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A B S T R A C T

The recent COVID-19 outbreak has motivated an extensive development of non-pharmaceutical intervention
policies for epidemics containment. While a total lockdown is a viable solution, interesting policies are those
allowing some degree of normal functioning of the society, as this allows a continued, albeit reduced, economic
activity and lessens the many societal problems associated with a prolonged lockdown. Recent studies have
provided evidence that fast periodic alternation of lockdown and normal-functioning days may effectively
lead to a good trade-off between outbreak abatement and economic activity. Nevertheless, the correct number
of normal days to allocate within each period in such a way to guarantee the desired trade-off is a highly
uncertain quantity that cannot be fixed a priori and that must rather be adapted online from measured data.
This adaptation task, in turn, is still a largely open problem, and it is the subject of this work. In particular,
we study a class of solutions based on hysteresis logic. First, in a rather general setting, we provide general
convergence and performance guarantees on the evolution of the decision variable. Then, in a more specific
context relevant for epidemic control, we derive a set of results characterizing robustness with respect to
uncertainty and giving insight about how a priori knowledge about the controlled process may be used for
fine-tuning the control parameters. Finally, we validate the results through numerical simulations tailored on
the COVID-19 outbreak.
. Introduction

.1. Problem description

Different recent studies Bin, Cheung et al. (2021), Della Rossa et al.
2020), Ferguson et al. (2020), Giordano et al. (2021), Karin et al.
2020), Kennedy, Zambrano, Wang, and Neto (2020), Morato, Bastos,
ajueiro, and Normey-Rico (2020), Sadeghi, Greene, and Sontag (2021)
nd Sontag (2021) have provided evidence that the fast alternation
f lockdown and ‘‘normal’’ days may effectively hinder the COVID-19
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outbreak while permitting a reduced but sustained economic activity.
While full lockdown maximally abates the outbreak, leaving some
normal days lessens the social and economical stress associated with
a continued lockdown. Hence, a compromise between lockdown and
normal days has to be found.

In particular, the main result of Bin, Cheung et al. (2021) states
that if one has to allocate a given number of lockdown and normal
days, the best way, from the standpoint of minimizing the number of
infections, is to switch between them at the largest possible frequency.
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Specifically, if one considers a periodic arrangement of lockdown and
normal days (called in Bin, Cheung et al., 2021 a Fast Periodic Switching
Policy (FPSP)), then the smaller is the period the closer the induced
epidemic trajectories are to those of a fictitious epidemic characterized
by a reproductive number which is a weighted average of the ones we

ould obtain, respectively, with full lockdown and no lockdown at
ll (Bin, Cheung et al., 2021, Theorem 1). The average weights are
efined by the policy’s duty cycle, i.e. the relative number of normal
ays in each period.

An FPSP is thus characterized by two degrees of freedom: its duty
ycle, which defines the reproductive number of the fictitious epidemic,
nd its frequency, which determines how well the actual epidemic
pproximates the fictitious one. The frequency has to be taken as large
s possible, consistent with societal constraints, and it thus represents
n ‘‘open-loop parameter’’ (in particular, the numerical analysis of Bin,
heung et al. (2021) shows that periods of 1–4 weeks are good choices

n the case of COVID-like pandemics). The duty cycle, instead, cannot
e fixed once for all in advance. In fact, the range of values for which
he relative number of normal days is large whilst the epidemic is
till taken under control as desired is highly uncertain, and depends
n the unknown characteristics of the epidemic. To deal with this
roblem, in Bin, Cheung et al. (2021) a slow data-driven supervisory
ontroller is proposed to adapt the FPSP’s duty cycle at run-time on
he basis of observations, suitably averaged and filtered over longer
ime periods. The supervisor realizes a basic hysteresis switching logic,
s it is sufficiently simple to be implemented by a policy maker but
ufficiently robust to deal with the high uncertainty characterizing the
easured signals.

While the supervisor shows promising performance in the numer-
cal analysis of Bin, Cheung et al. (2021), its claimed robustness and
xactness properties have not been formally established yet, and some
undamental points remained open. Specifically:

P1. The regulation properties of the employed hysteresis controller
have not been given a formal characterization. What guarantees
does hysteresis-based control provide?

P2. The relation between the control parameters and the characteris-
tics of the underlying controlled process and the uncertainty and
delays affecting measurements is not clear. How can we use a
priori information about the epidemic to improve performance?

As detailed below in Sections 1.2 and 1.3, the current state of
he art of control theory does not satisfactorily cover P1 and P2 in a
ontext relevant for epidemics mitigation. Moreover, P1 and P2 raise
uestions of crucial importance not only for Bin, Cheung et al. (2021),
ut also for all the other possible data-based mitigation techniques
mploying an hysteresis-like mechanism (these include many heuristic
ecision policies currently adopted worldwide by politicians). There-
ore, developing a comprehensive theory addressing P1 and P2 in a
ontext general enough to embrace many different hysteresis-based
itigation techniques is a timely open problem with a considerable
otential impact on epidemics mitigation going well beyond the specific
echnique used in Bin, Cheung et al. (2021). The development of such
heory is, in a nutshell, the main goal of this article.

.2. Literature overview

The hysteresis decision logic follows a rather basic rule: when a
easured ‘‘monitoring signal’’ exceeds a given value, action is taken

o change the process behavior so as to bring the monitoring signals
ithing bounds again. Controllers based on this logic are simple to

mplement, and boast inherent robustness as only a rough knowl-
dge about how decisions qualitatively affect the controlled process is
equired for the hysteresis logic to function well.

When the size of the hysteresis band is zero and the decision map
s single-valued, the hysteresis logic reduces to a basic ‘‘step’’ nonlin-
509

arity, leading to state-dependent switching between two values. In o
this simplified form, it provides the solution to minimum-time optimal
control problems for both ODEs (Bellman, Glicksberg, & Gross, 1956;
Krener, 1974) and PDEs (Casas, Wachsmuth, & Wachsmuth, 2017;
Mizel & Seidman, 1997), well-known under the name of ‘‘bang–bang
ontroller’’ and boasting countless applications ranging from reser-
oir flooding (Zandvliet, Bosgra, Jansen, Van den Hof, & Kraaije-
anger, 2007), vibration control of structures (Lim, Chung, & Moon,
003), game theory (Olsder, 2002), control of quantum systems (Mor-
on et al., 2006; Viola & Lloyd, 1998), and optimal intervention for
ancer chemotherapy (Ledzewicz & Schättler, 2002). Moreover, when
he two switching values are equal, the control logic takes the form
f an amplified ‘‘sign’’ function, and in this form it is widely used
specially in the context of sliding mode control (Slotine & Sastry, 1983),
ith many applications in mechatronics and robotics (Šabanovic, 2011;
lotine & Sastry, 1983; Zhihong, Paplinski, & Wu, 1994).

In the general form with non-zero band size, hysteresis controllers
re instead standard components of industrial electronic devices (Bose,
990; Buso, Fasolo, Malesani, & Mattavelli, 2000; Kawamura & Hoft,
984; Li, Ruan, Zhang, & Lo, 2020; Mohseni & Islam, 2010; Šabanovic,
011), and provide simple and robust solutions for a wide range of
roblems in engineering, from combustion devices (Guan et al., 2019)
nd temperature regulation (Cahlon, Schmidt, Shillor, & Zou, 1997;
urevich, Jäger, & Skubachevskii, 2009), to epidemic control (Bin,
heung et al., 2021; Ferguson et al., 2020), as mentioned earlier.
oreover, the hysteresis logic is a basic design principle for supervisory

nd hierarchical control, and lies at the core of many adaptive control
pproaches (Angeli & Mosca, 2004; Baldi, Battistelli, Mari, Mosca, &
esi, 2012; Battistelli, Hespanha, & Tesi, 2012; Hespanha, Liberzon, &
orse, 2002, 2003; Hespanha & Morse, 1999; Jin & Safonov, 2012;
osmatopoulos & Ioannou, 1999; Ma, 2008; Middleton, Goodwin, Hill,
Mayne, 1988; Morse, 1990, 1996, 1997; Morse, Mayne, & Goodwin,

992; Stefanovic & Safonov, 2008; Stefanovic, Wang, & Safonov, 2004;
u & Liberzon, 2011; Weller & Goodwin, 1994; Ye, 2008).

Outside application-specific analyses, adaptive control is indeed the
ield where hysteresis logic has been studied more thoroughly from a
ontrol standpoint, as it provides a more direct exploration tool with
espect to the non-uniform, exhaustive searches of early ‘‘universal
ontrollers’’ (Mårtensson, 1985; Minyue Fu & Barmish, 1986) along pre-
efined paths. Specifically, in Baldi et al. (2012), Hespanha et al. (2002,
003), Middleton et al. (1988), Morse (1990, 1996, 1997), Morse et al.
1992) and Weller and Goodwin (1994) hysteresis-based control is used
o switch between candidate controllers on the basis of a measured
onitoring signal in such a way to stabilize uncertain linear systems.
common feature of these approaches is the presence of multiple

andidate controllers, each one associated with a monitoring signal
easuring its performance. The control logic chooses at run time the

ontroller associated with the best performance. Under the assumption
hat a stabilizing controller exists among the candidates, asymptotic
tability can be concluded, with switching that typically stops in finite
ime. Extensions to nonlinear or time-varying systems in a discrete or
ontinuous-time setting are provided, for instance, in Angeli and Mosca
2004), Battistelli et al. (2012), Bin, Bernard, and Marconi (2021), Bin
nd Marconi (2020), Bin, Marconi, and Teel (2019), Hespanha and
orse (1999), Jin and Safonov (2012), Kosmatopoulos and Ioannou

1999), Ma (2008), Stefanovic and Safonov (2008), Stefanovic et al.
2004), Vu and Liberzon (2011) and Ye (2008).

Finally, we underline that the convergence analysis of Morse et al.
1992) and Stefanovic et al. (2004) and related extensions, e.g. Hes-
anha et al. (2002, 2003), Hespanha and Morse (1999), Jin and Sa-
onov (2012), Morse (1996, 1997) and Stefanovic and Safonov (2008),
s carried out in a modular way. First, some convergence properties for
he hysteresis logic decision variables are proved depending only on
‘open-loop assumptions’’ about the measured variables (see, e.g., the
‘Hysteresis Switching Lemma’’ of Morse et al. (1992)). Then, these are
sed to prove the desired regulation performance during closed-loop

peration.
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1.3. Contribution and organization

Although multi-model supervisory control is a well-established field,
and the aforementioned modularity in the analysis is favorable in an
uncertain setting such as virus outbreaks, we cannot directly rely on the
aforementioned results for several reasons. First, we do not dispose of
reliable models or ‘‘predictors’’ assessing the quality of a decision before
it is implemented, so as at switching time we cannot choose the decision
minimizing an expected cost. Indeed, as the recent COVID-19 shows,
assessing the effect of non-pharmaceutical decisions is a complex task.
Models are incapable of guaranteeing reliable predictions (Hutson,
2020), and typically effects can be only assessed a posteriori from
data (Ferguson et al., 2020; Flaxman et al., 2020). Hence, motivated by
the problem described in Section 1.1, we shall rather consider a case in
which the effect of a decision may be only assessed a posteriori, after
it is held for a while.

Second, even if predictors were available, the aforementioned ap-
proaches have as objective convergence to a stabilizing controller,
typically the ‘‘most stabilizing,’’ which in our case would result in
enforcing a full lockdown. This is in sharp contrast with our objective
which, we recall, is that of keeping the outbreak under control with the
minimum number of lockdown days. Lastly, we cannot rely on exhaus-
tive search, such as the universal controller of Mårtensson (1985) and
related extensions, for obvious time constraints requiring uniformity
and fast convergence. Hence, Points P1 and P2 (Section 1.1) remain
substantially uncovered.

In this article, we study a class of hysteresis-based control schemes
addressing Items P1 and P2. As we aim at a methodology that applies
to a wider spectrum of techniques than just Bin, Cheung et al. (2021),
in Section 2 we first develop a general theory in a broader context
than epidemic outbreaks. Under many aspects, this is the heart of the
paper, where we develop general results without relying on quantita-
tive models such as SI-like differential equations. Specifically, along the
lines of Morse et al. (1992) and Stefanovic et al. (2004), we provide
analytical results on the dynamics of the decision variables and we
establish a set of convergence and stability properties that are inde-
pendent from the underlying controlled process and only depend on
the measured signals. Then, we identify sufficient conditions ensuring
that the generated decision variables properly regulate the underlying
process as desired. Similar to Jin and Safonov (2012), Stefanovic and
Safonov (2008) and Stefanovic et al. (2004), these conditions take the
form of a robust detectability assumption guaranteeing that the informa-
ion extracted from the measurements effectively matches the actual
tatus of the underlying unmeasured process. Proceeding in this way
llows us to separate the role of the control logic from that played by
he assumptions we make on the underlying controlled process and on
he relationship between its dynamics and our measurements, including
he effect of uncertainty and delays. Moreover, it confers modularity on
he analysis, making it applicable to a broader class of problems.

In Section 3, we then focus on the problem of virus outbreak
itigation and, in particular, on the specific context of Bin, Cheung

t al. (2021). We provide robustness results with respect to uncertainty
ffecting the measurements, and we provide results and insights about
ow to use a priori information on the controlled process to choose
he design parameters. Finally, in Section 4 we provide numerical
imulation validating the developed theory on the case of COVID-19.

