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SARS-CoV-2 infection is often associated with severe inflammation, oxidative stress,

hypoxia and impaired physical activity. These factors all together contribute to muscle

wasting and fatigue. In addition, there is evidence of a direct SARS-CoV-2 viral infiltration

into skeletal muscle. Aging is often characterized by sarcopenia or sarcopenic obesity

These conditions are risk factors for severe acute COVID-19 and long-COVID-19

syndrome. From these observations we may predict a strong association between

COVID-19 and decreased muscle mass and functions. While the relationship between

physical inactivity, chronic inflammation, oxidative stress and muscle dysfunction is well-

known, the effects on muscle mass of COVID-19-related hypoxemia are inadequately

investigated. The aim of this review is to highlight metabolic, immunity-related and redox

biomarkers potentially affected by reduced oxygen availability and/or muscle fatigue in

order to shed light on the negative impact of COVID-19 on muscle mass and function.

Possible countermeasures are also reviewed.
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INTRODUCTION

SARS-CoV-2 infection causes severe inflammation and oxidative stress leading to pulmonary
alveoli damage. This in turn can lead to bilateral viral pneumonia with respiratory failure and
development of severe acute respiratory distress syndrome (ARDS) (1–4). Several meta-analytic
studies showed that myalgia/muscle fatigue are the most common symptoms (after fever and
cough) of COVID-19 infection (5–9). Moreover, the extent of COVID-related myalgia seems to
depend mainly on the severity of the disease (9, 10). In fact, radiological data from hospitalized
COVID-19 patients suggest that the correlation between muscle pain on admission and abnormal
lung imaging is a predictor of poor prognosis, particularly in the elderly patients (11). The exact
mechanisms by which SARS-CoV-2 causes muscle damage are not yet fully elucidated (4). Some
authors propose that muscle loss in COVID-19 patients is the result of a wide variety of factors,
both direct (e.g., interaction between the virus spike proteins and myocyte cell membranes) and
indirect (inflammation and oxidative stress) (4). Indeed, oxidative stress and inflammation are the
two most relevant drivers of skeletal muscle loss (5, 6, 12, 13).
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It is important to consider that the elderly population is one
of the most heavily affected by SARS-CoV-2. Prevalence
of protein-energy malnutrition and chronic systemic
inflammation is increased with aging, metabolic disorders
and non-communicable diseases (i.e., obesity, diabetes mellitus,
cardiovascular diseases, cancer, etc.) (14, 15). These conditions
are also risk factors for severe COVID-19 (16). While systemic
muscle atrophy has been reported in COVID-19 patients during
home treatment, greater “disease-related malnutrition” has
been observed during hospitalization, particularly in intensive
care units (ICUs). The most extensive muscle loss is found
in obese patients (17, 18). A number of factors may promote
muscle weakness in COVID-19 patients: (1) long period of
bed rest (19–22); (2) some drugs and medications (10, 23, 24);
(3) malnutrition/undernutrition (22, 23); (4) ICU-acquired
weakness (23, 25, 26); (5) severe cytokine storm (10, 23); (6)
intubation and mechanical ventilation (4); and (7) long-COVID
(19–21, 26). While the link between physical inactivity, chronic
inflammation and oxidative stress and muscle dysfunction is
well-established (27), the effect on muscle mass of COVID-19-
related hypoxemia has been insufficiently evaluated. Indeed,
hypoxemic chronic cardiopulmonary conditions (e.g., Chronic
obstructive pulmonary disease—COPD-, pulmonary fibrosis,
Obstructive Sleep Apnea Syndrome—OSAS—or heart failure),
induce a hypoxia-related decreased physical capacity (28, 29).
Systemic hypoxemia determines muscle and bone deterioration
(30–32) by triggering several signaling cascades including innate
immune responses and/or changes in redox balance and lipid
and glucose metabolism (33, 34). Despite the fact that the
combination of hypoxia and reduced physical activity has been
frequently observed in patients, the interaction between these
factors has been scarcely investigated in the clinical settings. In
fact, the specific effects of inactivity and hypoxia are difficult to
separate from other disease related variables.

Experimental BR is one of the most appropriate methods to
study the consequences of immobilization in a standardized and
controlled environment (35). This approach has been recognized
to be of potential clinical relevance for mimicking hospital-
related physical inactivity since it allows differentiating the
catabolic effects induced by a disease from those secondary to
skeletal muscle disuse (35). The study of healthy volunteers in
facilities that allow a controlled modification of the amount of
oxygen in the air in both bed rest and/or ambulatory conditions
can be considered an appropriate model to investigate the
separate and the combined effect of hypoxia and muscle disuse
(28, 36, 37).

