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Abstract: The connection between cytoskeleton alterations and diseases is well known and has
stimulated research on cell mechanics, aiming to develop reliable biomarkers. In this study, we present
results on rheological, adhesion, and morphological properties of primary rat cardiac fibroblasts, the
cytoskeleton of which was altered by treatment with cytochalasin D (Cyt-D) and nocodazole (Noc),
respectively. We used two complementary techniques: quartz crystal microbalance (QCM) and digital
holographic microscopy (DHM). Qualitative data on cell viscoelasticity and adhesion changes at the
cell–substrate near-interface layer were obtained with QCM, while DHM allowed the measurement
of morphological changes due to the cytoskeletal alterations. A rapid effect of Cyt-D was observed,
leading to a reduction in cell viscosity, loss of adhesion, and cell rounding, often followed by
detachment from the surface. Noc treatment, instead, induced slower but continuous variations in the
rheological behavior for four hours of treatment. The higher vibrational energy dissipation reflected
the cell’s ability to maintain a stable attachment to the substrate, while a cytoskeletal rearrangement
occurs. In fact, along with the complete disaggregation of microtubules at prolonged drug exposure,
a compensatory effect of actin polymerization emerged, with increased stress fiber formation.

Keywords: QCM; DHM; cardiac fibroblasts; cytoskeleton; viscoelasticity; cell rheology

1. Introduction

The cytoskeleton is a vital cellular component involved in several processes, and
therefore, its dysfunctions can be translated into serious cellular functional impairments [1].
In fact, it was shown that its alterations can be related to diseases, such as some cardiomy-
opathies [2–4]. Among the roles of the cytoskeleton, its contribution to cell rigidity and
ability to sense and react to external mechanical stimuli are the most remarkable [2,5].
Moreover, the cytoskeleton is involved in the adhesion process to the external environ-
ment through binding proteins, which mediate its connection with the extracellular matrix
(ECM) [6]. Adhesion sites are of extreme importance for sensing and signaling the substrate
properties changes, both in normal tissue development and pathological conditions. Hence,
cell cytoskeletal alterations can be reflected in impaired cell response at the substrate in-
terface [7], with subsequent dysfunctional outcomes. Therefore, this justifies the efforts
for a deeper investigation of the cell–substrate interface, both in physiological and altered
cell conditions.
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Many studies investigated mechanical, viscoelastic, and morphological changes in cells
as a result of the effects of some drugs, able to alter cytoskeletal components: microfilaments,
intermediate filaments, and microtubules [8–12]. Actin is known to be the main cytoskeletal
element responsible for preserving mechanical and morphological properties in healthy
cells [5,12–14]. It is thus involved in the cytoskeletal reorganization that occurs as a
consequence of mechanical signaling or mechanotransduction, which is a process often
altered under pathological conditions [2,10]. Microtubules and intermediate filaments seem
to have secondary importance but, even if their alteration is not correlated with evident
effects at first glance, they are required for the cell mechanical equilibrium [15,16]. For
the purpose of cell mechanics investigation, many tools are nowadays employed such as
optical tweezers [8], atomic force microscopy [5], and cell stretchers [12]. Among these,
there is an emerging interest in the use of quartz crystal microbalance (QCM).

Since QCM allows the detection of minute changes at the near-interface layer with
its quartz sensor surface, it has been employed to study cell–substrate adhesion [17–19],
viscoelastic properties of the extracellular matrix [20], cytoskeletal rearrangements, and
cell viscoelastic and morphological changes [21–23]. However, the absence of suitable
models to predict the behavior of film layers made by cells limits the achievement of
quantitative values, allowing only qualitative interpretations of the results. Therefore,
the tentative of gaining quantitative mass or viscous information by using QCM is still
challenging when working with cells [9,20,22,23]; however, if a complementary quantitative
technique is used, the synergic outcomes could be very significant. Among the quantitative
tools, digital holographic microscopy (DHM) is a free-label quantitative phase microscopy
technique, able to retrieve the height of transparent samples, such as living cells [24–30].
Thus, quantitative morphological parameters (cell area, volume, and thickness) can be
easily obtained, as well as dynamical measurements such as cell membrane fluctuation
(CMF) [24,27].

In this study, QCM was employed for recording changes in frequency (∆f) and dissipation
(∆D) values for cells under the action of two cytoskeletal drugs. The near-interface investiga-
tion of cellular rheological variations was performed by studying the effect of cytochalasin D
(Cyt-D) and nocodazole (Noc), which inhibit actin [14,31] and microtubule polymerization,
respectively [32,33]. Afterward, we exploited the advantages of the DHM technique to gain
morphological quantitative information on cell area, volume, and thickness.

In this way, the rheological, morphological, and adhesive properties variations due to
cytoskeletal alterations were studied by confirming the qualitative interpretations (QCM)
with quantitative analysis (DHM).

2. Results and Discussion

QCM experiments were performed by using equipment and operation protocols as
explained in Section 3. In order to ensure that cell signals (∆f and ∆D) were not hidden by
other factors (e.g., viscous properties of the medium and the toxic effect of DMSO on cells),
we first performed control experiments (see Section 2.1.3). Subsequently, for confirming
the rate of drug action on the cell’s cytoskeleton, we performed actin and tubulin staining.
Finally, DHM allowed us to confirm our qualitative deductions by gaining information on
quantitative area and volume variations during the treatment.

