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ELASTIC-DEGENERATE STRING MATCHING
VIA FAST MATRIX MULTIPLICATION*

GIULIA BERNARDINIT, PAWEL GAWRYCHOWSKIf, NADIA PISANTI!, SOLON P.
PISSISY, AND GIOVANNA ROSONEI

Abstract. An elastic-degenerate (ED) string is a sequence of n sets of strings of total length
N, which was recently proposed to model a set of similar sequences. The ED string matching
(EDSM) problem is to find all occurrences of a pattern of length m in an ED text. The EDSM
problem has recently received some attention in the combinatorial pattern matching community,
and an O(nm!-3y/logm + N)-time algorithm is known [Aoyama et al., CPM 2018]. The standard
assumption in the prior work on this question is that N is substantially larger than both n and
m, and thus we would like to have a linear dependency on the former. Under this assumption, the
natural open problem is whether we can decrease the 1.5 exponent in the time complexity, similarly
as in the related (but, to the best of our knowledge, not equivalent) word break problem [Backurs
and Indyk, FOCS 2016].

Our starting point is a conditional lower bound for the EDSM problem. We use the popular com-
binatorial Boolean Matrix Multiplication (BMM) conjecture stating that there is no truly subcubic
combinatorial algorithm for BMM [Abboud and Williams, FOCS 2014]. By designing an appropriate
reduction we show that a combinatorial algorithm solving the EDSM problem in O(nm!-®~¢€ 4+ N)
time, for any € > 0, refutes this conjecture. Our reduction should be understood as an indication
that decreasing the exponent requires fast matrix multiplication.

String periodicity and fast Fourier transform are two standard tools in string algorithms. Our
main technical contribution is that we successfully combine these tools with fast matrix multipli-
cation to design a non-combinatorial @(nm“’_l + N)-time algorithm for EDSM, where w denotes
the matrix multiplication exponent and the (5() notation suppresses polylog factors. To the best of
our knowledge, we are the first to combine these tools. In particular, using the fact that w < 2.373
[Alman and Williams, SODA 2021; Le Gall, ISSAC 2014; Williams, STOC 2012], we obtain an
O(nm!37 + N)-time algorithm for EDSM. An important building block in our solution, that might
find applications in other problems, is a method of selecting a small set of length-¢ substrings of the
pattern, called anchors, so that any occurrence of a string from an ED text set contains at least one
but not too many (on average) such anchors inside.
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1. Introduction. Boolean matrix multiplication (BMM) is one of the most fun-
damental computational problems. Apart from its theoretical interest, it has a wide
range of applications [34, 36, 44,55,64]. BMM is also the core combinatorial part of
integer matrix multiplication. In both problems, we are given two N x N matrices
and we are to compute N2 values. Integer matrix multiplication can be performed
in truly subcubic time, i.e., in O(N37€) operations over the field, for some ¢ >0. The
fastest known algorithms for this problem run in O(N2373) time [4,51,66]. These
algorithms are known as algebraic: they rely on the ring structure of matrices over
the field.

There also exists a different family of algorithms for the BMM problem known as
combinatorial. Their focus is on unveiling the combinatorial structure in the Boolean
matrices to reduce redundant computations. A series of results [9,11,20] culminating
in an O(N?3/log* N)-time algorithm [70,71] (the O(-) notation suppresses polyloglog
factors) has led to the popular combinatorial BMM conjecture stating that there is no
combinatorial algorithm for BMM working in time O(N37¢), for any €>0 [2]. There
has been ample work on applying this conjecture to obtain BMM hardness results:
see, e.g., [2,22,40,49,50,52,60].

String matching is another fundamental problem, asking to find all fragments of
a string text of length n that match a string pattern of length m. This problem
has several linear-time solutions [28]. In many real-world applications, it is often
the case that letters at some positions are either unknown or uncertain. A way of
representing these positions is with a subset of the alphabet 3. Such a representation
is called degenerate string. A special case of a degenerate string is when at such
unknown or uncertain positions the only subset of the alphabet allowed is the whole
alphabet. These special degenerate strings are more commonly known as strings
with wildcards. The first efficient algorithm for a text and a pattern, where both
may contain wildcards, was published by Fischer and Paterson in 1974 [35]. It has
undergone several improvements since then [25,26,43,46]. The first efficient algorithm
for a standard text and a degenerate pattern, which may contain any non-empty
subset of the alphabet, was published by Abrahamson in 1987 [3], followed by several
practically efficient algorithms [41,56,69].