This review tries to identify somemetabolic, immunity-related
and redox biomarkers, potentially affected by decreased oxygen
blood levels and/ormuscle disuse (28, 38–40), to shed light on the
negative impact of SARS-CoV-2 infection on muscle mass and
function. Moreover, possible countermeasure are described.

Papers for this narrative review were obtained from
Medline (PubMed), and Cochrane Library Plus database.
The mesh terms utilized have been hypoxia, bed rest,
inflammation, oxidative stress and dyslipidemia being conditions
associated with COVID-19, SARS-CoV-2, Long COVID and
COVID sequelae. Titles and abstracts were used to identify

selected articles. More attention was payed to the most
recent publications.

Muscle Protein Metabolism
The dynamic balance between protein synthesis and degradation
processes is the key factor behindmaintenance and accumulation
of muscle mass. When protein breakdown is higher than protein
synthesis, there is a reduction in both skeletal muscle mass
and myofibers cross-sectional area leading to decreased muscle
strength and function (35, 41). Chronic hypoxia negatively
affects skeletal muscle protein metabolism (42–44). A reduced
protein synthesis rate was found in malnourished patients
with emphysema (45). Animal models have shown that both
protein synthesis and degradation are enhanced under hypoxic
conditions, however, the rate of protein degradation is higher
than that of protein synthesis (30, 46). Indeed, Agrawal et al.
established that a week of both acute or chronic hypobaric
hypoxia enhances Akt, p-Akt, and p70S6K expression, promoting
protein synthesis. Such anabolic stimulus however decays by day
14 (30, 47).

Protein synthesis is an anabolic process, requiring an amount
of energy which is insufficient in hypoxic conditions (48). Tissue
protein synthesis is one of the most important determinant
of whole body energy expenditure, therefore, tissue and cell
energy status has a pivotal role on protein turnover kinetics.
Oxidative metabolism, providing chemical energy for adenine-
triphosphate (ATP) production, occurs in mitochondria. ATP
is then used for all cellular and tissue functions (49). Altered
mitochondrial function and impairment of oxidative capacity
is a common feature of several catabolic conditions (50). The
angiotensin-2 converting enzyme receptor (ACE-2) contributes
to the regulation of mitochondrial functions. ACE-2 deficiency
can develop both from a lower ATP synthesis and the activation
of NADPH oxidase 4. This enzyme is involved in the production
of ROS. It protects the cells by destroying pathogens or triggering
apoptosis in case of infection (51). SARS-COV-2, to penetrate
human host cells binds to ACE-2 through its spike glycoprotein
(52). Hence, the availability of the ACE-2 enzyme for its
physiological functions could be impaired, contributing to the
development of COVID-19 symptoms (50). Besides binding
to ACE-2 receptors, SARS-CoV-2 spike proteins can bind to
the host cell membrane through the transmembrane serine
protease 2 (TMPRSS2) (53). Another target of TMPRSS2 is
the estrogen-related alpha nuclear receptor, which regulates the
transcription of genes related to mitochondrial functions and
energy homeostasis (51, 53, 54). Furthermore, mitochondrial
function and their efficiency in ATP production are important
factors in the regulation of protein synthesis and protein turnover
rates. Stable-labeled amino acid infusion and tissue biopsy
with isotopic precursor-product models represent a valuable
method to investigate mitochondrial protein fractional synthesis
in vivo. (49). Rooyackers et al. found a reduced mitochondrial
protein fractional synthesis rate in skeletal muscle from elderly
humans (55). In a rat model, reduced mitochondrial DNA
content in skeletal muscle showed to be a feature of age-related
sarcopenia (56). Modifications of mitochondrial metabolism and
gene expression might be key mechanisms of age-related muscle
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alterations. Oxygen-dependent mitochondria ATP production is
also a critical factor. If on one hand mitochondria respiration is
strictly linked to ATP synthesis, on the other it is regulated by
uncoupling proteins. They dissipate the H+ gradient generating
heat, thereby reducing mitochondrial efficiency (49). Aging
increases the expression of uncoupling proteins in liver and
skeletal muscle (57), thus potentially decreasing ATP production
and availability. These changes could account for the reduced
protein synthesis and turnover (49).

A retrospective study (48) evaluating the interindividual
response variability of the skeletal muscle oxidative function
during normoxic (N-BR) and hypoxic (H-BR) bed rest, lasting 10
and 21 days, respectively, showed that mitochondrial respiration
was reduced by both N-BR (25.0 and 15.7% after 10 and 21 days)
and H-BR (13.0 and 19.8% after 10 and 21 days) with worsening
of BR effect under hypoxic conditions after 10 days. These data
suggest that hypoxia negative effect occurs in a retrograde way, as
demonstrated by Agrawal et al. (30, 47).

