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Abstract. An elastic-degenerate (ED) string is a sequence of n sets of strings of total length5
N , which was recently proposed to model a set of similar sequences. The ED string matching6
(EDSM) problem is to find all occurrences of a pattern of length m in an ED text. The EDSM7
problem has recently received some attention in the combinatorial pattern matching community,8
and an O(nm1.5

√
logm + N)-time algorithm is known [Aoyama et al., CPM 2018]. The standard9

assumption in the prior work on this question is that N is substantially larger than both n and10
m, and thus we would like to have a linear dependency on the former. Under this assumption, the11
natural open problem is whether we can decrease the 1.5 exponent in the time complexity, similarly12
as in the related (but, to the best of our knowledge, not equivalent) word break problem [Backurs13
and Indyk, FOCS 2016].14

Our starting point is a conditional lower bound for the EDSM problem. We use the popular com-15
binatorial Boolean Matrix Multiplication (BMM) conjecture stating that there is no truly subcubic16
combinatorial algorithm for BMM [Abboud and Williams, FOCS 2014]. By designing an appropriate17
reduction we show that a combinatorial algorithm solving the EDSM problem in O(nm1.5−ε + N)18
time, for any ε > 0, refutes this conjecture. Our reduction should be understood as an indication19
that decreasing the exponent requires fast matrix multiplication.20

String periodicity and fast Fourier transform are two standard tools in string algorithms. Our21
main technical contribution is that we successfully combine these tools with fast matrix multipli-22
cation to design a non-combinatorial Õ(nmω−1 + N)-time algorithm for EDSM, where ω denotes23
the matrix multiplication exponent and the Õ(·) notation suppresses polylog factors. To the best of24
our knowledge, we are the first to combine these tools. In particular, using the fact that ω < 2.37325
[Alman and Williams, SODA 2021; Le Gall, ISSAC 2014; Williams, STOC 2012], we obtain an26
O(nm1.373 +N)-time algorithm for EDSM. An important building block in our solution, that might27
find applications in other problems, is a method of selecting a small set of length-` substrings of the28
pattern, called anchors, so that any occurrence of a string from an ED text set contains at least one29
but not too many (on average) such anchors inside.30
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1. Introduction. Boolean matrix multiplication (BMM) is one of the most fun-34

damental computational problems. Apart from its theoretical interest, it has a wide35

range of applications [34, 36, 44, 55, 64]. BMM is also the core combinatorial part of36

integer matrix multiplication. In both problems, we are given two N ×N matrices37

and we are to compute N 2 values. Integer matrix multiplication can be performed38

in truly subcubic time, i.e., in O(N 3−ε) operations over the field, for some ε>0. The39

fastest known algorithms for this problem run in O(N 2.373) time [4, 51, 66]. These40

algorithms are known as algebraic: they rely on the ring structure of matrices over41

the field.42

There also exists a different family of algorithms for the BMM problem known as43

combinatorial. Their focus is on unveiling the combinatorial structure in the Boolean44

matrices to reduce redundant computations. A series of results [9,11,20] culminating45

in an Ô(N 3/ log4N )-time algorithm [70,71] (the Ô(·) notation suppresses polyloglog46

factors) has led to the popular combinatorial BMM conjecture stating that there is no47

combinatorial algorithm for BMM working in time O(N 3−ε), for any ε>0 [2]. There48

has been ample work on applying this conjecture to obtain BMM hardness results:49

see, e.g., [2, 22,40,49,50,52,60].50

String matching is another fundamental problem, asking to find all fragments of51

a string text of length n that match a string pattern of length m. This problem52

has several linear-time solutions [28]. In many real-world applications, it is often53

the case that letters at some positions are either unknown or uncertain. A way of54

representing these positions is with a subset of the alphabet Σ. Such a representation55

is called degenerate string. A special case of a degenerate string is when at such56

unknown or uncertain positions the only subset of the alphabet allowed is the whole57

alphabet. These special degenerate strings are more commonly known as strings58

with wildcards. The first efficient algorithm for a text and a pattern, where both59

may contain wildcards, was published by Fischer and Paterson in 1974 [35]. It has60

undergone several improvements since then [25,26,43,46]. The first efficient algorithm61

for a standard text and a degenerate pattern, which may contain any non-empty62

subset of the alphabet, was published by Abrahamson in 1987 [3], followed by several63

practically efficient algorithms [41,56,69].64

Degenerate letters are used in the IUPAC notation [45] to represent a position65

in a DNA sequence that can have multiple possible alternatives. These are used66

to encode the consensus of a population of sequences [5, 6, 37, 57, 63] in a multiple67

sequence alignment (MSA). In the presence of insertions or deletions in the MSA,68

we may need to consider alternative representations. Consider the following MSA of69

three closely-related sequences (on the left):70

GCAACGGGTA--TT

GCAACGGGTATATT

GCACCTGG----TT

T̃ =
{
GCA

}
·
{
A

C

}
·
{
C
}
·
{
G

T

}
·
{
GG
}
·

 TA

TATA

ε

 · {TT}71

These sequences can be compacted into a single sequence T̃ of sets of strings (on72

the right) containing some deterministic and some non-deterministic segments. A73

non-deterministic segment is a finite set of deterministic strings and may contain the74

empty string ε corresponding to a deletion. The total number of segments is the75

length of T̃ and the total number of letters is the size of T̃ . We denote the length by76

n = |T̃ | and the size by N = ||T̃ ||.77

This representation has been defined in [42] by Iliopoulos et al. as an elastic-78

degenerate (ED) string. Being a sequence of subsets of Σ∗, it can be seen as a general-79

ization of a degenerate string. The natural problem that arises is finding all matches80
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of a deterministic pattern P in an ED text T̃ . This is the elastic-degenerate string81

matching (EDSM) problem. Since its introduction in 2017 [42], it has attracted some82

attention in the combinatorial pattern matching community [58], and a series of re-83

sults have been published. The simple algorithm by Iliopoulos et al. [42] for EDSM84

was first improved by Grossi et al. in the same year, who showed that, for a pattern of85

length m, the EDSM problem can be solved on-line in O(nm2 +N) time [39]; on-line86

means that it reads the text segment-by-segment and reports an occurrence as soon87

as this is detected. This result was improved by Aoyama et al. [8] who presented88

an O(nm1.5
√

logm + N)-time algorithm. An important feature of these bounds is89

their linear dependency on N . A different branch of on-line algorithms waiving the90

linear-dependency restriction exists [23,24,39,59]. Moreover, the EDSM problem has91

been considered under Hamming and edit distance [16]. Recent results on founder92

block graphs [53] can also be casted on elastic-degenerate strings.93

A question with a somewhat similar flavor is the word break problem. We are given94

a dictionary D, m = ||D||, and a string S, n = |S|, and the question is whether we can95

split S into fragments that appear in D (the same element of D can be used multiple96

times). Backurs and Indyk [10] designed an Õ(nm1/2−1/18 + m)-time algorithm for97

this problem1. Bringmann et al. [18] improved this to Õ(nm1/3 + m) and showed98

that this is optimal for combinatorial algorithms by a reduction from k-Clique. Their99

algorithm uses fast Fourier transform (FFT), and so it is not clear whether it should100

be considered combinatorial. While this problem seems similar to EDSM, there does101

not seem to be a direct reduction and so their lower bound does not immediately102

apply.103

Our Results. It is known that BMM and triangle detection (TD) in graphs either104

both have truly subcubic combinatorial algorithms or none of them do [68]. Recall105

also that the currently fastest algorithm with linear dependency on N for the EDSM106

problem runs in O(nm1.5
√

logm+N) time [8]. In this paper we prove the following107

two theorems.108

Theorem 1.1. If the EDSM problem can be solved in O(nm1.5−ε + N) time,109

for any ε > 0, with a combinatorial algorithm, then there exists a truly subcubic110

combinatorial algorithm for TD.111

Arguably, the notion of combinatorial algorithms is not clearly defined, and The-112

orem 1.1 should be understood as an indication that in order to achieve a better113

complexity one should use fast matrix multiplication. Indeed, there are examples114

where a lower bound conditioned on BMM was helpful in constructing efficient algo-115

rithms using fast matrix multiplication [1,17,21,30,54,67,72]. We successfully design116

such a non-combinatorial algorithm by combining three ingredients: a string periodic-117

ity argument, FFT, and fast matrix multiplication. While periodicity is the usual tool118

in combinatorial pattern matching [29,47,48] and using FFT is also not unusual (for119

example, it often shows up in approximate string matching [3, 7, 25, 38]), to the best120

of our knowledge, we are the first to combine these with fast matrix multiplication.121

Specifically, we show the following result for the EDSM problem, where ω denotes the122

matrix multiplication exponent.123

Theorem 1.2. The EDSM problem can be solved on-line in Õ(nmω−1+N) time.124

In order to obtain a faster algorithm for the EDSM problem, we focus on the125

active prefixes (AP) problem that lies at the heart of all current solutions [8, 39]. In126

1 The Õ(·) notation suppresses polylog factors.
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the AP problem, we are given a string P of length m and a set of arbitrary prefixes127

P [1 . . i] of P , called active prefixes, stored in a bit vector U so that U [i] = 1 if P [1 . . i]128

is active. We are further given a set S of strings of total length N and we are asked to129

compute a bit vector V which stores the new set of active prefixes of P . A new active130

prefix of P is a concatenation of P [1 . . i] (such that U [i] = 1) and some element of S.131

Using the algorithmic framework introduced in [39], EDSM is addressed by solving132

an instance of the AP problem per each segment i of the ED text corresponding to set133

S of the AP problem. Hence, an O(f(m) +Ni) solution for the AP problem (with Ni134

being the size of a single segment of the ED text) implies an O(nf(m) +N) solution135

of EDSM, as f(m) is repeated n times and N =
∑n
i=1Ni. The algorithm of [8] solves136

the AP problem in O(m1.5
√

logm + Ni) time leading to O(nm1.5
√

logm + N) time137

for the EDSM problem. Our algorithm partitions the strings of each segment i of138

the ED text into three types according to a periodicity criterion, and then solves139

a restricted instance of the AP problem for each of the types. In particular, we140

solve the AP problem in Õ(mω−1 +Ni) time leading to Õ(nmω−1 +N) time for the141

EDSM problem. Given this connection between the two problems and, in particular,142

between their size parameter N , in the rest of the paper we will denote with N also143

the parameter Ni of the AP problem.144

An important building block in our solution that might find applications in other145

problems is a method of selecting a small set of length-` substrings of the pattern,146

called anchors, so that any relevant occurrence of a string from an ED text set contains147

at least one but not too many such anchors inside. This is obtained by rephrasing the148

question in a graph-theoretical language and then generalizing the well-known fact149

that an instance of the hitting set problem with m sets over [n], each of size at least150

k, has a solution of size O(n/k · logm). While the idea of carefully selecting some151

substrings of the same length is not new (for example Kociumaka et al. [48] used it152

to design a data structure for pattern matching queries on a string), our setting is153

different and hence so is the method of selecting these substrings.154

In addition to the conditional lower bound for the EDSM problem (Theorem 1.1),155

we also exhibit a reduction from BMM to AP that leads to the following conditional156

lower bound for AP.157

Theorem 1.3. If the AP problem can be solved in O(m1.5−ε +N) time, for any158

ε > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial159

algorithm for the BMM problem.160

We remark that Theorem 1.3 is also implied by Theorem 1.1, as described at the161

end of Section 4, but we believe that a direct reduction from BMM to AP serves as a162

good starting point for the more complicated reduction from BMM to EDSM.163

Roadmap. Section 2 provides the necessary definitions and notation as well as the164

algorithmic toolbox used throughout the paper. In Section 3 we prove our lower165

bound result for the AP problem (Theorem 1.3). The lower bound result for the166

EDSM problem is proved in Section 4 (Theorem 1.1). In Section 5 we present our167

algorithm for EDSM (Theorem 1.2); this is the most technically involved part of the168

paper.169

2. Preliminaries. Let T = T [1]T [2] . . . T [n] be a string of length |T | = n over a170

finite ordered alphabet Σ of size |Σ| = σ. For two positions i and j on T , we denote by171