Degenerate letters are used in the TUPAC notation [45] to represent a position
in a DNA sequence that can have multiple possible alternatives. These are used
to encode the consensus of a population of sequences [5,6,37,57,63] in a multiple
sequence alignment (MSA). In the presence of insertions or deletions in the MSA,
we may need to consider alternative representations. Consider the following MSA of
three closely-related sequences (on the left):

GCAACGGGTA--TT _ A G TA

GCAACGGGTATATT T = {GCA} - {c} {c}- {T} +{GG} - ¢ TATA - {TT}

GCACCTGG----TT €
These sequences can be compacted into a single sequence T of sets of strings (on
the right) containing some deterministic and some non-deterministic segments. A
non-deterministic segment is a finite set of deterministic strings and may contain the
empty string € corresponding to a deletion. The total number of segments is the
length of T and the total number of letters is the size of T. We denote the length by
n = |T| and the size by N = ||T|.

This representation has been defined in [42] by Iliopoulos et al. as an elastic-
degenerate (ED) string. Being a sequence of subsets of ¥*, it can be seen as a general-
ization of a degenerate string. The natural problem that arises is finding all matches
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ELASTIC-DEGENERATE STRING MATCHING VIA FAST MATRIX MULTIPLICATION 3

of a deterministic pattern P in an ED text T. This is the elastic-degenerate string
matching (EDSM) problem. Since its introduction in 2017 [42], it has attracted some
attention in the combinatorial pattern matching community [58], and a series of re-
sults have been published. The simple algorithm by Iliopoulos et al. [42] for EDSM
was first improved by Grossi et al. in the same year, who showed that, for a pattern of
length m, the EDSM problem can be solved on-line in O(nm? + N) time [39]; on-line
means that it reads the text segment-by-segment and reports an occurrence as soon
as this is detected. This result was improved by Aoyama et al. [8] who presented
an O(nm!®y/logm + N)-time algorithm. An important feature of these bounds is
their linear dependency on N. A different branch of on-line algorithms waiving the
linear-dependency restriction exists [23,24,39,59]. Moreover, the EDSM problem has
been considered under Hamming and edit distance [16]. Recent results on founder
block graphs [53] can also be casted on elastic-degenerate strings.

A question with a somewhat similar flavor is the word break problem. We are given
a dictionary D, m = ||D||, and a string S, n = |S|, and the question is whether we can
split S into fragments that appear in D (the same element of D can be used multiple
times). Backurs and Indyk [10] designed an O(nm!'/2~1/1® 4 m)-time algorithm for
this problem'. Bringmann et al. [18] improved this to O(nm!/3 4 m) and showed
that this is optimal for combinatorial algorithms by a reduction from k-Clique. Their
algorithm uses fast Fourier transform (FFT), and so it is not clear whether it should
be considered combinatorial. While this problem seems similar to EDSM, there does
not seem to be a direct reduction and so their lower bound does not immediately
apply.

Our Results. It is known that BMM and triangle detection (TD) in graphs either
both have truly subcubic combinatorial algorithms or none of them do [68]. Recall
also that the currently fastest algorithm with linear dependency on N for the EDSM
problem runs in O(nm!-®y/logm + N) time [8]. In this paper we prove the following
two theorems.

THEOREM 1.1. If the EDSM problem can be solved in O(nm!'-5=¢ + N) time,
for any € > 0, with a combinatorial algorithm, then there ezists a truly subcubic
combinatorial algorithm for TD.

Arguably, the notion of combinatorial algorithms is not clearly defined, and The-
orem 1.1 should be understood as an indication that in order to achieve a better
complexity one should use fast matrix multiplication. Indeed, there are examples
where a lower bound conditioned on BMM was helpful in constructing efficient algo-
rithms using fast matrix multiplication [1,17,21,30,54,67,72]. We successfully design
such a non-combinatorial algorithm by combining three ingredients: a string periodic-
ity argument, FFT, and fast matrix multiplication. While periodicity is the usual tool
in combinatorial pattern matching [29,47,48] and using FFT is also not unusual (for
example, it often shows up in approximate string matching [3,7, 25, 38]), to the best
of our knowledge, we are the first to combine these with fast matrix multiplication.
Specifically, we show the following result for the EDSM problem, where w denotes the
matrix multiplication exponent.

THEOREM 1.2. The EDSM problem can be solved on-line in O(nm®~'+ N) time.