Cell oxygen supply is determined by the oxyhemia, which in
turn is linked to the hemoglobin concentration and the partial
pressure of arterial oxygen. The latter can be reduced in chronic
conditions characterized by impaired cardiopulmonary capacity,
eventually leading to a diminished alveolar respiration. A lower
hemoglobin concentration (i.e., anemia) may occur in several
chronic catabolic disorders (49) and, in COVID-19 frail patients.
This condition could indicate a reduced ability of hemoglobin to
support the increased oxygen demand of peripheral tissues from
the infection-related hypermetabolic state. Taneri et al., showed
that compared tomore treatable cases, severe COVID-19 patients
had lower hemoglobin (−4.08 g/L, 95% CI−5.12;−3.05) and red
blood cell counts (−0.16× 1012/L, 95% CI−0.31;−0.014), while
ferritin (−473.25 ng/mL, 95% CI 382.52; 563.98) and red cell
distribution width (1.82%, 95% CI 0.10; 3.55) were higher (58).

The retrospective study by Salvadego et al. evaluated the
effects of experimental physical inactivity alone or combined
with hypoxia. Both conditions determined similar O2 uptake
peaks (4.1 and 3.3% after 10 days; 4.5 and 8.1% after 21 days,
respectively) and muscle fractional O2 extraction (5.9 and 7.3%
after 10 days; 6.5 and 7.3% after 21 days). These data confirm
again the effect of hypoxia after 10 days.

Minimizing the loss of skeletal muscle mass through an
appropriate supply of energy and protein is the therapeutic goal
of clinical nutrition against acute and chronic inflammatory
diseases. Nevertheless, the minimum protein requirement,
adequate to blunt, as much as possible, protein catabolism and
the related anabolic resistance, in different acute and chronic
inflammatory diseases, has been little studied (59). The suggested
dietary protein/amino acid intake to obtain the lowest rate of
protein catabolism in critical illness is about 1.2–1.5 g/kg body
weight/day (60–62). The ESPEN society indicates that a higher
protein/amino acid intake (1.0–1.3 g/kg/day) could be required
in non-obese and obese COVID-19 patients (63, 64).

Muscle Inflammation
Anabolic resistance and the related systemic skeletal muscle loss
are the result of multiple factors such as a decreased physical
activity, often associated with an inadequate food intake, obesity,

inflammation, hormonal dysregulation and presence of other
comorbidities (65).

A higher plasma concentration of inflammatory biomarkers
(interleukin-6, IL-6, tumor necrosis factor alpha, TNF-α,
and C-reactive protein, CRP) characterizes age-associated
inflammation (66). In turn, inflammation reduces net muscle
protein synthesis (66) by enhancing, among others, the TNF-
α pathway, with known inhibitory effects on myogenesis,
Furthermore it upregulates nuclear factor-kappa beta (NF-κβ), a
key transcription factor in skeletal muscle atrophy (67–70).

Three factors seem to have a major role in the pathogenesis
of COVID-19: (1) over-inflammation, (2) depression/inhibition
of the immune system, and (3) proinflammatory cytokine spread
(71). These features combined are responsible for lung damage
and eventually fatal respiratory complications (71). Indeed,
SARS-CoV-2 infection can trigger the so called “cytokine storm”
also known as “cytokine release syndrome,” that is an abrupt
increase in the levels of pro-inflammatory cytokines (IL-6, IL-
12, IL-17, IL-18, IL33, TNF-α) and CRP (70). Such cytokine
storm probably down-regulates innate and adaptive immunity
against SARS-CoV-2 infection (71) and causes tissue disruption
and muscle protein synthesis reduction in a synergistic way

These alterations can be observed during bed rest (in hospital
or at home) and in the post-acute phase, either after recovery
or during the so-called “long COVID” (64–67). Investigations
on hypoxia signaling pathways have highlighted the linkage with
inflammation (72) at a molecular level, while clinical studies have
confirmed the contribution of NF-kB or of Hypoxia Inducible
Factor-1α (HIF-1α) in various conditions (72, 73).

