) ≥ D K L(Q ||P )

for all P , Q .
Consider a finite probability space � = {ω1, ω2, . . . , ωn} with 

A = 2� . Assume that Q � P . Let pi and qi denote the probability 
of obtaining the state of the world ωi ∈ �, under those two mea-
sures, that is, pi = P (ωi) and qi = Q (ωi). We assume that pi > 0
for all i, while there may be states for which qi = 0. Then, the def-
initions of KL-divergence and χ2-divergence become:

D K L(Q ||P ) =
∑

i

qi log

(
qi

pi

)
=

∑
i

pi wi log wi

Dχ2(Q ||P ) =
∑

i

(
qi

pi

2
)

− 1 =
∑

i

pi w2
i − 1,

where wi = qi

pi
= dQ

dP
(ωi) for all i.

Finite spaces are typical in a Monte Carlo setting, where we 

have pi = 1

n
, with each state of world corresponding to a simu-

lated scenario, with equal probability of occurrence.
A risk measure is a functional ρ mapping a random variable X

(a loss), to a real number ρ(X) and it may represent e.g. the cap-
ital to be allocated in order to make the risk X acceptable. There 
are several ways of classifying of risk measures (see Artzner et al. 
(1999), Föllmer and Schied (2011)). We focus on the percentile-
based risk measures Value-at-Risk (VaR) and Expected Shortfall 
(ES) (McNeil et al., 2015).

Definition 2.4. The Value-at-Risk for risk X , at confidence level α ∈
(0, 1), is defined as the left quantile of the distribution of X ,

VaRα(X) = F −1
X (α),

where F −1
X (α) = inf{x ∈R|F X (x) ≥ α}.

Definition 2.5. The Expected Shortfall for a risk X with E[|X |] <
∞, at confidence level α ∈ (0, 1), is given by

ESα[X] = 1

1 − α

1∫
VaRq(X)dq
α
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= 1

1 − α
E [((X − VaRα(X))+] + VaRα(X).

From the above formula, the Expected Shortfall can also be 
interpreted as an average of Value-at-Risk for confidence levels 
greater than α, thus taking into account the entire tail of the dis-
tribution (Rockafellar et al., 2000). Expected Shortfall is a coherent 
risk measure, whereas the Value-at-Risk in general is not (Artzner 
et al., 1999).

3. Stress testing models

3.1. Problem definition

We introduce a basic model within a sensitivity analysis frame-
work, where the model inputs are mapped to a model output 
by means of an aggregation function. Let the random vector Z =
(Z1, Z2, · · · , Zd) on a measurable space (�, A) denote the random 
variables representing the input factors of the model under consid-
eration. The aggregation function g :Rd →R, when applied on the 
inputs, gives a one-dimensional output Y = g(Z). We will through-
out assume that high values of Y correspond to adverse outcomes, 
as is the case, for example, when Y represents the total loss of 
an insurance portfolio. The main focus of this paper concerns the 
understanding of model behaviour subject to changes in an input 
factor or the output. Specifically, we look at the changes in the dis-
tributional characteristics of input factors when there is a change 
in the output and vice versa.

Let P denote the set of all probability measures on the measur-
able space (�, A) and, for a given P ∈P , define the baseline model
as (Z, g, P ). A change of measure is introduced via the Radon-

Nikodym derivative W = dQ

dP
. We then refer to (Z, g, Q ) as an 

alternative or stressed model.
The measure Q is chosen such that the expectation of random 

variable X becomes

EQ [X] =E[W X] = t,

for a specified t ∈ R. The variable X may be chosen to be one of 
the model inputs (X = Zi ), the model output (X = Y ) or indeed 
a function of the input vector Z. Depending on the problem con-
text, the expectation of X may be stressed upwards (t > E[X]) or 
downwards (t < E[X]). The choice of Q ∈ P is such that the dis-
tortion to the baseline model is minimised. Specifically, we aim 
to minimise Dχ2 (Q |P ), subject to the constraint EQ [X] = t being 
fulfilled. In terms of the Radon-Nikodym derivative W , we arrive 
at the optimisation problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minW
1
2E[W 2] st

E[W ] = 1,

E[W X] = t,

W ≥ 0.

(I)

Such a stress on X can be interpreted in two ways. First, we are 
concerned about model change. We can consider what would hap-
pen to the probability measure – and hence the distribution of all
random variables of interest – if the expected value of X would 
move to the stressed value t . The second interpretation is con-
cerned with model mis-specification. If the current model is not 
correctly specified, and the actual expectation of X is t , the Radon-
Nikodym derivative arising as a solution to Problem (I) allows the 
calculation of a plausible distribution for all variables, under a cor-
rected model. Note that in this paper we are not concerned with 
statistical arguments pertaining to how the baseline model was se-
lected from data.



Portfolio models used in risk management typically require 
numerical evaluation of probability distributions of interest, with 
Monte Carlo simulation often used. For that reason, in the rest of 
this paper, we restrict our analysis to a finite probability space � =
{ω1, . . . , ωn}, with baseline probability P (ωi) = pi for i = 1, . . . , n. 
We denote by w = (w1, . . . , wn), with wi = W (ωi), the vector of 
Radon-Nikodym derivative values, such that Q (ωi) = qi = pi wi . 
Furthermore, let X(ωi) = xi and denote x = (x1, . . . , xn). We as-
sume that x1 < . . . < xn; this is relaxed in Remark 3.5. In that 
context, Problem (I) becomes:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minw
1
2

∑n
i=1 pi w2

i st∑n
i=1 pi wi = 1,∑n
i=1 pi wi xi = t,

wi ≥ 0 for all i = 1, . . . ,n.