2.1. QCM Results

QCM experiments were performed with different sets of cells under the same seeding
and growth conditions. Cell seeding density on the quartz surface and procedures em-
ployed are reported in Section 3. After the achievement of steady state, the introduction of
the drug solution was carried out and the signals were monitored for four hours. Based
on values provided by QCM (∆f and ∆D), the two drugs showed evident differences in
rheological response. Control experiments (Section 2.1.3) were performed either with a
DMSO-containing medium, in equal volume as that used in the relative drug solution, or
separately with the drug solution in the absence of cells. The low content of DMSO on cells
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did not show any detectable toxic effect, and the only change in liquid properties from
the medium to the drug-containing medium was found to be negligible. These lines of
evidence guaranteed the possibility of gaining interpretations of the behavior of cells as a
direct consequence of the cytoskeletal alterations due to Cyt-D and Noc.

2.1.1. Frequency Shifts (∆f)

The comparison of frequency shift (∆f) signals obtained for Cyt-D- and Noc-treated
cells is reported in Figure 1.

Figure 1. Comparison between frequency shifts (∆f) of Cyt-D- and Noc-treated cells. The mean
values are relative to three independent replicas performed with different sets of cells. The reported
∆f values are relative to f signals recorded from 10 min before the drug solution injection (Cyt-D
5 µM or Noc 10 µM) until the end of four hours of treatment.

In both curves, we observed initially a fast decrease, due to the activation of the flux
for the liquid chamber substitution. After this common feature, the two drug treatments
led to independent and different behaviors. Using Cyt-D, the frequency increased and
reached the maximum value within a few minutes, comparable with the range of activities
on actin [31,34]; then, it was maintained almost constantly in a steady-state-like condition
until the end of the experiment. Conversely, using Noc, we observed an initial increase,
followed by a gradual decrease for the subsequent two hours. These trends suggest that
the rapid loss of cell viscosity due to Cyt-D, observed by other techniques [35–38], can
be also sensed by the quartz sensor. In fact, since the operating condition is outside the
limits of Sauerbray’s Equation (2), a positive shift cannot only be assigned to the loss of
mass, and Kanazawa’s Equation (3) should also be considered. Moreover, it is known that
Cyt-D treatment induces cells to lose the cytoskeleton–integrin–ECM links; thus, some
focal adhesions, and consequently the body of the cell retracts, could disappear. This was
also observed in human fibrosarcoma [8], NIH3T3, human dermal fibroblasts [21], murine
fibroblast-like L929, and the kidney [35,39] cell lines. This suggests that the area in contact
with the quartz is highly reduced during the treatment, and even desorption of some cells
can occur.

However, this observation does not agree with the considerations of Tymchenko
et al. [21], who claimed that Cyt-D exposure leads to cell body retraction but does not
involve changes in the surface area. In order to support our deductions about the decreased
area in contact with the quartz surface, we carried out quantitative measurements with
DHM (Section 2.3) and observed that this body retraction (cell rounding up) was indeed
coupled with a decrease in the projected cell area and an increase in height. Since with our
quartz sensor measurement, the penetration depth (δ) of the acoustic wave under water
loading was about 180 nm, and assuming that cells have similar properties to those of
water, the rounding up action led cells to collocate a major part of their body out of the
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quartz sensitivity limit. Therefore, the measurement of the cell mass in contact with the
quartz decreased and influenced the shift in frequency, as Sauerbray’s equation suggests.

On the other hand, the initial slight increase in ∆f observed in Noc-treated cells could
be attributed to the tentative restoration of the thermalization value achieved immediately
before the solution’s injection. Since the effect of Noc needs more time, compared with
that of Cyt-D, for a significant cytoskeletal modification [40,41], the decrease in ∆f for
the subsequent two hours could reflect the progressive damage of microtubules with
increased viscosity [33,42] and subsequent cytoskeletal rearrangement. In fact, meanwhile,
the compensatory effect of actin polymerization occurred, emerging from the slight increase
in frequency rather than maintaining a firmly steady-state-like condition at prolonged drug
exposure. This stimulated effect on actin is well accepted [43,44] and is explained by Noc’s
ability to activate the downstream Rho-associated protein kinase (ROCK) pathway, leading
to myosin activation and increased actin stress fiber expression, which we were able to
confirm qualitatively through immunofluorescence (Section 2.2).

2.1.2. Dissipation Shifts (∆D)

Similar to frequency signals, it is possible to observe a clear difference in viscoelastic
cells behaviors also in the dissipation profiles (Figure 2).

Figure 2. Comparison between dissipation shifts (∆D) of Cyt-D- and Noc-treated cells. The mean
values are relative to three independent replicas performed with different sets of cells. The reported
∆D values are relative to D signals recorded from 10 min before the drug solution injection (5 µM
Cyt-D or 10 µM Noc) until the end of four hours of treatment.