.4. Notation

We denote by R and N the sets of real and natural numbers,
espectively. If ⪯ is any order on a set 𝑆, for an 𝑠 ∈ 𝑆, 𝑆⪯𝑠 ∶= {𝑧 ∈
𝑆 ∶ 𝑧 ≤ 𝑠}. By 𝐴 ⧵ 𝐵 ∶= {𝑎 ∈ 𝐴 ∶ 𝑐 ∉ 𝐵} we denote the set difference
and by 𝐴c the complement. Moreover, 𝑆 and 𝑆◦ denote the closure and
interior of 𝑆 and 𝜕𝑆 = 𝑆 ⧵𝑆◦ its boundary. The symbol ⊂ denotes non-
strict inclusion. Strict inclusion is denoted by ⊊. When clear from the
context, we shall identify singletons with their element. For instance,
510
we shall use 𝑋⧵𝑥 and 𝑥×𝑋 in place of 𝑋⧵{𝑥} and {𝑥}×𝑋 respectively.
e denote by 𝐵𝐴 the set of functions 𝐴→ 𝐵, as well as families or nets

in 𝐵 indexed by 𝐴. For a net ((𝑎𝑘, 𝑏𝑘))𝑘∈𝐾 of elements (𝑎𝑘, 𝑏𝑘), we use
he short notation (𝑎𝑘, 𝑏𝑘)𝑘∈𝐾 . We denote by 𝐵⊂𝐴 the set of functions
→ 𝐴 with 𝐶 ⊂ 𝐵. Given a set  and a totally ordered real vector

pace (T,≤), a flow on (T,) is a function 𝜙 ∶ dom𝜙 ⊂ T ×  → 
uch that: (i) for each 𝑎 ∈  such that (0, 𝑎) ∈ dom𝜙, 𝜙(0, 𝑎) = 𝑎;
ii) if 𝑡, 𝑠, 𝜏 ∈ T are such that 𝑠 ≤ 𝜏 ≤ 𝑡 and (𝑡, 𝑎), (𝑠, 𝑎) ∈ dom𝜙 for
ome 𝑎 ∈ , then (𝜏, 𝑎) ∈ dom𝜙; (iii) if (𝑠, 𝑎) ∈ dom𝜙, then for all
∈ T such that (𝑡 + 𝑠, 𝑎) ∈ dom𝜙, it holds that (𝑡, 𝜙(𝑠, 𝑎)) ∈ dom𝜙, and
(𝑡, 𝜙(𝑠, 𝑎)) = 𝜙(𝑡+𝑠, 𝑎). The set of flows on (T,) is denoted by 𝛷(T,).

. General theory

.1. Basic definitions

We denote by  the decision space. For simplicity, we shall consider
he case in which  is finite, although all results apply to countable
ecision spaces as well with uniformity of convergence over finite
ubset of initial conditions in place of fixed-time convergence. We
ndow  with the discrete topology, so that convergence in  means
onvergence in finite-time. We assume that  can be ordered by a total
rder ≤ (we write 𝑥 ≥ 𝑦 for 𝑦 ≤ 𝑥, 𝑥 < 𝑦 if 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦, and 𝑥 > 𝑦
or 𝑦 < 𝑥), and given any 𝑥 ∈  , we denote by

+ =

⎧

⎪

⎨

⎪

⎩

inf >𝑥 if >𝑥 ≠ ∅,

𝑥 otherwise,

− =

⎧

⎪

⎨

⎪

⎩

sup<𝑥 if <𝑥 ≠ ∅,

𝑥 otherwise,

he (projected) successor and predecessor of 𝑥 in ( ,≤).
With  and  sets, the controlled system is modeled by a pair 𝛴 =

𝜁, 𝜓), in which 𝜁 ∶  → 𝛷(R,) is a function mapping decisions 𝑥 ∈ 
nto process trajectory flows 𝜁 [𝑥] ∈ 𝛷(R,) (see Section 1.4), and 𝜓 is an
perator mapping trajectories 𝑧 ∶ dom 𝑧 ⊂ R →  and decisions 𝑥 ∈ 
o measurement signals 𝜓[𝑧, 𝑥] ∶ dom 𝑧 →  . Specifically, 𝜁 represents
he unknown family of trajectories of the uncertain underlying process,
or instance an epidemic, which we would like to control but which
e do not measure. Instead, the images of 𝜓 represent the available
easurements that can be used for control, and depend on the decision

aken and on the underlying process. Both 𝜁 [𝑥] and 𝜓[𝑧, 𝑥] describe
ignals evolving in continuous time. This carries no loss of generality
s it includes discrete-time signals as particular case, since they can
lways be extended to R. Nevertheless, we restrict our focus only to
iscrete-time updates of the decision variable.

A decision profile is a pair 𝜉 =
(

(𝑥𝑘, 𝑡𝑘)𝑘∈dom 𝜉 , 𝑡
)

in which (𝑥𝑘, 𝑡𝑘)𝑘∈dom 𝜉
s a sequence of decisions and decision times, with dom 𝜉 of the form
0, 1,… , 𝑛} for some 𝑛 ∈ N, and 𝑡 ≥ 0. We assume that from every initial
ondition 𝑧0 every decision profile 𝜉 induces a realization of the process
nd the measured signal, denoted by 𝑧(⋅|𝜉) and 𝑦(⋅|𝜉), defined on

dom 𝑧(⋅|𝜉) = dom 𝑦(⋅|𝜉) =
⋃

𝑘∈dom 𝜉
[𝑡𝑘, 𝑡𝑘+1], (1)

ith 𝑧(𝑡0|𝜉) = 𝑧0, and such that for all 𝑘 ∈ dom 𝜉

𝑧(𝑡|𝜉) = 𝜁 [𝑥𝑘](𝑡 − 𝑡𝑘, 𝑧(𝑡𝑘|𝜉)) ∀𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1],

𝑦(𝑡|𝜉) = 𝜓[𝑧(⋅|𝜉), 𝑥𝑘](𝑡) ∀𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1],
(2)

here we let 𝑡𝑘+1 = 𝑡𝑘 + 𝑡 for 𝑘 = sup dom 𝜉 in both (1) and (2).
ith slight abuse of notation we shall refer to 𝑦 and 𝑧 generically as

‘signals’’. Moreover, we shall omit references to 𝜉 or 𝑥 when clear from
he context.

From now on, we suppose 𝑧0 is fixed (albeit unknown) and we
rop the dependency from it. Thus, given a decision profile 𝜉, in the
ollowing we denote without ambiguity by 𝑧(⋅|𝜉) and 𝑦(⋅|𝜉) the signals
efined as above corresponding to 𝑧 .
0



Annual Reviews in Control 52 (2021) 508–522M. Bin et al.

a

t
𝑥

t
T
f

𝑥

i

𝐹

a

R
a
w
𝐹
h
o
o

R
i
s
b
𝐹

t
c
f
f
t

2.2. The logic workflow and the evaluation principle

The aim of the decision logic is to generate a suitable decision
profile inducing the desired behavior of the process 𝜁 . Decisions are
taken recursively at some decision times 𝑡0, 𝑡1,… ∈ R. For simplicity,
we assume that decisions are taken periodically, with period 𝛥 ∈ R>0.
Hence, 𝑡𝑘+1 = 𝑡𝑘 +𝛥 for all 𝑘 ∈ N. This is not necessary in principle, yet
it simplifies the forthcoming analysis.

The interaction between the controlled process and the decision
logic follows the workflow described below starting at 𝑘 = 0:

S1. The controller takes the decision 𝑥𝑘 at time 𝑡𝑘 on the basis of the
information available up to time 𝑡𝑘, which is given by the real-
ization 𝑦 induced by the decision profile

(

(𝑥ℎ, 𝑡ℎ)ℎ=0,…,𝑘−1, 𝛥
)

.
S2. The decision 𝑥𝑘 is held constant on (𝑡𝑘, 𝑡𝑘+1].
S3. The process is then repeated for 𝑘 + 1.

For every 𝑥 ∈  , we let 𝛯(𝑥) be the set of decision profiles of the
form 𝜉 = ((𝑡𝑘, 𝑥𝑘)𝑘∈{0,…,𝑛}, 𝛥) with 𝑛 ∈ N and satisfying 𝑡𝑘+1 − 𝑡𝑘 = 𝛥 for
all 𝑘 = 0,… , 𝑛 − 1 and 𝑥𝑛 = 𝑥. Moreover, we let 𝛯 ∶= 𝛯().

According to S1, every new decision is taken upon evaluation of
the performance of the previously applied decisions. Ideally, one would
evaluate the effect the past decisions had on the controlled process 𝑧.
An evaluation model is a scheme serving such purpose. In this article,
it formally consists of a tuple (, 𝑂, 𝜔↑, 𝜔↓) in which  is a topological
space, 𝑂 ⊂  is an open set, and 𝜔↑, 𝜔↓ ∶ ⊂R →  are functions
designed so that 𝜔↑(𝑧) ∈ 𝑂 when 𝑧 is characterized by an ‘‘excessively
unstable’’ behavior while 𝜔↓(𝑧) ∈ 𝑂, when 𝑧 is characterized by an
‘‘overly stable’’ behavior (see Section 3 for specific choices in the
COVID-19 case). Hence, 𝑂c represents a compromise region such that
if 𝜔↑(𝑧), 𝜔↓(𝑧) ∈ 𝑂c then 𝑧 is neither overly unstable nor stable. In this
case, the behavior of 𝑧 is considered satisfactory.

In our setting, however, we do not measure 𝑧. Hence, we cannot
directly check whether 𝜔↓(𝑧) or 𝜔↑(𝑧) are in 𝑂. An inference model is an
equivalent notion applicable to the measured signal 𝑦. In particular, it is
a tuple (, 𝐴, 𝛼↑, 𝛼↓) in which  is a topological space, 𝐴 ⊂  is open,
and 𝛼↑, 𝛼↓ ∶ ⊂R →  are designed so that, similarly to evaluation
models, 𝛼↑(𝑦) ∈ 𝐴 when 𝑦 is considered ‘‘excessively unstable’’, and
𝛼↓(𝑦) ∈ 𝐴 when 𝑦 is considered ‘‘excessively stable’’. Thus, if 𝛼↑(𝑦) and
𝛼↓(𝑦) are both in 𝐴c, the behavior of 𝑦 is considered acceptable.

For this design principle to be well-posed, we make the following
assumption, implying that the two conditions 𝛼↑(𝑦) ∈ 𝐴 and 𝛼↓(𝑦) ∈ 𝐴
are mutually exclusive.

Assumption 1 (Consistency). For every decision profile 𝜉 ∈ 𝛯, the
following implications hold

𝛼↑(𝑦(⋅|𝜉)) ∈ 𝐴 ⟹ 𝛼↓(𝑦(⋅|𝜉)) ∉ 𝐴,

𝛼↓(𝑦(⋅|𝜉)) ∈ 𝐴 ⟹ 𝛼↓(𝑦(⋅|𝜉)) ∉ 𝐴.

In general, the inference model has to be designed so that if we are
ble to choose 𝑥 guaranteeing 𝛼↑(𝑦), 𝛼↓(𝑦) ∈ 𝐴c, then such a decision

would be also associated with a satisfactory behavior for 𝑧 in the sense
mentioned earlier. This is, of course, possible only under certain con-
ditions linking the underlying process and the available measurements.
In our setting, these conditions are given by a detectability property
described in the assumption below.

Assumption 2 (Robust Detectability). For every decision profile 𝜉 ∈ 𝛯,
the following implications hold

𝜔↑(𝑧(⋅|𝜉)) ∈ 𝑂 ⟹ 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝐴,

𝜔↓(𝑧(⋅|𝜉)) ∈ 𝑂 ⟹ 𝛼↓(𝑦(⋅|𝜉)) ∈ 𝐴.
(3)

Remark 1. In qualitative terms, the ability of designing inference
models so as to satisfy Assumption 2 with respect to some desirable
evaluation model depends on the available knowledge on the plant and
511
on the quality of the measurements. In turn, it is here that the prior
knowledge about delay, noise, parameters, and structural properties of
the process come into play, and it is here that the praised robustness of
hysteresis-based control originates: all the uncertainties/disturbances
that do not destroy robust detectability do not affect the regulator
performances (this notion of robustness, in turn, may be better framed
within the more general notion of robustness in the broader context of
output regulation, see e.g. Bin, Astolfi, Marconi, and Praly (2018)).

In the forthcoming Sections 2.3–2.7, we study a class of hysteresis-
based control schemes seeking online a decision 𝑥 guaranteeing that
both 𝛼↑(𝑦), 𝛼↓(𝑦) ∉ 𝐴. We carry out the analysis without any reference to
𝑧, thus extracting a set of convergence properties depending only on the
measurements. Later, in Section 2.8, we show that robust detectability
permits to extend some key guarantees to the unmeasured process 𝑧. In
turn, robust detectability will not be assumed until there. The problem
of designing inference models to fulfill robust detectability in the case
of epidemics control is further studied in Section 3, and the results are
applied to the COVID-19 case in Section 4.

2.3. The hysteresis control logic

Given an inference model (, 𝐴, 𝛼↑, 𝛼↓), the class of hysteresis con-
rollers we study in this article is given as follows. An initial decision
0 is arbitrarily taken at time 𝑡0. For every 𝑘 ∈ N, we denote by

𝜉≤𝑘 ∶=
(

(𝑡ℎ, 𝑥ℎ)ℎ∈dom 𝜉≤𝑘 , 𝛥
)

∈ 𝛯, dom 𝜉≤𝑘 ∶= N≤𝑘

he decision profile collecting the past decisions and decision times.
hen, the decision 𝑥𝑘+1 is taken at time 𝑡𝑘+1 = 𝑡𝑘 + 𝛥 according to the
ollowing inclusion

𝑘+1 ∈ 𝐹
(

𝑥𝑘, 𝑦(⋅|𝜉≤𝑘)
)

, (4)

n which, for every 𝑥 ∈  and 𝑦 ∶ dom 𝑦 ⊂ R →  , we let

(𝑥, 𝑦) ∶=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥− if 𝛼↑(𝑦) ∈ 𝐴,
𝑥+ if 𝛼↓(𝑦) ∈ 𝐴,
{𝑥−, 𝑥} if 𝛼↑(𝑦) ∈ 𝜕𝐴 and 𝛼↓(𝑦) ∉ 𝜕𝐴,

{𝑥+, 𝑥} if 𝛼↓(𝑦) ∈ 𝜕𝐴 and 𝛼↑(𝑦) ∉ 𝜕𝐴,

{𝑥−, 𝑥, 𝑥+} if 𝛼↑(𝑦) ∈ 𝜕𝐴 and 𝛼↓(𝑦) ∈ 𝜕𝐴,

𝑥 otherwise.