(II)

A ‘dual’ version of Problem (II) arises from maximising the ex-
pectation of a random variable with respect to the measure Q , 
subject to a constraint on the χ2-divergence. A similar optimisa-
tion problem, with a constraint on the KL-divergence, is discussed 
in Breuer and Csiszár (2013). Here, we define the problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
∑n

i=1 pi vi xi s.t∑n
i=1 pi vi = 1,

1

2

∑n
i=1 pi v2

i ≤ θ,

vi ≥ 0 for all i = 1, . . . ,n.

(III)

Remark 3.1. The KL-divergence as a measure of plausibility of an 
alternate model is by far the most popular choice in the family 
of f -divergences. Applications in financial risk management in-
clude Breuer and Csiszár (2013) and Glasserman and Xu (2014). 
Nonetheless, there are potential problems in the characterisation
of solutions obtained when the KL-divergence is used, if X follows 
a heavy-tailed distribution, as is often the case in insurance and fi-
nance applications. Specifically, if in Problem (I) we change the χ2-
to the KL-divergence, it is known that the optimal Radon-Nikodym 
derivative takes the form (Csiszár, 1975; Breuer and Csiszár, 2013)

W = exp(β X)

E[exp(β X)] ,
for some β ∈ R. The above expression is not well defined if X
is heavy tailed, such that exponential moments are not defined 
(e.g. Log-normal or Student t). To avoid this pitfall Dey and Juneja 
(2010) have replaced the KL-divergence with polynomial diver-
gence in a portfolio selection problem. This also motivates our 
choice of the χ2-divergence. In the case of a finite space (Prob-
lem II), issues of heavy-tailedness do not arise. However, if the dis-
crete space is generated through the realisations of a Monte Carlo 
simulation, with the underlying model containing heavy tailed 
components, then convergence issues may appear – we return to 
this issue in Section 4.4.

3.2. Main results

In this section, we present the mathematical results of the pa-
per, specifically the solution to the optimisation problem (II) and 
its various corollaries.

Throughout this section, we use the following notations. Let the 
sum of the first j probabilities associated with each of the cor-
responding states of the world be denoted by π j = ∑ j

i=1 pi and 
similarly, indicate the sum of the probabilities corresponding to 
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that of the latter n − j states of the world by π> j = ∑n
i= j+1 pi . 

The mean, second moment and variance of x respectively are de-
fined as:

x̄ =
n∑

i=1

pixi, x̄(2) =
n∑

i=1

pix
2
i , s2 = x(2) − x̄2.

For any integer j ∈ {1, . . . , n − 2}, the mean of the first j values of 
x is given by:

x̄ j =
∑ j

i=1 pi xi

π j
.

The mean, second moment and variance of the latter n − j values 
of x is given by:

x̄> j =
∑n

i= j+1 pixi

π> j
, x̄(2)

> j =
∑n

i= j+1 pix2
i

π> j
, s2

> j = x̄(2)
> j − x̄2

> j .

Proposition 3.1. Let x̄ < t ≤ xn. Then, the optimisation problem (II) has 
a unique solution w, given below.

a) If t < x̄ + s2

x̄ − x1
, then wi = λ1 + λ2xi > 0, for i = 1, . . . , n,where 

λ2 = t − x̄

s2
and λ1 = 1 − λ2 x̄.

b) If x̄ + s2

x̄ − x1
≤ t < xn, then

wi =
{

0, i = 1, . . . ,k

l1(k) + l2(k)xi, i = k + 1, . . . ,n,

where 1 ≤ k ≤ n − 2 is the unique integer satisfying l1(k) +
l2(k)xk ≤ 0 and l1(k) + l2(k)xk+1 > 0 and where the functions l1
and l2 are defined by

l1( j) = 1 − l2( j)(x̄ − x̄ jπ j)

π> j

l2( j) =
t − x̄ − π j

π> j
(x̄ − x̄ j)

π> j s2
> j

for j = 1, . . . ,n − 2.

c) If t = xn, then wi =
{

0, i = 1, . . . ,n − 1

n, i = n.

Note that the positivity of the weights wi in parts a), and in 
part b) for i > k, is guaranteed by the constraint on the parameter 
t .

Proposition 3.2. For a given t with x̄ < t < xn, denote the solution of 
Problem (II) by w∗ and the optimal value of the objective function by 

θ∗ = 1

2

∑n
i=1 pi w∗

i
2 . Then, w∗ solves Problem (III) with θ = θ∗ .

Finally, from the proof of Proposition 3.2 it can be seen that the 
χ2-divergence constraint in Problem (III) is always binding at the 
optimum.

Remark 3.2. The Optimal χ2-divergence in problem (II) ranges 
from 0, corresponding to t = x̄, to its maximum value, correspond-
ing to t = max(X) = xn . Furthermore, the optimal χ2-divergence is 
a strictly increasing function of t , thanks to the Sensitivity Theo-
rem (Luenberger et al., 1984).



Remark 3.3. The increasingness of the optimal Radon-Nikodym 
derivative in Proposition 3.1 implies that the distribution of X un-
der the stressed measure Q first order stochastically dominates the 
distribution of X under P , see for e.g. (Pesenti et al., 2019, Prop. 
A.1). As a result the expectation of any increasing function of X is 
stressed upwards.