In Cyt-D, we observed a fast decrease in dissipation, which mirrors the rate of increase
in ∆f profile. This negative shift can be attributed to the change in cell–substrate adhesion
with a transition to a more round-like shape [21,22,34] as a consequence of the Cyt-D effect.
In addition, since D corresponds to the ratio between the energy dissipated during the
oscillation (G′′) and the energy stored (G′) (4), the displacement toward a lower value
of D is assumed to be caused by a transition to a more liquid-like cells state [9]. In
fact, it was largely demonstrated that, under Cyt-D treatment, both storage and loss
moduli decrease [36,45,46]. However, our results show that G′′ decreased faster than G′.
Since cells are usually characterized by G′ > G′′ [36,45,46], at first glance, we found it
contradictory. In fact, the increased difference between the two moduli upon treatment
suggests a predominant elastic outcoming [47]. Nevertheless, some studies have stated that,
since Cyt-D acts on actin filaments, elastic properties of cells, such as Young’s modulus,
are reduced upon treatment [36,48,49]. At the same time, it was also shown that the ECM
behaves elastically in the absence of significant energy dissipation [20]. Therefore, since the
mass in contact with the quartz was reduced upon treatment, it is reasonable to believe that
the sensor surface is more sensitive to the larger presence of ECM rather than the presence
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of cells. In fact, even in the absence of surface precoating, which was not necessary for
supporting fibroblast adhesion in our case and was intentionally avoided in order to limit
the risk of hiding cell signals, spontaneous adhesion of serum proteins and secretion of
extracellular proteins by cells themselves may occur [18].

Conversely, in Noc, we observed a gradual increase in ∆D within the first two hours.
This is probably due to the damage of microtubules, resulting in a more viscous behav-
ior, with higher energy dissipation. In fact, during Noc treatment, the tubulin is redis-
tributed through the cytosol [43], as we observed in immunofluorescence experiments (see
Section 2.2), and, at this time, cells may be able to oppose more resistance to the quartz
oscillation, reflecting an initial increase in the loss modulus (G′′). Meanwhile, the actin’s
compensatory effect could emerge, becoming preponderant at prolonged drug exposure
and resulting in a slight decrease in dissipation during the last two hours, accompanied by
an increase in G′ [45].

Unlike the liquid-like behavior and cell detachment observed in Cyt-D-treated cells,
under Noc treatment, we did not observe any rounding or loss of adhesion even if a shape
reorganization occurred. Despite the Cyt-D effect, is well known that Noc causes a loss in
cell polarity [50], accompanied by a redistribution of the surface projected area, which we
quantitatively demonstrated with DHM (see Section 2.3). However, the increased loss in
viscosity could be attributed to the ability to maintain a firm attachment to the substrate
while the reorganization of the cytoskeleton occurs.

2.1.3. Control Experiments

Since the ∆f and ∆D shifts caused by changes in viscous properties between medium
and drug-containing medium could, in principle, hide cells’ information, control experi-
ments were performed without cells on the quartz, to exclude this hypothesis. Furthermore,
even if cells were subjected to a final concentration of DMSO lower than the toxic limit
(0.1%), in order to exclude its effect on the behavior of the cells, we performed additional
control experiments. For this purpose, as the injecting solution, we used only a DMSO-
containing medium by keeping the same volume as that of Cyt-D or Noc used for the drug
solution, and then we compared the results.

As it can be seen from Figures 3 and 4, the frequency and dissipation shifts due to the
liquid variation in the absence of cells (no-cell lines) are negligible, compared with those
of cells on quartz. The frequency curves resulted in a fast decrease, due to the activation
of the flux, which then gradually restored, approaching thermalization values. A similar
trend was observed in the dissipation curves. In DMSO lines, we observed a progressive
slight increase in frequency signals and a decrease in dissipation. Since post-experimental
microscopic observations showed healthy cell morphology, we ascribed the two signals
trend to a state of continuous cell spreading.

In fact, several studies about healthy cells on quartz surfaces show that, under adhesion
and subsequent spreading, positive frequency shifts are observed during the reorganization
of the cytoskeleton and formation of focal adhesions [9,22,34]. Even if the spreading
appears as the opposite of rounding up, we need to highlight again that the QCM’s
signals depend on the contributions of different factors, which are not separable. Thus,
qualitative interpretations were made, but the weight of a single contribution to the whole
formula could not be determined. With this in mind, a positive frequency shift could
be attributed to a reorganization of the cytoskeleton and thus an increase in G′ [34,51],
while the higher sensed mass could be responsible for the delay resulting in a progressive
trend instead of a sudden shift, as the one observed in Cyt-D treatment. On the other
hand, the relative negative dissipation shift could also probably be attributed to a rise
in the spreading and rigidity, which allow cells to better follow the quartz oscillation.
This gradual energy dissipation decrease reached values higher than those observed in
Cyt-D treatment and lower than those in Noc. This means that a healthy spread cell is
more energy-dissipative than a cell with a disrupted actin network, in which the strong
association between cytoskeleton, cellular membrane, and ECM is lost [52,53] but remains
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less dissipative than a cell with disrupted microtubules, which is characterized by a higher
viscous behavior.