(5)

A decision profile 𝜉 = ((𝑡𝑘, 𝑥𝑘)𝑘∈dom 𝜉 , 𝑡) for which (4) holds is called
solution to (4).

emark 2 (Wellposedness). For 𝛼↑(𝑦) ∈ 𝜕𝐴 and/or 𝛼↓(𝑦) ∈ 𝜕𝐴, 𝐹 (𝑥, 𝑦) is
set. This is somewhat different from canonical hysteresis controllers in
hich, instead of 𝐹 , one typically employs a selection 𝐹 of 𝐹 satisfying
̃(𝑥, 𝑦) = 𝑥 if 𝛼↑(𝑦) ∈ 𝜕𝐴 and/or 𝛼↓(𝑦) ∈ 𝜕𝐴. This modification
as been introduced to make Eq. (4) wellposed in the same sense
f Goebel, Sanfelice, and Teel (2012, Chapter 6), ensuring that limits
f ‘‘converging sequences’’ of solutions are solutions as well.1

emark 3. Nothing in (4) prevents one to always chose 𝑥𝑘+1 = 𝑥𝑘
f 𝛼↑(𝑦) ∈ 𝜕𝐴 and/or 𝛼↓(𝑦) ∈ 𝜕𝐴. In fact, this choice corresponds to a
olution of (4) and, as such, it is feasible. In other terms, (4)–(5) can
e seen as a ‘‘robust version’’ of the control logic that uses the function
̃ defined in Remark 2: multiple choices for the cases in which 𝛼↑(𝑦)

1 More precisely, if we endow the set of signals dom 𝑦 ⊂ R →  with a
opology for which 𝛼↓ and 𝛼↓ are continuous, then by using 𝐹 , we may have
ases in which a convergent net (𝑦𝓁)𝓁 exists such that, for instance, 𝛼↑(𝑦𝓁) ∈ 𝐴
or all 𝓁, but its limit 𝑦∗ satisfies 𝛼↑(𝑦∗) ∈ 𝜕𝐴. In this case, 𝐹 (𝑥, 𝑦𝓁) = 𝑥−

or all 𝓁, so that lim𝐹 (𝑥, 𝑦𝓁) = 𝑥− ≠ 𝑥 = 𝐹 (𝑥, lim 𝑦𝓁), which in turn implies
hat 𝑦∗ does not produce a solution. Instead, by using 𝐹 , we always have
lim𝐹 (𝑥, 𝑦 ) ⊂ 𝐹 (𝑥, lim 𝑦 ).
𝓁 𝓁
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and/or 𝛼↓(𝑦) are in 𝜕𝐴 can model a decision logic that cannot determine
the conditions 𝛼↓(𝑦), 𝛼↑(𝑦) ∈ 𝜕𝐴 with arbitrary accuracy and, thus, may
mistake decisions when 𝛼↑(𝑦) and 𝛼↓(𝑦) too close to 𝜕𝐴.

2.4. The stationarity and monotonicity assumptions

We analyze System (4) under the following main ‘‘open-loop’’ as-
sumptions.

Assumption 3 (Stationarity). For every 𝑥 ∈  and every two decision
profiles 𝜉1, 𝜉2 ∈ 𝛯(𝑥), the following hold

𝛼↑
(

𝑦(⋅|𝜉1)
)

∈ 𝐴 ⟺ 𝛼↑
(

𝑦(⋅|𝜉2)
)

∈ 𝐴,

𝛼↓
(

𝑦(⋅|𝜉1)
)

∈ 𝐴 ⟺ 𝛼↓
(

𝑦(⋅|𝜉2)
)

∈ 𝐴.

Assumption 3 is better understood when 𝛼(𝑦(⋅|𝜉)) depends only on
the last decision, as in the application considered in Section 3. In this
case, indeed, it requires that the same decision must lead to the same
qualitative behavior of 𝑦 (although, we stress, it does not require that
𝛼↑(𝑦(⋅|𝜉1)) = 𝛼↑(𝑦(⋅|𝜉2)) or 𝛼↓(𝑦(⋅|𝜉1)) = 𝛼↓(𝑦(⋅|𝜉2))).

Assumption 4 (Monotonicity). For every 𝑥 ∈  and every 𝜉 ∈ 𝛯(𝑥),
𝜉+ ∈ 𝛯(𝑥+), 𝜉− ∈ 𝛯(𝑥−), the following hold

𝛼↑
(

𝑦(⋅|𝜉)
)

∈ 𝐴 ⟹ 𝛼↑
(

𝑦(⋅|𝜉+)
)

∈ 𝐴,

𝛼↓
(

𝑦(⋅|𝜉)
)

∈ 𝐴 ⟹ 𝛼↓
(

𝑦(⋅|𝜉−)
)

∈ 𝐴.

Assumption 4 is the essence of the functioning of the hysteresis
logic (4), and it is what ultimately motivates the choice of 𝐹 in (4).
With Assumption 3, it implies that there is a preferred direction in 
to bring 𝑦 out of the set in which 𝛼↑(𝑦) ∈ 𝐴, and another one to exit
that in which 𝛼↓(𝑦) ∈ 𝐴. This assumption is what permits an hysteresis
logic to avoid exhaustive explorations over ‘‘open-loop’’ or predefined
paths, typical of universal controllers (Mårtensson, 1985; Minyue Fu
& Barmish, 1986), and instead to tell the exploration direction from
closed-loop measurements. In the context of epidemic control, and in
particular in the context of Bin, Cheung et al. (2021) described in
Section 1.1, Assumption 4 is justified by the result of Bin, Cheung et al.
(2021, Theorem 1) which links increasing (resp. decreasing) duty cycles
with increasing (resp. decreasing) values of the reproductive number.

2.5. Target sets of decisions

Under Assumption 3, we can define the following sets without
ambiguity

𝑋↑ ∶=
{

𝑥 ∈  ∶ 𝛼↑(𝑦(⋅|𝜉)) ∉ 𝐴, ∀𝜉 ∈ 𝛯(𝑥)
}

,

𝑋↓ ∶=
{

𝑥 ∈  ∶ 𝛼↓(𝑦(⋅|𝜉)) ∉ 𝐴, ∀𝜉 ∈ 𝛯(𝑥)
}

,

and their intersection

𝑋⋆ ∶= 𝑋↑ ∩𝑋↓.

The sets 𝑋↑ and 𝑋↓ contain, respectively, the decisions leading to a
behavior of 𝑦 which is not too unstable and not too stable according
to the chosen inference model. Thus, the set 𝑋⋆ contains decisions for
which 𝑦 behaves satisfactorily, and it is called the ‘‘target set’’. Under
consistency and stationarity, at least one among 𝑋↑ and 𝑋↓ is always
nonempty, as established by the following lemma.

Lemma 1 (Non-emptiness of 𝑋↑ ∪𝑋↓). Suppose that Assumptions 1 and 3
hold. Then, 𝑋↑ ∪𝑋↓ ≠ ∅.

Proof. If 𝑋↑ ≠ ∅ there is nothing to prove. If, instead, 𝑋↑ = ∅,
then for all 𝑥 ∈  , there exists 𝜉 ∈ 𝛯(𝑥), such that 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝐴. By
Assumption 1, this implies 𝛼↓(𝑦(⋅|𝜉)) ∉ 𝐴. Assumption 3, then implies

↓ ′ ′ ̃↓
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that 𝛼 (𝑦(⋅|𝜉 )) ∉ 𝐴 holds for all 𝜉 ∈ 𝛯(𝑥). Hence 𝑋 ≠ ∅. □
In general, however, the target set 𝑋⋆ may be empty even if both
𝑋↑ and 𝑋↓ are not. Moreover, as we shall clarify later in Proposition 1,
𝑋⋆ may fail to be invariant. This motivates us to study also a relaxation
of 𝑋↑ and 𝑋↓, consisting of their one-point dilations

𝑋↑
+ ∶= 𝑋↑ ∪

{

𝑥 ∈  ∶ 𝑥 = 𝑥̄+, 𝑥̄ ∈ 𝑋↑
}

,

𝑋↓
− ∶= 𝑋↓ ∪

{

𝑥 ∈  ∶ 𝑥 = 𝑥̄−, 𝑥̄ ∈ 𝑋↓
}

.

nd their intersection

̃± ∶= 𝑋↑
+ ∩𝑋↓

−

hat always satisfies 𝑋± ⊃ 𝑋⋆. The set 𝑋± is slightly larger than 𝑋⋆

but, as detailed below, in general it enjoys stronger properties, as it
is nonempty under weaker conditions (Lemma 3), and it is always
forward invariant (Proposition 3). The sets 𝑋↑, 𝑋↓, 𝑋↑

+ and 𝑋↓
− satisfy

he following closure properties with respect to the predecessor and
uccessor operators.

emma 2. Under Assumptions 1, 3 and 4:

∈ 𝑋↑ ⟹ 𝑥− ∈ 𝑋↑, 𝑥 ∈ 𝑋↑
+ ⟹ 𝑥− ∈ 𝑋↑

+,

∈ 𝑋↓ ⟹ 𝑥+ ∈ 𝑋↓, 𝑥 ∈ 𝑋↓
− ⟹ 𝑥+ ∈ 𝑋↓

−.

The proof of Lemma 2 is in the Appendix. Clearly, Lemma 1 implies
̃↑
+ ∪ 𝑋↓

− ≠ ∅ under consistency and stationarity. Moreover, if also
onotonicity holds, we can conclude that, unlike 𝑋⋆, 𝑋± is always
onempty if so are 𝑋↑ and 𝑋↓. This is established by the following
emma, proved in the Appendix.

emma 3. Suppose that Assumptions 1, 3 and 4 hold, and that 𝑋↑ and
̃↓ are nonempty. Then, 𝑋± ≠ ∅ and 𝑋↑

+ ∪𝑋↓
− =  .

.6. Forward invariance

In this section, we study the forward invariance properties of the
ecision sets 𝑋⋆, 𝑋↑

+, 𝑋↓
− and 𝑋±. In particular, a set 𝑋 is said to be

eakly forward invariant for (4) if, for every 𝑥 ∈ 𝑋 and every decision
rofile 𝜉 ∈ 𝛯(𝑥), it holds that 𝐹 (𝑥, 𝑦(⋅|𝜉)) ∩ 𝑋 ≠ ∅. Moreover, 𝑋 is said
o be forward invariant for (4) if, for every 𝑥 ∈ 𝑋 and every decision
rofile 𝜉 ∈ 𝛯(𝑥), it holds that 𝐹 (𝑥, 𝑦(⋅|𝜉)) ⊂ 𝑋.

In general, even if nonempty, the target set 𝑋⋆ may fail to be
orward invariant. This is due to 𝐹 being set-valued for 𝛼↑(𝑦) ∈ 𝜕𝐴
nd/or 𝛼↓(𝑦) ∈ 𝜕𝐴, and due to the lack of an ‘‘ordering’’ on  of
he kind established by Assumption 4 when 𝛼↑(𝑦) ∈ 𝐴 or 𝛼↓(𝑦) ∈ 𝐴.
evertheless, the target set 𝑋⋆ is always weakly forward invariant
henever nonempty, as established by the following proposition.

roposition 1 (Weak forward invariance of 𝑋⋆). Suppose that Assump-
ions 1, 3 and 4 hold and that 𝑋⋆ ≠ ∅. Then, 𝑋⋆ is weakly forward
nvariant.

roof. Pick 𝑥 ∈ 𝑋⋆ and 𝜉 ∈ 𝛯(𝑥) arbitrarily. Then 𝛼↑(𝑦(⋅|𝜉)) ∉ 𝐴
nd 𝛼↓(𝑦(⋅|𝜉)) ∉ 𝐴. In view of (5), this implies 𝑥 ∈ 𝐹 (𝑥, 𝑦(⋅|𝜉)), so that
⋆ ∩ 𝐹 (𝑥, 𝑦(⋅|𝜉)) ≠ ∅. □

While weaker than invariance, Proposition 1 guarantees that, if
𝑘 ∈ 𝑋⋆, then we can always choose 𝑥𝑘+1 ∈ 𝑋⋆ according to (4). Under
ome additional conditions on the set of decisions for which 𝛼↑(𝑦) ∉ 𝐴
nd 𝛼↓(𝑦) ∉ 𝐴, forward invariance is recovered.

roposition 2 (Forward Invariance of 𝑋⋆). In addition to the assumptions
f Proposition 1, suppose that

(a) The cardinality of 𝑋⋆ is larger or equal than 2.
(b) The set of 𝑥 ∈  such that 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝜕𝐴 and 𝛼↓(𝑦(⋅|𝜉)) ∈ 𝜕𝐴 hold
at the same time for some 𝜉 ∈ 𝛯(𝑥) is empty.
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(c) If 𝑥 ∈ 𝑋⋆ is such that 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝜕𝐴 for some 𝜉 ∈ 𝛯(𝑥), then 𝑥+
satisfies 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝐴 for all 𝜉 ∈ 𝛯(𝑥+).

(d) If 𝑥 ∈ 𝑋⋆ is such that 𝛼↓(𝑦(⋅|𝜉)) ∈ 𝜕𝐴 for some 𝜉 ∈ 𝛯(𝑥), then 𝑥−
satisfies 𝛼↓(𝑦(⋅|𝜉)) ∈ 𝐴 for all 𝜉 ∈ 𝛯(𝑥−).

Then, 𝑋⋆ is forward invariant.

Proposition 2 is proved in the Appendix. Unlike 𝑋⋆, which in
general is ‘‘only’’ weakly forward invariant, the sets 𝑋↑

+, 𝑋↓
− and 𝑋±

are always forward invariant whenever nonempty. This is established
by the following proposition, proved in the Appendix.

Proposition 3 (Forward Invariance). Suppose that Assumptions 1, 3 and 4
hold. Then each of the sets 𝑋↑

+, 𝑋↓
− and 𝑋± is invariant whenever nonempty.

2.7. Convergence analysis

In this section, we study attractiveness of the decision sets 𝑋↑
+, 𝑋↓

−,
𝑋± and 𝑋⋆. In particular, a set 𝑋 ⊂  is said to be uniformly attractive
for (4) from another set 𝑋0 ⊂  if there exists ℎ ∈ N such that
every solution 𝜉 to (4) with 𝑥0 ∈ 𝑋0 and ℎ ∈ dom 𝜉 satisfies 𝑥𝑘 ∈ 𝑋
for all 𝑘 ∈ (dom 𝜉)≥ℎ (recall that, being the topology on  discrete,
convergence in  is finite-time convergence). If 𝑋0 =  , then 𝑋 is said
to be globally uniformly attractive.

Given any 𝑋 ⊊  , and any 𝑥 ∈  , we define the distance of 𝑥 to 𝑋
as

𝑑(𝑥,𝑋) ∶= min
{

𝑛 ∈ N ∶ 𝑥𝑛+ ∈ 𝑋 or 𝑥𝑛− ∈ 𝑋
}

∈ N,

in which the operator 𝑥⋅+ is defined by the recursion 𝑥0+ = 𝑥 and
𝑥𝑛+ = (𝑥(𝑛−1)+)+ for 𝑛 ∈ N>0, and 𝑥⋅− is defined similarly. Then, uniform
attractiveness from 𝑋0 is equivalent to the existence of ℎ ∈ N such that
for every solution 𝜉 to (4) with 𝑥0 ∈ 𝑋0 and ℎ ∈ dom 𝜉, 𝑑(𝑥𝑘, 𝑋) = 0 for
all 𝑘 ∈ (dom 𝜉)≥ℎ.

The following result establishes uniform global attractiveness of the
decision sets 𝑋↑

+, 𝑋↓
− and 𝑋±.