Remark 3.4. In Proposition 3.1, we state the solution to Problem 
(II) for an upward stress only, x̄ < t ≤ xn . Consider Problem (II)
with a downward stress, that is x1 ≤ t < x̄. Its solution is the same 
as that of the following problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minw
∑n

i=1 pi w2
i s.t∑n

i=1 pi wi = 1,∑n
i=1 pi wiri = −t,

wi ≥ 0 for all i = 1, . . . ,n,

and where r1 = −xn, r2 = −xn−1, . . . , rn = −x1. This problem can 
be solved once again using Proposition 3.1, since r̄ = −x̄ < −t ≤
rn = −x1.

Remark 3.5. In a Monte Carlo model where the states of the world 
are assumed to be equiprobable, the optimisation Problem (II) sim-
plifies to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minw
1

2n

∑n
i=1 w2

i s.t

1

n

∑n
i=1 wi = 1,

1

n

∑n
i=1 wi xi = t

wi ≥ 0 for all i = 1, . . . ,n.

(IV)

The solution of Problem (II), as reported in Proposition 3.1, 

holds for Problem (IV), after substituting pi = 1

n
, π j = j

n
and 

π> j = n − j

n
.

Furthermore, assume that in addition to scenarios being equi-
probable, we are in a situation where there are ties in x. For 
example, if Y is a portfolio loss, we may be interested in stress-
ing the random variable X = (Y − β)+; in that case we may have 
X(ωi) = 0 for more than one state ωi . In particular, assume that 
there is a unique tie consisting of m + 1 values, x1 < x2 < · · · <

x j−1 < x j = x j+1 = · · · = x j+m < x j+m+1 < · · · < xn . Then, we can 
replace Problem (IV) with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minw
1

2n

∑ñ
i=1 w̃2

i s.t

1

ñ

∑ñ
i=1 w̃i p̃i = 1,

1

ñ

∑ñ
i=1 w̃i p̃ĩ xi = t,

w̃i ≥ 0,

and ̃n = n − m,

x̃i =

⎧⎪⎪⎨⎪⎪⎩
xi if i < j,

xi if i = j,

xi+m if i = j + 1, · · · , ñ.

p̃i =

⎧⎪⎪⎨⎪⎪⎩
pi if i < j,

p j + p j+1 + · · · + p j+m if i = j,

p if i = j + 1, · · · , ñ.
i+m
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Remark 3.6. We have solved Problem (II) with a non-negativity 
constraint on the weights. Thus, information pertaining to some 
states of nature is lost when they are assigned a zero weight, i.e. 
if for the ith scenario, we have wi = 0. To avoid such a drastic 
intervention to the probability measure P , we slightly generalise 
Problem (II) by introducing a strictly positive lower bound δ for 
the weights. Specifically, for a given t ∈ R and 0 < δ < 1, consider 
the optimisation problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minw
∑n

i=1 pi w2
i s.t∑n

i=1 pi wi = 1,∑n
i=1 pi wi xi = t,

wi ≥ δ > 0 for all i = 1, . . . ,n.

(V)

The solution to Problem (V) follows from Problem (II), by the 
following argument. Let v∗ = (v1, . . . , vn) be the solution of the 
auxiliary problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
∑n

i=1 pi v2
i s.t∑n

i=1 pi vi = 1,∑n
i=1 pi vixi = 1

1 − δ
(t − δx̄),

vi ≥ 0 for all i = 1, . . . ,n.

Then, w∗ = δ + (1 − δ)v∗ is the solution to the Problem (V). This 
can be verified by substituting w∗ in the constraints of Problem 
(V). The objective function of Problem (V) becomes:

n∑
i=1

pi w2
i =

n∑
i=1

pi(δ + (1 − δ)vi)
2

= δ2 + 2δ(1 − δ) + (1 − δ)2
n∑

i=1

pi v2
i .

Hence, minimising the left hand side is equivalent to minimising ∑n
i=1 pi v2

i .

3.3. Reverse and forward sensitivity analyses

Here we return to the problem definition of Section 3.1, con-
sidering a model with output Y and risk factors Z, linked through 
an aggregation function, Y = g(Z). Depending on the purpose of 
the sensitivity analysis, we may set X in Problem (I) as either 
X = Y , leading to a reverse sensitivity analysis (see also Pesenti 
et al. (2019)), or X = Zi , a forward sensitivity analysis. Reverse 
sensitivity analysis aims at evaluating the behaviour of risk factors 
under a stress on the model output (portfolio loss), while forward 
sensitivity is concerned with the impact on the output distribution 
of stressing individual risk factors.

Specifically, for reverse sensitivity analysis, we solve Problem 
(II) with the constraint EQ (Y ) = t , where t > E[Y ] represents a 
stress on the expected value of the output Y , and let dQ Y

dP the opti-
mal Radon-Nikodym derivative. As high values of Y are interpreted 
as adverse outcomes, the value of t can be selected to represent 
a critical threshold for a decision maker. Subsequently, the input 
factors’ importance is assessed according to the impact on their 
distribution, caused by the change of measure dQ Y

dP . A substantial 
change observed in the distribution of an input factor can be in-
terpreted as a high sensitivity of that factor.