In hypoxia-associated diseases, NF-κB results in the
expression of pro-inflammatory cytokines, which further
activate NF-κB via a positive feedback mechanism (74). This
NF-κB upregulation vicious circle probably contributes to the
elevated pro-inflammatory cytokine expression even in COVID-
19 patients (75). Even if the role of viral proteins in triggering
this response is demonstrated, the molecular mechanisms for
this activation are still unclear. Chia-Ming Su et al. identified
ORF7a as the SARS-CoV-2 spike proteins activating NF-κB
(74). Hypoxia should be considered as another strong trigger
of inflammation. Cellular adaptations to hypoxia are based on
HIF-1α factor transcription. This dimeric protein is inactive
under normoxic conditions but is activated under hypoxia (72).
In mammals, HIF-1α plays a critical role in the cell responses
to systemic oxygen levels, by affecting metabolic pathways and
inflammation (76, 77). Dysregulation of the HIF-1α pathway
is associated with several pathologies including cancer and
cardiovascular diseases (76). Moreover, HIF-1α is also involved
in the regulation of the aging process (78). Activation of
HIF-1α is predictable during SARS-CoV-2 disease. The viral
protein ORF3a, which contributes to SARS-CoV-2 infection and
mitochondrial damage, appears to play an important role in the
regulation of HIF-1α by increasing its synthesis HIF-1α in turn,
as suggested by the cellular model, can promote infection and
inflammatory responses caused by SARS-CoV-2 (76).

CRP is a recognized biomarker of systemic inflammation and
severe infection. COVID-19 systemic inflammation, as measured
by CRP, correlates strongly with the disease severity andmortality
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(79). Moreover, a close association between CRP and hypoxemic
respiratory failure has also been demonstrated (79).

A number of studies reported increased levels of Serum
amyloid A (SAA) among patients with mild and severe COVID-
19 (80) with a gradual SAA increase concomitant with the
worsening of the clinical conditions (81). Higher serum SAA
levels are found in critically ill patients and there is a positive
correlation with the disease severity (80). In line with previous
observations (72), the systemic inflammatory response (i.e.,
increased blood concentration of CRP and SAA) is observed
in healthy young volunteers exposed to experimental hypoxia,
either in ambulatory or bed rest conditions (28). Repeated
measurements of both SAA and CRP levels during the disease
time-course may aid in monitoring the extent and severity of
pneumonia (80, 81). These data support the hypothesis that
hypoxia per se could be a trigger of inflammation. However,
being the role of systemic inflammation in the pathogenesis of
SARS-CoV-2 infection not fully defined, the associations between
inflammation (as measured by CRP or SAA) and prognosis could
be defined, to a certain extent, as speculative (82). Presepsin
is a new biomarker of innate immunity (83) possibly useful
for early diagnosis of sepsis (84). Biolo et al. demonstrated
that presepsin can be activated by hypoxia combined with bed
rest, but not in the ambulatory conditions (28). This suggests
a synergy between hypoxemia and immobilization in triggering
inflammation. Presepsin has also been identified as a biomarker
of SARS-CoV-2 infection severity (85). Presepsin levels become
significantly elevated in SARS-CoV-2 infection and can be
considered a prognostic factor for longer hospital stays. These
data confirm the experimental results from Biolo et al. (28) and
Fukada et al. (85).

IL-6 is a soluble protein with pleiotropic effects on immune
response, systemic inflammation, and hematopoiesis. After its
synthesis within the first phase of inflammation, IL-6 inducts a
wide range of acute phase proteins production, including CRP,
SAA, fibrinogen, and others (86). Conversely, IL-6 promotes
the reduction of fibronectin, albumin, and transferrin synthesis
(86). Inactivity per se leads to a low-grade systemic inflammation
(66). An experimental bed rest lasting 14-days increased the
levels of pro-inflammatory cytokines including IL-6 and CRP
(27). Moreover, serum levels of IL-6, IL-6 receptor and CRP
were found increased also in healthy volunteers who spent 3
days at an altitude higher than 3,400m (72). These data suggest
a role of hypoxia per se in activating the IL-6 cascade. It is
generally accepted that during SARS-CoV-2 infection, high levels
of IL-6 (>10 pg/mL) are the leading cause of the cytokine
storm and multiple-organ failure seen in advanced cases (80).
Consequently, IL-6 is becoming a sensitive prognostic biomarker
during COVID-19 (74).

Tocilizumab is an anti-IL-6 receptor monoclonal antibody,
approved for the treatment of several inflammatory diseases
(87). A number of observational studies showed that tocilizumab
could improve the outcome in COVID-19 patients with
pneumonia (88–90) while other Authors reached more
cautious conclusions. Indeed, the efficacy of this monoclonal
antibody can vary according to disease severity and background
standards of care (91–93). In particular, in hospitalized, not

mechanically ventilated patients, tocilizumab reduces the
need for ventilation support but it does not improve survival
(94, 95).