Theorem 1 (Attractiveness of 𝑋). Suppose that Assumptions 1, 3 and 4
hold, and consider the set

𝑋 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋↑
+ if 𝑋↑

+ ≠ ∅ and 𝑋↓
− = ∅,

𝑋↓
− if 𝑋↓

− ≠ ∅ and 𝑋↑
+ = ∅,

𝑋± if 𝑋↑
+ ∩𝑋↓

− ≠ ∅.

Then, for every solution 𝜉 to (4), and every 𝑘 ∈ dom 𝜉 such that 𝑘 + 1 ∈
dom 𝜉, the following implication holds

𝑥𝑘 ∉ 𝑋 ⟹ 𝑑(𝑥𝑘+1, 𝑋) = 𝑑(𝑥𝑘, 𝑋) − 1. (6)

Thus, in particular, 𝑋 is uniformly globally attractive for (4).

Proof. We first prove (6) for 𝑋 = 𝑋↑
+. Assume that 𝑋↑

+ ≠ ∅ and that
𝑋↑

+ ⊊  (otherwise the claim trivially holds). Pick a solution 𝜉 to (4)
and 𝑘 ∈ dom 𝜉 such that 𝑘 + 1 ∈ dom 𝜉, and suppose that 𝑥𝑘 ∉ 𝑋↑

+.
By Lemma 2, necessarily 𝑥𝑘 > sup𝑋↑

+. In view of (4), Lemma 2 and
Assumptions 3 and 4, this implies 𝑥𝑘+1 = 𝑥−𝑘 and, hence, 𝑑(𝑥𝑘+1, 𝑋

↑
+) =

𝑑(𝑥𝑘, 𝑋
↑
+) − 1, which is (6). The proof of (6) for 𝑋 = 𝑋↓

− follows the
same argument. The proof of (6) for 𝑋 = 𝑋± follows by noticing that,
since in view of Lemma 3, 𝑋↑

+ ∪𝑋
↓
− =  , then if 𝑥𝑘 ∉ 𝑋↑

+ ∩𝑋
↓
− either (i)

𝑥𝑘 ∉ 𝑋↑
+∩(𝑋

↓
−)

c, or (ii) 𝑥𝑘 ∉ 𝑋↓
−∩(𝑋

↑
+)

c. In case (i), 𝑑(𝑥𝑘, 𝑋) = 𝑑(𝑥𝑘, 𝑋
↑
+).

In case (ii) 𝑑(𝑥𝑘, 𝑋) = 𝑑(𝑥𝑘, 𝑋↓
−). Hence, (6) holds on both cases.

Regarding global attractiveness of 𝑋, as 𝑋 is always forward in-
variant (Proposition 3), it suffices to show that there exists ℎ ∈ N such
that, for every solution of (4) with ℎ ∈ dom 𝜉, we have 𝑥ℎ ∈ 𝑋. This,
however, is a direct consequence of (6) and of the finiteness of  . □
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Remark 4. Theorem 1 implies that decisions always converge in
finite time to the set 𝑋± whenever nonempty. Moreover, since the
topology of  is discrete, (Lyapunov) stability is always trivially implied
by forward invariance, since each singleton is a neighborhood of its
element. Nevertheless, Theorem 1 claims a stronger result, given by (6),
and guaranteeing that the distance to 𝑋 is always decreasing. This, in
turn, permits to directly extend the uniform attractiveness result to the
case in which  is countable.

When 𝑋⋆ is nonempty, one is most interested in solutions that reach
and stay in it, rather than 𝑋±. As in general 𝑋⋆ is not forward invariant,
we cannot conclude attractiveness. Yet, this is just a technical obstacle,
and we can prove several properties of 𝑋⋆ which in practice have the
same implications that Theorem 1 has for 𝑋±. In particular:

1. 𝑋⋆ is always reached in finite time from every initial condition.
A solution may jump outside 𝑋⋆, but if it does, it enters 𝑋⋆

again within the next update.
2. From every initial condition there always exists a solution reach-

ing 𝑋⋆ in finite time and staying in it for all successive times.

These properties are stated in the following theorem.

Theorem 2 (Attractiveness of 𝑋⋆). Suppose that Assumptions 1, 3 and 4
hold, and assume that 𝑋⋆ ≠ ∅. Then, the following hold:

(a) For every solution 𝜉 to (4), and every 𝑘 ∈ dom 𝜉 such that 𝑘 + 1 ∈
dom 𝜉, if 𝑥𝑘 ∈ 𝑋± ⧵𝑋⋆ then 𝑥𝑘+1 ∈ 𝑋⋆.

(b) From every initial condition 𝑥0, there exists a solution 𝜉 and an ℎ ∈ N
such that either sup dom 𝜉 < ℎ or 𝑥𝑘 ∈ 𝑋⋆ for all 𝑘 ∈ (dom 𝜉)≥ℎ.

(c) For every solution 𝜉 to (4), define 𝐷 ∶= {𝑘 ∈ dom 𝜉 ∶ 𝑥𝑘 ∈ 𝑋⋆}
and, for every 𝑘 ∈ 𝐷, let 𝛿(𝑘) = min𝐷>𝑘−𝑘. Then, there exists ℎ ∈ N
such that either sup dom 𝜉 < ℎ or 𝛿(𝑘) ≤ 1 for all 𝑘 ∈ (dom 𝜉)≥ℎ.

Proof. To prove (a), pick a solution 𝜉 to (4) and a 𝑘 ∈ dom 𝜉 such
that 𝑘 + 1 ∈ dom 𝜉 and 𝑥𝑘 ∈ 𝑋± ⧵ 𝑋⋆. Then, either (i) 𝑥𝑘 ∉ 𝑋↑, or (ii)
𝑥𝑘 ∉ 𝑋↓. In case (i), in view of Assumption 3 we have 𝛼↑(𝑦(⋅|𝜉≤𝑘)) ∈ 𝐴.
Hence, (4) implies 𝑥𝑘+1 = 𝑥−𝑘 . Since 𝑥𝑘 ∈ 𝑋± implies 𝑥𝑘 ∈ 𝑋↑

+, then by
definition 𝑥−𝑘 ∈ 𝑋↑ ⊂ 𝑋⋆, so as 𝑥𝑘+1 ∈ 𝑋⋆. Case (ii) is proved in the
same way.

Claim (b) follows by noticing that Theorem 1 implies the existence
of ℎ0 ∈ N such that ℎ0 ∈ dom 𝜉 ⟹ 𝑥𝑘 ∈ 𝑋± for all 𝑘 ∈ (dom 𝜉)≥ℎ0 .

hen, either 𝑥ℎ0 ∈ 𝑋⋆, in which case the claim holds with ℎ = ℎ0 by
eak forward invariance of 𝑋⋆ (Proposition 1), or Claim (a) guarantees

hat ℎ0 + 1 ∈ dom 𝜉 ⟹ 𝑥ℎ0+1 ∈ 𝑋⋆, so as the claim holds with
∶= ℎ0 + 1.

Claim (c) follows directly from Claims (a) and (b). □

.8. Connections with the process 𝑧

In all the precedent analysis, robust detectability (Assumption 2)
as never assumed. All the claims, indeed, referred to the measured
utput 𝑦. In this section we show that, if the evaluation model (, 𝑂, 𝜔↑,
↓) satisfies a stationarity property analogous to that required by
ssumption 3 for (, 𝐴, 𝛼↑, 𝛼↓), and if, in addition, robust detectabil-

ty holds, then we can conclude convergence to a set of decision
orresponding to a satisfactory behavior of the process variable 𝑧.

In particular, we assume the following.

ssumption 5 (𝑧-Stationarity). For every 𝑥 ∈  and every two decision
profiles 𝜉1, 𝜉2 ∈ 𝛯(𝑥), the following hold

𝜔↑
(

𝑧(⋅|𝜉1)
)

∈ 𝑂 ⟺ 𝜔↑
(

𝑧(⋅|𝜉2)
)

∈ 𝑂,
↓
(

𝑧(⋅|𝜉1)
)

∈ 𝑂 ⟺ 𝜔↓
(

𝑧(⋅|𝜉2)
)

∈ 𝑂.
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Under Assumption 5, we can define the sets

𝑍↑ ∶=
{

𝑥 ∈  ∶ 𝜔↑(𝑧(⋅|𝜉)) ∉ 𝑂,∀𝜉 ∈ 𝛯(𝑥)
}

,

𝑍↓ ∶=
{

𝑥 ∈  ∶ 𝜔↓(𝑧(⋅|𝜉)) ∉ 𝑂,∀𝜉 ∈ 𝛯(𝑥)
}

,

𝑍↑
+ ∶= 𝑍↑ ∪

{

𝑥 ∈  ∶ 𝑥 = 𝑥̄+, 𝑥̄ ∈ 𝑍↑
}

,

𝑍↓
− ∶= 𝑍↓ ∪

{

𝑥 ∈  ∶ 𝑥 = 𝑥̄−, 𝑥̄ ∈ 𝑍↓
}

,

𝑍⋆ ∶= 𝑍↑ ∩𝑍↓, 𝑍± ∶= 𝑍↑
+ ∩𝑍↓

−,

which are the analogous of 𝑋↑, 𝑋↓, 𝑋↑
+, 𝑋↓

−, 𝑋⋆ and 𝑋± with 𝑧 in place
of 𝑦.

Under robust detectability, the following result establishes a set of
relationships among the decision sets defined earlier on. The impor-
tance of this result stems from the fact that it implies that, if robust
detectability holds, then the sets 𝑋⋆ and its relaxation 𝑋± to which the
solutions of (4) converge are subsets of the sets 𝑍⋆ and 𝑍± respectively,
which are the sets of decisions making the unmeasured process 𝑧 be-
have satisfactorily. This, in turn, permits to infer a satisfactory behavior
of the underlying process 𝑧 from the decision based only on 𝑦.

Theorem 3. Suppose that Assumptions 1, 2 and 5. Then 𝑋↑ ⊂ 𝑍↑,
𝑋↓ ⊂ 𝑍↓, 𝑍↑

+ ⊂ 𝑍
↑
+, 𝑋↓

− ⊂ 𝑍
↓
−, 𝑋⋆ ⊂ 𝑍⋆ and 𝑋± ⊂ 𝑍±.

Proof. To see that 𝑋↑ ⊂ 𝑍↑ holds, pick 𝑥 ∈  ⧵𝑍↑. Then, there exists
𝜉 ∈ 𝛯(𝑥) such that 𝜔↑(𝑧(⋅|𝜉)) ∈ 𝑂. Assumption 5 implies that 𝜔↑(𝑧(⋅|𝜉)) ∈
𝑂 for all 𝜉 ∈ 𝛯(𝑥). Assumption 2, in turn, implies 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝑂 for
all 𝜉 ∈ 𝛯(𝑥). Namely, 𝑥 ∈  ⧵ 𝑋↑. For arbitrariness of 𝑥, this shows
that  ⧵ 𝑍↑ ⊂  ⧵ 𝑋↑, which in turn implies 𝑋↑ ⊂ 𝑍↑. The inclusion
𝑋↓ ⊂ 𝑍↓ is proved in the same way, while all the others follow directly
from these. □

3. Application to epidemics control

3.1. The setting

In the remainder of the paper, we focus on the application of
the theory developed in the previous sections to the problem of non-
pharmaceutical control of epidemics. As anticipated in Section 1.1,
we build on the result of Bin, Cheung et al. (2021). In particular, we
consider a FPSP alternating 𝑁↓ days of lockdown and 𝑁↑ normal days,
where society works as normal (modulo additional policies, such as
social distancing and use of masks).

We define the FPSP period 𝑃 and duty cycle 𝜚 as

𝑃 ∶= 𝑁↓ +𝑁↑, 𝜚 ∶= 𝑁↑∕𝑃 .

According to Bin, Cheung et al. (2021), the period is decided in advance
as the smallest possible period compatible with societal constraints
(typically one, two or three weeks) and kept fixed. The duty cycle,
instead, is the variable we control. In particular, the decision space is
taken as  ∶= {0,… , 𝑃 } with the natural ordering. Each decision 𝑥 ∈ 
then determines a duty cycle 𝜚(𝑥) = 𝑥∕𝑃 .

The unmeasured process 𝑧 represents the actual dynamics of the
epidemic. For example, although we stress this is not necessary, 𝑧 may
be thought of in terms of the solution map of an ‘‘SI-like’’ differential
equation of the form

𝑆̇ = 𝑓𝑆 (𝛽, 𝑆, 𝐼, 𝐶),

𝐼̇ = 𝑓𝐼 (𝛽, 𝑆, 𝐼, 𝐶),

𝐶̇ = 𝑓𝐶 (𝛽, 𝑆, 𝐼, 𝐶),

(7)

in which 𝑆(𝑡) ∈ R≥0 represents the number/percentage of susceptible
individuals, 𝐼(𝑡) ∈ R≥0 the number/percentage of infected individuals
(or a portion of them, depending on the actual model (Avram, Adenane,
& Ketcheson, 2021; Giordano et al., 2020)), 𝐶(𝑡) ∈ R𝑛𝐶≥0, 𝑛𝐶 ∈ N, rep-
resents additional compartments, 𝛽 ∈ [0, 1] is a parameter modulating
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1

he infection rate, and 𝑓𝑆 , 𝑓𝐼 , 𝑓𝐶 are continuous functions whose values
etermine the actual model dynamics. In this case, the effect of the
ecision 𝑥 on the epidemic dynamics is modeled by letting 𝛽 depend
n the FPSP duty cycle 𝜚(𝑥). In particular, if 𝛽↑, 𝛽↓ ∈ [0, 1] denote,
espectively, the value of 𝛽 during normal days and lockdown, then
in (7) is assumed to satisfy

(𝑡, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝛽↓ if mod(𝑡, 𝑃 ) < (1 − 𝜚(𝑥))𝑃 ,

𝛽↑ otherwise,
(8)

n which mod(𝑡, 𝑃 ) ∶= 𝑡 − max{𝑠 ∈ N ∶ 𝑠𝑃 ≤ 𝑡}. See Bin, Cheung et al.
2021) for further details. In this case,  = R2+𝑛𝐶

≥0 and, for each 𝑥 ∈  ,
the process trajectory flow 𝜁 [𝑥] (Section 2.1) equals the flow of (7). The
operator 𝜓 (Section 2.1), instead, is defined to select the (combination
of) variables which are measurable, such as detected cases, deaths, or
hospitalized people (we refer to Section 4 for an example in the case
of the COVID-19 outbreak). For simplicity, we assume  = R, as this
does not lead to any conceptual loss of generality.