In order to obtain a faster algorithm for the EDSM problem, we focus on the
active prefizes (AP) problem that lies at the heart of all current solutions [8,39]. In

I The (’j() notation suppresses polylog factors.
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4 G. BERNARDINI, P. GAWRYCHOWSKI, N. PISANTI, S. P. PISSIS, AND G. ROSONE

the AP problem, we are given a string P of length m and a set of arbitrary prefixes
P[1..4] of P, called active prefizes, stored in a bit vector U so that U[i] = 1 if P[1..4]
is active. We are further given a set S of strings of total length N and we are asked to
compute a bit vector V' which stores the new set of active prefixes of P. A new active
prefix of P is a concatenation of P[1..4] (such that U[i] = 1) and some element of S.

Using the algorithmic framework introduced in [39], EDSM is addressed by solving
an instance of the AP problem per each segment ¢ of the ED text corresponding to set
S of the AP problem. Hence, an O(f(m)+ N;) solution for the AP problem (with N;
being the size of a single segment of the ED text) implies an O(nf(m) + N) solution
of EDSM, as f(m) is repeated n times and N = )" | N;. The algorithm of [8] solves
the AP problem in O(m!5\/logm + N;) time leading to O(nm!-®\/logm + N) time
for the EDSM problem. Our algorithm partitions the strings of each segment ¢ of
the ED text into three types according to a periodicity criterion, and then solves
a restricted instance of the AP problem for each of the types. In particular, we
solve the AP problem in O(m®~' + N;) time leading to O(nm®~! + N) time for the
EDSM problem. Given this connection between the two problems and, in particular,
between their size parameter IV, in the rest of the paper we will denote with N also
the parameter N; of the AP problem.

An important building block in our solution that might find applications in other
problems is a method of selecting a small set of length-¢ substrings of the pattern,
called anchors, so that any relevant occurrence of a string from an ED text set contains
at least one but not too many such anchors inside. This is obtained by rephrasing the
question in a graph-theoretical language and then generalizing the well-known fact
that an instance of the hitting set problem with m sets over [n], each of size at least
k, has a solution of size O(n/k -logm). While the idea of carefully selecting some
substrings of the same length is not new (for example Kociumaka et al. [48] used it
to design a data structure for pattern matching queries on a string), our setting is
different and hence so is the method of selecting these substrings.

In addition to the conditional lower bound for the EDSM problem (Theorem 1.1),
we also exhibit a reduction from BMM to AP that leads to the following conditional
lower bound for AP.

THEOREM 1.3. If the AP problem can be solved in O(m'-5=¢ 4+ N) time, for any
€ > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial
algorithm for the BMM problem.

We remark that Theorem 1.3 is also implied by Theorem 1.1, as described at the
end of Section 4, but we believe that a direct reduction from BMM to AP serves as a
good starting point for the more complicated reduction from BMM to EDSM.

Roadmap. Section 2 provides the necessary definitions and notation as well as the
algorithmic toolbox used throughout the paper. In Section 3 we prove our lower
bound result for the AP problem (Theorem 1.3). The lower bound result for the
EDSM problem is proved in Section 4 (Theorem 1.1). In Section 5 we present our
algorithm for EDSM (Theorem 1.2); this is the most technically involved part of the

paper.

2. Preliminaries. Let T = T[1|T[2]...T[n] be a string of length |T| = n over a
finite ordered alphabet ¥ of size || = 0. For two positions ¢ and j on T', we denote by
T[i..j]=TI[i...T[j] the substring of T' that starts at position 7 and ends at position
j (it is of length 0 if j < ). By € we denote the empty string of length 0. A prefix of T
is a substring of the form T'[1..j], and a suffix of T is a substring of the form T ..n].

This manuscript is for review purposes only.
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ELASTIC-DEGENERATE STRING MATCHING VIA FAST MATRIX MULTIPLICATION 5

T" denotes the reverse of T, that is, T[n|T[n — 1]...T[1]. We say that a string X is
a power of a string Y if there exists an integer k > 1, such that X is expressed as k
consecutive concatenations of Y, denoted by X = Y*. A period of a string X is any
integer p € [1,]|X]|] such that X[i] = X[i + p] for every ¢ = 1,2,...,|X| —p, and the
period, denoted by per(X), is the smallest such p. We call a string X strongly periodic
if per(X) < |X|/4.

LeEmMMA 2.1 ([33]). If p and q are both periods of the same string X, and addi-
tionally p+ q < |X| + 1, then ged(p, q) is also a period of X.