T [i . . j] = T [i] . . . T [j] the substring of T that starts at position i and ends at position172

j (it is of length 0 if j < i). By ε we denote the empty string of length 0. A prefix of T173

is a substring of the form T [1 . . j], and a suffix of T is a substring of the form T [i . . n].174

This manuscript is for review purposes only.
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T r denotes the reverse of T , that is, T [n]T [n− 1] . . . T [1]. We say that a string X is175

a power of a string Y if there exists an integer k > 1, such that X is expressed as k176

consecutive concatenations of Y , denoted by X = Y k. A period of a string X is any177

integer p ∈ [1, |X|] such that X[i] = X[i + p] for every i = 1, 2, . . . , |X| − p, and the178

period, denoted by per(X), is the smallest such p. We call a string X strongly periodic179

if per(X) ≤ |X|/4.180

Lemma 2.1 ([33]). If p and q are both periods of the same string X, and addi-181

tionally p+ q ≤ |X|+ 1, then gcd(p, q) is also a period of X.182

A trie is a tree in which every edge is labeled with a single letter, and every two183

edges outgoing from the same node have different labels. The label of a node u in184

such a tree T , denoted by L(u), is defined as the concatenation of the labels of all185

the edges on the path from the root of T to u. By replacing each path p consisting186

of nodes with exactly one child by an edge labeled by the concatenation of the labels187

of the edges of p we obtain a compact trie. The nodes of the trie that are removed188

after this transformation are called implicit, while the remaining ones are referred to189

as explicit. The suffix tree of a string S is the compact trie representing all suffixes of190

S$, $ /∈ Σ, where instead of explicitly storing the label S[i . . j] of an edge we represent191

it by the pair (i, j).192

A heavy path decomposition of a tree T is obtained by selecting, for every non-193

leaf node u ∈ T , its child v such that the subtree rooted at v is the largest. This194

decomposes the nodes of T into node-disjoint paths, with each such path p (called a195

heavy path) starting at some node, called the head of p, and ending at a leaf. An196

important property of such a decomposition is that the number of distinct heavy197

paths above any leaf (that is, intersecting the path from a leaf to the root) is only198

logarithmic in the size of T [62].199

Let Σ̃ denote the set of all finite non-empty subsets of Σ∗. Previous works (cf. [8,200

15, 39, 42, 59]) define Σ̃ as the set of all finite non-empty subsets of Σ∗ excluding {ε}201

but we waive here the latter restriction as it has no algorithmic implications. An202

elastic-degenerate string T̃ = T̃ [1] . . . T̃ [n], or ED string, over alphabet Σ, is a string203

over Σ̃, i.e., an ED string is an element of Σ̃∗, and hence each T̃ [i] is a set of strings.204

Let T̃ denote an ED string of length n, i.e. |T̃ | = n. We assume that for any205

1 ≤ i ≤ n, the set T̃ [i] ∈ Σ̃ is implemented as an array and can be accessed by an206

index, i.e., T̃ [i] = {T̃ [i][k] | k = 1, . . . , |T̃ [i]|}. For any σ̃ ∈ Σ̃, ||σ̃|| denotes the total207

length of all strings in σ̃, and for any ED string T̃ , ||T̃ || denotes the total length of all208

strings in all T̃ [i]s. We will denote Ni =
∑|T̃ [i]|
k=1 |T̃ [i][k]| the total length of all strings209

in T̃ [i] and N =
∑n
i=1 ||T̃ [i]|| the size of T̃ . An ED string T̃ can be thought of as a210

compact representation of the set of strings A(T̃ ) which is the Cartesian product of211

all T̃ [i]s; that is, A(T̃ ) = T̃ [1]× . . .× T̃ [n] where A×B = {xy | x ∈ A, y ∈ B} for any212

sets of strings A and B.213

For any ED string X̃ and a pattern P , we say that P matches X̃ if:214

1. |X̃| = 1 and P is a substring of some string in X̃[1], or,215

2. |X̃| > 1 and P = P1 . . . P|X̃|, where P1 is a suffix of some string in X̃[1], P|X̃|216

is a prefix of some string in X̃[|X̃|], and Pi ∈ X̃[i], for all 1 < i < |X̃|.217

We say that an occurrence of a string P ends at position j of an ED string T̃ if218

there exists i ≤ j such that P matches T̃ [i] . . . T̃ [j]. We will refer to string P as the219

pattern and to ED string T̃ as the text. We define the main problem considered in220

this paper.221
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Elastic-Degenerate String Matching (EDSM)
INPUT: A string P of length m and an ED string T̃ of length n and size N ≥ m.
OUTPUT: All positions in T̃ where at least one occurrence of P ends.

222

Example 1. P = GTAT ends at positions 2, 6, and 7 of the following text T̃ .223

T̃ =
{
ATGTA

}
·
{
A

T

}
·
{
C
}
·
{
G

T

}
·
{
CG
}
·

 TA

TATA

ε

 ·
{
TATGC

TTTTA

}
224

Whenever |T̃ | = 1, the problem reduces to Case 1 only (searching for P in all225

strings of T̃ [1]), which can be done in O(N) time using any linear-time pattern-226

matching algorithm. In the general case of |T̃ |> 1, at a high-level, previous on-line227

solutions to EDSM consist of the following steps: (i) For each T̃ [i], for each S ∈ T̃ [i]228

that is long enough, search for occurrences of the whole of P in S (this corresponds to229

Case 1 of the definition of a match of P given above). Then (Case 2 of the definition230

of a match of P , in which an occurrence of P spans over several sets of strings), (ii)231

find the prefixes of P that match any suffix of some S ∈ T̃ [i], (iii) try to extend at T̃ [i]232

every partial occurrence of P , which has started earlier in T̃ , by solving an instance233

of AP, and (iv) if a full occurrence of P also ends at T̃ [i], then output position i;234

otherwise store the prefixes of P extended at T̃ [i], which will be further extended at235

T̃ [i+ 1].236

Aoyama et al. [8] obtained an on-line O(nm1.5
√

logm + N)-time algorithm by237

identifying Step (iii) as the bottleneck in this approach, observing that all other steps238

can be implemented in O(n+M) time, and designing an improved solution for Step239

(iii). We formally define the task that needs to be solved in Step (iii) as the Active240

Prefixes problem:241

Active Prefixes (AP)
INPUT: A string P of length m, a bit vector U of size m, a set S of strings of
total length N .
OUTPUT: A bit vector V of size m with V [j] = 1 if and only if there exists
S ∈ S and i ∈ [1,m], U [i] = 1, such that P [1 . . i]·S = P [1 . . i+|S|] and j = i+|S|.

242

In particular, given an ED text T̃ = T̃ [1] . . . T̃ [n], one should consider an instance243

of the AP problem per each T̃ [i]. Hence, an O(f(m) +Ni) solution for AP (Ni being244

the size of T̃ [i]) implies an O(n · f(m) +N) solution for EDSM, as f(m) is repeated245

n times and N =
∑n
i=1Ni. We provide an example of the AP problem.246

Example 2. Let P = ababbababab of length m = 11, U = 01000100000, and247

S = {ε, ab, abb, ba, baba}. We have that V = 01011101010.248

For our lower bound results we rely on BMM and the following closely related249

problem.250

Boolean Matrix Multiplication (BMM)
INPUT: Two N ×N Boolean matrices A and B.
OUTPUT: N ×N Boolean matrix C, where C[i, j] =

∨
k

(A[i, k] ∧B[k, j]).
251

Triangle Detection (TD)
INPUT: Three N ×N Boolean matrices A,B and C.
OUTPUT: Are there i, j, k such that A[i, j] = B[j, k] = C[k, i] = 1?

252
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An algorithm is called truly subcubic if it runs in O(N 3−ε) time, for some ε > 0.253

TD and BMM either both have truly subcubic combinatorial algorithms, or none of254

them do [68].255

3. AP Conditional Lower Bound. As a warm-up, in order to investigate the256

hardness of the EDSM problem, we first show that an O(m1.5−ε + N)-time solution257

to the active prefixes problem, that constitutes the core of the solutions proposed258

in [8, 39], would imply a truly subcubic combinatorial algorithm for Boolean matrix259

multiplication (BMM). We recall that in the AP problem, we are given a string P260

of length m and a set of prefixes P [1 . . i] of P , called active prefixes, stored in a bit261

vector U (U [i] = 1 if and only if P [1 . . i] is active). We are further given a set S of262

strings of total length N and we are asked to compute a bit vector V storing the new263

set of active prefixes of P : a prefix of P that extends P [1 . . i] (such that U [i] = 1)264

with some element of S. Of course, we can solve BMM by working over integers and265

using one of the fast matrix multiplication algorithms; plugging in the best known266

bounds results in an O(N 2.373)-time algorithm [4]. However, such an algorithm is267

not combinatorial, i.e., it uses algebraic methods. In comparison, the best known268

combinatorial algorithm for BMM works in Ô(N 3/ log4N ) time [71]. This leads to269

the following popular conjecture.270

Conjecture 1 ([2]). There is no combinatorial algorithm for the BMM problem271

working in time O(N 3−ε), for any ε > 0.272

Aoyama et al. [8] showed that the AP problem can be solved inO(m1.5
√

logm+N)273

time for constant-sized alphabets. Together with some standard string-processing274

techniques applied similarly as in [39], this is then used to solve the EDSM problem275

by creating an instance of the AP problem for every set T̃ [i] of T̃ , i.e., with S = T̃ [i].276