3.2. Evaluation and inference models

We suppose that the initial condition 𝑧0 is fixed (albeit unknown)
and we make reference to the definitions (1)–(2), which for each
decision profile 𝜉 produce the time signals 𝑧(⋅|𝜉) and 𝑦(⋅|𝜉). We let 𝛾 be
n operator extracting from 𝑧(⋅|𝜉) the (unmeasured) variables 𝜃(⋅|𝜉) ∶=
(𝑧(⋅|𝜉)) of interest whose growth we aim to control (𝛾 is chosen so as
om 𝜃(⋅|𝜉) = dom 𝑧(⋅|𝜉)). For example, in the case described above in
hich the epidemic dynamics is given by (7), 𝜃 may consist in just the
variable, or a combination of 𝐼 and 𝐶. For ease of exposition, we

uppose that 𝜃(𝑡|𝜉) ∈ R for all 𝑡 and 𝜉.
We fix a number 𝑇 ≥ 𝑃 (typically, 𝑇 is a multiple of 𝑃 ) and we

efine two operators, 𝛱 and D, acting on time signals 𝜂 ∶ dom 𝜂 ⊂ R →
as

𝜂(𝑡) ∶= 1
𝑇 ∫[𝑡−𝑇 ,𝑡]∩dom 𝜂

(

𝜂(𝑠) − 𝜂(𝑡 − 𝑇 )
)

𝑑𝑠,

D𝜂(𝑡) ∶= 𝜂(𝑡 − 𝑇 ),

n which 𝛱𝜂 and D𝜂 are defined for all 𝑡 ∈ R≥0 such that 𝑡−𝑇 ∈ dom 𝜂.
or each 𝑡 ∈ dom𝛱𝜂, 𝛱𝜂(𝑡) then equals the average growth of 𝜂 in the
nterval [𝑡 − 𝑇 , 𝑡].

With 𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓ ≥ 0, we then consider a class of evaluation models
btained with  = R, 𝑂 = R>0, and

𝜔↑(𝑧) ∶=
[

𝛱 − 𝑜↑D𝛱
]

𝛾(𝑧)(sup dom 𝑧) − 𝜇↑,

𝜔↓(𝑧) ∶=
[

D𝛱 − 𝑜↓𝛱
]

𝛾(𝑧)(sup dom 𝑧) − 𝜇↓.
(9)

earing in mind (1) and (2), for every decision profile of the form
=
(

(𝑡𝑘, 𝑥𝑘)𝑘∈dom 𝜉 , 𝛥
)

, the condition 𝜔↑(𝑧(⋅|𝜉)) ∈ 𝑂 is equivalent to

1
𝑇 ∫

𝑡

𝑡−𝑇

(

𝜃(𝑠|𝜉) − 𝜃(𝑡 − 𝑇 |𝜉)
)

𝑑𝑠

> 𝑜↑ 1
𝑇 ∫

𝑡−𝑇

𝑡−2𝑇

(

𝜃(𝑠|𝜉) − 𝜃(𝑡 − 2𝑇 |𝜉)
)

𝑑𝑠 + 𝜇↑,

n which 𝑡 = 𝑡sup dom 𝜉 + 𝛥. Likewise, Condition 𝜔↑(𝑧(⋅|𝜉)) ∈ 𝑂 reads

𝑜↓ 1
𝑇 ∫

𝑡

𝑡−𝑇

(

𝜃(𝑠|𝜉) − 𝜃(𝑡 − 𝑇 |𝜉)
)

𝑑𝑠

< 1
𝑇 ∫

𝑡−𝑇

𝑡−2𝑇

(

𝜃(𝑠|𝜉) − 𝜃(𝑡 − 2𝑇 |𝜉)
)

𝑑𝑠 − 𝜇↓.

Therefore, the evaluation principle underlying the evaluation model
, 𝑂, 𝜔↑, 𝜔↓) considers a behavior of 𝑧 to be ‘‘excessively unstable’’ if
he average growth during the interval [𝑡 − 𝑇 , 𝑡] exceeds that during
[𝑡−2𝑇 , 𝑡−𝑇 ] by a factor of 𝑜↑ plus a fixed bias 𝜇↑. Likewise, it considers
a behavior of 𝑧 to be ‘‘overly stable’’ if the average growth during the
interval [𝑡 − 𝑇 , 𝑡] is lower than that during [𝑡 − 2𝑇 , 𝑡 − 𝑇 ] by a factor of
∕𝑜↓ minus a fixed bias 𝜇↓∕𝑜↓.
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The inference models we consider are of the same kind. In particu-
lar, we let  = R, 𝐴 = R>0 and, with 𝑎↑, 𝑎↓, 𝜀↑, 𝜀↓ ≥ 0 design parameters,

e let

𝛼↑(𝑦) ∶=
[

𝛱 − 𝑎↑D𝛱
]

𝑦(sup dom 𝑦) − 𝜀↑,

𝛼↓(𝑦) ∶=
[

D𝛱 − 𝑎↓𝛱
]

𝑦(sup dom 𝑦) − 𝜀↓,
(10)

hose interpretation is the same as that given above for the evaluation
odel.

In the following, we say that (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓) (resp. (𝑎↑, 𝑎↓, 𝜀↑, 𝜀↓)) gen-
rates the evaluation model (R,R>0, 𝜔↑, 𝜔↓) (resp. the inference model
R,R>0, 𝛼↑, 𝛼↓)), in which 𝜔↑, 𝜔↓ (resp. 𝛼↑, 𝛼↓) are defined as in (9) (resp.
10)).

emark 5. The proposed definitions for the evaluation and infer-
nce models suggest (although this is not necessary, in principle (Bin,
heung et al., 2021)) to choose the decision period 𝛥 in such a way
hat

≥ 2𝑇 ,

hich in turn implies 𝛥 ≥ 2𝑃 , namely that decisions must be held for
t least two periods of the FPSP. This, indeed, permits to evaluate the
verage growth of the signals in the same conditions, and it is assumed
n the forthcoming Section 3.3.

emark 6. We observe that if 𝜀↑ = 𝜀↓ = 0 (resp. 𝜇↑ = 𝜇↓ = 0), then the
onditions 𝛼↑(𝑦) ∈ 𝐴 and 𝛼↓(𝑦) ∈ 𝐴 (resp. 𝜔↑(𝑧) ∈ 𝑂 and 𝜔↓(𝑧) ∈ 𝑂)
re ‘‘scale-independent’’ (Hespanha & Morse, 1999). Indeed, they are
onditions only on the growth rate of 𝑦 (resp. 𝜃) not depending on its
ctual amplitude. This, in turn, is associated with a larger domain of
alidity of Assumptions 3 and 4.

emark 7. If the acquisition of 𝑦 is delayed by a fixed, known delay
> 0, then all what said in the remainder of the section still holds if

10) substituted by

𝛼↑(𝑦) ∶=
[

𝛱 − 𝑎↑D𝛱
]

𝑦(sup dom 𝑦 − 𝛿) − 𝜀↑,

𝛼↓(𝑦) ∶=
[

D𝛱 − 𝑎↓𝛱
]

𝑦(sup dom 𝑦 − 𝛿) − 𝜀↓.

n this case, moreover, the decision period 𝛥 must be taken so that
≥ 2𝑇 + 𝛿 (cf. Remark 5).

.3. Achieving robust detectability

Now, we study a few pathways to achieve robust detectability in
number of relevant cases of interest for epidemic control. Unless

tated otherwise, in the remainder of the section we shall assume
hat the parameters 𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓, and hence an evaluation model for
, have been fixed, and we focus on the inference model. Moreover,
e assume that 𝛥 ≥ 2𝑇 , so as for every decision profile 𝜉 ∈ 𝛯,

he signals 𝛱𝑦(⋅|𝜉), 𝛱𝜃(⋅|𝜉), D𝛱𝑦(⋅|𝜉), and D𝛱𝜃(⋅|𝜉) are defined for
ll 𝑡 ∈ dom 𝑧(⋅|𝜉)≥𝑡1 , where 𝑡1 = 𝛥 is the first decision time. Finally,
e denote by (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓) the set of tuples (𝑎↑∗, 𝑎

↓
∗, 𝜀

↑
∗, 𝜀

↓
∗) ∈ R4

≥0
enerating an inference model satisfying Assumption 2 with respect to
he evaluation model generated by (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓).

.3.1. Robust detectability in presence of uncertainty
As a first case, we assume to have available some ideal param-

ters (𝑎↑∗, 𝑎
↓
∗, 𝜀

↑
∗, 𝜀

↓
∗) generating an inference model satisfying robust

etectability for an ideal measurement signal 𝑦∗. For example, 𝑦∗ = 𝜃
nd (𝑎↑∗, 𝑎

↓
∗, 𝜀

↑
∗, 𝜀

↓
∗) = (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓). Then, we suppose that, instead of 𝑦∗,

e measure the ‘‘perturbed signal’’

(⋅|𝜉) ∶= 𝑦∗(⋅|𝜉) +𝑤(⋅|𝜉),

n which 𝑤(⋅|𝜉) ∶ dom 𝑦∗(⋅|𝜉) → R models additive perturbations. We
↑ ↓ ↑ ↓
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hus consider the problem of constructing a new tuple (𝑎 , 𝑎 , 𝜀 , 𝜀 ) s
enerating an inference model for the noisy output 𝑦 still satisfying
obust detectability.

We consider the following assumption restricting the class of toler-
ble uncertainty.

ssumption 6. There exist 𝜈↑ ∈ [0, 𝜀↑∗] and 𝜈↓ ∈ [0, 𝜀↓∗] such that,
or every decision profile 𝜉 ∈ 𝛯 satisfying 𝑡sup dom 𝜉 ≥ 2𝑇 , the following
olds2

1
𝑇 ∫

𝑡

𝑡−𝑇

(

𝑤(𝑠|𝜉) −𝑤(𝑡 − 𝑇 |𝜉)
)

𝑑𝑠 ∈

[

−𝜈↑, 𝜈
↓

𝑎↓∗

]

+

[

𝑎↑∗,
1
𝑎↓∗

]

1
𝑇 ∫

𝑡−𝑇

𝑡−2𝑇

(

𝑤(𝑠|𝜉) −𝑤(𝑡 − 2𝑇 |𝜉)
)

𝑑𝑠

(11)

ith,3 𝑡 = sup dom𝑤(⋅|𝜉).

Under this assumption, the following proposition (proved in the
ppendix) holds.

roposition 4. Suppose that (𝑎↑∗, 𝑎
↓
∗, 𝜀

↑
∗, 𝜀

↓
∗) ∈ (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓) and that

ssumption 6 holds. Then, for all 𝜀↑ ∈ [0, 𝜀↑∗ − 𝜈↑] and 𝜀↓ ∈ [0, 𝜀↓∗ − 𝜈↓],
𝑎↑∗, 𝑎

↓
∗, 𝜀↑, 𝜀↓) ∈ (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓).

.3.2. Robust detectability for linear filters
In this section, we consider the case in which for all decision profiles

∈ 𝛯 and all 𝑡 ∈ dom 𝑦(⋅|𝜉),

(𝑡|𝜉) = 𝑟e−𝜆𝑡𝜃(0|𝜉) + 𝑟𝜆∫

𝑡

0
e−𝜆(𝑡−𝑠)𝜃(𝑠|𝜉)𝑑𝑠 (12)

or some 𝑟, 𝜆 > 0 possibly unknown (see Remark 10 below). For simplic-
ty, we assume 𝑟 and 𝜆 to be constant. Extensions to cases in which 𝑟
nd 𝜆 depend on time are possible (provided that they are uniformly
ower bounded) at the price, however, of a more involved treatment.

emark 8. Eq. (12) implies 𝑦(0|𝜉) = 𝑟𝜃(0|𝜉). This is assumed to
implify the forthcoming analysis, and can be relaxed to an arbitrary
nitial condition of 𝑦(⋅|𝜉) provided that the initial decision time 𝑡1 is
ufficiently large to make the term 𝑟e−𝜆𝑡𝜃(0|𝜉) negligible.

Throughout the section we make the following assumption.

ssumption 7 (Regularity). For every 𝜉 ∈ 𝛯, 𝜃(⋅|𝜉) is absolutely
ontinuous.

Under Assumption 7, the signal

(𝑡|𝑥) ∶= ∫

𝑡

0
e𝜆(𝑠−𝑡)𝜃̇(𝑠|𝜉)𝑑𝑠,

s well defined on dom 𝜃(⋅|𝜉), where 𝜃̇(⋅|𝜉) is the weak derivative of
(⋅|𝜉).

In the following, we show that under a growth condition on 𝜂
e can find an inference model directly from the knowledge of the
arameters (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓) defining the evaluation model. In particular,
e make the following assumption.

ssumption 8. There exist 𝜈↑ ∈ [0, 𝜇↑] and 𝜈↓ ∈ [0, 𝜇↓] such that, for
very decision profile 𝜉 ∈ 𝛯 satisfying 𝑡sup dom 𝜉 ≥ 2𝑇 , the following hold

𝛱𝜂(𝑡|𝜉) ≤ 𝑜↑D𝛱𝜂(𝑡|𝜉) + 𝜈↑,

𝑜↓𝛱𝜂(𝑡|𝜉) ≥ D𝛱𝜂(𝑡|𝜉) − 𝜈↓,

ith 𝑡 = sup dom 𝜃(⋅|𝜉).

2 Given 𝑎, 𝑏, 𝑥, 𝑦 ∈ R, in (11) we use the notations [𝑎, 𝑏]𝑥 ∶= [𝑎𝑥, 𝑥𝑏] and
𝑎, 𝑏] + [𝑥, 𝑦] ∶= {𝑠1 + 𝑠2 ∈ R ∶ 𝑠1 ∈ [𝑎, 𝑏], 𝑠2 ∈ [𝑥, 𝑦]}.

3 We recall that, by the definitions (1)–(2) for every 𝜉 ∈ 𝛯, the signals 𝑧(⋅|𝜉),
(⋅|𝜉) and thus 𝑤(⋅|𝜉) are defined on [0, 𝑡sup dom 𝜉 + 𝛥]. Hence, sup dom 𝑧(⋅|𝜉) =
up dom 𝑦(⋅|𝜉) = sup dom𝑤(⋅|𝜉) = 𝑡 + 𝛥.
sup dom 𝜉
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Then, the following proposition (proved in the Appendix) holds.

Proposition 5. Suppose that Assumptions 7 and 8 hold and that 𝑦 is given
by (12). Let 𝑎↑ = 𝑜↑ and 𝑎↓ = 𝑜↓. Then, for every 𝜀↑ ∈ [0, 𝑟(𝜇↑ − 𝜈↑)] and
𝜀↓ ∈ [0, 𝑟(𝜇↓ − 𝜈↓)], (𝑎↑, 𝑎↓, 𝜀↑, 𝜀↓) ∈ (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓).