Figure 3. Comparison between ∆f (a) and ∆D (b) shifts in the experimental condition (Cytochalasin
D) and in control condition: only drug solution in the absence of cells (No cells) or DMSO-containing
medium in equal quantity as that one used for the drug solution (DMSO). The reported ∆f and ∆D
values are relative to f and D signals, recorded from 10 min before the solution injection until the end
of four hours of treatment.

Figure 4. Comparison between ∆f (a) and ∆D (b) shifts in the experimental condition (Nocodazole)
and in control condition: only drug solution in the absence of cells (No cells) or DMSO-containing
medium in equal quantity as that one used for the drug solution (DMSO). The reported ∆f and ∆D
values are relative to f and D signals, recorded from 10 min before the solution injection until the end
of four hours of treatment.

These negligible effects enabled us to provide deductions on QCM signals by consid-
ering only changes in cell rheological behavior due to the effect of cytoskeletal drugs.

2.2. Immunofluorescence

Immunofluorescence experiments were performed in order to highlight the rate of
drugs action on cytoskeletal elements. From the characteristic times observed in QCM
signals and known from data provided in the literature, we decided to monitor the effect of
Cyt-D at a shorter exposure time than that of Noc. For this purpose, we treated cells for 10
and 30 min with Cyt-D, and 30 min and 2 h with Noc.

Cyt-D showed the ability to achieve substantial F-actin depolymerization into G-actin
monomers in a very short time (10 min), without any additional visible effect at prolonged
drug exposure (Figure 5).



Int. J. Mol. Sci. 2022, 23, 4108 7 of 19

Figure 5. Effect of Cyt-D 5 µM on cytoskeletal actin. Fluorescent images for control (a) and cells after
10 min (b) and 30 min (c) of treatment. Scale bar: 40 µm.

This result is also reflected in the QCM signals in which we observed a fast change in
frequency and dissipation, followed by a stationary trend.

Conversely, 10 µM of Noc treatment showed enough microtubule depolymerization
at 30 min, during which some filaments were still present but completely disappeared at
prolonged treatment (2 h). In the meanwhile, the compensatory effect of actin emerged
with increased stress fiber formation (Figure 6).

This demonstrates that, despite Cyt-D, the absence of a steady-state condition in QCM
profiles during the treatment is related to a continuous cytoskeletal rearrangement.
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Figure 6. Effect of 10 µM Noc treatment on cytoskeletal tubulin and actin. Fluorescent images for
control (t = 0) and cells after 30 min (t = 30 min) and 2 h (t = 2 h) of treatment. Scale bar: 40 µm.

2.3. DHM Results

In order to confirm the deductions achieved from QCM results, DHM was employed
by using experimental protocols, as explained in “Materials and Methods”. For the multi-
cell analysis, we performed three independent experiments (m = 3) from which we obtained
an overall measurement of more than 30 cells for each measured group within the relative
drug treatment. We decided to monitor different intervals of drug exposure by consid-
ering the rate of the drug’s action on cytoskeletal biopolymers accessed by QCM and
immunofluorescence. Thus, 5 µM Cyt-D treatment exerted a rapid effect on actin with
a high contribution within 10 min, while in 10 µM Noc treatment, we observed a more
time-dependent and progressive effect on cells. For this purpose, we analyzed treated cells
at five different time points, which were 0, 10, 20, 40, and 60 min for Cyt-D and 0, 1, 2, 3,
and 4 h for Noc.

From the numerical calculation after hologram reconstruction, we observed a progres-
sive reduction in the projected area, due to Cyt-D, with more than 30% of reduction in the
first 10 min and an overall decrease of 65% in 60 min of treatment (Figure 7a). Moreover,
we observed an almost constant volume during the entire treatment period (Figure 7b).
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Figure 7. Morphological parameters variations due to Cyt-D at 0, 10, 20, 40, and 60 min. Reported
mean values and standard deviations for area (a) and volume (b) are relative to three independent
replicas (m = 3).

Conversely, in Noc treatment, we did not observe any evident morphological varia-
tions (Figure 8), even if prolonged drug exposure was monitored.

Figure 8. Morphological parameters variations due to Noc at 0, 1, 2, 3, and 4 h. Reported mean values
and standard deviations for area (a) and volume (b) are relative to three independent replicas (m = 3).

Noc is known to act on fibroblasts cell shape with the displacement toward a more
symmetric cell morphology with less polarity [50]; this is likely accompanied by a re-
distribution of the surface projected area, which led us to observe constant quantitative
morphological trends.

These results confirmed the adhesive properties of the cells during the treatment and
our morphological considerations about QCM signals.

In addition, the decreased area along with constant volume observed in Cyt-D treat-
ment led us to consider a possible increase in cell thickness. For this reason, in order
to achieve a complete morphological characterization, by exploiting the 3D quantitative
information provided by DHM, we decided to delve deeper into the exploration of this
treatment. For this purpose, we performed a single-cell analysis, as explained in “Materials
and Methods”. Time-lapse experiments (n = 5) were able to confirm the results of the
multicell analysis with a higher relevance in the real-time monitoring, consistent with the
QCM approach.