We argue that, unless Conjecture 1 is false, the AP problem cannot be solved in277

time O(m1.5−ε + N), for any ε > 0, with a combinatorial algorithm (note that the278

algorithm of Aoyama et al. [8] uses FFT, and so it is not completely clear whether it279

should be considered to be combinatorial). We show this by a reduction from combi-280

natorial BMM. Assume that, for the AP problem, we seek combinatorial algorithms281

with the running time O(m1.5−ε+N), i.e., with linear dependency on the total length282

of the strings. We need to show that such an algorithm implies that the BMM prob-283

lem can be solved in O(N 3−ε′) time, for some ε′ > 0, with a combinatorial algorithm,284

thus implying that Conjecture 1 is false.285

Theorem 1.3. If the AP problem can be solved in O(m1.5−ε +N) time, for any286

ε > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial287

algorithm for the BMM problem.288

Proof. Recall that in the BMM problem the matrices are denoted by A and B.289

In order to compute C=A×B, we need to find, for every i, j = 1, . . . ,N , an index k290

such that A[i, k] = 1 and B[k, j] = 1. To this purpose, we split matrix A into blocks291

of size N ·L and B into blocks of size L·L. This corresponds to considering values of292

j and k in intervals of size L, and clearly there are N/L such intervals. Matrix B is293

thus split into (N/L)2 blocks, giving rise to an equal number of instances of the AP294

problem, each one corresponding to an interval of j and an interval of k. We will now295

describe the instance corresponding to the (K,J)-th block, where 1 ≤ K,J ≤ N/L.296

We build the string P of the AP problem, for any block, as a concatenation of
N gadgets corresponding to i = 1, . . . ,N , and we construct the bit vector U (K,J) of
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the AP problem as a concatenation of N bit vectors, one per gadget. Each gadget
consists of the same string aLbaL; we set to 1 the k′-th bit of the i-th gadget bit
vector if A[i, (K−1)L+k′] = 1. The solution of the AP problem V (K,J) will allow us
to recover the solution of BMM, as we will ensure that the bit corresponding to the
j′-th a in the second half of the gadget is set to 1 if and only if, for some k′ ∈ [L],
A[i, (K − 1)L+ k′] = 1 and B[(K − 1)L+ k′, (J − 1)L+ j′] = 1. In order to enforce
this, we will include the following strings in set S(K,J):

aL−k
′
baj

′
, for every k′, j′ ∈ [L] such that B[(K − 1)L+ k′, (J − 1)L+ j′] = 1.

This guarantees that after solving the AP problem we have the required property,297

and thus, after solving all the instances, we have obtained matrix C=A×B. Indeed,298

consider values j, i.e., the index that runs on the columns of C, in intervals of size L.299

By construction and by definition of BMM, the i-th line of the J-th column interval300

of C is obtained by taking the disjunction of the second half of the i-th interval of301

each (K,J)-th bit vector for every K = 1, 2, . . . ,N/L.302

We have a total of (N/L)2 instances. In each of them, the total length of all
strings is O(L3), and the length of the input string P is (2L+1)N = O(L ·N ). Using
our assumed algorithm for each instance, we obtain the following total time:

O((N/L)2 · (L3 + (N · L)1.5−ε)) = O(N 2 · L+N 3.5−ε/L0.5+ε).

If we set L = N (1.5−ε)/(1.5+ε), then the total time becomes:303

O(N 2+(1.5−ε)/(1.5+ε) +N 3.5−ε−(0.5+ε)(1.5−ε)/(1.5+ε))304

= O(N 2+(1.5−ε)/(1.5+ε) +N 2+(1.5−ε)−(1.5−ε)(0.5+ε)/(1.5+ε))305

= O(N 2+(1.5−ε)/(1.5+ε) +N 2+(1.5−ε)(1.5+ε−0.5−ε)/(1.5+ε))306

= O(N 2+(1.5−ε)/(1.5+ε)).307

Hence we obtain a combinatorial BMM algorithm with complexity O(N 3−ε′) , where308

ε′ = 1− (1.5− ε)/(1.5 + ε) > 0.309

Example 3. Consider the following instance of the BMM problem with N = 6310

and L = 3.311

A B C312 

0 1 0
1 0 1
0 0 0

0 1 0
0 0 0
0 0 1

1 0 0
0 0 0
0 1 0

0 1 0
1 0 0
0 0 0


×



0 0 0
1 0 0
0 0 1

0 0 1
0 0 0
0 1 0

0 1 0
0 0 0
1 0 0

0 0 0
1 0 0
0 1 0


=



1 0 0
0 0 1
1 0 0

1 0 0
0 1 1
0 1 0

0 0 0
0 1 0
1 0 0

1 0 1
0 0 0
0 0 0


313

314
315

316

From matrices A and B, we now show how the resulting matrix C can be found317

by building and solving 4 instances of the AP problem constructed as follows. The318

pattern is319

P = aaabaaa · aaabaaa · aaabaaa · aaabaaa · aaabaaa · aaabaaa320

where the six gadgets are separated by a ′·′ to be highlighted. For the AP instances,321

the vectors U (K,J) shown below are the input bit vectors, and the sets S(K,J) are the322

input set of strings. For each instance, the bit vector V (K,J) shown below is the output323

of the AP problem.324
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325

As an example on how to obtain matrix C, consider the bold part of C above ( i.e.,326

the first line of block (1, 1) of C). This is obtained by taking the disjunction of the327

bold parts of V (1,1) and V (2,1).328

4. EDSM Conditional Lower Bound. Since the lower bound for the AP329

problem does not imply per se a lower bound for the whole EDSM problem, in this330

section we show a conditional lower bound for the EDSM problem. Specifically, we331

perform a reduction from Triangle Detection to show that, if the EDSM problem could332

be solved in O(nm1.5−ε +N) time, this would imply the existence of a truly subcubic333

algorithm for TD. We show that TD can be reduced to the decision version of the334

EDSM problem: the goal is to detect whether there exists at least one occurrence of335

P in T̃ . To this aim, given three matrices A, B, C, we first decompose matrix B into336

blocks of size N/s×N/s, where s is a parameter to be determined later; the pattern337

P is obtained by concatenating a number (namely z = N s2) of constituent parts Pi338

of length O(N/s), each one built with five letters from disjoint subalphabets. The339

ED text T̃ is composed of three parts: the central part consists of three degenerate340

segments, the first one encoding the 1s of matrix A, the second one those of matrix B341

and the third one those of matrix C. These segments are built in such a way that the342

concatenation of strings of subsequent segments is of the same form as the pattern’s343

building blocks. This central part is then padded to the left and to the right with344

sets containing appropriately chosen concatenations of substrings Pi of P , so that an345

occurrence of the pattern in the text implies that one of its building blocks matches346

the central part of the text, thus corresponding to a triangle. Formally:347

Theorem 1.1. If the EDSM problem can be solved in O(nm1.5−ε + N) time,348

for any ε > 0, with a combinatorial algorithm, then there exists a truly subcubic349
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combinatorial algorithm for TD.350

Proof. Consider an instance of TD, where we are given three N × N Boolean351

matrices A,B,C, and the question is to check if there exist i, j, k such that A[i, j] =352

B[j, k] = C[k, i] = 1. Let s be a parameter, to be determined later, that corresponds353

to decomposing B into blocks of size (N/s) × (N/s). We reduce to an instance of354

EDSM over an alphabet Σ of size O(N ). Let us remark that, since we search for exact355

occurrences of the pattern, it would also be possible to assume that the instance of356

EDSM we reduce to is over a constant-sized (binary) alphabet. We could in fact357

replace each letter of the O(N )-sized alphabet with its binary encoding, increasing358

the length of the involved strings by only a logarithmic factor.359

Pattern P . We construct P by concatenating, in some fixed order, the following
strings:

P (i, x, y) = v(i)xaN/sx$yaN/syv(i)

for every i = 1, 2, . . . ,N and x, y = 1, 2, . . . , s, where a ∈ Σ1, $ ∈ Σ2, x ∈ Σ3, y ∈ Σ4,360

v(i) ∈ Σ5, and Σ1,Σ2, . . . ,Σ5 are disjoint subsets of Σ.361

ED text T̃ . The text T̃ consists of three parts. Its middle part encodes all the entries362

equal to 1 in matrices A, B and C, and consists of three string sets X =X1 · X2 · X3,363

where:364

1. X1 contains all strings of the form v(i)xaj , for some i ∈ [N ], x ∈ [s] and365

j ∈ [N/s] such that A[i, (x− 1) · (N/s) + j] = 1;366

2. X2 contains all strings of the form aN/s−j x$yaN/s−k, for some x, y ∈ [s] and367

j, k ∈ [N/s] such that B[(x − 1) · (N/s) + j, (y − 1) · (N/s) + k] = 1, i.e., if368

the corresponding entry of B is 1;369

3. X3 contains all strings of the form akyv(i), for some i ∈ [N ], y ∈ [s] and370

k ∈ [N/s] such that C[(y − 1) · (N/s) + k, i] = 1.371

It is easy to see that |P (i, x, y)| = O(N/s). This implies the following:372

1. The length of the pattern is m = O(N · s2 · N/s) = O(N 2 · s);373

2. The total length of X is ||X || = O(N · s · N/s · N/s+ s2 · (N/s)2 · N/s+N ·374

s · N/s · N/s) = O(N 3/s).375

By the above construction, we obtain the following fact.376

Fact 1. P (i, x, y) matches X if and only if, for some j, k = 1, 2, . . . ,N/s, we377

have A[i, (x− 1) · (N/s) + j] = 1, B[(x− 1) · (N/s) + j, (y − 1) · (N/s) + k] = 1 and378

C[(y − 1) · (N/s) + k, i] = 1.379

Solving the TD problem thus reduces to taking the disjunction of all such con-380

ditions. Let us write down all strings P (i, x, y) in some arbitrary but fixed order to381

obtain P = P1P2 . . . Pz with z = N s2 being a power of 2, where every Pt = P (i, x, y),382

for some i, x, y. We aim to construct a small number of sets of strings that, when383

considered as an ED text, match any prefix P1P2 . . . Pt of the pattern, 1 ≤ t ≤ z − 1;384

a similar construction can be carried on to obtain sets of strings that match any suffix385

Pk . . . Pz−1Pz, 2 ≤ k ≤ z. These sets will then be added to the left and to the right386

of X , respectively, to obtain the ED text T̃ .387

ED Prefix. We construct log z sets of strings as follows. The first one contains388

the empty string ε and P1P2 . . . Pz/2. The second one contains ε, P1P2 . . . Pz/4389

and Pz/2+1 . . . Pz/2+z/4. The third one contains ε, P1P2 . . . Pz/8, Pz/4+1 . . . Pz/4+z/8,390

Pz/2+1 . . . Pz/2+z/8 and Pz/2+z/4+1 . . . Pz/2+z/4+z/8.391

Formally, for every i = 1, 2, . . . , log z, the i-th of such sets is:392

T̃ pi = ε ∪ {Pj z

2i−1 +1 . . . Pj z

2i−1 + z

2i
| j = 0, 1, . . . , 2i−1 − 1}.393
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ED Suffix. We similarly construct log z sets to be appended to X :394

T̃ si = ε ∪ {Pz−j z

2i−1− z

2i
+1 . . . Pz−j z

2i−1
| j = 0, 1, . . . , 2i−1 − 1}.395

The total length of all the ED prefix and ED suffix strings is O(log z · N 2 · s) =396

O(N 2 · s · logN ). The whole ED text T̃ is thus: T̃ = T̃ p1 · · · · · T̃
p
log z · X · T̃ slog z · · · · · T̃ s1 .397