We now provide some sufficient conditions on 𝜃 and the evaluation
model under which Assumption 8 always holds. In particular, we
assume the following.

Assumption 9 (Bounded Variations). There exists 𝜅 ≥ 0 such that, for
every decision profile 𝜉 ∈ 𝛯, |𝜃̇(𝑡|𝜉)| ≤ 𝜅 for almost all 𝑡 ∈ dom 𝜃̇(𝑡|𝜉).

Then, the proposition below (proved in the Appendix) holds.

roposition 6. Suppose that Assumption 9 holds, and that the parameters
(𝜔↑, 𝜔↓, 𝜇↑, 𝜇↓) satisfy

𝜇↑ ≥ 2𝜅
𝜆
(1 + 𝑜↑), 𝜇↓ ≥ 2𝜅

𝜆
(1 + 𝑜↓). (13)

Then, Assumption 8 holds with 𝜈↑ = 2𝜅(1 + 𝑜↑)∕𝜆 and 𝜈↓ = 2𝜅(1 + 𝑜↓)∕𝜆.

Remark 9. The statement of Proposition 6 can be also read in the
following way. If 𝑦 is given by (12), and Assumption 9 holds, then every
set of parameters (𝑎↑, 𝑎↓, 𝜀↑, 𝜀↓) ∈ R4

≥0 generates a valid inference model
satisfying robust detectability with respect to an evaluation model of
the form (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓) with 𝑜↑ = 𝑎↑, 𝑜↓ = 𝑎↓ and with 𝜇↑ and 𝜇↓

satisfying the bounds (13). In this respect, we stress that the fact that
Proposition 6 requires 𝜇↑, 𝜇↓ > 0 does not imply that also 𝜀↑ and 𝜀↓

must be strictly positive. Indeed, we can always choose 𝜀↑ = 𝜀↓ = 0.
The assumptions of Proposition 6 rather limit the class of evaluation
models for which the inference model fixed as in Proposition 5 can
guarantee robust detectability. The imposed limits, in turn, are directly
related to the maximum rate of change of 𝜃, given by 𝜅, and reflect the
act that our promptness in detecting events of 𝜃 from 𝑦 is necessarily
ffected by the delay introduced by the exponential filter (12).

emark 10. The result of Proposition 6 holds for every 𝑇 , 𝑟 and
which are independent quantities in general. Hence, no knowledge

f 𝑟 and 𝜆 is required in principle to choose an inference model for
12). In view of Remark 9, indeed, the values of 𝑟 and 𝜆 only affect
he resolution with which the inference model can detect events of the
nderlying process 𝑧 (or, formally, the class of evaluation models for
hich it guarantees robust detectability).

We now consider the question whether it is possible to exploit prior
nowledge on 𝜆 and 𝑟 to reduce the bounds (13). In particular, Proposi-
ion 7 below (proved in the Appendix) establishes a result stating that,
f we can choose 𝑇 and 𝑜↓, 𝑜↑ in terms of the process parameter 𝜆, then
ighter bounds can be established. This ultimately results in a higher
ccuracy of inference models produced by Proposition 5 (see Remarks 9
nd 10).

roposition 7. Suppose that Assumption 9 holds, and that 𝑜↑, 𝑜↓, and 𝑇
atisfy
↑ = e−𝜆𝑇 , 𝑜↓ = e𝜆𝑇 , 𝑇 = 1∕𝜆. (14)

f the parameters (𝜔↑, 𝜔↓, 𝜇↑, 𝜇↓) satisfy

↑ ≥ 2𝜅
𝜆
, 𝜇↓ ≥ 2𝜅

𝜆
, (15)

hen Assumption 8 holds with 𝜈↑ = 2𝜅∕𝜆 and 𝜈↓ = 2𝜅∕𝜆.

. Numerical simulations: The case of COVID-19

Extensive numerical simulations showing the efficacy of FPSP in
uppressing the COVID-19 outbreak have been already presented in Bin,
heung et al. (2021). Hence, here we focus on evaluating the effect
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7

f the parameters 𝑎↑, 𝑎↓, 𝜀↑ and 𝜀↓ on the closed-loop performance.
s in Bin, Cheung et al. (2021), we rely on the SIDARTHE model
f Giordano et al. (2020), as it provides a specific model of the form (7)
uned on the early COVID outbreak in Italy. In particular, the model is
btained by letting in (7) 𝑛𝐶 = 6, 𝐶 = (𝐷,𝐴,𝑅, 𝑇 ,𝐻,𝐸), and

𝑓𝑆 (𝛽, 𝑆, 𝐼, 𝐶) = −𝛽𝑆(𝜎1𝐼 + 𝜎2𝐷 + 𝜎3𝐴 + 𝜎4𝑅)

𝑓𝐼 (𝛽, 𝑆, 𝐼, 𝐶) = 𝛽𝑆(𝜎1𝐼 + 𝜎2𝐷 + 𝜎3𝐴 + 𝜎4𝑅) − (𝜎5 + 𝜎6 + 𝜎7)𝐼

𝐶 (𝛽, 𝑆, 𝐼, 𝐶) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜎5𝐼 − (𝜎8 + 𝜎9)𝐷
𝜎6𝐼 − (𝜎10 + 𝜎11 + 𝜎12)𝐴
𝜎8𝐷 + 𝜎10𝐴 − (𝜎13 + 𝜎14)𝑅
𝜎11𝐴 + 𝜎13𝑅 − (𝜎15 + 𝜎16)𝑇

𝜎7𝐼 + 𝜎9𝐷 + 𝜎12𝐴 + 𝜎14𝑅 + 𝜎15𝑇
𝜎16𝑇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The parameters 𝜎𝑖, 𝑖 = 1,… , 16 are rates (in 1∕days) and have been iden-
tified in Giordano et al. (2020) as 𝜎1 = 0.57, 𝜎2 = 𝜎4 = 0.011, 𝜎3 = 0.456,
𝜎5 = 0.171, 𝜎6 = 𝜎8 = 0.125, 𝜎7 = 𝜎9 = 0.034, 𝜎10 = 0.371, 𝜎11 = 0.012,
𝜎12 = 𝜎14 = 𝜎15 = 0.017, 𝜎13 = 0.027 and 𝜎16 = 0.003. The dimensionless
parameter 𝛽 ∈ [0, 1] modulates the rate of effective contacts, and it
equals 𝛽↑ = 1 during normal days and 𝛽↓ = 0.175 during lockdown
days, as suggested in Bin, Cheung et al. (2021) and Giordano et al.
(2020). Finally, the compartment 𝑆 (Susceptible) represents susceptible
individuals, 𝐼 (Infected) the infected asymptomatic and undetected,
𝐷 (Detected) the infected asymptomatic and detected, 𝐴 (Ailing) the
infected symptomatic and undetected, 𝑅 (Recognized) the infected
symptomatic and detected, T (Threatened) the acutely symptomatic
detected, H (Healed) the healed, and E (Extinct) the dead individuals.
Initial conditions are restricted to [0, 1]8, so as compartments represent
percentages of people. We refer to Giordano et al. (2020) for further
details.

The control goal is to keep the active cases under control while
avoiding full lockdown. As anticipated in Section 3.1, in this case 𝜁 [𝑥] is
the flow of the SIDARTHE model. Hence, once fixed an initial condition,
for every decision profile 𝜉 = ((𝑥𝑘, 𝑡𝑘)𝑘∈dom 𝜉 , 𝑡) the signal 𝑧(⋅|𝜉) equals
the unique solution (𝑆, 𝐼,𝐷,𝐴,𝑅, 𝑇 ,𝐻,𝐸) of the SIDARTHE model
subject to the time-varying parameter

𝛽(𝑡|𝜉) = 𝛽(𝑡, 𝑥𝑘), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1],

where 𝑡sup dom 𝜉+1 ∶= 𝑡 and where the function 𝛽(𝑡, 𝑥) is defined in (8).
Moreover, according to the SIDARTHE model, among the active cases
we measure D, R and T. Hence, our measurement is 𝑦(⋅|𝜉) = 𝐷+𝑅+ 𝑇 .

From the model’s equations, we obtain for every 𝜆 ≥ max{𝜎9, 𝜎14, 𝜎15
+ 𝜎16} (we omit the argument 𝜉)

̇ = −𝜆𝑦 + 𝑟𝜆𝜃

where

𝜃 = 𝛾(𝑧) ∶= 5 ⋅
𝑘𝐼𝐼 + 𝑘𝐷𝐷 + 𝑘𝐴𝐴 + 𝑘𝑅𝑅 + 𝑘𝑇 𝑇

𝑘𝐼 + 𝑘𝐷 + 𝑘𝐴 + 𝑘𝑅 + 𝑘𝑇
, (16)

𝐼 ∶= 𝜎5, 𝑘𝐷 ∶= 𝜆−𝜎9, 𝑘𝐴 ∶= 𝜎10+𝜎11, 𝑘𝑅 ∶= 𝜆−𝜎14, 𝑘𝑇 ∶= 𝜆−𝜎15−𝜎16,
nd 𝑟 ∶= (5𝜆)−1(𝑘𝐼 + 𝑘𝐷 + 𝑘𝐴 + 𝑘𝑅 + 𝑘𝑇 ). Therefore, the output 𝑦 has
he linear-filter property (12) with respect to the variable 𝜃. Note that
+ 𝐷 + 𝐴 + 𝑅 + 𝑇 represents the total infected population. Hence, 𝜃

epresents a (normalized) weighted sum of all the components of the
nfected population in which some components are weighted more than
thers. For example, with 𝜆 = 1∕7, the above values of the coefficients
𝑖 give 𝑘𝐼 ≈ 0.17, 𝑘𝐷 ≈ 0.1, 𝑘𝐴 ≈ 0.38, 𝑘𝑅 ≈ 0.12, 𝑘𝑇 ≈ 0.12. Hence,
he unmeasured variables 𝐼 and 𝐴 weight more in the sum. Fig. 1
hows the ‘‘free’’ evolution of the epidemic from the initial conditions
(0) = 1∕500, 𝐷(0) = 𝐴(0) = 𝑅(0) = 𝑇 (0) = 𝐻(0) = 𝐸(0) = 0,
(0) = 1 − 𝐼(0). As shown in the figure, 𝜃 reaches its peak before
+ 𝐷 + 𝐴 + 𝑅 + 𝑇 + 𝐻 + 𝐸. This is due to the larger importance of
and 𝐴 in the sum (16).

In the following simulations, the control logic (4)–(5) is applied to
he SIDARTHE model defined above for 𝑡𝑓 ∶= 365 days, with 𝑃 = 𝑇 =
days, 𝛥 = 2𝑇 , 𝜆 = 1∕𝑇 (chosen according to Proposition 7), and with
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Fig. 1. Time series of the variables 𝑦 = 𝐷 + 𝑅 + 𝑇 , 𝜃 defined in (16), and the total
infected population 𝐼 +𝐷 +𝐴 +𝑅 + 𝑇 in the case in which no mitigation procedure is
in place (namely, 𝛽 = 𝛽↑). In this case, |𝜃|RMS ≈ 14.8, with | ⋅ |RMS defined in (17).

initial conditions 𝐼(0) = 1∕500, 𝐷(0) = 𝐴(0) = 𝑅(0) = 𝑇 (0) = 𝐻(0) =
𝐸(0) = 0, 𝑆(0) = 1 − 𝐼(0), 𝑥0 = 0. Figs. 2-(a) and 2-(b) summarize the
closed-loop behavior obtained for different values of 𝑎↑ and 𝑎↓ and with
𝜀↑ = 𝜀↓ = 0, while Fig. 3 shows some sample time series. In particular,
Fig. 2-(a) shows the mean value of the resulting decision time series 𝑥
rounded to the first decimal. The larger the value, the better it is, since
𝑥 equals the number of normal days in each FPSP period. Fig. 2-(b)
shows instead the RMS norm of 𝜃, defined as

|𝜃|RMS ∶=

√

1
𝑡 𝑓 ∫

𝑡𝑓

0

(

100 ⋅ 𝜃(𝑠|𝜉)
)2𝑑𝑠, (17)

and rounded to the second decimal. The smaller the value the better
it is, as 𝜃 is a weighted sum of the active cases. For reference, in
the uncontrolled outbreak case depicted in Fig. 1, |𝜃|RMS ≈ 14.8.
All the simulated pairs (𝑎↑, 𝑎↓) stabilize the infection-free equilibrium,
although some are better than others. In particular, the orange contours
in Figs. 2-(a) and 2-(b) group pairs (𝑎↑, 𝑎↓) associated with a good
compromise between average 𝑥 and |𝜃| .
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RMS
Fig. 3. Time series of the decision variable 𝑥, the observed variable 𝑦 and the
controlled variable 𝜃 obtained with 𝜀↑ = 𝜀↓ = 0 and with (a) (𝑎↑ , 𝑎↓) = (0.3, 0.3), (b)
(𝑎↑ , 𝑎↓) = (0.3, 0.9), (c) (𝑎↑ , 𝑎↓) = (0.3, 2.7), and (d) (𝑎↑ , 𝑎↓) = (0.9, 2.1).