In Figure 9a, an example of the cells’ hologram reconstruction corresponding to 0 and
15 min of Cyt-D treatment is shown.

For each time lapse, the projected surface area (PSA) and volume (V) were calculated,
as explained in “Materials and Methods” for holograms corresponding to 0, 3, 6, 9, 12, and
15 min. Moreover, the mean height (V/PSA) was plotted in order to highlight the increase
in thickness.
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Figure 9. Thickness map (µm) and cell-thickness profiles: (a) thickness map (µm) of reconstructed
holograms extracted from the time lapses at 0 and 15 min. Scale bar: 50 µm; (b) cell-thickness profiles
relative to t = 0 min (orange line) and t = 15 min (blue line) were plotted along the red line across
the cell.

We were able to appreciate the increase in thickness also from the retrieved 3D images
after reconstruction, and for comparing thickness profiles at different time points, we used
MATLAB’s Improfile function. We plotted the cell-thickness profiles by choosing a line
that crossed the cell in a region where the retraction obviously occurred. In Figure 9b, it is
possible to observe cell profiles for t = 0 min and t = 15 min relative to the red line shown in
Figure 9a.

For all time lapses, we observed comparable results as the standard deviations suggest
in Figure 10, in which the values for the mean percental variations in the area, volume, and
mean height are presented. For plotting the results, the percental variations were calculated
from the difference between the final and initial value, normalized to the initial one, and
multiplied by 100 as follows:

% variation =
x f − xi

xi
∗ 100, (1)

where x corresponds to PSA, V, or V/PSA (mean height); i is the initial value, and f is the
final value.
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Figure 10. Percental variations in area (a), volume (b), and mean height (c) obtained in single-cell
experiments (n = 5) relative to 0, 3, 6, 9, 12, and 15 min of Cyt-D treatment.

Moreover, we noticed clear comparability in the values extracted from all of the
experiments performed in both multicell and single-cell analyses. In summary, we observed
a decrease of about 30–40% in the projected area within the first 10 min of treatment and an
overall decrease of about 50% in 15 min. This means that, in the last 45 min of treatment,
the reduction was only about 25%. Therefore, this proved that the main contribution, due
to Cyt-D, was verified within the first 15 min. with a larger effect during the first 10 min.
Moreover, by monitoring single cells, we were also able to calculate the cell’s mean height
by normalizing its volume upon the projected area, again marking the tendency of the cell
thickness to increase over the treatment time.

Despite the morphological investigation, dynamical analysis was unable to provide us
with quantitative evaluations. Since cell fluctuations (CMF) were in the instrumental noise
range, we did not observe any dynamical variations for both treatments.

In conclusion, from quantitative phase information, we confirmed the morphological
variation occurring during the Cyt-D treatment, which justifies the reduction in the mass
in contact with the quartz surface and related effects on ∆f and ∆D. In order to better
understand QCM’s frequency shifts, taking advantage of DHM quantitative information,
an approximative estimation of the mass variation, occurring under Cyt-D action, was
performed. We evaluated the mass variation sensed by quartz, within the penetration
depth, due to area variation. For this calculation, values from the multicell analysis were
used. The mean area value of untreated cells was considered, as well as that of treated
cells at the end of one hour of treatment, which was presumably maintained constantly
for the subsequent hours since no relevant changes in ∆f and ∆D were observed. We
believe that, if Sauerbray’s equation is only considered, such a variation in mass should
lead to a higher frequency shift (about 1300 Hz) than that observed; this demonstrates that
Kanazawa’s contribution must be involved in the interpretation of our results. Conversely,
if Kanazawa’s equation is only considered, an estimation of treated cells’ viscosity could be
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achieved by considering the viscosity of a healthy cell. For example, by using the apparent
viscosity of healthy 3T3 fibroblasts measured with QCM by Wegener et al. [17], we obtained
a decrease of about 13% in viscosity after Cyt-D treatment.

However, during the treatment, we observed a morphological variation in cells in
which the rounding up led cell bodies to be mostly outside the penetration depth of the
acoustic wave. For this reason, the thus calculated decrease in viscosity is mainly influenced
by the presence of medium rather than cells and cannot be interpreted as the real viscosity
of cells themselves.

Despite the tentative assumption of simplifications for achieving quantitative infor-
mation, under our working conditions, the elastic (Sauerbray) and viscous (Kanazawa)
contributions cannot be decoupled, as previously stated. Even if QCM’s signals depend on
entities of different nature, such as mass, density, viscosity, storage, and loss modulus, there
are currently limitations in modeling viscoelastic films composed of live cells, preventing
us from the quantitative estimation of these parameters. Thus, unlike quantitative DHM
analysis, only qualitative evaluation can be achieved from our QCM’s results.