We next show how a solution of such instance of EDSM corresponds to the solution398

of TD.399

Lemma 4.1. The pattern P occurs in the ED text T̃ if and only if there exist i, j, k400

such that A[i, j] = B[j, k] = C[k, i] = 1.401

Proof. By Fact 1, if such i, j, k exist then Pt matches X , for some t ∈ {1, . . . , z}.402

Then, by construction of the sets T̃ pi and T̃ si , the prefix P1 . . . Pt−1 matches the ED403

prefix (this can be proved by induction), and similarly the suffix Pt+1 . . . Pz matches404

the ED suffix, so the whole P matches T̃ , and so P occurs therein. In the other405

direction, assume that there is an occurrence of the pattern P in T̃ . Because the406

letter $ appears only in the center of every Pi and in the strings from X2, and it can407

be verified that in any string from T̃ p1 · · · · · T̃
p
log z or T̃ slog z · · · · · T̃ s1 there are fewer than408

z such letters, it must be the case that for some Pt its $ is aligned with a $ from some409

X2 ∈ X2. But then by the subalphabets being disjoint we must have X1X2X3 = Pt410

for some X1 ∈ X1, X2 ∈ X2, X3 ∈ X3, and by Fact 1 there exists a triangle.411

Note that for the EDSM problem we have m = N 2 · s, n = 1 + 2log z and N =412

||X ||+O(N 2·s·logN ). Thus if we had a solution running in O(log z ·m1.5−ε + ||X ||+413

N 2 · s · logN ) =O(logN · (N 2 · s)1.5−ε + N 3/s) time, for some ε > 0, by choosing414

a sufficiently small α > 0 and setting s = Nα we would obtain, for some δ > 0, an415

O(N 3−δ)-time algorithm for TD. This ends the proof of Theorem 1.1.416

In order to show that AP cannot be solved in time O(m1.5−ε +N) with a combi-417

natorial algorithm unless there is a truly subcubic combinatorial algorithm for BMM418

(Theorem 1.3), in Section 3, we have exhibited a fully detailed reduction from BMM419

to the AP problem. However, now that we have proved a lower bound for EDSM,420

we remark that Theorem 1.1 also implies Theorem 1.3. Indeed, assuming that the421

AP problem can be solved in O(m1.5−ε +N) time, then by calling the AP problem n422

times (as described in Section 2 under the definition of the EDSM problem), we could423

solve the EDSM problem in O(nm1.5−ε + N) time. At that point, we could apply424

Theorem 1.1 and obtain a truly subcubic combinatorial algorithm for BMM.425

5. An Õ(nmω−1 + N)-time Algorithm for EDSM. Our goal is to design a426

non-combinatorial Õ(nmω−1 + N)-time algorithm for EDSM, which in turn can be427

achieved with a non-combinatorial Õ(mω−1 +N)-time algorithm for the AP problem,428

that is the bottleneck of EDSM (cf. [39]).429

We reduce AP to a logarithmic number of restricted instances of the same prob-430

lem, based on the length of the strings in S. We start by giving a lemma that we will431

use to process näıvely the strings of length up to a constant c, to be determined later,432

in O(m logm+N) time.433

Lemma 5.1. For any integer t, all strings in S of length at most t can be processed434

in O(m logm+mt+N) time.435

Proof. We first construct the suffix tree ST of P in O(m logm) time [65]. Let us436

remark that we are spending O(m logm) time and not just O(m) so as to avoid any437

assumptions on the size of the alphabet. For every explicit node u ∈ ST , we construct438

a perfect hash function mapping the first letter on every edge outgoing from u to the439
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corresponding edge. This takes O(m logm) total time [61] and allows us to navigate440

in ST in constant time per letter. For every S ∈ S, find and mark its corresponding441

(implicit or explicit) node of ST . This takes O(N) time overall. For every possible442

length t′≤ t, scan P with a window of length t′ while maintaining its corresponding443

(implicit or implicit) node of ST . To move the window to the right, we first follow444

the suffix link of the current node (if the node is implicit, we follow the suffix link445

of its nearest explicit ancestor, and then descend to find the node corresponding to446

the truncated window), and then follow the appropriate edge. This takes O(mt) total447

time by standard amortization based on counting the number of explicit ancestors of448

the current node. If the current window P [i . . (i + t′ − 1)] corresponds to a marked449

node of ST and additionally U [i− 1] = 1, we set V [i+ t′ − 1] = 1.450

We build the restricted instances of the AP problem by considering only strings in451

Sk ⊆ S of length in [(19/18)k, (19/18)k+1) for each integer k ranging from
⌈

log c
log(19/18)

⌉
452

to
⌊

logm
log(19/18)

⌋
. These sets form a partition of the set of all strings in S of lengths up453

to m; longer strings are not needed when solving the AP problem.454

For each integer k from
⌈

log c
log(19/18)

⌉
to
⌊

logm
log(19/18)

⌋
, let ` be an integer such that455

the length of every string in Sk belongs to [9/8 · `, 5/4 · `). Note that such an integer456

always exists for an appropriate choice of the integer constant c. In fact, it must hold457

that458

9

8
· ` ≤

(
19

18

)k
<

(
19

18

)k+1

≤ 5

4
· ` ⇐⇒ 4

5
·
(

19

18

)k+1

≤ ` ≤ 8

9
·
(

19

18

)k
.459

To ensure that there exists an integer ` satisfying such conditions, we require that460

4

5
·
(

19

18

)k+1

+ 1 ≤ 8

9
·
(

19

18

)k
⇐⇒ 45

2
≤
(

19

18

)k
.461

The last equation holds for k ≥ 58, implying that we will process näıvely the strings462

of length up to c = 23, and each Sk, for k ranging from 58 to
⌊

logm
log(19/18)

⌋
, will be463

processed separately as described in the next paragraph.464

Remark 5.2. The length of every string in S belonging to [9/8 · `, 5/4 · `) implies465

that every string in S contains at most `/4 length-` substrings (and at least 1 + `/8466

of them).467

Denoting by Nk the total size of strings in Sk, we have that, if we solve every468

such instance of AP in O(Nk+f(m)) time, then we can solve the original instance of469

AP in O(N + f(m) logm) time by taking the disjunction of the results. Switching to470

Õ notation that disregards polylog factors, it thus suffices to solve each such instance471

of the AP problem in Õ(N +mω−1) time.472

We further partition the strings in Sk into three types, compute the corresponding473

bit vector V for each type separately and, finally, take the disjunction of the resulting474

bit vectors V to obtain the answer for each restricted instance.475

Partitioning Sk. Keeping in mind that from now on (until Section 5.4) we address476

the AP problem assuming that S only contains strings of length in [9/8 · `, 5/4 · `),477

and thus is in fact Sk, to lighten the notation we now switch back to denote it simply478

with S, and similarly write N to denote the total length of all strings given as the479

input to the AP problem. The three types of strings are as follows:480
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Type 1: Strings S ∈ S such that every length-` substring of S is not strongly peri-481

odic.482

Type 2: Strings S ∈ S containing at least one length-` substring that is not strongly483

periodic and at least one length-` substring that is strongly periodic.484

Type 3: Strings S ∈ S such that every length-` substring of S is strongly periodic485

(in Lemma 5.3 we show that in this case per(S) ≤ `/4).486

These three types are evidently a partition of S. We start with showing that, in487

fact, strings of type 3 are exactly strings with period at most `/4. It is straightfor-488

ward to verify that strings with period at most `/4 are such that all their length-`489

substrings have period at most `/4; the following lemma addresses the other (less490

obvious) direction.491

Lemma 5.3. Let S be a string. If per(S[j . . j + ` − 1]) ≤ `/4 for every j then492

per(S) ≤ `/4.493

Proof. We first show that, for any string W and letters a, b, if per(aW ) ≤ |aW |/4494

and per(Wb) ≤ |Wb|/4 then per(aW ) = per(Wb). This follows from Lemma 2.1: since495

per(aW ) and per(Wb) are both periods of W and (1 + |W |)/4 ≤ |W |/2, then we have496

that d = gcd(per(aW ),per(Wb)) is a period of W . Assuming by contradiction that497

per(aW ) 6= per(Wb), then it must be that either d < per(aW ) or d < per(Wb); by498

symmetry it is enough to consider the former possibility, and we claim that then d is a499

period of aW . Indeed, a = W [per(aW )] (observe that, since per(aW ) ≤ (1+|W |)/4 ≤500

|W |/2, in particular per(aW ) < |W |) and W [i] = W [i+d] for any i = 1, 2, . . . , |W |−d,501

so by per(aW ) being a multiple of d, we obtain that a = W [per(aW )] = W [d], which is502

a contradiction because, by definition of per(aW ), we have that d < per(aW ) cannot503

be a period of aW .504

If per(S[j . . j+`−1]) ≤ `/4 for every j then by the above reasoning the periods of505

all substrings S[j . . j+`−1] are all equal to the same p ≤ `/4. But then S[i] = S[i+p]506

for every i, so per(S) ≤ `/4.507

Before proceeding with the algorithm, we show that, for each string S ∈ S, we508

can determine its type in O(|S|) time.509

Lemma 5.4. Given a string S we can determine its type in O(|S|) time.510

Proof. It is well-known that per(T ) can be computed in O(|T |) time for any string511

T (cf. [28]). We partition S into blocks Tα = S[αb`/2c . . (α+1)b`/2c−1] of size b`/2c,512

and compute per(Tα) for every α in O(|S|) total time. Observe that every substring513

S[i . . i+ `− 1] contains at least one whole block inside.514

If per(Tα) > `/4 then the period of any substring S[i . . i+ `− 1] that contains Tα515

is also larger than `/4. Consequently, if per(Tα) > `/4 for every α, then we declare S516

to be of type 1.517

Consider any α such that p = per(Tα) ≤ `/4. If the period p′ of a substring518

S′ = S[i . . i+ `− 1] that contains Tα is at most `/4, then in fact it must be equal to519

p, because p′ ≥ p and so, by Lemma 2.1 applied on Tα, p′ must be a multiple of p520

and, by repeatedly applying S′[j] = S′[j+p′] and Tα[j] = Tα[j+p] and using the fact521

that Tα occurs inside S′, we conclude that in fact S′[j] = S′[j+ p] for any j, and thus522

p′ = p. This allows us to check whether there exists a substring S′ = S[i . . i+ `− 1]523

that contains Tα such that per(S′) ≤ `/4 by computing, in O(`) time, how far the524

period p extends to the left and to the right of Tα in Tα−1TαTα+1 (if either Tα−1 or525

Tα+1 do not exist, then we do not extend the period in the corresponding direction).526

There exists such a substring S′ if and only if the length of the extended substring527

with period p is at least `. Therefore, for every α we can check in O(`) time if there528
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exists a length-` substring S′ containing Tα with per(S′) ≤ `/4. By repeating this529

procedure for every α, we can distinguish between S of type 2 and S of type 3 in530

O(|S|) total time.531

Since we have shown how to efficiently partition the strings of S into the three532

types, in what follows we present our solution of the AP problem for each type of533

strings separately.534

5.1. Type 1 Strings. In this section we show how to solve a restricted instance535

of the AP problem where every string S ∈ S is of type 1, that is, each of its length-`536

substrings is not strongly periodic, and furthermore |S| ∈ [9/8 · `, 5/4 · `) for some537