Conversely, for forward sensitivity testing, a change of measure 
is obtained by specifying a stress on one input factor at a time. 
In order that the stresses on different input factors are consistent 
with each other, we obtain the relevant changes of measure by 



solving Problem (III) with X = Zi and under the same constraint on 
the χ2-divergence. Denote the resulting Radon-Nikodym deriva-

tives by dQ Zi
dP , i = 1, . . . , d. Then, these changes of measure are used 

to evaluate stressed distributions of the output Y ; we attribute a 
higher sensitivity to input factors that lead to a more substantial 
change in the distribution of Y .

Furthermore, we can link reverse and forward sensitivity, to en-
sure consistency between the stresses applied under each of the 
two approaches and detect any dissonance that may arise between 
the importance rankings they produce. Here, we propose the fol-
lowing process. We start with reverse sensitivity analysis, as a 
stress on the output may be calibrated with reference to an un-
acceptable level of adverse movement in portfolio risk (Problem 
(II)). Subsequently, the optimal χ2-divergence is calculated from 
that analysis. Then, this divergence value is used as a constraint in 
Problem (III) to find the maximal stress possible on an input factor 
for the forward sensitivity analysis.

Two sensitivity measures specific to our framework are defined 
below.

Definition 3.1. Let E[Y ] < t < max Y , Q Y be the probability mea-
sure arising from the solution of Problem (II) with X = Y , and 
denote by θ∗ the corresponding optimal value of the objective 
function. Let Q Zi be the probability measure arising from the so-
lution of Problem (III) with X = Zi and θ = θ∗ . Then, the reverse 
sensitivity of an input Zi is defined by

Ri := EQ Y [Zi] −E[Zi]
EQ Zi [Zi] −E[Zi]

,

while the forward sensitivity of Zi is defined as

Fi := EQ Zi [Y ] −E[Y ]
EQ Y [Y ] −E[Y ] .

The sensitivity measure Ri (resp. Fi ) represents the change in 
the expectation of an input (resp. output), when the output (resp. 
input) is stressed. The denominators act a normalising constants, 
as is seen from Proposition 3.3 below. We remark that the sensi-
tivity analysis framework we present, including Definition 3.1, can 
be altered as necessary to include functions of input factors to en-
able the assessment of different distributional characteristics.

Proposition 3.3. The sensitivity measures of Definition 3.1 satisfy the 
following properties:

1. Ri, Fi are well defined.
2. Ri, Fi ≤ 1.
3. Ri = Fi = 0 if Zi, Y are independent.
4. Ri, Fi ≥ 0 if (Zi, Y ) are positive quadrant dependent.

Remark 3.7. In the reverse/forward stress testing framework pro-
posed in this section, we have assumed throughout that the start-
ing point is a stress that increases the mean of the output Y to 
a level t . We believe that this has an appealing risk management 
interpretation, as it allows us to consider the way that a specified 
adverse movement in the distribution of Y (e.g. a portfolio loss) is 
reflected in corresponding movements of input factors. Of course, 
an alternative analysis can be carried out, with t <E[Y ], thus con-
sidering improvements in Y .

Furthermore, the formulation of the metrics Ri and Fi encodes 
an analyst’s prior expectations on a positive relationship between 
the risk factors and model input. This is implicit in the process 
of stressing upwards a risk factor Zi in order to observe a (pre-
sumably) adverse effect on Y . Put differently, unless such a prior 
6

expectation exists, an analyst may choose to minimise rather than 
maximise EQ [Zi] in Problem III, subject to the same constraint 
on the χ2-divergence. However, as sensitivity analysis is a process 
of discovery, the analyst’s expectations may be confounded, e.g. if 
Fi < 0 is observed, signifying that an upward stress in Zi results 
in a reduction in EQ Zi [Y ]. Though such a negative value is in-
terpretable in its own right, the analyst may subsequently choose 
to carry out a different forward stress, involving minimisation of 
EQ [Zi], and recalculate the forward sensitivity measure accord-
ingly. To formalise this argument, consider Fi as in Definition 3.1, 
and let F̃ i be the same quantity, with the only difference that 
in the derivation of Q Zi , minimisation replaces maximisation in 
Problem III. Then one could consider the couple (Fi, F̃ i), or indeed 
some quantity like max{|Fi |, | F̃ i |}, as an importance measure that 
does not rely on prior expectations – though the latter would not 
reveal the direction of association between Zi and Y .

Remark 3.8. An further observation relates to the extent that our 
approach can be extended in order to allow the stressing of second 
moments. For example, in Problem I one can clearly set X = Z 2

i , to 
capture volatility effects, or X = Zi Z j , to capture interaction ef-
fects. However, such a stress specification would lead to results 
that are hard to interpret, since under the stressed model with 
such a second order constraint, the first moments would also 
move. A more appropriate method of stressing second moments 
would involve introducing more constraints to Problem I, e.g. fix-
ing the first moments to their values under the baseline measure 
P and stressing the second moments to higher values. However, 
for such a procedure our main analytical result, Proposition 3.1, 
can no longer be used and one would need to revert to numerical 
optimisation. While this is tractable using quadratic programming 
methods (e.g. Goldfarb and Idnani, 1983), we believe that it lies 
outside the scope of the current paper.

4. Case study of an insurance portfolio

Here we apply the framework of Section 3 to the example of
a simplified insurance portfolio. In Section 4.1, we introduce the 
model, while in Sections 4.2 and 4.3 we, respectively, perform re-
verse and forward sensitivity analyses. Finally, in Section 4.4, we 
evaluate the sensitivity measures of Definition 3.1; furthermore, we 
examine their sampling performance, comparing them to similar 
measures that are constructed by replacing the χ2- with Kullback-
Leibler divergence.