Among the time series shown in Fig. 3, the second and third (shown
respectively in Figs. 3-(b) and 3-(c) and obtained with (𝑎↑, 𝑎↓) =
(0.3, 0.9) and (𝑎↑, 𝑎↓) = (0.3, 2.7)) are inside the orange contour and,
indeed, are associated with a relatively large mean value of 𝑥 (about
2 days per FPSP period) and with a relatively small RMS norm of 𝜃.
Specifically, the pair (𝑎↑, 𝑎↓) = (0.3, 0.9) produces a stable behavior
Fig. 2. Heat maps summarizing the closed-loop performance for different values of 𝑎↑ and 𝑎↓. Figures (a) and (c): mean value of the decision variable 𝑥 with 𝜀↑ = 𝜀↓ = 0 and
𝜀↑ = 𝜀↓ = 10−4 respectively. Figures (b) and (d): RMS norm |𝜃|RMS of the variable 𝜃 with 𝜀↑ = 𝜀↓ = 0 and 𝜀↑ = 𝜀↓ = 10−4 respectively. Orange contours group pairs (𝑎↑ , 𝑎↓) associated
with a good trade-off between average of 𝑥 and RMS norm of 𝜃. Green contours group pairs (𝑎↑ , 𝑎↓) which represent a good trade-off for both 𝜀↑ = 𝜀↓ = 0 and 𝜀↑ = 𝜀↓ = 10−4.
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Fig. 4. Time series of the decision variable 𝑥, the observed variable 𝑦 and the
controlled variable 𝜃 obtained with 𝜀↑ = 𝜀↓ = 10−4 and with (a) (𝑎↑ , 𝑎↓) = (0.3, 0.3),
(b) (𝑎↑ , 𝑎↓) = (0.3, 0.9), (c) (𝑎↑ , 𝑎↓) = (0.3, 2.7), and (d) (𝑎↑ , 𝑎↓) = (0.9, 2.1).

in which the decision variable converges in two steps to a stationary
steady state equal to 2 days for each FPSP period (Fig. 3-(b)). The pair
(𝑎↑, 𝑎↓) = (0.3, 2.7), instead, is characterized by a persistent oscillation
of the decision variable, although maintaining the same average value
of about 2 days per period. This persistent oscillation may be caused by
the fact that stationarity (Assumption 3) does not hold in a strict sense.
The time series shown respectively in e 3-(a) and 3-(d) are instead
outside the orange contours, as they are too conservative in terms of
the decision 𝑥, although they are associated with a faster decay of
the infected population. As evident from the heat maps of Figs. 2-(a)
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Fig. 6. Time series of the perturbation 𝜈 used in the simulations of Fig. 5. Solid lines
depict averages of the 100 realizations. Transparent bands depict an interval [−𝜎̂, 𝜎̂]
around the average graphs, where 𝜎̂ denotes the empirical estimate of the standard
deviation. Dotted lines depict the realization associated to the dotted graphs in Fig. 5.

and 2-(b), indeed, for fixed 𝑎↑ increasing 𝑎↓ leads to a less conservative
control policy. Conversely, for fixed 𝑎↓ increasing 𝑎↑ leads to a more
conservative control policy.

For the same range of values for (𝑎↑, 𝑎↓), Figs. 2-(c) and 2-(d) show
the mean value of 𝑥 and the RMS norm of 𝜃 in the case of 𝜀↑ = 𝜀↓ =
10−4. Comparing Fig. 2-(a) with 2-(c) and Fig. 2-(b) with 2-(d) shows
that positive values of 𝜀↑ and 𝜀↓ have the effect of ‘‘shifting’’ in the
bottom-right direction and ‘‘enlarging’’ the heat maps. In particular,
some of the choices of (𝑎↑, 𝑎↓) that with 𝜀↑ = 𝜀↓ = 0 showed a good
behavior, now with 𝜀↑ = 𝜀↓ = 10−4 are too conservative. For instance,
compare the time series shown in Fig. 3, which corresponds to 𝜀↑ =
𝜀↓ = 0 with those shown in Fig. 4, which instead are obtained with
𝜀↑ = 𝜀↓ = 10−4.

As for Figs. 2-(a) and 2-(b), the orange contours in Figs. 2-(c) and 2-
(d) group choices of (𝑎↑, 𝑎↓) associated with a good trade-off between
average value of 𝑥 and RMS norm of 𝜃. Moreover, in all four heat
maps, green contours group the ‘‘intersection’’ of the orange ones, thus
Fig. 5. Time series showing the closed-loop behavior in presence of uncertainty in the measurements. In all the simulations, (𝑎↑ , 𝑎↓) = (e−1 , e1). In (a) 𝜀↑ = 𝜀↓ = 0, in (b)
𝜀↑ = 𝜀↓ = 10−6, in (c) 𝜀↑ = 𝜀↓ = 10−5, and in (d) 𝜀↑ = 𝜀↓ = 10−4. For each choice of parameters, the corresponding figure summarizes the result of 100 simulations, each one with a
different realization of 𝑑 in (20). Solid lines depict average values of the 100 realizations. Transparent bands depict an interval [−𝜎̂, 𝜎̂] around the average graphs, where 𝜎̂ denotes
the empirical estimate of the standard deviation. Dotted lines depict the worst (in therms of |𝜃|RMS) realizations.
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individuating the set of choices of (𝑎↑, 𝑎↓) associated with a good trade-
off between average value of 𝑥 and RMS norm of 𝜃 for both choices of
(𝜀↑, 𝜀↓). Those are choices which are ‘‘robust’’ with respect to different
choices of (𝜀↑, 𝜀↓) inside {(𝜀↑, 𝜀↓) ∈ R2

≥0 ∶ 𝜀↑ = 𝜀↓ ∈ [0, 10−4]}. In this
respect, we underline that, since the values 𝑦 and 𝜃 are percentages of
the overall population, a value of 𝜀↑ and 𝜀↓ of the order of 10−4 equals
the 0.01% of the population, and thus represents a reasonable value.

We also observe that the choice suggested by Proposition 7, i.e.

(𝑎↑, 𝑎↓) =
(

e−𝜆𝑇 , e𝜆𝑇
)

=
(

e−1, e1
)

≈ (0.368, 2.718) (18)

lies with margin inside the interior of the green contour. Thus, the
values (18) suggested by Proposition 7 represent a robust choice guar-
anteeing good performances for different values of 𝜀↑ and 𝜀↓.

Regarding the choice of 𝜀↑ and 𝜀↓, we observe that while in an ideal
ase in which 𝑦 is measured without uncertainty 𝜀↑ = 𝜀↓ = 0 is fine,
↑, 𝜀↓ > 0 may instead help in presence of uncertainty, as they act as a
egularizer. In particular, Fig. 5 shows some simulations obtained with
↑ and 𝑎↓ given by (18), with 𝜀↑ = 𝜀↓ = 𝜀 for 𝜀 = 0, 10−6, 10−5, 10−4, and

with 𝑦 given by

𝑦 = (𝐷 + 𝑅 + 𝑇 ) ⋅ (1 + 𝜈), (19)

in which 𝜈 is a disturbance term produced as

𝑢̇𝑛 = 𝓁(𝑑 − 𝑢𝑛), 𝜈 = 𝐴𝜈𝑢 (20)

ith 𝑢𝑛(0) = 0, 𝐴𝜈 = 107, 𝓁 = 10−3, and where 𝑑 is obtained
s a linear interpolation of a uniform random noise with values in
−10−5∕2, 10−5∕2] and sampled with frequency 105 days−1. We observe
hat (19) fits in the case considered in Section 3.3.1, with 𝑤 ∶= (𝐷 +
𝑅 + 𝑇 )𝜈. For every value of 𝜀, 100 simulations have been performed.

As shown in Fig. 5, increasing values of 𝜀 lead to a more robust
ehavior with respect to the perturbation on 𝑦. Fig. 6 shows some statis-
ics of the perturbation signals used in the simulation. In particular,
he level of perturbation is so that the measurement of 𝑦 deviates also
0%–20% from its nominal value 𝐷 + 𝑅 + 𝑇 .

Finally, we underline that in all the simulation the control logic
onsiderably limits the virus growth (compare with Fig. 1) while main-
aining, on average, a steady-state number of normal days of about 2
er period.

. Conclusions

In this paper we have studied a class of hysteresis-based control
chemes with the aim of providing theoretical support of the use
f supervisory control for data-driven containment of epidemics. In
articular, we have focused on the setting of Bin, Cheung et al. (2021)
n which supervisory control is used to tune online, from measured
ata, the value of the FPSP duty cycle (Sections 3 and 4). Nevertheless,
he theory developed in Section 2 goes far beyond such application, and
an be used for a broader class of problems. Specifically, in Section 2
e have developed the main theoretical framework in a rather abstract

etting, where inference and evaluation models are left generic. First,
e have proved invariance and attractiveness properties of sets of
ecisions that lead to a good behavior of the observed variables. Then,
nder robust detectability, we have proved that such decisions also lead
o a satisfactory behavior for the unmeasured underlying process.

In Section 3, we have restricted the focus to a case relevant for
pidemic control, and we have provided additional results determining
onditions under which robust detectability can be achieved in pres-
nce of uncertainty and in the relevant case in which the measured
utput is a filtered version of the variables whose growth must be
ontained. Moreover, we have shown that the knowledge of the filter
ime constant can be used to tune the controller parameters to improve
erformance (Proposition 7).

Overall, the theoretical analysis carried out in Sections 2 and 3
519

onfirms prior intuitions on hysteresis-based control, and in particular i
he claims on its robustness with respect to perturbations and model
ncertainties. Indeed, models enter into play in terms of evaluation
odels, inference models, and robust detectability (see Section 2.1

nd Assumption 2). Evaluation and inference models are descriptions
apturing the qualitative way in which decisions affect, respectively,
he unmeasured controlled process and the measured variables. As
uch, they can be approximate models, and are considerably weaker
ypotheses than typical models expressed in terms of differential equa-
ions. Robust detectability, on the other hand, is an assumption linking
nference and evaluation models, permitting in this way to infer the
esponse of the unmeasured variables to a decision from measurements.
s discussed in Remark 1, the decisions of the hysteresis logic remain
alid for all uncertainties and disturbances that do not ruin robust
etectability. This, in turn, is what confers robustness on the decision
ogic.

The numerical simulations performed in Section 4 validate the
heoretical conclusions in the context of the model of COVID-19 out-
reak. The simulations confirm robustness with respect to uncertainty
n the measurements and to variability of the control parameters. In
articular, in all the simulated cases the outbreak is contained, and
lso in the worst realizations the overall closed-loop behavior is better,
rom the virus growth standpoint, than the uncontrolled outbreak. Re-
arkably, simulations provide clear evidence in favor of the theoretical

alues for the parameters 𝑎↑ and 𝑎↓ found in Proposition 7 in studying
performance improvement. In particular, such values are associated, at
the same time, with a good trade-off between virus growth and number
of normal days per FPSP period, and robustness with respect to different
values of 𝜀↑ and 𝜀↓. The latter parameters, in turn, were shown in the
simulations to have a beneficial effect in presence of uncertainty in the
measurements, while overall leading to a more conservative behavior
for fixed (𝑎↑, 𝑎↓).

Ultimately, both theoretical analysis and simulations provide evi-
dences supporting the use of hysteresis-based decision mechanisms in
the control of epidemics. Nevertheless, many aspects of reality have
been neglected in both theory and simulations, and the presented
results thus only provide a starting point requiring further empirical
study. Moreover, also several theoretical questions remain open. For
instance, the theory of Section 2 only relies on qualitative models on
how decisions affect the underlying process (evaluation and inference
models), and quantitative models, such as for example SI-like differen-
tial equations, are not considered. This is inherited by Section 3, which
indeed focuses on how to construct inference and evaluation models.
A SIDARTHE equation is only used in Section 4 to model a plausible
outbreak and, notably, to infer a relation of the form (12) linking 𝑦
and 𝜃. In turn, this is an example on how additional information or
assumptions may help in building better inference models. However,
there are many other ways in which such kind of prior information
may be used to refine the models (e.g., how to choose 𝜀↑ and 𝜀↓), and
ere these are not discussed.

Finally, we observe that seasonality, vaccination, and even new
estrictions can change the effect decisions have on the outbreak. These
ources of time-variability are not considered here. But since they
appen at a slower time scale than the virus dynamics, the developed
heory can be still used within a limited time horizon, with models
hat must be possibly adapted time to time so as to reflect the new
onditions. An interesting alternative, is to embed seasonality, vacci-
ations, and the other sources of variability directly in the inference
nd evaluation models, that thus become time-varying. In turn, this is
further open problem requiring additional research.
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Appendix. Technical proofs

Proof of Lemma 2. Assume that 𝑥 ∈ 𝑋↑ but 𝑥− ∉ 𝑋↑. This implies
↑(𝑦(⋅|𝜉−)) ∈ 𝐴 for some 𝜉− ∈ 𝛯(𝑥−). Assumption 3 then implies
hat 𝛼↑(𝑦(⋅|𝜉−)) ∈ 𝐴 for all 𝜉− ∈ 𝛯(𝑥−). Then, Assumption 4 implies
𝛼↑(𝑦(⋅|𝜉)) ∈ 𝐴 for all 𝜉 ∈ 𝛯((𝑥−)+) = 𝛯(𝑥). This, however, implies
𝑥 = (𝑥−)+ ∉ 𝑋↑ which is a contradiction. Hence, 𝑥− ∈ 𝑋↑ for all 𝑥 ∈ 𝑋↑,
and the first implication holds. Next, notice that by definition and by
the implication just proved, 𝑥 ∈ 𝑋↑

+ ⟹ 𝑥− ∈ 𝑋↑ ⊂ 𝑋↑
+. Hence also

𝑋↑
+ is closed under (⋅)−. The last two implications are proved by similar

arguments. □

Proof of Lemma 3. Suppose that 𝑋↑ =  . Then, 𝑋↑
+ =  , and thus

𝑋↓ ≠ ∅ ⟹ 𝑋↓
− ≠ ∅ ⟹ 𝑋± ≠ ∅ and 𝑋↑

+ ∪𝑋↓
− =  .

Suppose, instead, that 𝑋↑ ⊊  . Then, Lemma 2 implies that 𝑥̄ ∶=
(sup𝑋↑)+ ∈  ⧵𝑋↑. By definition of 𝑋↑

+, we have 𝑥̄ ∈ 𝑋↑
+. Moreover, in

view of Assumption 3, 𝑥̄ ∉ 𝑋↑ implies 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝐴 for all 𝜉 ∈ 𝛯(𝑥̄). In
view of Assumptions 1 and 3, this implies 𝛼↓(𝑦(⋅|𝜉)) ∉ 𝐴 for all 𝜉 ∈ 𝛯(𝑥),
and hence 𝑥 ∈ 𝑋↓. Therefore, 𝑥̄ ∈ 𝑋↑

+∩𝑋
↓ ⊂ 𝑋±, which implies 𝑋± ≠ ∅.

Finally, the equality 𝑋↑
+ ∪𝑋↓

− =  follows by Lemma 2 by noticing
that, since 𝑋± = 𝑋↑

+ ∩ 𝑋↓
− ≠ ∅, then every element of  ⧵ 𝑋± is a

predecessor of an element of 𝑋↑
+ or a successor of an element of 𝑋↓

−
and thus belongs to 𝑋↑

+ ∪𝑋↓
−. □

Proof of Proposition 2. Pick 𝑥 ∈ 𝑋⋆ and 𝜉 ∈ 𝛯(𝑥) arbitrarily. In
view of (5) and Condition (b), there are only two cases for which
𝐹 (𝑥, 𝑦(⋅|𝜉)) ≠ {𝑥} (in which case we would have 𝐹 (𝑥, 𝑦(⋅|𝜉)) ⊂ 𝑋⋆):
either (i) 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝜕𝐴 and 𝛼↓(𝑦(⋅|𝜉)) ∉ 𝜕𝐴, or (ii) 𝛼↓(𝑦(⋅|𝜉)) ∈ 𝜕𝐴 and
𝛼↑(𝑦(⋅|𝜉)) ∉ 𝜕𝐴.