A trie is a tree in which every edge is labeled with a single letter, and every two
edges outgoing from the same node have different labels. The label of a node u in
such a tree T, denoted by L(u), is defined as the concatenation of the labels of all
the edges on the path from the root of T to u. By replacing each path p consisting
of nodes with exactly one child by an edge labeled by the concatenation of the labels
of the edges of p we obtain a compact trie. The nodes of the trie that are removed
after this transformation are called implicit, while the remaining ones are referred to
as explicit. The suffix tree of a string S' is the compact trie representing all suffixes of
S$, § ¢ 3, where instead of explicitly storing the label S[i.. j] of an edge we represent
it by the pair (i, 7).

A heavy path decomposition of a tree T is obtained by selecting, for every non-
leaf node u € T, its child v such that the subtree rooted at v is the largest. This
decomposes the nodes of T into node-disjoint paths, with each such path p (called a
heavy path) starting at some node, called the head of p, and ending at a leaf. An
important property of such a decomposition is that the number of distinct heavy
paths above any leaf (that is, intersecting the path from a leaf to the root) is only
logarithmic in the size of T [62].

Let 3 denote the set of all finite non-empty subsets of £*. Previous works (cf. 8,
15,39,42,59]) define ¥ as the set of all finite non-empty subsets of £* excluding {¢}
but we waive here the latter restriction as it has no algorithmic implications. An
elastic-degenerate string T = T[1]...T[n], or ED string, over alphabet ¥, is a string
over 3, i.e., an ED string is an element of ¥*, and hence each T7[i] is a set of strings.

Let T denote an ED string of length n, i.e. IT| = n. We assume that for any
1 < i < n, the set T[ ] e X is implemented as an array and can be accessed by an

index, i.e., T[] = {T[i][k] | k = 1,...,|T[i]|}. For any o € %, ||6]| denotes the total
length of all strings in , and for any ED string T, HTH denotes the total length of all
strings in all T'[i]s. We will denote N; = Z‘T[i ! |T[i][k]| the total length of all strings

in T[i] and N = 327 ||T[i]|| the size of T. An ED string T can be thought of as a
compact representation of the set of strings A(7T) which is the Cartesian product of
all T[i]s; that is, A(T) = T[1] X ... x T[n] where Ax B = {zy | = € A,y € B} for any
sets of strings A and B.
For any ED string X and a pattern P, we say that P matches X if:

1. |X| =1 and P is a substring of some string in X[1], or,

2. |X| >1land P =P ...Pg, where Py is a suffix of some string in X[l], Pg

is a prefix of some string in X|[|X|], and P; € X[i], for all 1 < i < |X]|.

We say that an occurrence of a string P ends at position j of an ED string T if
there exists i < j such that P matches TT[i]...T[j]. We will refer to string P as the
pattern and to ED string T as the text. We deﬁne the main problem considered in
this paper.

This manuscript is for review purposes only.
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ELASTIC-DEGENERATE STRING MATCHING (EDSM)
INPUT: A string P of length m and an ED string 7" of length n and size N > m.
OUTPUT: All positions in T where at least one occurrence of P ends.

EXAMPLE 1. P = GTAT ends at positions 2, 6, and 7 of the following text T

= o) {) (e {2} ey fome |

Whenever |T| = 1, the problem reduces to Case 1 only (searching for P in all
strings of T[1]), which can be done in O(N) time using any linear-time pattern-
matching algorithm. In the general case of |T| > 1, at a high-level, previous on-line
solutions to EDSM consist of the following steps: (i) For each T'[i], for each S € T7i]
that is long enough, search for occurrences of the whole of P in S (this corresponds to
Case 1 of the definition of a match of P given above). Then (Case 2 of the definition
of a match of P, in which an occurrence of P spans over several sets of strings), (ii)

find the prefixes of P that match any suffix of some S € T'[4], (iii) try to extend at T[]
every partial occurrence of P, which has started earlier in T, by solving an instance
of AP, and (iv) if a full occurrence of P also ends at T'[i], then output position i
otherwise store the prefixes of P extended at T7[i], which will be further extended at
T[i +1].

Aoyama et al. [8] obtained an on-line O(nm!-5/logm + N)-time algorithm by
identifying Step (iii) as the bottleneck in this approach, observing that all other steps
can be implemented in O(n + M) time, and designing an improved solution for Step
(iii). We formally define the task that needs to be solved in Step (iii) as the ACTIVE

PREFIXES problem:

AcCTIVE PREFIXES (AP)

INPUT: A string P of length m, a bit vector U of size m, a set S of strings of
total length N.