4.1. Baseline model

Consider a model of an insurance portfolio, with inputs factors 
Z = (Z1, Z2, Z3, Z4) and output Y , representing the portfolio loss. 
Z1 and Z2 represent claims from two lines of business. Claims are 
subject to a common multiplicative (e.g. inflation) factor, Z3, such 
that the portfolio loss, before reinsurance, is given by

L = (Z1 + Z2)Z3.

The insurance company buys reinsurance on L with limit l and 
deductible d. Z4 represents the percentage of reinsurance recovery 
lost in circumstances when the re-insurer fails to make a payment. 
The total portfolio loss thus is:

Y = L − (1 − Z4)min{(L − d)+, l}.
Z1 follows a truncated Log-normal distribution with mean 150

and standard deviation 35, where the truncation point is at the 
99.9% quantile; Z2 follows a Gamma distribution with mean 200
and standard deviation 20; Z3 follows a Log-normal distribution 



Fig. 1. Left: Radon-Nikodym derivative of Q Y against Y . Right: Stressed probability distributions of Y under models P , Q Y .
Table 1
Percentage increase in statistics of output Y and input factors Zi under the stressed
model Q Y , with respect to the baseline model P .

Factors Mean St. Dev. VaR0.95 ES0.95

Y 10.0 −1.31 11.17 10.90
Z1 17.44 8.67 15.38 14.79
Z2 3.99 −0.80 3.27 3.14
Z3 1.60 −1.48 1.39 1.35
Z4 108.52 39.63 39.18 18.10

with mean 1.05 and standard deviation 0.05; Z4 follows a Beta 
distribution with mean 0.1 and standard deviation 0.2. We assume 
that Z1, Z2, Z3 are independent. Furthermore, Z4 is dependent on 
L through a Gaussian Copula with a correlation of 0.6 and, condi-
tional on L, Z4 is independent of (Z1, Z2, Z3). For the reinsurance 
parameters, we set l = 30 and d = 380. We simulate (Z, Y ) using a 
Monte Carlo sample of n = 105 scenarios.

4.2. Reverse sensitivity analysis of the insurance model

Using the above model, we follow the sensitivity analysis pro-
cess outlined in Section 3.3. We denote by Q Y the measure for 
which dQ Y

dP is the solution of Problem (II) after setting X = Y . We 
stress the expectation of Y upwards by 10%, such that EQ Y (Y ) =
1.1, E(Y ) = t .

Fig. 1 (left) displays the Radon-Nikodym derivative of the 
stressed probability measure Q Y , as a piecewise linearly increas-
ing function of Y . On the right of Fig. 1, the empirical distributions 
of Y under the baseline (black) and stressed (red) measure are 
shown. The stressed output distribution first-order stochastically 
dominates the output distribution under the baseline model, as 
remarked after Proposition 3.1.

Fig. 2 displays the distribution of the input factors under the 
stressed model Q Y . The stressed probability distributions appear to 
stochastically dominate the baseline distributions. We can see that 
Z1 and Z4 undergo a larger change, compared to Z2 and Z3. We 
attribute this behaviour to the heavier tail of Z1 and the role of Z4
in the aggregation function, since the loss of reinsurance recoveries 
is important in those scenarios where losses L before reinsurance 
are high.

These observations are confirmed in Table 1, which reports the 
percentage increases in the mean, standard deviation, and VaR/ES 
risk measures, at the 95% level, of the four input factors. If for 
example we focus on ES0.95, we observe an approximate increase 
of 15% and 18% for Z1 and Z4 respectively, with the corresponding 
values for Z2 and Z3 being much lower.

4.3. Forward sensitivity analysis of the insurance model

Now we carry out forward sensitivity analysis, as discussed 
in Section 3.3. We denote by Q Zi the measure for which dQ Zi

dP
is the solution of Problem (III) after setting X = Zi and θ equal 
to the optimal χ2-divergence of the reverse sensitivity problem 
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Table 2
Percentage increase in statistics of Y under the stressed models Q Zi for i = 1, . . . , 4, 
with respect to the baseline model P .

Variables stressed Mean St. Dev. VaR0.95 ES0.95

Z1 8.00 2.46 9.41 9.21
Z2 4.52 −4.44 4.65 4.34
Z3 3.72 −0.32 4.35 4.15
Z4 5.51 17.94 8.80 8.41

in Section 4.2. Fig. 3 displays the Radon-Nikodym derivative of 
the stressed probability measures Q Zi , i = 1, . . . , 4. It is seen 
that each Radon-Nikodym derivative is an increasing function of 
the factor being stressed. Note that while the different Radon-
Nikodym derivatives have the same standard deviation (due to the 
χ2-divergence constraint) their distributions are generally not the 
same.

In Fig. 4, the empirical distributions of Y under the baseline 
(P , black) and all stressed (Q Zi , red; Q Y , dashed grey) models 
are displayed. As each input factor is subject to a stress with 
the same optimal χ2-divergence, arising from the reverse analysis, 
the stressed measures under the forward analysis cannot produce 
greater distortions to the distribution of Y compared to that ob-
tained in Section 4.2. This is evident from Fig. 4, where we can see 
that the red lines are always between the black and dashed grey 
ones. This is precisely the effect that the Definition 3.1 of sensitiv-
ity measures aims to reflect.