` ≤ m. Observe that all (and hence at most `/4 by Remark 5.2) length-` substrings of538

any S ∈ S must be distinct, as otherwise we would be able to find two occurrences of539

a length-` substring at distance at most `/4 in S, making the period of the substring540

at most `/4 and contradicting the assumption that S is of type 1.541

We start with constructing the suffix tree ST of P (our pattern in the EDSM542

problem) and storing, for every node, the first letters on its outgoing edges in a static543

dictionary with constant access time. Then, for every S ∈ S, we check in O(|S|) time544

using ST if it occurs in P and, if not, we disregard it from further consideration.545

Therefore, from now on we assume that all strings S, and thus all their length-`546

substrings, occur in P . We will select a set of length-` substrings of P , called the547

anchors, each represented by one of its occurrences in P , such that:548

1. The total number of occurrences of all anchors in P is O(m/` · logm).549

2. For every S ∈ S, at least one of its length-` substrings is an anchor.550

3. The total number of occurrences of all anchors in strings S ∈ S is O(|S| ·551

logm).552

We formalize this using the following auxiliary problem, which is a strengthening of553

a well-known Hitting Set problem, which given a collection of m sets over [n], each of554

size at least k, asks to choose a subset of [n] of size O(n/k · logm) that nontrivially555

intersects every set.556

Node Selection (NS)
INPUT: A bipartite graph G = (U, V,E) with deg(u) ∈ (d, 2d] for every u ∈ U
and weight w(v) for every v ∈ V , where W =

∑
v∈V w(v).

OUTPUT: A set V ′ ⊆ V of total weight O(W/d·log |U |) such that N [u]∩V ′ 6= ∅
for every node u ∈ U , and

∑
u∈U |N [u] ∩ V ′| = O(|U | log |U |).

557

We reduce the problem of finding anchors to an instance of the NS problem, by558

building a bipartite graph G in which the nodes in U correspond to strings S ∈ S,559

the nodes in V correspond to distinct length-` substrings of P , and there is an edge560

(u, v) if the length-` string corresponding to v occurs in the string S corresponding561

to u. Using suffix links, we can find the node of the suffix tree corresponding to562

every length-` substring of S in O(|S|) total time, so the whole construction takes563

O(m logm+
∑
S∈S |S|) = O(m logm+N) time. The size of G is O(m+N), and the564

degree of every node in U belongs to (`/8, `/4]. We set the weight of a node v ∈ V to565

be its number of occurrences in P , and solve the obtained instance of the NS problem566

to obtain the set of anchors. We remark that, because each string S ∈ S can be567

assumed to be a substring of P and we do not need to keep duplicate strings in S,568

we have log |U | = Θ(logm) and the three required properties indeed hold assuming569

that we have found a solution. However, it is not immediately clear that an instance570

of the NS problem always has a solution. We show that indeed it does, and that it571
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can be found in linear time.572

Lemma 5.5. A solution to an instance of the NS problem always exists and can573

be found in linear time in the size of G.574

Proof. We first show a solution that uses the probabilistic method and leads us575

to an efficient Las Vegas algorithm; we will then derandomize the solution using the576

method of conditional expectations.577

We independently choose each node of V with probability p to obtain the set V ′578

of selected nodes. The expected total weight of V ′ is
∑
v∈V p · w(v) = p ·W , so by579

Markov’s inequality it exceeds 4p ·W with probability at most 1/4. For every node580

u ∈ U , the probability that N [u] does not intersect V ′ is at most (1 − p)d ≤ e−pd.581

Finally, E[
∑
u∈U |N [u]∩ V ′|] ≤ |U | · 2pd, so by Markov’s inequality

∑
u∈U |N [u]∩ V ′|582

exceeds |U | · 8pd with probability at most 1/4. We set p = ln(4|U |)/d (observe that583

if p > 1 then we can select all nodes in V ). By union bound, the probability that V ′584

is not a valid solution is at most 3/4, so indeed a valid solution exists. Furthermore,585

this reasoning gives us an efficient Las Vegas algorithm that chooses V ′ randomly586

as described above and then verifies if it constitutes a valid solution. Each iteration587

takes linear time in the size of G, and the expected number of required iterations is588

constant.589

To derandomize the above procedure we apply the method of conditional expec-590

tations. Let X1, X2, . . . be the binary random variables corresponding to the nodes591

of V . Recall that in the above proof we set Xi = 1 with probability p. Now we592

will choose the values of X1, X2, . . . one-by-one. Define a function f(X1, X2, . . .) that593

bounds the probability that X1, X2, . . . corresponds to a valid solution as follows:594

f(X1, X2, . . .) =

∑
vXv · w(v)

4W/d · ln(4|U |)
+
∑
u∈U

∏
v∈N [u]

(1−Xv) +

∑
u∈U

∑
v∈N [u]Xv

8|U | ln(4|U |)
.595

As explained above, we have E[f(X1, X2, . . .)] = 3/4. Assume that we have already596

fixed the values X1 = x1, . . . , Xi = xi. Then there must be a choice of Xi+1 = xi+1597

that does not increase the expected value of f(X1, X2, . . .) conditioned on the already598

chosen values. We want to compare the following two quantities:599

E[f(X1, X2, . . .) |X1 = x1, . . . , Xi = xi, Xi+1 = 0]600

E[f(X1, X2, . . .) |X1 = x1, . . . , Xi = xi, Xi+1 = 1]601602

and choose xi+1 corresponding to the smaller one. Canceling out the shared terms,603

we need to compare the expected values of:604

0 +
∑

u∈N [i+1]

∏
v∈N [u]

(1−Xv) + 0 and605

w(i+ 1)

4W/d · ln(4|U |)
+ 0 +

deg(i+ 1)

8|U | ln(4|U |)
.606

607

The second quantity can be computed in constant time. We claim that (ignoring the608

issue of numerical precision) the first quantity can be computed in time O(deg(i+ 1))609

after a linear-time preprocessing as follows. In the preprocessing we compute and610

store E[i] = (1 − p)i, for every i = 0, 1, . . . , |V | in O(|V |) total time. Then, during611

the computation we maintain, for every u ∈ U , the number c[u] of v ∈ N [u] for which612

we still need to choose the value Xe, and a single bit b[u] denoting whether for some613

This manuscript is for review purposes only.



16 G. BERNARDINI, P. GAWRYCHOWSKI, N. PISANTI, S. P. PISSIS, AND G. ROSONE

v ∈ N [u] ∩ {1, . . . , i} we already have xv = 1. This information can be updated in614

O(deg(i+ 1)) time after selecting xi+1. Now to compute the first quantity, we iterate615

over u ∈ N [i + 1] and, if b[u] = 0 then we add E[c[u]] to the result. Finally, we616

claim that it is enough to implement all calculations with precision of Θ(log |V |) bits.617

This is because such precision allows us to calculate both quantities with relative618

accuracy 1/(8|V |), so the expected value of f(X1, X2, . . .) might increase by a factor619

of (1 + 1/(4|V |)) in every step, which is at most (1 + 1/(4|V |))|V | ≤ e1/4 overall. This620

still guarantees that the final value is at most 3/4 · e1/4 < 1, so we obtain a valid621

solution.622

In the rest of this section we explain how to compute the bit vector V from the bit623

vector U , and thus solve the AP problem, after having obtained a set A of anchors.624

For any S ∈ S, since S contains an occurrence of at least one anchor H ∈A, say625

S[j . .(j+ |H|−1)]=H, so any occurrence of S in P can be generated by choosing626

some occurrence of H in P , say P [i . . (i + |H| − 1)] = H, and then checking that627

S[1 . . (j−1)] = P [(i−j+1) . . (i−1)] and S[(j+|H|) . . |S|] = P [(i+|H|) . . (i+|S|−j)].628

In other words, S[1 . . (j− 1)] should be a suffix of P [1 . . (i− 1)] and S[(j+ |H|) . . |S|]629

should be a prefix of P [(i+|H|) . . |P |]. In such case, we say that the occurrence of S in630

P is generated by H. By the properties of A, any occurrence of S ∈ S is generated by631

occS ≥ 1 occurrences of anchors, where
∑
S∈S occS = O(|S| logm). For every H ∈A632

we create a separate data structure D(H) responsible for setting V [i + |S|−1] = 1,633

when U [i− 1]=1 and P [i . .(i+|S|−1)]=S is generated by H. We now first describe634

what information is used to initialize each D(H), and how this is later processed to635

update V .636

Initialization. D(H) consists of two compact tries T (H) and T r(H). For every637

occurrence of H in P , denoted by P [i . . (i+ |H|−1)] = H, T (H) should contain a leaf638

corresponding to P [(i + |H|) . . |P |]$ and T r(H) should contain a leaf corresponding639

to (P [1 . . (i− 1)])r$, both decorated with position i. Additionally, D(H) stores a list640

L(H) of pairs of nodes (u, v), where u ∈ T r(H) and v ∈ T (H) (both nodes might be641

implicit or explicit). Each such pair corresponds to an occurrence of H in a string642

S ∈ S, S[j . . (j + |H| − 1)] = H, where u is the node of T r(H) corresponding to643

(S[1 . . (j − 1)])r$ and v is the node of T (H) corresponding to S[(j + |H|+ 1) . . |S|]$.644

We claim that D(H), for all H, can be constructed in O(m logm+N) total time.645

We first construct the suffix tree ST of P$ and the suffix tree ST r of P r$ (again in646

O(m logm) time not to make assumptions on the alphabet). We augment both trees647

with data for answering both weighted ancestor (WA) and lowest common ancestor648

(LCA) queries, that are defined as follows. For a rooted tree T on n nodes with an649

integer weight D(v) assigned to every node u, such that the weight of the root is650

zero and D(u) < D(v) if u is the parent of v, we say that a node v is a weighted651

ancestor of a node v at depth `, denoted by WAT (u, `), if v is the highest ancestor652

of u with weight at least `. Such queries can be answered in O(log n) time after an653

O(n) preprocessing [32]. For a rooted tree T , LCAT (u, v) is the lowest node that is an654

ancestor of both u and v. Such queries can be answered in O(1) time after an O(n)655

preprocessing [12]. Recall that every anchor H is represented by one of its occurrences656

in P . Using WA queries, we can access in O(logm) time the nodes corresponding to H657

and Hr, respectively, and extract a lexicographically sorted list of suffixes following an658

occurrence of H in P$ and a lexicographically sorted list of reversed prefixes preceding659

an occurrence of H in P r$ in time proportional to the number of such occurrences.660

Then, by iterating over the lexicographically sorted list of suffixes and using LCA661

queries on ST we can build T (H) in time proportional to the length of the list, and662
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H

T r(H) T (H)

i

i

v
u

Fig. 1. An occurrence of S starting at position i in P is generated by H: (u, v) corresponds to
S[j . . (j + |H| − 1)] = H and i appears in the subtree of T r(H) rooted at u, as well as in the subtree
of T (H) rooted at v.