Glucocorticoids can rapidly inhibit the release of
inflammatory cytokines (e.g., IL-6, TNFα) (96). A randomized
trial on COVID-19 therapy demonstrated that dexamethasone
could improve survival, particularly in the most severely ill
patients (24). However, iatrogenic hypercortisolaemia has been
shown to increase the bed rest-related muscle mass loss when
compared to bed rest alone (24). Therefore, dexamethasone may
increase the risk of acute sarcopenia in fragile patients.

Glutamine is the most abundant aminoacid in the human
body and it is maximally present in skeletal muscle. Beyond
nutritional and plastic functions, the amino acid has also a key
role in immunity and anabolic processes (13). It is categorized as
a non-essential amino acid however since in catabolic conditions
its synthesis rate is deficient compared to the requirements, it has
been recognized as a conditionally -essential nutrient (96).

Parenteral glutamine supplementation has therefore been
given in acute conditions to counteract the fall in muscle
protein synthesis and improve nitrogen balance (96) and clinical
outcome (97–99). Biolo et al. demonstrated that hypoxia during
experimental bed rest, decreased plasma glutamine by about
4% (28). To date, no clinical trials have evaluated possible
changes in glutamine plasma levels in COVID-19 patients.
Nevertheless, a case-control study comparing 220 COVID-19
patients (51.2 ± 6.7 years) supplemented with glutamine with
230 unsupplemented COVID-19 patients (51.3 ± 8.2 years),
comparable for gender, and clinical status, showed that L-
Glutamine supplementation, in the early period of COVID-19
infection, boosted the immune systemmainly through inhibition
of inflammatory responses. This event lead to a shortened
hospital stay and a lower need for ICU (100). Cengiz et al.
obtained similar results (101).

Muscle Oxidative Stress
Glutamine is also one of the three amino acids needed for
glutathione (GSH) synthesis. GSH, a tripeptide formed by
glutamate, glycine and cysteine, represents the most important
body endogenous antioxidant system, being active mainly in the
cell mitochondria and nucleus (102, 103). Intracellular glutamine
as glutamate precursor is fundamental for the synthesis of
GSH (99). Glutamine deficiency is therefore associated with
decreased levels of GSH and higher reactive oxygen species (ROS)
production (104).

Cells are exposed to oxidative stress in several clinical
conditions including nutrient starvation and catabolic stress
after trauma, surgery, sepsis, and infection (102). Glutathione
is a critical factor in protecting cells against oxidative stress.
Indeed, there is a relation, with reciprocal influences, between
inflammation and increased oxidative stress.

The gamma-glutamyl cycle regulates both glutathione
catabolism and re-synthesis. Total glutathione levels and
GSH/GSSG ratio influence GSH redox capacity. Hypoxia
conditions are able to stimulate both the production of reactive
oxygen species and antioxidant responses, including intracellular
glutathione (28). Experimental studies demonstrated that
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hypoxia when combined with bed rest directly decreased total
whole blood glutathione concentration. Such decrease was
paralleled by a reduction in the rate of glutathione synthesis
supported by a lower glutamate-cysteine ligase activity (the key
enzyme in GSH production) (28). Moreover, the GSH/GSSG
ratio dramatically decreased suggesting that oxidative stress is
higher than the antioxidants capacity.

Severe coronavirus infections were characterized by a GSH
deficiency status. Guloyan et al. evaluated GSH plasma levels
and ROS in four patients with laboratory confirmed SARS-
CoV-2 infection (105). Patients with higher baseline levels
of GSH showed a decrease in ROS and a shorter illness
course while decreased GSH levels were associated with
increased ROS and more severe symptoms (105). As cysteine
is the limiting precursor of the GSH tripeptide synthesis,
treatment with N-acetylcysteine (NAC) strongly stimulates
GSH synthesis. Indeed, by improving the reduced-to-oxidized
glutathione ratio (GSH/GSSG) NAC is the antidote to treat
paracetamol intoxication (106). Moreover, NAC was found to
lower inflammation in pneumonia (107). Nonetheless, even
if NAC supplementation during SARS-CoV-2 infection shows
some benefits there is low evidence of its efficacy (105, 106). To
the best of our knowledge, only one randomized controlled trial
was performed to evaluate the effect of NAC supplementation on
patients with severe COVID-19 (108). Patients were randomly
assigned either to NAC, at the dose of 21 g for 20 h, or
to dextrose 5%. Requirement of mechanical ventilation was
chosen as primary endpoint of the trial, while secondary goals
included indices such as time of mechanical ventilation, ICU
admission and length of stay and mortality. The trial showed
no treatment effect on the evolution of severe COVID-19
infections (108). Another study followed two COVID-19 patients
supplemented with NAC and GSH by the oral or intravenous
route (109). Although the sample size was very small, researchers
demonstrated an improvement in patients clinical conditions
following GSH administration.