We observe that greater distortions to the distribution of Y
arise under stressed models Q Z1 , Q Z4 , compared to Q Z2 and Q Z3 , 
implying a higher sensitivity to Z1 and Z4. This is broadly con-
sistent with the observations of Section 4.2. In Table 2 we report 
percentage changes in distributional characteristics of Y , under the 
stresses on all input factors. We note that, for example, the largest 
changes in the 95%-ES measure are observed for Z1 and Z4, 9.2%
and 8.4% respectively.

4.4. Evaluation of sensitivity measures

The aim of this section is to evaluate the sensitivity measures 
defined in Section 3.3 for our insurance portfolio model and assess 
the extent of simulation error in their calculation.

The reverse and forward sensitivities of different input factors 
are reported, respectively, in the second and fourth column of Ta-
ble 3, such that e.g. R1 = 0.794 and F1 = 0.800. It can be seen that, 
according to both the reverse and forward sensitivity measures, the 
ranking of risk factors, from the most to the least sensitive, is Z1, 
Z4, Z2, Z3. This is broadly consistent with the discussion of Sec-
tions 4.2 and 4.3.

Furthermore, for comparison purposes, in the third and fifth 
column of Table 3, we report sensitivity measures calculated with 
respect to the KL- rather than the χ2-divergence. These sensitivity 
measures are still calculated according to Definition 3.1, with the 
difference that the measures Q Y , Q Zi are the solutions of mod-
ified versions of Problems (II) and (III), with the χ2-divergence 



Fig. 2. Empirical distributions of the input factors under the baseline and stressed models P , Q Y .

Fig. 3. Radon-Nikodym derivatives of stressed models Q Zi for i = 1, . . . ,4.
replaced with the KL-divergence. The solution to these problems 
is given by e.g. Breuer and Csiszár (2013) and the numerical 
implementation is carried out via the R package SWIM by Pe-
senti et al. (2020). We observe that a change in the divergence 
measure does not impact the relative importance of input fac-
tors.

To quantify simulation error, we simulate m sets of n simulated 
scenarios from our model. The sensitivity measures are evaluated 
on each of the m sets of simulations, resulting in empirical distri-
butions representing sampling error. Specifically, for k = 1, . . . , m, 
we follow the algorithm:

1. Multivariate scenarios z(k) are sampled from Z under P ,

where z(k) =
(

z(k)
j,i

)
j=1,...,n
i=1,...,d

. Subsequently, evaluate y(k) =(
y(k)

j

)
, where y(k)

j = g
(

z(k)
j•

)
and z(k)

j• = (z(k)
ji )i=1,...,d .
j=1,2,...,n
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Table 3
Reverse and forward sensitivities of input factors Z1, Z2, Z3, Z4 under χ2-
divergence and KL-divergence (calculated as the average over 1000 sets of n = 105

simulated scenarios).

Input Reverse SM Forward SM

χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.794 0.809 0.800 0.806
Z2 0.433 0.389 0.451 0.417
Z3 0.370 0.356 0.374 0.346
Z4 0.568 0.570 0.551 0.580

2. Set t(k) = 1.1
1

n

∑n
j=1 y(k)

j for the reverse sensitivity test.

3. Working first with the χ2-divergence, we obtain the cor-
responding Radon-Nikodym densities (w(k)

j ) j=1,...n by solving 
Problem (II) with x = y(k) and t = t(k) .



Fig. 4. Stressed probability distributions of Y under the baseline model P and the stressed models Q Y and Q Zi for i = 1, . . . ,4.
4. Evaluate the optimal divergence, θ(k) = 1

n

∑n
j=1(w(k)

j )2.

5. For the forward sensitivity test, set θ = θ(k) and solve Prob-
lem (III) with x = z(k)

•i , where z(k)
•i = (z(k)

ji ) j=1,...,n , to obtain the

Radon-Nikodym densities w(k)
i = (w(k)

ji ) j=1,...,n .

6. Using w(k) and w(k)
i , we measure the reverse and forward sen-

sitivity measures Ri, Fi as given in Definition 3.1.

In addition, we carry out the same algorithm, but using the KL-
divergence for the calculation of sensitivity measures, as discussed 
above. We aim to compare the simulation error of sensitivity mea-
sures under each of the two divergence measures. This is moti-
vated by Remark 3.1, where we argued that, due to the form of 
the solution of the KL-divergence minimisation problem, high nu-
merical errors may arise.

Fig. 5 displays box plots of input factors’ sensitivity measures. 
The top left and right box plots are associated with reverse sensi-
tivity with χ2- and KL-divergences respectively, while the bottom 
two plots represent forward sensitivities for the two divergences. 
We observe greater volatility in the estimates of both reverse and 
forward sensitivities, when the KL-divergence is used. This is par-
ticularly visible in the case of the reverse sensitivity, where the KL-
divergence produces a high number of outliers. This confirms our 
concerns raised in Remark 3.1 about the use of the KL-divergence 
and demonstrates the better numerical properties of sensitivity 
measure estimates, when the χ2-divergence is used.

In Table 4, we show the standard errors of reverse and forward 
sensitivities of input factors Z1, Z2, Z3, Z4 under the χ2- and KL-
divergences, for m = 1000 sets of n ∈ {103, 104, 105} simulated 
scenarios. Once more, we observe the higher error of sensitivity 
measures based on the KL-divergence, particularly for lower sam-
ple sizes n.