Consider case (i). We prove that 𝑥− ∈ 𝑋⋆ by contradiction. For,
suppose that 𝑥− ∉ 𝑋⋆. Since 𝑥 ∈ 𝑋⋆ ⊂ 𝑋↑ and, by Lemma 2, 𝑋↑

is closed under the predecessor operator, then 𝛼↑(𝑦(⋅|𝜉′)) ∉ 𝐴 for all
𝜉′ ∈ 𝛯(𝑥−). In view of Assumption 3, if 𝑥− ∉ 𝑋⋆, then necessarily
𝛼↓(𝑦(⋅|𝜉′)) ∈ 𝐴 for all 𝜉′ ∈ 𝛯(𝑥−), as otherwise 𝑥− would be in 𝑋↓, and
hence in 𝑋⋆. But in view of Assumptions 3 and 4, this implies that all
the predecessors of 𝑥 lie outside 𝑋↓, so that 𝑋⋆∩<𝑥 = ∅. On the other
hand, Condition (c) and Assumption 4 imply that 𝑋⋆ ⊂ ≤𝑥. Hence, we
conclude that 𝑋⋆ = {𝑥}. However, this violates Condition (a). Thus,
by contradiction, we conclude that, necessarily, 𝑥− ∈ 𝑋⋆. Then, by
(5), 𝐹 (𝑥, 𝑦(⋅|𝜉)) = {𝑥, 𝑥−} ⊂ 𝑋⋆ holds. In the case (ii), 𝐹 (𝑥, 𝑦(⋅|𝜉)) =
{𝑥, 𝑥+} ⊂ 𝑋⋆ is proved by a similar argument. Thus, in both cases we
have 𝐹 (𝑥, 𝑦(⋅|𝜉)) ⊂ 𝑋⋆ whenever 𝑥 ∈ 𝑋⋆, and the claim follows. □

Proof of Proposition 3. We first prove invariance of 𝑋↑
+. Pick 𝑥 ∈ 𝑋↑

+
and 𝜉 ∈ 𝛯(𝑥) arbitrarily. We have two possibilities: (i) 𝑥 ∈ 𝑋↑, or (ii)
𝑥 ∈ 𝑋↑

+ ⧵ 𝑋↑. First, assume (i) holds. By definition of 𝑋↑
+, in this case

𝑥+ ∈ 𝑋↑
+. Moreover, since under Assumptions 1, 3 and 4, 𝑋↑ is invariant

under the predecessor operator (Lemma 2), then {𝑥−, 𝑥} ∈ 𝑋↑
+ as well,

implying 𝐹 (𝑥, 𝑦(⋅|𝜉)) ⊂ {𝑥−, 𝑥, 𝑥+} ⊂ 𝑋↑
+. Consider now case (ii). As

𝑥 ∉ 𝑋↑, then 𝛼↑(𝑦(⋅|𝜉)) ∈ 𝐴, so as (5) implies 𝐹 (𝑥, 𝑦(⋅|𝜉)) = {𝑥−} ⊂ 𝑋↑
+

by Lemma 2. This proves that 𝑋↑
+ is forward invariant for (4).

Forward invariance of 𝑋↓
− is proved by means of a symmetric

argument. Finally, forward invariance of 𝑋± follows by the fact that
(a) 𝑋± ≠ ∅ implies that both 𝑋↑

+ and 𝑋↓
− are nonempty, and (b) the

intersection of forward invariant sets is forward invariant. □

Proof of Proposition 4. As (𝑎↑∗, 𝑎
↓
∗, 𝜀

↑
∗, 𝜀

↓
∗) ∈ (𝑜↑, 𝑜↓, 𝜇↑, 𝜇↓), then for

every decision profile 𝜉 ∈ 𝛯

𝜔↑(𝑧(⋅|𝜉)) > 0 ⟹ 𝛼↑∗(𝑦
∗(⋅|𝜉)) > 0,

𝜔↓(𝑧(⋅|𝜉)) > 0 ⟹ 𝛼↓∗(𝑦
∗(⋅|𝜉)) > 0,

(A.1)

where 𝛼↑∗ and 𝛼↓∗ are given by (10) for (𝑎↑∗, 𝑎
↓
∗, 𝜀

↑
∗, 𝜀

↓
∗). Likewise, let 𝛼↑

and 𝛼↓ be given by (10) for (𝑎↑∗, 𝑎
↓
∗, 𝜀↑, 𝜀↓) for some 𝜀↑ ∈ [0, 𝜀↑∗ − 𝜈↑] and

𝜀↓ ∈ [0, 𝜀↑−𝜈↓]. Let 𝑡 ∶= sup dom 𝑦∗(⋅|𝜉) = sup dom𝑤(⋅|𝜉) = sup dom 𝑦(⋅|𝜉).
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∗ a
In terms of the operators 𝛱 and D, (11) implies

𝛱𝑤(𝑡|𝜉) ≥ 𝑎↑∗D𝛱𝑤(𝑡|𝜉) − 𝜈
↑,

𝑎↓∗𝛱𝑤(𝑡|𝜉) ≤ D𝛱𝑤(𝑡|𝜉) + 𝜈↓.

Hence, we have

𝛼↑∗(𝑦
∗(⋅|𝜉)) > 0 ⟹

[

𝛱 − 𝑎↑∗D𝛱
]

𝑦∗(𝑡|𝜉) > 𝜀↑∗

⟹

[

𝛱 − 𝑎↑∗D𝛱
](

𝑦(𝑡|𝜉) −𝑤(𝑡|𝜉)
)

> 𝜀↑∗

⟹

[

𝛱 − 𝑎↑∗D𝛱
]

𝑦(𝑡|𝜉) > 𝜀↑∗ − 𝜈
↑ ≥ 𝜀↑

⟹ 𝛼↑(𝑦(⋅|𝜉)) > 0.

Thus, 𝜔↑(𝑧(⋅|𝜉)) > 0 ⟹ 𝛼↑(𝑦(⋅|𝜉)) > 0. The other implication, i.e. that
𝜔↓(𝑧(⋅|𝜉)) > 0 ⟹ 𝛼↓(𝑦(⋅|𝜉)) > 0, follows by a similar argument from
the second inequality of (A.1). □

Proof of Proposition 5. Pick 𝜉 ∈ 𝛯 arbitrarily. First, notice that for
all 𝑡, e𝜆𝑡 = 𝑑

𝑑𝑡
∫ 𝑡0 e𝜆𝑠𝑑𝑠. Hence, integrating by parts yields (for ease of

notation, we omit the argument 𝜉 when clear)

𝑦(𝑡) = 𝑟e−𝜆𝑡𝜃(0) + 𝑟𝜆e−𝜆𝑡
[

∫

𝑠

0
e𝜆𝜏𝑑𝜏 𝜃(𝑠)

]𝑡

0

− 𝑟𝜆e−𝜆𝑡 ∫

𝑡

0

(

∫

𝑠

0
e𝜆𝜏𝑑𝜏

)

𝜃̇(𝑠)𝑑𝑠

= 𝑟e−𝜆𝑡𝜃(0) + 𝑟(1 − e−𝜆𝑡)𝜃(𝑡)

− 𝑟e−𝜆𝑡 ∫

𝑡

0
(e𝜆𝑠 − 1)𝜃̇(𝑠)𝑑𝑠

= 𝑟𝜃(𝑡) − 𝑟∫

𝑡

0
e𝜆(𝑠−𝑡)𝜃̇(𝑠)𝑑𝑠 = 𝑟𝜃(𝑡) − 𝑟𝜂(𝑡).

hus, with 𝑎↑ = 𝑜↑ and 𝜀↑ ∈ [0, 𝑟(𝜇↑ − 𝜈↑)], we obtain for 𝑡 = sup dom 𝑦

↑(𝑦) =
[

𝛱 − 𝑎↑D𝛱
]

𝑦(𝑡) − 𝜀↑

= 𝑟
[

𝛱 − 𝑜↑D𝛱
]

𝜃(𝑡) − 𝑟
[

𝛱 − 𝑎↑D𝛱
]

𝜂(𝑡) − 𝜀↑

= 𝑟𝜔↑(𝑧) − 𝑟
[

𝛱 − 𝑜↑D𝛱
]

𝜂(𝑡) + 𝑟𝜇↑ − 𝜀↑

≥ 𝑟𝜔↑(𝑧) + 𝑟(𝜇↑ − 𝜈↑) − 𝜀↑ ≥ 𝑟𝜔↑(𝑧).

hus, 𝜔↑(𝑧) > 0 ⟹ 𝛼↑(𝑦) > 0. The implication 𝜔↓(𝑧) > 0 ⟹ 𝛼↓(𝑦) >
is proved in a similar way. □

roof of Proposition 6. Pick 𝜉 ∈ 𝛯 arbitrarily, and let 𝑡 =
up dom 𝜃(⋅|𝜉). Expanding the expression of 𝛱𝜂(𝑡|𝜉) − 𝑜↑D𝛱𝜂(𝑡|𝜉) leads
o (again, we omit the argument 𝜉)

𝛱 − 𝑜↑D𝛱
]

𝜂(𝑡) = 1
𝑇 ∫

𝑡

𝑡−𝑇 ∫

𝑠

0
e𝜆(𝜏−𝑠)𝜃̇(𝜏)𝑑𝜏𝑑𝑠

− ∫

𝑡−𝑇

0
e𝜆(𝑠+𝑇−𝑡)𝜃̇(𝑠)𝑑𝑠 − 𝑜↑

𝑇 ∫

𝑡−𝑇

𝑡−2𝑇 ∫

𝑠

0
e𝜆(𝜏−𝑠)𝜃̇(𝜏)𝑑𝜏

+ 𝑜↑ ∫

𝑡−2𝑇

0
e𝜆(𝑠+2𝑇−𝑡)𝜃̇(𝑠)𝑑𝑠.

sing Assumption 9 yields

𝛱 − 𝑜↑D𝛱
]

𝜂(𝑡)

≤ 𝜅
𝑇 ∫

𝑡

𝑡−𝑇 ∫

𝑠

0
e𝜆(𝜏−𝑠)𝑑𝜏𝑑𝑠 + 𝜅 ∫

𝑡−𝑇

0
e𝜆(𝑠+𝑇−𝑡)𝑑𝑠

+ 𝜅𝑜↑

𝑇 ∫

𝑡−𝑇

𝑡−2𝑇 ∫

𝑠

0
e𝜆(𝜏−𝑠)𝑑𝜏 + 𝜅𝑜↑ ∫

𝑡−2𝑇

0
e𝜆(𝑠+2𝑇−𝑡)𝑑𝑠

= 𝜅
𝜆

(

2(1 + 𝑜↑) + (1 + 𝑜↑e𝜆𝑇 )e−𝜆𝑡
(

1 − e𝜆𝑇
𝜆𝑇

− e𝜆𝑇
))

≤ 2𝜅
𝜆
(1 + 𝑜↑).

n the same way, we find that [𝑜↓D𝛱 −𝛱]𝜂(𝑡) ≤ 2𝜅(1 + 𝑜↓)∕𝜆. Hence, if
13) hold, then 𝜈↑ = 2𝜅(1+𝑜↑)∕𝜆 and 𝜈↓ = 2𝜅(1+𝑜↓)∕𝜆 satisfy 𝜈↑ ∈ [0, 𝜇↑]
nd 𝜈↓ ∈ [0, 𝜇↓] and are such that Assumption 8 holds. □
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Proof of Proposition 7. Pick 𝜉 ∈ 𝛯 arbitrary, and let 𝑡 = sup dom 𝜃(⋅|𝜉).
rom Protter and Morrey (1985, Theorem 7, Chapter 5), we obtain (we
mit the argument 𝜉)

∫

𝑡

𝑡−𝑇
𝜂(𝑠)𝑑𝑠 = ∫

𝑡

𝑡−𝑇 ∫

𝑠

0
e𝜆(𝜏−𝑠)𝜃̇(𝜏)𝑑𝜏𝑑𝑠

=∫

𝑡

𝑡−𝑇 ∫

𝑡−𝑇

0
e𝜆(𝜏−𝑠)𝜃̇(𝜏)𝑑𝜏𝑑𝑠 +∫

𝑡

𝑡−𝑇 ∫

𝑠

𝑡−𝑇
e𝜆(𝜏−𝑠)𝜃̇(𝜏)𝑑𝜏𝑑𝑠

= ∫

𝑡−𝑇

0 ∫

𝑡

𝑡−𝑇
e𝜆(𝜏−𝑠)𝑑𝑠𝜃̇(𝜏)𝑑𝜏 + ∫

𝑡

𝑡−𝑇 ∫

𝑡

𝜏
e𝜆(𝜏−𝑠)𝑑𝑠𝜃̇(𝜏)𝑑𝜏

= 1
𝜆
e−𝜆𝑡(e𝜆𝑇 − 1)∫

𝑡−𝑇

0
e𝜆𝜏 𝜃̇(𝜏)𝑑𝜏 + 1

𝜆 ∫

𝑡

𝑡−𝑇
𝜃̇(𝜏)𝑑𝜏

− 1
𝜆
e−𝜆𝑡 ∫

𝑡

𝑡−𝑇
e𝜆𝜏 𝜃̇(𝜏)𝑑𝜏.

herefore, using (14), we obtain

𝛱 − 𝑜↑D𝛱
]

𝜂(𝑡)

= −∫

𝑡

𝑡−𝑇
e𝜆(𝑠−𝑡)𝜃̇(𝑠)𝑑𝑠 + ∫

𝑡

𝑡−𝑇
𝜃̇(𝑠)𝑑𝑠 − e−1 ∫

𝑡−𝑇

𝑡−2𝑇
𝜃̇(𝑠)𝑑𝑠

≤ 𝜅
(

∫

𝑡

𝑡−𝑇
e𝜆(𝑠−𝑡)𝑑𝑠 + 𝑇 + e−1𝑇

)

= 2𝜅
𝜆
.

A similar bound for [𝛱 − 𝑜↑D𝛱]𝜂(𝑡) is obtained with the same argu-
ments. Hence, if (15) hold, then 𝜈↑ = 2𝜅∕𝜆 and 𝜈↓ = 2𝜅∕𝜆 satisfy
𝜈↑ ∈ [0, 𝜇↑] and 𝜈↓ ∈ [0, 𝜇↓] and are such that Assumption 8 holds. □
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