Sarcopenic Obesity: Role of Muscle-Fat
Crosstalk
Obesity in COVID-19 patients has been shown to be frequent and
to worsen the disease prognosis (110). Unfortunately, especially
in the ICU cases, only the BMI has been measured while body
composition analysis has been rarely assessed (111). When such
an evaluation has been made by computed tomography (CT), it
showedmostly an increased visceral adipose tissue, considered an
index capable of predicting the severity of the disease (112–115).

In non-COVID-19 ICU patients a reduced skeletal muscle
mass measured by CT, resulted a risk factor for survival and need
for mechanical ventilation. These data show that BMI cannot
be considered an independent predictor of mortality compared
to muscle mass (115). Furthermore, in non-COVID-19 ICU
patients a low skeletal muscle area and radiodensity, considered
indices of muscle quality, were associated with increased rates of
infections (116).

Skeletal muscle and adipose tissue can communicate
through a biochemical endocrine crosstalk through the release

of inflammatory cytokines (i.e., myokines and adipokines,
respectively). This crosstalk can determine the onset and/or
exacerbation of inflammation and oxidative stress, with
consequent hypercatabolism (117). This can lead to the so-called
Sarcopenic obesity, in which loss of muscle mass, strength
and function is associated with an increased fat mass (118)
especially in aged and/or obese individuals. The pathogenesis
of sarcopenic obesity is multifactorial (e.g., sedentary lifestyle,
dietary disorders, insulin resistance, inflammation, oxidative
stress, etc.) however since symptoms are non-specific, sarcopenic
obesity goes often unsuspected and undiagnosed (119).

As already described, excessive cytokine levels directly
damage, multiple organs and tissues, including skeletal muscle.

Sarcopenia is associated not only with loss of skeletal
muscle function but also with alteration in carbohydrate
and lipid metabolism especially when there is a concomitant
condition of obesity (120). Overweight is often complicated by
dyslipidemia, with increased serum levels of total cholesterol,
fasting triglycerides (TG) and apolipoprotein B and decreased
high-density lipoprotein cholesterol (HDL–C) (121). It has
recently been shown that the loss of muscle mass is concomitant
with fat mass gain (122). On the other hand, the type of
dyslipidemia associated with sarcopenia in the elderly has
not been yet adequately investigated or clearly defined (120).
Serum TG and HDL-C concentrations have been shown to
be independently associated with sarcopenic obesity (120).
The evaluation of the lipid profile in a group of 84 elderly
patients by measurement of multiple indices (total cholesterol
TC, HDL-C and its intermediate HDL2, HDL3, low-density
lipoprotein cholesterol (LDL-C), very low-density lipoprotein
(VLDL), intermediate-density lipoprotein (IDL), LDL-particles
(LDL-P), lipoprotein(a) and remnant-like particle cholesterol
(RLP-C) showed that the presence of sarcopenia was associated
mainly with changes in VLDL and RLP-C. The authors suggest
that increased skeletal muscle mass leads to improvements in
energy metabolism by promoting triglyceride-rich lipoprotein
hydrolysis through an increase in the circulating levels of
lipoprotein lipase (LPL) and its correlated enzyme for lipolysis
glycosylphosphatidylinositol anchored high-density lipoprotein
binding protein 1 (GPIHBP1) and vice versa in conditions of
decreased muscle mass (120).

A recent systematic review demonstrates a correlation
between low HDL-C levels and disease severity in SARS-CoV-2
infection. Potential mechanisms for the low HDL-C levels and
reduced functionality in SARS-CoV-2 patients are not clearly
defined. The “cytokine storm” seems to have a definite role
in the immune-mediated inflammatory dyslipoproteinemia, that
leads to lower HDL-C levels (123). Such HDL concentration
reduction may have an impact not only on the reverse cholesterol
transport but also on other relevant functions such as decreasing
inflammation in immune effector cells and reducing endothelial
responses (124).