5. Conclusions

We have proposed a sensitivity analysis framework based on
the χ2-divergence, to investigate in a coherent fashion the rela-
tionship between a model’s inputs and output. Two approaches to 
sensitivity analysis are considered; for the reverse approach, the 
expectation of the output was stressed to ascertain the output 
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Table 4
Standard errors of reverse and forward sensitivities of input factors Z1, Z2, Z3, Z4

under χ2-divergence and KL-divergence for m = 1000 sets of n = 103, 104, 105 sim-
ulations.

Reverse sensitivity Forward sensitivity

n = 103 χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.013 0.023 0.012 0.034
Z2 0.028 0.057 0.027 0.034
Z3 0.029 0.088 0.029 0.036
Z4 0.029 0.046 0.026 0.040

n = 104 χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.004 0.010 0.004 0.016
Z2 0.009 0.026 0.008 0.012
Z3 0.009 0.045 0.009 0.012
Z4 0.009 0.015 0.008 0.014

n = 105 χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.001 0.004 0.001 0.006
Z2 0.003 0.010 0.003 0.005
Z3 0.003 0.019 0.003 0.004
Z4 0.003 0.005 0.003 0.006

to input relationship whereas, for the forward approach, the in-
put factors were stressed subject to the same optimal divergence. 
The analytical solution obtained for the divergence minimisation 
problem allows an easy implementation of the sensitivity analy-
ses using Monte-Carlo simulation. We introduced sensitivity mea-
sures specific to our framework, to investigate the changes in the 
distributions of inputs and output. Finally, a numerical study is 
presented, comparing the simulation error of sensitivity measures 
based on the KL- and χ2-divergences. The lower errors observed 
in the case of the χ2-divergence and its applicability in the con-
text of heavy-tailed distributions, make it a competitive alternative 
to the more commonly used KL-divergence.

Declaration of competing interest

The authors have no interest to declare.



Fig. 5. Box plots of reverse and forward sensitivities of input factors under χ2- and Kullback-Leibler divergences, for m = 1000 sets of n = 105 simulated scenarios.
Appendix A. Proofs

Proof of Proposition 3.1. If t ≤ xn , Problem (II) is a quadratic pro-
gramming problem which admits a unique solution. The Karush-
Kuhn-Tucker (KKT) conditions will then be both necessary and 
sufficient for optimality of a candidate solution w (Luenberger et 
al., 1984).

The KKT conditions are:

pi wi = piλ1 + piλ2xi + μi,

n∑
i=1

pi wi = 1,

wiμi = 0,

n∑
i=1

pi wi xi = t,

μi ≥ 0, wi ≥ 0,

for i = 1, . . . , n.
To find the general form of λ1 and λ2, we substitute the equation 
pi wi in the equality constraints of Problem II. We get

λ1 = 1 − λ2 x̄ −
n∑

i=1

μi, (i)

λ2 = t − x̄ + ∑n
i=1 μi(x̄ − xi)

s2
. (ii)

We note that wi > 0 implies that μi = 0 and wi = λ1 + λ2xi .
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We now show that λ2 > 0. Let’s suppose by contradiction that λ2 ≤
0 and consider the case where xh < x j for some indices 1 ≤ h < j ≤
n such that w j > 0. It follows that w j = λ1 + λ2x j and

ph wh = phλ1 + phλ2xh + μh

≥ phλ1 + phλ2xh (since μh ≥ 0)

≥ ph(λ1 + λ2x j) (since xh < x j)

= ph w j .

We conclude that wi is non-increasing in i and that there is a 
counter-monotonic relationship between X and W . In the case 
where w j = 0, the conclusion still holds. Therefore, by Chebyshev’s 
Sum Inequality,

t =
n∑

i=1

pixi wi ≤
n∑

i=1

pi wi

n∑
i=1

pixi = x̄

which contradicts t > x̄. Therefore, λ2 > 0.
Let now xh < x j for 1 ≤ h < j ≤ n such that wh > 0. Then μh = 0
and we have

p j w j = p jλ1 + p jλ2x j + μ j

≥ p jλ1 + p jλ2x j

> p j(λ1 + λ2xh)

= p j wh.



Hence wi is non-decreasing in i and the solution will be of the 
form

wi =
{

0 i < k∗

λ1 + λ2xi i ≥ k∗ (iii)

for some k∗ ∈ {1, . . . , n}, where k∗ is the smallest index such that 
wk∗ > 0.
Note that the implications in the statement of the proposition can 
be inverted as the three cases are mutually exclusive and exhaus-
tive. If w is the unique solution of Problem II, we will proceed by 
proving the following:

a) If wi > 0 for i = 1, . . . , n, then t < x̄ + s2

x̄ − x1
.

b) If wi = 0 for some i and w j > 0 for at least two indices j,

then x̄ + s2

x̄ − x1
≤ t < xn .

c) If wi = 0 for all i but one, then t = xn .

We proceed with the proof by considering three different cases for 
k∗ and establish the condition on t for each case.

Case k∗ = 1:
Let k∗ = 1, which implies that wi > 0 for all i = 1, 2, . . . , n. There-
fore, from (iii), the solution is wi = λ1 + λ2xi > 0 for any i =
1, 2, . . . , n.

The general formulas derived for λ1 and λ2 in equations (i) and 
(ii) simplify as follows:

λ1 = 1 − x̄λ2, λ2 = t − x̄

s2
.

In order to obtain a condition on t we substitute λ1 and λ2 in wi , 
to get

wi = 1 − t − x̄

s2
(x̄ − xi).