similarly we can build T r(H). To construct L(H) we start by computing, for every663

S ∈ S and j = 1, . . . , |S|, the node of ST r corresponding to (S[1 . . j])r and the node664

of ST corresponding to S([(j + 1) . . |S|] (the nodes might possibly be implicit). This665

takes only O(|S|) time, by using suffix links. We also find, for every length-` substring666

S[j . . (j+ `−1)] of S, an anchor H ∈ A such that S[j . . (j+ `−1)] = H, if any exists.667

This can be done by finding the nodes (implicit or explicit) of ST that correspond to668

the anchors, and then scanning over all length-` substrings while maintaining the node669

of ST corresponding to the current substring using suffix links in O(|S|) total time.670

After having determined that S[j . . (j + `− 1)] = H we retrieve the previously found671

nodes u of ST r and v of ST corresponding to (S[1 . . (j − 1)])r and S[(j + `) . . |S|],672

respectively. Then we look up the node u′ ∈ T r(H) corresponding to u and the node673

v′ ∈ T (H) corresponding to v, and if they both exist we add (u, v) to L(H). This674

lookup can be implemented in O(logm) time by binary searching over the leaves of675

the compact tries. By construction, we have the following property, also illustrated676

in Figure 1.677

Fact 2. A string S ∈ S starts at position i−j+1 in P if and only if, for some678

anchor H ∈ A, L(H) contains a pair (u, v) corresponding to S[j . . (j+|H|−1)] =H,679

such that the subtree of T r(H) rooted at u and that of T (H) rooted at v contain a leaf680

decorated with i.681

Note that the overall size of all lists L(H), when summed up over all H ∈ A, is682 ∑
S∈S occS = O(|S| logm), and since each S is of length at least ` this isO(N/`·logm).683

Processing. The goal of processing D(H) is to efficiently process all occurrences684

generated by H. As a preliminary step, we decompose T r(H) and T (H) into heavy685

paths. Then, for every pair of leaves u ∈ T r(H) and v ∈ T (H) decorated by the same686

i, we consider all heavy paths above u and v. Let p = u1 − u2 − . . . be a heavy path687

above u in T r(H) and q = v1 − v2 − . . . be a heavy path above v in T (H), where688

u1 is the head of p and v1 is the head of q, respectively. Further, choose the largest689

x such that u is in the subtree rooted at ux, and the largest y such that v is in the690

subtree rooted at vy (this is well-defined by the choice of p and q, as u is in the subtree691

rooted at u1 and v is in the subtree rooted at v1). We add (i, | L(ux)|, | L(vy)|) to an692

auxiliary list associated with the pair of heavy paths (p, q), where L(u) denotes the693

concatenation of the edge labels on the path from the root to node u. In the rest694

of the processing we work with each such list separately. Notice that the overall size695

of all auxiliary lists, when summed up over all H ∈ A, is O(m/` · log3m), because696

there are at most log2m pairs of heavy paths above u and v decorated by the same i,697
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H

T r(H) T (H)

i i
vu

ux vy

Fig. 2. An occurrence of S starting at position i in P corresponds to a triple (i,L(ux),L(vy))
on some auxiliary list.

and the total number of leaves in all trees T r(H) and T (H) is bounded by the total698

number of occurrences of all anchors in P , which is O(m/` · logm). By Fact 2, there699

is an occurrence of a string S generated by H and starting at position i− j+ 1 in P if700

and only if L(H) contains a pair (u, v) corresponding to S[j . . (j+ |H|−1)] = H such701

that, denoting by p the heavy path containing u in T r(H) and by q the heavy path702

containing v in T (H), the auxiliary list associated with (p, q) contains a triple (i, x, y)703

such that x ≥ |L(u)| and y ≥ |L(v)|. This is illustrated in Figure 2. Henceforth,704

we focus on the problem of processing a single auxiliary list associated with (p, q),705

together with a list of pairs (u, v), such that u belongs to p and v belongs to q.706

Processing an auxiliary list can be interpreted geometrically as follows: for ev-707

ery (i, x, y) we create a red point (x, y), and for every (u, v) we create a blue point708

(| L(u)|, | L(v)|). Then, each occurrence of S ∈ S generated by H corresponds to a709

pair of points (p1, p2) such that p1 is red, p2 is blue, and p1 dominates p2. We further710

reduce this to a collection of simpler instances in which all red points already dom-711

inate all blue points. This can be done with a divide-and-conquer procedure which712

is essentially equivalent to constructing a 2D range tree [13]: we first apply a divide-713

and-conquer that splits the current set of points along the median x coordinate, and714

inside every each obtained subproblem consisting of the left and the right part we ap-715

ply another divide-and-conquer that splits the current set of points along the median y716

coordinate. The total number of points in all obtained instances increases by a factor717

of O(log2m), making the total number of red points in all instances O(m/` · log5m),718

while the total number of blue points is O(N/` · log3m). There is an occurrence of719

a string S ∈ S generated by H and starting at position i − j + 1 in P if and only if720

some simpler instance contains a red point created for some (i, x, y) and a blue point721

created for some (u, v) corresponding to S[j . . (j+ |H| − 1)] = H. In the following we722

focus on processing a single simpler instance.723

To process a simpler instance we need to check if U [i − j] = 1, for a red point724

created for some (i, x, y) and a blue point created for some (u, v) corresponding to725

S[j . . (j + |H| − 1)] = H, and if so set V [i − j + |S|] = 1. This has a natural726

interpretation as an instance of BMM: we create a d5/4 · `e× d5/4 · `e matrix M such727

that M [|S|−j, d5/4 ·`e+1−j] = 1 if and only if there is a blue point created for some728

(u, v) corresponding to S[j . . (j + |H| − 1)] = H; then for every red point created for729

some (i, x, y) we construct a bit vector Ui = U [(i−d5/4 · `e) . . (i− 1)] (if i < d5/4 · `e,730

we pad Ui with 0s to make its length always equal to d5/4 ·`e); calculate Vi = M×Ui;731

and finally set V [i+ j] = 1 whenever Vi[j] = 1 (and i+ j ≤ m).732

Lemma 5.6. Vi[k] = 1 if and only if there is a blue point created for some (u, v)733

corresponding to S[j . . (j + |H| − 1)] = H such that U [i− j] = 1 and k = |S| − j.734
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Proof. By definition of Vi = M × Ui, we have that Vi[k] = 1 if and only if735

M [k, t] = 1 for some t such that Ui[t] = 1. By definition of Ui, we have that Ui[t] = 1736

if and only if U [i − d5/4 · `e + t − 1] = 1, and hence the previous condition can be737

rewritten as M [k, t] = 1 and U [i−d5/4 ·`e+t−1] = 1, or equivalently, by substituting738

j = d5/4 · `e+ 1− t, M [k, d5/4 · `e+ 1− j] = 1 and U [i− j] = 1. By definition of M ,739

we have that M [k, d5/4 · `e+ 1− j] = 1 if and only if there is a blue point created for740

some (u, v) corresponding to S[j . . (j + |H| − 1)] = H with k = |S| − j, which proves741

the lemma.742

The total length of all vectors Ui and Vi is O(m log5m), so we can afford to743

extract the appropriate fragment of U and then update the corresponding fragment744

of V . The bottleneck is computing the matrix-vector product Vi = M ×Ui. Since the745

total number of 1s in all matrices M is bounded by the total number of blue points,746

a näıve method would take O(N/` · log3m) time; we overcome this by processing747

together all multiplications concerning the same matrix M , thus amortizing the costs.748

Let Ui1 , Ui2 , . . . , Uis be all bit vectors that need to be multiplied with M , and let z749

a parameter to be determined later. We distinguish between two cases: (i) if s < z,750

then we compute the products näıvely by iterating over all 1s in M , and the total751

computation time, when summed up over all such matrices M , is O(N/` · log3m · z);752

(ii) if s ≥ z, then we partition the bit vectors into ds/ze ≤ s/z + 1 groups of z753

(padding the last group with bit vectors containing all 0s) and, for every group, we754

create a single matrix whose columns contain all the bit vectors belonging to the755

group. Thus, we reduce the problem of computing all matrix-vector products M ×Ui756

to that of computing O(s/z) matrix-matrix products of the form M ×M ′, where M ′757

is an d5/4 · `e × z matrix. Even if M ′ is not necessarily a square matrix, we can still758

apply the fast matrix multiplication algorithm to compute M×M ′ using the standard759

trick of decomposing the matrices into square blocks.760

Lemma 5.7. If two N ×N matrices can be multiplied in O(Nω) time, then, for761

any N ≥ N ′, an N ×N and an N ×N ′ matrix can be multiplied in O((N/N ′)2N ′ω)762

time.763

Proof. We partition both matrices into blocks of size N ′×N ′. There are (N/N ′)2764

such blocks in the first matrix and N/N ′ in the second matrix. Then, to compute765

the product we multiply each block from the first matrix by the appropriate block in766

the second matrix in O(N ′ω) time, resulting in the claimed complexity.767

By applying Lemma 5.7, we can compute M ×M ′ in O(`2zω−2) time (as long768

as we later verify that 5/4 · ` ≥ z), so all products M × Ui can be computed in769

O(`2zω−2·(s/z+1)) time. Note that this case can occur onlyO(m/(`·z)·log5m) times,770

because all values of s sum up to O(m/` · log5m). This makes the total computation771

time, when summed up over all such matrices M , O(`2zω−2 · m/(` · z) · log5m) =772

O(`zω−3 ·m log5m). We can now prove our final result for strings of type 1.773

Theorem 5.8. An instance of the AP problem where all strings are of type 1 can774

be solved in Õ(mω−1 +N) time.775

Proof. The total time complexity is first O(m + N) to construct the graph G,776

then O(m logm + N) to solve its corresponding instances of the NodeSelection777

problem and obtain the set of anchors H. The time to initialize all structures D(H)778

is O(m logm+N). For every D(H), we obtain in O(m/` · log5m+N/` · log3m) time a779

number of simpler instances, and then construct the corresponding Boolean matrices780

M and bit vectors Ui in additional O(m log5m) time. Note that some M might be781

sparse, so we need to represent them as a list of 1s. Then, summing up over all matrices782
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M and both cases, we spend O(N/` · log3m ·z+`zω−3 ·m log5m) time. We would like783

to assume that ` ≥ log3m so that we can set z = `/ log3m. This is indeed possible,784

because for any t we can switch to a more näıve approach to process all strings of length785

at most t in O(m logm + mt + N) time as described in Lemma 5.1. After applying786

it with t = log3m in O(m log3m+N) time, we can set z = `/ log3m (so that indeed787

5/4 · ` ≥ z as required in case s ≥ z) and the overall time complexity for all matrices788

M and both cases becomes O(N + `ω−2 ·m log5+3(3−ω)m). Taking the initialization789

into account we obtain O(m log5m + `ω−2 ·m log5+3(3−ω)m + N) = Õ(mω−1 + N)790

total time.791

5.2. Type 2 Strings. In this section we show how to solve a restricted instance792

of the AP problem where every string S ∈ S is of type 2, that is, S contains a length-`793

substring that is not strongly periodic as well as a length-` substring that is strongly794

periodic, and furthermore |S| ∈ [9/8 · `, 5/4 · `) for some ` ≤ m.795

Similarly as in Section 5.1, we select a set of anchors. In this case, instead of the796