To the best of our knowledge, only one experimental BR
evaluated the impact of inactivity, during hypoxia, on the
circulating levels of enzymes involved in lipid metabolism.
Conditions of low oxygen pressure have been shown to cause
a significant increase in circulating Hepatic lipase (HL) and
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decrease in Lipoprotein Lipase (LPL) levels HL changes HDL2 to
HDL3, The latter is quickly removed from the circulation by the
liver (28). LPL is involved in the hydrolysis of the triglycerides
transported in chylomicrons and VLDL, a lower concentration
of the enzyme may reduce triglyceride clearance and increase
their plasma levels. Hypoxia, associated with lower total HDL-
C and HDL2-C sub-fractions, may therefore favor atherogenesis
and increase CV risk.

All these findings suggest that in COVID-19 patients HDL
protein composition and function are disrupted. This implies
changes not only in the quantity but also in the quality of
HDL-C. Moreover, these data reveal that low HDL-C levels
could be added to the list of the well-known risk factors
for COVID-19 severity (125). Moreover, given the well-known
ability of these lipoproteins to normalize dyslipidemia and
attenuate the inflammatory cascade, experimental and clinical
studies have been conducted that have shown that HDL infusion
may ameliorate endothelial function and reduce oxidative
stress, inflammation and platelet aggregation (124). Nevertheless,
further studies are required to better understand the role of
HDL dysfunction in COVID-19 patients in order to provide
tailored therapies.

Muscle and Poly-Unsaturated Fatty Acids
(PUFAs)
Omega-6 (n-6) and Omega-3 (n-3) PUFA series are known to be
involved, respectively, in up-regulation and down-regulation of
the inflammatory response (126).

Experimental studies have shown that both short and long-
term bed rest are associated with increased membrane content
of the pro-inflammatory n-6 arachidonic acid (28, 41) and a
corresponding decrease in anti-inflammatory omega 3 fatty acids
(alfa-linolenic and eicosapentaenoic acid, EPA). These data have
been associated with a reduction in 15 desaturase enzymatic
activity, influenced also by insulin (41). These results have been
confirmed also in combined hypoxia and bed rest studies (28).

To date only one double blind, randomized clinical trial has
been conducted to evaluate the effect n3-PUFA supplementation
in critically ill SARS-CoV-2 patients. The Authors found
that omega-3 administration improved the levels of several
parameters of respiratory and renal function (123). Besides their
anti-inflammatory effects, n3 PUFAs supplementation improved
the anabolic efficiency of protein nutrition and exercise in elderly
individuals and in patients with chronic diseases or cancer (23).
Nevertheless, no other studies have yet confirmed these results.

Fatty acid (FA) composition in cell membrane phospholipids
is strongly associated with systemic inflammatory response and
insulin resistance (127–129). Bed rest and hypoxia additively
decrease the delta-5 desaturase index, a key enzyme in the PUFA
cascade and an established biomarker of insulin resistance (28,
41). Such a reduction, lowering PUFAwithin cell membranes, can
modify insulin sensitivity (41).

It has been recently demonstrated that development of
insulin resistance during SARS-CoV-2 infection is probably the
mechanism leading to hyperglycemia development. This occurs
through infectious insult to adipose tissue with aberrant secretion

of adipokines by adipocytes. These data could have significant
relevance not only for the management of hyperglycemia
during infection, but also for the general understanding
of the pathogenesis of severe COVID-19 (130). Moreover,
insulin resistance may further decrease HDL plasma levels
(131) worsening the previously described glucose and lipid
homeostasis impairment.

Sarcopenia in the Long COVID Syndrome
The long-term consequences of the SARS-CoV-2 infection
remain largely unclear. Indeed, knowledge acquired in these
2 years of pandemia allows to differentiate acute COVID-19
from the SARS-CoV-2 infection sequelae and the Long COVID
Syndrome (132). Patients with acute COVID-19 manifest signs
and symptoms up to 4 weeks after the onset of the infection;
Patients with COVID-19 sequelae are often elderly adult males
with associated comorbidities who developed a severe acute
SARS-CoV-2 infection leading to structural systemic damage
(132). Patients with Long COVID may develop multi-organ
symptoms that persist 4–12 weeks after the acute phase of illness,
such as fatigue, post-exertional malaise, cognitive dysfunction,
and limitation of functional capacity. According to the data
available so far, at least 10% of acute COVID-19 survivors develop
Long COVID (132).

COVID-19 ICU patients show significant reductions in
skeletal muscle mass and strength during their hospital stay
(133, 134). Indeed, after 10 days patients showed a 30% loss
in rectus femoris cross-sectional area, a lower thickness (of
almost 20%) of the quadriceps muscle (133) and weakness
during knee-extensor and arm-flexor tests (135). The impairment
in quadriceps strength and in general of muscle strength was
significantly associated with a longer hospital stay (136). Low
musclemass is an independent risk factor formortality (136). Not
surprisingly, SARS-CoV-2 infected sarcopenic patients need a
twice-long hospital stay and have an eight times higher mortality
rate than non-sarcopenic subjects (137).