3. Materials and Methods
3.1. Cell Culture

Post-natal day 4/5 neonatal Wistar rats were euthanized by decapitation. To isolate
cardiac fibroblasts, the hearts were extracted from the abdominal cavity and placed in
CBFHH (calcium and bicarbonate-free Hank’s Buffer with HEPES) supplemented with
10 U/mL heparin (H3149, Sigma-Aldrich, St. Louis, MO, USA) and stored on ice. After
extraction, fibroblasts were cultured at 37 ◦C in a 95% H2O and 5% CO2 atmosphere in
Dulbecco’s modified Eagle’s medium (DMEM), high glucose, GlutaMAXTM, pyruvate
(Thermo Fisher Scientific, Waltham, MA, USA), and supplemented with 10% fetal bovine
serum (FBS) (Sigma-Aldrich, St. Louis, MO, USA) and 1% antibiotic–antimycotic (Thermo
Fisher Scientific, Waltham, MA, USA). Fibroblasts were used at P0/1 either from fresh
cultures, or liquid-nitrogen-stored after previous extractions.

For QCM measurements, cells at a density of 20,000 cells/cm2 were drop-seeded on
the surface of the sterilized Au-coated quartz sensor. Afterward, cells were allowed to
attach to the incubator for 24 h.

For DHM experiments, 24 h before measurements cells were seeded into 35 mm Petri
dishes at a density of 2600 cells/cm2, in order to obtain enough isolated cells.

3.2. Drug Solutions

Cytochalasin D (Cyt-D) (C8273, Sigma-Aldrich, St. Louis, MO, USA) and nocodazole
(Noc) (M1404, Sigma-Aldrich, St. Louis, MO, USA) were used to depolymerize actin and
microtubules, respectively. Stock solutions were made by dissolving the drugs in DMSO
(Sigma-Aldrich, St. Louis, MO, USA) at 4 mg/mL (Cyt-D) and 3.88 mg/mL (Noc). On the
day of treatment, the stock solutions were diluted directly inside the medium to a final
working concentration of 5 µM (Cyt-D) and 10 µM (Noc), with less than 0.1% of DMSO
content. Since the tests were performed in air, 25 mM of HEPES (Thermo Fisher Scientific,
Waltham, MA, USA) was used to keep the proper pH balance.

3.3. Quartz Crystal Microbalance (QCM)

The QCM’s sensor consists of a thin AT-cut quartz disc on which two gold electrodes
are evaporated. An alternating current is applied to the quartz and, due to piezoelec-
tric properties, causes its oscillation, whose frequency is sensible to the amount of the
adsorbed mass.

In the case of very thin and completely elastic films, the frequency shift is proportional
to the mass in contact with the quartz per unit of electrode’s area. The equation that rules
this relationship is known as Sauerbray’s equation [54], which is

∆f1 = − 1
C

∆m, (2)



Int. J. Mol. Sci. 2022, 23, 4108 13 of 19

where C is the quartz sensitivity, f is the frequency, and m is the mass per unit of electrode
surface area.

However, for such films immersed in liquid, an additional frequency shift is recorded
due to liquid properties (density and viscosity). This term is called Kanazawa’s con-
tribute [55], and it correlates viscous properties with frequency shifts as follows:

∆f2 = −f
3
2
0

√
ρl ηl
πµqρq

, (3)

where f0 is the unloaded resonance frequency; µq and ρq are, respectively, the shear
modulus and density of the quartz crystal; ρl and ηl are the density and viscosity of
the liquid.

In this way, the recorded total frequency shift consists of the sum of the contributions
due to the mass and those due to liquid properties [51].

∆f = ∆f1 + ∆f2 = − 1
C

∆m− f
3
2
0

√
ρl ηl
πµqρq

. (4)

Unfortunately, this equation does not well predict the case of soft films immersed in
liquid [51,56]. Moreover, additional complications emerge when the film is not continuous,
homogeneous, or even morphologically stable over time, making this technique unable to
provide quantitative measurements when working with cells [9,20,22,23]. Thus, we used
Equation (4) to achieve qualitative interpretations of our cell layer behavior. Additionally,
in the case of liquid loading or viscoelastic films, a reasonable amount of dissipation of the
quartz vibrational energy is observed [57,58]. This dissipation (D) is proportional to the
energy lost (G′′) and stored (G′) during one cycle of oscillation, and it follows the equation

∆D =
G′′

G′ 2π
. (5)

Finally, with these two parameters (∆f and ∆D), provided by QCM, it was possible
for us to investigate what occurs close to the surface of the quartz at the cell–substrate
interface, considering that the penetration depth of the acoustic wave is given by

δ =

√
η

πfρ
, (6)

where η and ρ are, respectively, the viscosity and density of the liquid, and f is the fre-
quency [55,57].

The QCM device used for the experiments in this study was built by Novaetech Srl
(openqcm.com), Pompei (NA, Italy). All of the measurements were performed with an
AT-cut quartz crystal sensor with a 10 MHz resonant frequency and 11.5 mm diameter
gold electrode, placed in the QCM’s chamber of 30 µL in volume. The quartzes used were
characterized by a sensitivity (C), shear modulus (µq), and density (ρq) of, respectively,
C = 4.42 ng/Hz·cm2, µq = 2.947 × 1011 g/cm·s2, and ρq = 2.648 g/cm3. The experiments
were performed at 37 ◦C in an oven (M 40–TB, Tecnovetro Srl, Monza, Italy); thus, we could
approximate the QCM acoustic shear wave decaying into the liquid to δ = 180 nm, which
corresponds to that of a 10 MHz AT-cut quartz crystal under water loading at 37 ◦C [23].