NodeSelection problem we need to exploit periodicity. We call a string T `-periodic797

if |T | ≥ ` and per(T ) ≤ `/4. We consider all maximal `-periodic substrings of S, that798

is, `-periodic substrings S[i . . j] such that either i = 1 or per(S[(i − 1) . . j]) > `/4,799

and j = |S| or per(S[i . . (j + 1)]) > `/4. We know that S contains at least one such800

substring (because there exists a length-` substring that is strongly periodic), and801

that the whole S is not such a substring (because otherwise S would be of type 3).802

Further, two maximal `-periodic substrings cannot overlap too much, as formalized803

in the following lemma.804

Lemma 5.9. Any two distinct maximal `-periodic substrings of the same string S805

overlap by less than `/2 letters.806

Proof. Assume (by contradiction) the opposite; then we have two distinct `-807

periodic substrings S[i . . j] and S[i′ . . j′] such that i < i′ ≤ j < j′ and j− i′+1 ≥ `/2.808

Then, both p = per(S[i . . j]) and p′ = per(S[i′ . . j′]) are periods of S[i′ . . j], and hence809

by Lemma 2.1 we have that gcd(p, p′) is a period of S[i′ . . j]. If p 6= p′ then, because810

S[i′ . . j] contains an occurrence of both S[i . . (i + p − 1)] and S[i′ . . (i′ + p′ − 1)], we811

obtain that one of these two substrings is a power of a shorter string, thus contradict-812

ing the definition of p or p′. So p = p′, but then p ≤ `/4 is actually a period of the813

whole S[i . . j′], meaning that S[i . . j] and S[i′ . . j′] are not maximal, a contradiction.814

By Lemma 5.9, every S ∈ S contains exactly one maximal `-periodic substring,815

and by the same argument P contains O(m/`) such substrings. The set of anchors816

will be generated by considering the unique maximal `-periodic substring of every817

S ∈ S, so we first need to show how to efficiently generate such substrings.818

Lemma 5.10. Given a string S of length at most 5/4 · `, we can generate its819

(unique) maximal `-periodic substring in O(|S|) time.820

Proof. We start with observing that any length-` substring of S must contain821

S[(b`/2c + 1) . . `] inside. Consequently, we can proceed similarly as in the proof of822

Lemma 5.4. We compute p = per(S[(b`/2c+ 1) . . `]) in O(|S|) time. If p > `/4 then823

S does not contain any `-periodic substrings. Otherwise, we compute in O(|S|) time824

how far the period p extends to the left and to the right; that is, we compute the825

smallest i ≤ b`/2c + 1 such that S[k] = S[k + p] for every k = i, i + 1, . . . , b`/2c826

and the largest j ≥ ` such that S[k] = S[k − p] for every k = ` + 1, ` + 2, . . . , j. If827

j− i+1 ≥ ` then S[i . . j] is a maximal `-periodic substring of S, and, as shown earlier828

by Lemma 5.9, S cannot contain any other maximal `-periodic substrings. We return829
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S[i . . j] as the (unique) maximal `-periodic substring of S.830

For every S ∈ S, we apply Lemma 5.10 on S to find its (unique) maximal `-831

periodic substring S[i . . j] in O(|S|) time. If i > 1 then we designate S[(i− 1) . . (i−832

1 + `)] as an anchor, and similarly if j < |S| we designate S[(j+ 1− `) . . (j+ 1)] as an833

anchor. Observe that because S is of type 2 (and not of type 3) either i > 1 or j < |S|,834

so for every S ∈ S we designate at least one if its length-(`+1) substrings as an anchor.835

As in Section 5.1, we represent each anchor by one of its occurrences in P , and so836

need to find its corresponding node in the suffix tree of P (if any). This can be done837

in O(|S|) time, so O(N) overall. During this process we might designate the same838

string as an anchor multiple times, but we can easily remove the possible duplicates839

to obtain the set A of anchors in the end. Then, we generate the occurrences of840

all anchors in P by accessing their corresponding nodes in the suffix tree of P and841

iterating over all leaves in their subtrees. We claim that the total number of all these842

occurrences is only O(m/`). This follows from the following characterization.843

Lemma 5.11. If P [x . . (x+ `)] is an occurrence of an anchor then either P [(x+844

1) . . y] is a maximal `-periodic substring of P , for some y ≥ x+`, or P [x′ . . (x+`−1)]845

is a maximal `-periodic substring of P , for some x′ ≤ x.846

Proof. By symmetry, it is enough to consider an anchor H created because of a847

maximal `-periodic substring S[i . . j] such that i > 1, when we add S[(i−1) . . (i−1+`)]848

to A. Thus, per(H[2 . . |H|]) ≤ `/4 and if P [x . . (x+`)] = H then per(P [(x+1) . . (x+849

`)]) ≤ `/4, making P [(x+1) . . (x+`)] a substring of some maximal `-periodic substring850

of P [(x′+ 1) . . y], where x′ ≤ x and y ≥ x+ `. If x′ < x then per(H) ≤ `/4. But then851

H = S[(i − 1) . . (i − 1 + `)] can be extended to some maximal `-periodic substring852

S[i′ . . j′] such that i′ ≤ i − 1 and j′ ≥ i − 1 + `. The overlap between S[i . . j] and853

S[i′ . . j′] is at least `, so by Lemma 5.9 i = i′ and j = j′, which is a contradiction.854

Consequently, x′ = x and we obtain the lemma.855

By Lemma 5.11, the number of occurrences of all anchors in P is at most two856

per each maximal `-periodic substrings, so O(m/`) in total. We thus obtain a set of857

length-(`+ 1) anchors with the following properties:858

1. The total number of occurrences of all anchors in P is O(m/`).859

2. For every S ∈ S, at least one of its length-(`+ 1) substrings is an anchor.860

3. For every S ∈ S, at most two of its length-(`+ 1) substrings are anchors.861

These properties are even stronger than what we had used in Section 5.1 (except that862

now we are working with length-(` + 1) substrings, which is irrelevant), we can now863

prove our final result also for strings of type 2.864

Theorem 5.12. An instance of the AP problem where all strings are of type 2865

can be solved in Õ(mω−1 +N) time.866

5.3. Type 3 Strings. In this section we show how to solve a restricted instance867

of the AP problem where every string S ∈ S is of type 3, and furthermore |S| ∈868

[9/8 · `, 5/4 · `) for some ` ≤ m. Recall that strings S ∈ S are such that every length-`869

substring of S is strongly periodic and, by Lemma 5.3, in this case, per(S) ≤ `/4.870

An occurrence of such S in P must be contained in a maximal `-periodic substring871

of P . Recall that a string T is called `-periodic if |T | ≥ ` and per(T ) ≤ `/4. For an872

`-periodic string T , let its root, denoted by root(T ), be the lexicographically smallest873

cyclic shift of T [1 . .per(T )]. Because per(T ) ≤ `/4 and |T | ≥ ` by definition, there are874

at least four repetitions of the period in T , so we can write T = R[i . . |R|]RαR[1 . . j],875

where R = root(T ), for some i, j ∈ [1, |R|] and α ≥ 2. It is well known that root(T )876
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can be computed in O(|T |) time [31].877

Example 4. Let T = babababab and ` = 8. We have |T | = 9 ≥ ` = 8 and878

per(T ) = 2 ≤ `/4 = 2, so T is `-periodic. We have root(T ) = R = ab, and T can be879

written as T = b · (ab)3 · ab, for i = 2 and j = 2.880

We will now make a partition of type 3 strings based on their roots. We start881

with extracting all maximal `-periodic substrings of P by proceeding similarly as in882

the proof of Lemma 5.10, and then compute the root of every such substring in O(m)883

total time. In more detail, we partition P into blocks of length `/2, and compute the884

period of each such block. Any maximal `-periodic substring of P needs to contain885

at least one such block inside. Therefore, for each block with period at most `/ we886

can compute how far its period extends to the left and to the right, and output the887

corresponding substring if it is long enough. The only difficulty is that we should not888

extend the period beyond the preceding block. Two maximal `-periodic substrings889

cannot overlap by more than `/2 letters, hence their total length is O(m) and we can890

compute the root of each such substring in O(m) total time. We also extract the root891

of every S ∈ S in O(N) total time. We then partition maximal `-periodic substrings892

of P and strings S ∈ S into groups that have the same root. In the remaining part893

we describe how to process each such group corresponding to root R in which all894

maximal `-periodic substrings of P have total length m′, and the strings S ∈ S have895

total length N ′.896

Recall that the bit vector U stores the active prefixes input to the AP problem,897

and the bit vector V encodes the new active prefixes we aim to compute. For every898

maximal `-periodic substring of P with root R we extract the corresponding fragment899

of the bit vector U and need to update the corresponding fragment of the bit vector900

V . To make the description less cluttered, we assume that each such substring of P901

is a power of R, that is, Rα for some α ≥ 4. This can be assumed without loss of902

generality as it can be ensured by appropriately padding the extracted fragment of903

U and then truncating the results, while increasing the total length of all considered904

substrings of P by at most half of their length. In the description below, for simplicity905

of presentation, U and V denote these padded fragments of the original U and V .906

When computing V from U we use two different methods for processing the elements907

S = R[i . . |R|]RβR[1 . . j] of S depending on their length: either β ≥ t (large β) or908

β < t (small β), for some parameter t to be chosen later. In both cases, we rely on909

the observation that S = R[i . . |R|]RβR[1 . . j] occurs Rα at positions i + γ · |R|, for910

γ = 0, . . . , α− β − 2. This follows from R being the root and β ≥ 1.911

Large β. We proceed in phases corresponding to β = t, . . . , α. In each single phase,912

we consider all strings S ∈ S with S = R[i . . |R|]RβR[1 . . j], for some i and j. Let C(β)913

be the set of the corresponding pairs (i, j), and observe that
∑
β |C(β)| · |Rβ | ≤ N ′.914

This is because the length of Rβ is not greater than that of S = R[i . . |R|]RβR[1 . . j],915

there are |C(β)| distinct strings of the latter form in S, and the total length of all S ∈ S916

is N ′. The total number of occurrences of a string S = R[i . . |R|]RβR[1 . . j] in Rα is917

bounded by O(α), and all such occurrences can be generated in time proportional to918

their number. Thus, for every (i, j) ∈ C(β), we can generate all occurrences of the919

corresponding string and appropriately update V in O(α · |C(β)|) total time.920

Small β. We start by giving a technical lemma on the complexity of multiplying two921

r × r matrices whose cells are polynomials of degree up to d.922

Lemma 5.13. If two r × r matrices over Z can be multiplied in O(rω) time, then923

two r×r matrices over Z[x] with degrees up to d can be multiplied in O(rωd+r2d log d)924
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time.925