As all wi are positive, t < x̄ + s2

x̄ − xi
for each i. Since the xi ’s are 

increasing, this is equivalent to t < x̄ + s2

x̄ − x1
.

Case 1 < k∗ < n:
We let k∗ = k + 1 for some 1 ≤ k ≤ n − 2.

Thus

wi = λ1 + λ2xi + μi

pi
= 0 for i ≤ k, (iv)

wi = λ1 + λ2xi > 0 for i > k. (v)

Rearranging the terms in (iv), we get μi = −(λ1 + λ2xi)pi for i ≤ k
and subsequently, substituting for μi in equations (i) and (ii), we 
solve for λ1 and λ2.

Solving for λ1:

λ1 = 1 − λ2 x̄ −
k∑

i=1

μi = 1 − λ2(x̄ − x̄kπk)

π>k
. (vi)

Solving for λ2 gives:

λ2 = t − x̄ + ∑k
i=1 μi(x̄ − xi)

s2
,

which leads to

λ2s2 = t − x̄ −
k∑

i=1

(λ1 pi + λ2 pi xi)(x̄ − xi).
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Hence

λ2 = t − x̄ − πk(x̄>k − x̄k)(
s2 − πk

(
x̄>k(x̄ − x̄k) − x̄x̄k + x̄(2)

k

)) .

After some algebra, the denominator becomes

s2 − πk

(
x̄>k(x̄ − x̄k) − x̄x̄k + x̄(2)

k

)
= π>ks2

>k.

Therefore,

λ2 =
(t − x̄) − πk

π>k
(x̄ − x̄k)

π>ks2
>k

. (vii)

We know that from the KKT conditions, 0 = wk = λ1 + λ2xk + μk

pk
. 

Since, 
μk

pk
≥ 0, we have λ1 + λ2xk ≤ 0. Substituting the values of 

λ1 and λ2 in the above, we get:

1 −
(t − x̄) − πk

π>k
(x̄ − x̄k)

π>ks2
>k

(x̄ − x̄kπk − xkπ>k) ≤ 0.

Therefore, the last inequality can be written as

t − x̄ ≥ A(k)

B(k)
(viii)

where, A(i) = π>i s2
>i +πi(x̄− x̄i)(x̄>i − xi) and B(i) = π>i(x̄>i − xi).

To see that 
A(i)

B(i)
is increasing in i note that, after some algebra, 

we have

A(i)B(i + 1) − A(i + 1)B(i) ≤ 0 =⇒ π>i s
2
>i(xi − xi+1) ≤ 0.

Setting i = 1, we get 
A(1)

B(1)
= s2

>1 + π1(x̄>1 − x̄1)(x̄>1 − x1)

x̄>1 − x1
=

s2

x̄ − x1
.

Since t = ∑n
i=1 pi wi xi = ∑n

i=k∗ pi wi xi and k∗ < n, it follows that 
t < xn .

To find the value of k, we use 0 = wk = λ1 + λ2xk + μk

pk
≥ λ1 +

λ2xk and wk+1 = λ1 + λ2xk+1 > 0.
Hence, k will be the unique value such that λ1 + λ2xk ≤ 0 <

λ1 + λ2xk+1. By noting the dependence of λ1 and λ2 on k, through 
equations (vi) and (vii), the expression for calculating k, that is 
given in the proposition’s statement, follows.

Case k∗ = n:
We get wn = n and wi = 0 for i = 1, . . . , n − 1. In such a case, it is 
clear from the second constraint of Problem II that t = xn . �
Proof of Proposition 3.2. It can be confirmed that w∗ is a solution 
to Problem (III) by verifying that it satisfies the KKT conditions, by 

choosing η∗
2 = −1

λ2
, η∗

1 = λ1

λ2
and ε∗

i = μi

λ2
, where λ1, λ2 and μi are 

the Lagrangian multipliers in Problem (II).
The KKT conditions for Problem (III), i = 1, . . . , n, are:

η2 pi vi = −pi xi − η1 pi − εi, viεi = 0,

η2

(
1

2

n∑
i=1

pi v2
i − θ

)
= 0 εi ≥ 0

n∑
pi vi = 1, η2 ≤ 0,
i=1



1

2

n∑
i=1

pi v2
i = θ, vi ≥ 0.

As (III) is a convex problem, satisfying the KKT conditions is nec-
essary and sufficient for w∗ to be a solution. �
Proof of Proposition 3.3. 1. The denominator of Fi is strictly 

positive, by assumption. The denominator of Ri is strictly pos-
itive by Proposition 3.2.

2. For Ri ≤ 1, EQ Y (Zi) ≤ EQ Zi (Zi) must hold. This follows from
Dχ2 (Q Y ||P ) = Dχ2 (Q Zi ||P ) and Q Zi being the maximiser in 
Problem (III).
The claim Fi ≤ 1 follows similarly, by considering Problem (III)
and Proposition 3.2, for X = Y .

3. If (Zi, Y ) are independent, EQ Y (Zi) = E(Zi) and EQ Zi (Y ) =
E(Y ), implying directly that Ri = Fi = 0.

4. Let η(Y ) = dQ Y
dP . From Proposition 3.1, we know that η is a 

non-decreasing function. By the PQD assumption it follows 
that EQ Y (Zi) = E(η(Y )Zi) ≥ E(Zi), which shows that Ri ≥ 0. 
The case Fi ≥ 0 is similar. �
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