SARS-CoV-2 infection induces a status of muscle
weakness similar to that seen in ICU-acquired
weakness, which results in a long-term physical
disability. Although comparative studies are required,
the skeletal muscle alterations in hospitalized COVID-
19 patients can be included in the broad category of
ICU-acquired weakness.

Hospitalized patients (particularly ICU patients) require
a long-term rehabilitation after discharge (138). There
is a need for long-term follow-up studies on persistent
symptoms, lung function, physical, and psychological
derangement in discharged, patients. Some of the myokines,
synthetized after physical exercise can reduce systemic
inflammation through their cross talk between muscle and
other organs (133).

Optimal management strategies to improve fatigue and
exercise capacity in both acute- and long-COVID-19 patients
are still debated (132). Recommendations for physical therapy
management of COVID-19 patients have been published (139)
but are still suboptimal (133, 140). Promoting immediate
ambulation of ICU patients has proven to be feasible and has
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TABLE 1 | Potential treatments of sarcopenia and weakness in patients with post-acute sequelae of COVID-19.

Reference Experimental

design

Patients Covid status Interventions Results

Nambi et al. (142) RCT Community-dwelling

sarcopenic old men

Post COVID-19 Low/high-intensity aerobic

exercise (8 weeks).

Improves muscle strength, kinesiophobia

and quality of life

Rodriguez-Blanco

et al. (143)

RCT Home confined

patients

Moderate or acute

COVID-19

Tele-rehabilitation program

(one-week)

Valuable, secure, and achievable during

disease.

Mohamed et al.

(144)

RCT Hospitalized

Patients

Mild or moderate

COVID-19

Moderate aerobic exercise (2

weeks)

Reduces severity and progression of

COVID-19 associated disorders and

improves quality of life.

Tang et al. (145) Observational

longitudinal study

Discharged patients Post COVID-19 Liuzijue exercise (4 weeks) Enhanced quality of life and functional

capacity

RCT, Randomized Controlled Trial.

FIGURE 1 | Direct and indirect effects of Sars-CoV-2 on skeletal muscle mass and possible countermeasures. On the left side: Direct and indirect effects of

Sars-CoV-2 on muscle mass potentially lead to muscle wasting and the so called “long-Covid Syndrome”; on the right-side: possible countermeasures to avoid or at

least maintain muscle mass quality and quantity.

positive effects (133). For patients in whom this is not possible,
the potential efficacy of neuromuscular electrical stimulation
has been shown (141). Table 1 report a pragmatic review of
potential treatments for sarcopenia and weakness in patients with
post-acute sequelae of COVID-19 (142–145). Rehabilitation, i.e.,
regular exercise, has been shown to be effective in preventing
and ameliorating the long-term debilitating effects of critical
illness myopathy (146). Furthermore, physiotherapy after acute
COVID-19 infection can also support the respiratory and
physical rehabilitation of patients with COVID-19 (147, 148).

CONCLUSIONS

SARS-CoV-2 infection is a multifactorial disease in which a
number of detrimental factors interplay together in a way that can
lead to acute severe COVID-19, ICU hospitalization and possibly
long-COVID-19 syndrome after discharge (Figure 1).

Reduced muscle strength is a prominent symptom of acute
COVID-19 and long-COVID syndrome, and malnutrition,
limited physical activity and some drugs may further reduce
muscular function and add to the pathogenicity of the virus.
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We tried to shed light on both direct and indirect potential
detrimental consequences of SARS-CoV-2 on skeletal muscle
mass, focusing on the effect of hypoxia. As for other viral
pulmonary diseases, hypoxia seems to play an important role
in COVID-19 exacerbation, leading to a more severe prognosis.
Moreover, hypoxia is an important driver of symptoms in
SARS-CoV-2 infection particularly for those related to muscle
wasting. Hypoxia, especially when associated with bed rest, seems
to activate a complex crosstalk of key signaling pathways of
oxidative stress and inflammation leading to subsequent lipid and
glucose metabolism derangements.

One limitation of this manuscript is the lack of data about
the direct viral infiltration of SARS-CoV-2 in skeletal muscle.

Indeed, future studies across larger cohorts are required to
completely understand the molecular basis of COVID-19-related
skeletal muscle alterations for a more precise and customized
interventions aimed at improving the patient’s clinical symptoms
and prognosis.
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