Proof. Let A and B be two r × r matrices over Z[x] with degrees up to d. We926

reduce the product A × B = C to (2d + 1) products of r × r matrices over Z as927

follows. We evaluate the polynomials of each matrix in the complex (2d+ 1)-th roots928

of unity: let Ai and Bi be the matrices obtained by evaluating the polynomials of929

A and B in the i-th such root, respectively. We then perform the 2d + 1 products930

A1 × B1, . . . , A2d+1 × B2d+1 to obtain matrices C1, . . . , C2d+1: the 2d + 1 values931

C1[i, j], . . . , C2d+1[i, j] are finally interpolated to obtain the coefficient representation932

of C[i, j], for each i, j = 1, . . . , r, in O(d log d) time for each polynomial [27]. Since933

we perform 2d + 1 products of matrices in Zr×r, and we evaluate and interpolate934

r2 polynomials of degree up to 2d + 1, the overall time complexity is 2dO(rω) +935

r2O(d log d) = O(rωd+ r2d log d).936

Unlike in the large β case, we process β = 2, . . . , t − 1 simultaneously as follows937

when t ≥ 3.938

We construct three-dimensional Boolean tables: M with dimensions |R| × |R| × t939

and M ′ with dimensions dα/te×|R|× t. We set M [i, j, β+1] = 1 if and only if (i, j) ∈940

C(β). M can be constructed in time proportional to its size by first precomputing941

a lexicographically sorted list of triples (β, i, j) corresponding to S ∈ S such that942

S = R[i . . |R|]RβR[1 . . j]. The lists corresponding to different roots are constructed943

in O(N ′) total time, and we sort them together with radix sort to avoid paying O(m)944

per each root. Then, we construct M by considering the prefix of the list consisting of945

all triples with sufficiently small first coordinates. Next, we setM ′[k, i, γ+1] = 1 if and946

only if U [((k−1)t+γ)|R|+i−1] = 1. Finally, we interpret M ′ and M as matrices over947

Z[x] with degrees up to t− 1, and compute their product M ′′ = M ′×M . That is, we948

think that M ′[k, i] =
∑t−1
γ=0M

′[k, i, γ+ 1]xγ and M [i, j] =
∑t−1
β=0M [i, j, β+ 1]xβ , and949

computeM ′′[k, j] =
∑|R|
i=1M

′[k, i]·M [i, j] for every k = 1, . . . , dα/te and j = 1, . . . , |R|950

(this will be eventually implemented with Lemma 5.13). Note that each M ′′[k, j] is951

a polynomial with degree up to 2(t− 1). We claim that this allows us to recover the952

updates to V by setting V [((k−1)t+q+1)|R|+j] = 1 whenever xq appears with non-953

zero coefficient in the polynomial at M ′′[k, j], for all k = 1, . . . , dα/te, j = 1, . . . , |R|954

and q = 0, . . . , 2(t−1). Equivalently, we set V [((k−1)t+γ+β+1)|R|+j] = 1 whenever955

M ′[k, i, γ + 1] = 1 and M [i, j, β + 1] = 1, for all k = 1, . . . , dα/te, i, j = 1, . . . , |R| and956

γ, β = 0, . . . , t−1. This can be rewritten as setting V [((k−1)t+γ+β+1)|R|+j] = 1957

whenever U [((k − 1)t + γ)|R| + i − 1] = 1 and there exists S ∈ S such that S =958

R[i . . |R|]RβR[1 . . j], for all k = 1, . . . , dα/te, j = 1, . . . , |R| and γ, β = 0, . . . , t − 1,959

which is indeed correct as any x ∈ {0, . . . , α − 1} can be written as x = (k − 1)t+ γ960

for k ∈ {1, . . . , dα/te} and γ ∈ {0, . . . , t− 1}.961

We are now in a position to prove the following result for type 3 strings.962

Theorem 5.14. An instance of the AP problem where all strings are of type 3963

can be solved in Õ(mω−1 +N) time.964

Proof. Recall that we consider strings S of type 3 with root R and substrings965

of P with root R together. We first analyze the time to process a single group966

containing a number of substrings of P of total length m′ and a number of strings967

S ∈ S of total length N ′. Let us denote by Rαh the h-th considered substring of968

P and by th the value of t used to distinguish between small and large value of β969

when processing this substring. We partition all substrings into logm levels, with the970

k-th level Gk containing h such that αh ∈ [2k, 2k+1). We define ᾱk =
∑
h∈Gk

αk and971
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choose th = min(2k+1, dᾱk/|R| · logme) for every h ∈ Gk.972

For each level k, h ∈ Gk and β = th, . . . , αh, we use the first method and spend973

O(αh · |C(β)|) time, where C(β) is the set of (i, j) for this specific β. This needs to974

be done only when th ≤ αh, that is, th = dᾱk/|R| · logme. The overall time used for975

all applications of the first method is thus at most:976 ∑
k

∑
h∈Gk

O(αh ·
∑
β≥th

|C(β)|) = O(
∑
k

∑
h∈Gk

αh/|Rth |
∑
β≥th

|C(β)| · |Rth |)977

= O(
∑
k

∑
h∈Gk

ah/(|R| · th)
∑
β≥th

|C(β)| · |Rβ |)978

= O(
∑
k

āk/(|R| · ᾱk/|R| · logm) ·N ′) = O(N ′),979

using the fact that
∑
β |C(β)| · |Rβ | ≤ N ′ and there are logm values of k.980

For each level k and h ∈ Gk, we process together all β = 2, . . . , th − 1 using the981

second method. This requires multiplying two matrices of polynomials of degree up to982

th−1. We observe that the second matrix is in fact the same for all h ∈ Gk, and so we983

denote the first matrix by M ′h, the second by simply M , and think that the degree of984

each polynomial in M ′h and M is strictly upper bounded by dk = min(2k+1, dᾱk/|R| ·985

logme). M ′h is of size dαh/dke×|R| while M is of size |R|×|R|. Instead of computing986

each product M ′h×M separately, we vertically concatenate all matrices M ′h to obtain987

a single matrix M ′. The number of rows in M ′ is r =
∑
h∈Gk

dαh/dke. Next, we988

compute M ′×M with dr/|R|e invocations of Lemma 5.13. We separately analyse the989

overall time complexity for dk = 2k+1 and dk = dᾱk/|R| · logme.990

dk = dᾱk/|R| · logme: Using αh ≥ 2k ≥ dk/2 we bound r as follows:991

r =
∑
h∈Gk

dαh/dke ≤
∑
h∈Gk

(αh + dk)/dk ≤
∑
h∈Gk

(αh + 2αh)/dk992

≤ 3
∑
h∈Gk

αh/(ᾱk/|R| · logm) = 3|R|/ logm ≤ |R|,993

for sufficiently large m. Thus, one invocation suffices and takes time994

O(|R|ωdk + |R|2dk log dk) = O(|R|ω−1ᾱk log2m)995

using dk ≥ 3 and dk ≤ 2m.996

dk = 2k+1: Because αh ∈ [2k, 2k+1) for each h ∈ Gk, we have r = |Gk| ≤ ᾱk/2
k.997

The number of invocations is thus at most dᾱk/(2k · |R|)e ≤ ᾱk/(2k · |R|) + 1.998

The total time used by all these invocations is999

(ᾱk/(2
k · |R|) + 1)O(|R|ω2k+1 + |R|22k+1(k + 1))1000

= O(|R|ω−1ᾱk logm+ |R|ω2k+1 logm)1001

using 2k+1 ≤ 2m. Next, because 2k+1 ≤ dᾱk/|R| · logme and 2k+1 ≥ 2 we1002

have 2k+1 ≤ 2ᾱk/|R| · logm, so the total time can be further bounded by1003

O(|R|ω−1ᾱk logm+ |R|ω2k+1 logm)1004

= O(|R|ω−1ᾱk logm+ |R|ω(ᾱk/|R| · logm) logm)1005

= O(|R|ω−1ᾱk log2m).1006
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Hence in both cases the time used by all multiplications is O(|R|ω−1ᾱk log2m).1007

Using
∑
k ᾱk = m′/|R| and |R| ≤ m′, when summed over all logm levels k this1008

is in fact O((m′)ω−1 log2m). We remark that the matrix M can be built in time1009

proportional to its size assuming O(N ′) preprocessing, while the matrix M ′ can be1010

built in time proportional to its size by just scanning over the corresponding fragment1011

of U .1012

Finally, summing possibly many groups corresponding to different roots R, be-1013

cause all values of N ′ sum up to N and all values of m′ sum up to O(m), by convexity1014

of xω−1 we obtain that the overall time complexity including the preprocessing is1015

Õ(mω−1 +N).1016

5.4. Wrapping Up. In Sections 5.1, 5.2 and 5.3 we design three Õ(mω−1 +N)-1017

time algorithms for an instance of the AP problem where all strings are of type 1,1018

2 and 3, respectively. Summing up over all values of k and all the types, we thus1019

obtain Theorem 1.2. In every case, the complexity is actually Õ(nmω−1)+O(N), so1020

using the fact that ω < 2.373 [51, 66] we can hide the polylog factors and obtain the1021

following corollary.1022

Corollary 5.15. The EDSM problem can be solved on-line in O(nm1.373 + N)1023

time.1024

6. Final Remarks. Our contribution in this paper is twofold. First, we de-1025

signed an appropriate reduction showing that a combinatorial algorithm solving the1026

EDSM problem in O(nm1.5−ε +N) time, for any ε > 0, refutes the well-known BMM1027

conjecture. Second, we designed a non-combinatorial Õ(nmω−1 +N) -time algorithm1028

to attack the same problem. By using the fact that ω < 2.373, our algorithm runs in1029

O(nm1.373 +N) time thus circumventing the combinatorial conditional lower bound1030

for the EDSM problem. Let us point out that if ω = 2 then our algorithm for the1031

AP problem is time-optimal up to polylog factors, as any algorithm needs to read1032

the input. As for the EDSM problem, such an argument only shows a lower bound1033

of Ω(N). However, at the same time we can show that there is no O((nm)1−ε)-time1034

algorithm, assuming the Strong Exponential Time Hypothesis (SETH) [19], by the1035

following argument. By prepending and appending a unique letter to both the ED1036

text and the pattern, we can reduce checking membership for a regular expression1037

of type ·|·, as defined by Backurs and Indyk [10]. Combining this with their reduc-1038

tion from SETH, we immediately obtain the claimed conditional lower bound for the1039

EDSM problem.1040

We finally remark that, if we use the simple cubic-time matrix multiplication1041

algorithm in our solution then the total time complexity becomes Õ(nmω−1 +N) =1042

Õ(nm2 + N). At the same time, the solution by Aoyama et al. [8], which also does1043

not use fast matrix multiplication, runs in time O(nm1.5 + N). It is thus plausible1044

that one could obtain an Õ(nmω/2 +N)-time algorithm for the EDSM problem. We1045

leave this question open for future work.1046
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[53] V. Mäkinen, B. Cazaux, M. Equi, T. Norri, and A. I. Tomescu, Linear time construction of1172
indexable founder block graphs, in 20th Workshop on Algorithms in Bioinformatics (WABI),1173
vol. 172 of LIPIcs, 2020, pp. 7:1–7:18.1174
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