The quartz, with attached cells, was positioned in sterile conditions in the chamber,
which was closed and subsequently filled with medium using a tubing system connected
to a peristaltic pump (Masterflex C/LTM, Cole Parmer, Vernon Hills, IL, USA). Each
experiment began with a first calibration phase with medium-only until steady state, when
an equilibrium in the temperature profile was observed.
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Afterward, the drug-containing medium was fluxed inside the chamber. Once all of
the liquid was replaced, the flux was stopped, and the frequency (f) and the dissipation (D)
values were continually monitored for the subsequent four hours at intervals of 0.66 s.

3.4. Digital Holographic Microscopy (DHM)

The DHM principle, and related codes used for data processing, are based on the
optical phase (OP). Quantitative information is retrieved from the OP shift, which is
correlated to the optical path difference (OPD) [24] as follows:

OP =
2π
λ

OPD, OPD = h ∗ (nc − nm), (7)

where λ is the wavelength of the laser beam, h is the cell thickness, nc is the refractive index
of the cell, and nm is that of the medium.

The optical phase shift (OP) between the reference and object beams is contained in the
recorded hologram. In contrast to classical holography, digital holography uses a digital
camera to record the holograms, which are then numerically reconstructed to calculate the
OP shift [25,30]. Knowing the refractive index of the cell (nc) and that of the medium (nm),
the cell height (h) can be easily derived from Equation (7) [24,28,30].

Subsequently, cell projected surface area (PSA), volume (V) [24], and cell membrane
fluctuation (CMF) [27] can be also calculated as follows:

PSA = N ∗ pa, (8)

V = pa ∗
N

∑
i=1

hi, (9)

CMF =
1
N

N

∑
i=1

STDi, (10)

where N is the number of pixels within the projected surface area, pa is the area of a single
pixel of the CMOS sensor in the object plane, and STDi is the phase standard deviation for
each pixel.

In this study, DHM in off-axis configuration, based on a Mach–Zehnder interferometer,
was used [24,25,27]. The laser beam (λ = 630 nm, 05-LHP-151, Melles Griot, Bensheim,
Germany) was split into object and reference beams and recombined by a cube beam splitter
(BS079, Thorlabs Inc., Newton, NJ, USA) to generate the hologram, which was recorded
on an sCMOS camera (CS2100M-USB Quantalux, Thorlabs Inc., Newton, NJ, USA). The
samples were exposed to a power (P) of the laser set to P ≈ 0.2 mW and the exposure time
(t) was 0.5 < t < 1 ms. The magnification of the microscope was set at 33.2X, with a lateral
spatial resolution d ≈ 600 nm. An aspheric lens (C230TMD-A, Thorlabs Inc., Newton, NJ,
USA) with the numerical aperture NA = 0.55 was used as the objective lens. The size of the
sCMOS sensor was 1920 × 1080 pixels (4.8 × 4.8 µm per pixel).

The digital procedure applied to holograms, in order to achieve the reconstruction of
the optical phase, was previously reported by our group [24,30]. DHM was employed for
monitoring area and volume variation by achieving information from the reconstruction of
a single full-frame (1920 × 1080 pixels) image. Cells were segmented, in order to separate
them from the background, by manual segmentation of the reconstructed optical phase
image, using Image Segmenter, a MATLAB built-in environment. Cell height, area, and
volume were calculated, as already explained in [24], considering the refractive index of
cell and medium, respectively, as nc = 1.37 and nm = 1.35 [59,60]. Moreover, cell membrane
fluctuations (CMF) were achieved by using a customized algorithm based on the approach
developed by Rappaz et al. [27], which was applied on at least 2 s of a movie recorded with
a window of 480 × 290 pixels and a frame rate of 110 frames per second (FPS).

Two types of experiments were performed: multicell and single-cell analyses. In
multicell experiments, for each drug treatment, five groups of cells were tested considering
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the effective range of the drug’s action on cells. For Cyt-D, we analyzed untreated cells and
cells after 10, 20, 40, and 60 min of Cyt-D 5 µM treatment. For 10 µM Noc treatment, we
considered the following intervals: 0, 1, 2, 3, and 4 h. For each group, we obtained an overall
measurement of more than 30 cells for which area, volume, and CMF were calculated, as
previously explained. Instead, for the second type of experiment, we monitored single
cells’ area and volume variations with time-lapse performed at 2 FPS for 15 min, starting
immediately after the Cyt-D injection. Before the measurements, each sample was washed
with PBS 1X and subjected to medium substitution with a fresh one, for both untreated and
time-lapse samples, or to drug solution, for treated cells.

3.5. Fluorescence Microscopy

Epifluorescence imaging was performed to observe the cytoskeletal rearrangements.
Cells were seeded on round glass coverslips (18 mm diameter) for 24 h before being treated
with the desired drug’s solution. For both treatments, one glass was left untreated and
used as a negative control. Treated samples were fixed (paraformaldehyde 4%, 20 min)
after 10 and 30 min of incubation in Cyt-D or after 30 min and 2 h of incubation in Noc.

After being permeabilized with Triton X-100 0.1% and blocked with bovine serum albu-
min (BSA) 0.5% for 5 and 30 min, respectively, fixed cells were incubated with the following
antibodies or staining solutions: primary antibody to α-tubulin (ab7291, Abcam, Cam-
bridge, England, 1:500), secondary antibody conjugated to Alexa 488 (ab150113, Abcam,
Cambridge, England, 1:500), TRITC-conjugated phalloidin (90228, Millipore, Burlington,
MA, USA, 1:250) and DAPI (90229, Millipore, Burlington, MA, USA, 1:1000).

Fluorescent observations were performed using an inverted Axiovert 200M microscope
(Carl Zeiss AG, Oberkochen, Germany) upgraded with the appropriate excitation–emission
filters for TRITC, FITC, and DAPI spectra, and coupled with a 63X/1.4 Plan Apo oil
immersion objective (Carl Zeiss AG, Oberkochen, Germany) as well as an X-cite® 120Q
fluorescence illuminator (Excelitas Technologies Corp., Waltham, MA, USA). Images were
taken with an XM10 monochrome CCD camera (Olympus Corporation, Tokyo, Japan),
connected to a 0.63X adaptor tube, at an exposure of 5 s (FITC and TRITC) or 1 s (DAPI) and
by averaging 5 frames for noise reduction. Subsequent image processing was performed
using the open source Fiji image processing package (https://imagej.net/software/fiji/,
accessed on 1 March 2022).

4. Conclusions

We used a new combination of approaches to achieve information on the near interface
cellular dynamical variation. The use of two complementary techniques allowed us to
overcome the complications related to the use of QCM in the cellular investigation. The
lack of models for determining the cell layer behavior on the oscillating quartz allows for
only qualitative interpretations. Quantitative DHM was used in this study to confirm the
deductions by gaining information on morphological parameters such as area, volume, and
cell thickness. We used and compared the effects of two cytoskeletal drugs able to interact
with actin and microtubules. QCM was employed for studying the cell–substrate interface
changes as a result of the effects of 5 µM Cyt-D and 10 µM Noc treatments for four hours,
by measuring and analyzing the ∆f and ∆D signals.

In agreement with a typical range of Cyt-D action, confirmed also by immunofluores-
cence, we observed consistent ∆f and ∆D changes within the first 10 min after medium
substitution. During the first hour, maximum values were reached, which were maintained
almost constantly until the end of the experiment. This suggested the ability of QCM to
detect the loss of cell–substrate adhesion and also decreased viscosity. Morphological varia-
tions were confirmed by quantitative DHM, which highlighted again the main contribution
of Cyt-D within the first 10 min, without significant additional effect at prolonged exposure.

Despite Cyt-D, we did not observe any quantitative morphological variations in Noc
treatment. This led us to the conclusion that QCM signals, in this case, can be interpreted as
a direct result of cytoskeletal rearrangement rather than cell mass variations. In agreement

https://imagej.net/software/fiji/
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with immunofluorescence, we observed a time-progressive effect on cells and thus on rheo-
logical properties. These results involved a double-step trend with the first redistribution
of tubulin through the cytosol, with increased viscous behavior (increased G′′), followed by
the actin’s compensatory effect and stress fiber formation, which led to a slight decrease in
dissipation (increased G′) at prolonged drug treatment.

We should note that there are relatively few reports on the successful application of
QCM for live-cell studies. This could be due to the complications correlated to the execution
of experiments, as well as the interpretation of their results. To our knowledge, this is the
second study in which QCM real-time monitoring is used with primary cultures and the
first in which primary cardiac fibroblasts are employed. Moreover, the combination of the
two approaches allowed us to compare QCM results to the quantitative DHM technique,
achieving synergic and complementary interpretation of cells behavior, with a focus on the
near-interface layer.

In conclusion, we studied the rheological, morphological, and adhesive changes in
primary cardiac fibroblasts treated with two known cytoskeletal drugs: Cyt-D and Noc.
We were able to highlight the pivotal role of actin in maintaining shape integrity, adhesion
stability, and mechanical structure. In fact, we observed that in its absence (by using
Cyt-D), the cell’s ultimate condition is marked by a loss of adhesion, with the highest
possible detachment from the surface and liquid-like behavior. Conversely, cells devoid
of microtubules are not involved in a compromised shape or adhesion and, as a result of
a counterbalance play, their cytoskeleton emerged with increased actin stress fibers. This
last line of evidence, reported also in other studies, could be justified by considering the
Tensegrity model’s principles for which the cell’ mechanical stability is guaranteed by a
tensile prestress [15,16].

The viscoelastic and morphological changes studied again reveal the importance of
the right understanding of cellular reorganization that occurs when cells are subjected
to defects.

Cytoskeletal alteration is known to be the cause of many diseases, such as cardiomy-
opathies. Even if our approach is relatively far from direct use in disease diagnosis, the
lack of comprehensive knowledge regarding biophysical cell behavior needs to be filled,
which is planned for future research. Therefore, a deep understanding of the intercon-
nection between alterations in nano-/microstructures and macroscopic behavior plays a
central role in the development of future powerful biomarkers of mechanical nature for
diagnostic purposes.
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