OUTPUT: A bit vector V of size m with V[j] = 1 if and only if there exists
S e Sandi € [1,m],Ui] =1, such that P[1..4]-S = P[1..i+]|S|] and j = i+]|S|.

In particular, given an ED text T = T[1] ... T[n], one should consider an instance
of the AP problem per each T[i]. Hence, an O(f(m) + N;) solution for AP (N; being
the size of T7[i]) implies an O(n - f(m) + N) solution for EDSM, as f(m) is repeated
n times and N =" | N;. We provide an example of the AP problem.

EXAMPLE 2. Let P = ababbababab of length m = 11, U = 01000100000, and
S = {e,ab, abb, ba, baba}. We have that V = 01011101010.

For our lower bound results we rely on BMM and the following closely related
problem.

BOOLEAN MATRIX MULTIPLICATION (BMM)

INPUT: Two N x N Boolean matrices A and B.

OUTPUT: N x N Boolean matrix C, where C[i, j| = \/(A[s, k] A Blk, j]).
k

TRIANGLE DETECTION (TD)
INPUT: Three N' x N/ Boolean matrices A, B and C.
OUTPUT: Are there 4, j, k such that Afi,j] = B[j, k] = Clk,i] =17

This manuscript is for review purposes only.
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An algorithm is called truly subcubic if it runs in O(N37¢) time, for some € > 0.
TD and BMM either both have truly subcubic combinatorial algorithms, or none of
them do [68].

3. AP Conditional Lower Bound. As a warm-up, in order to investigate the
hardness of the EDSM problem, we first show that an O(m!®~¢ + N)-time solution
to the active prefixes problem, that constitutes the core of the solutions proposed
in [8,39], would imply a truly subcubic combinatorial algorithm for Boolean matrix
multiplication (BMM). We recall that in the AP problem, we are given a string P
of length m and a set of prefixes P[1..4] of P, called active prefizes, stored in a bit
vector U (U[i] = 1 if and only if P[1..4] is active). We are further given a set S of
strings of total length N and we are asked to compute a bit vector V storing the new
set of active prefixes of P: a prefix of P that extends P[1..4] (such that U[i] = 1)
with some element of S. Of course, we can solve BMM by working over integers and
using one of the fast matrix multiplication algorithms; plugging in the best known
bounds results in an O(N?373)-time algorithm [4]. However, such an algorithm is
not combinatorial, i.e., it uses algebraic methods. In comparison, the best known
combinatorial algorithm for BMM works in O(N?/log? A) time [71]. This leads to
the following popular conjecture.

CONJECTURE 1 ([2]). There is no combinatorial algorithm for the BMM problem
working in time O(N37¢), for any e > 0.

Aoyama et al. [8] showed that the AP problem can be solved in O(m!-5y/logm+N)
time for constant-sized alphabets. Together with some standard string-processing
techniques applied similarly as in [39], this is then used to solve the EDSM problem
by creating an instance of the AP problem for every set T'[i] of T, i.e., with S = T'[4].

We argue that, unless Conjecture 1 is false, the AP problem cannot be solved in
time O(m!®~¢ 4+ N), for any € > 0, with a combinatorial algorithm (note that the
algorithm of Aoyama et al. [8] uses FFT, and so it is not completely clear whether it
should be considered to be combinatorial). We show this by a reduction from combi-
natorial BMM. Assume that, for the AP problem, we seek combinatorial algorithms
with the running time O(m!®~¢+ N), i.e., with linear dependency on the total length
of the strings. We need to show that such an algorithm implies that the BMM prob-
lem can be solved in O(N 3_6/) time, for some ¢ > 0, with a combinatorial algorithm,
thus implying that Conjecture 1 is false.

THEOREM 1.3. If the AP problem can be solved in O(m'-5=¢+ N) time, for any
€ > 0, with a combinatorial algorithm, then there exists a truly subcubic combinatorial
algorithm for the BMM problem.

Proof. Recall that in the BMM problem the matrices are denoted by A and B.
In order to compute C'=Ax B, we need to find, for every i,j = 1,..., N, an index k
such that Afi, k] = 1 and Blk,j] = 1. To this purpose, we split matrix A into blocks
of size N'-L and B into blocks of size L-L. This corresponds to considering values of
j and k in intervals of size L, and clearly there are A//L such intervals. Matrix B is
thus split into (N /L)? blocks, giving rise to an equal number of instances of the AP
problem, each one corresponding to an interval of j and an interval of k. We will now
describe the instance corresponding to the (K, .J)-th block, where 1 < K, J < N'/L.

We build the string P of the AP problem, for any block, as a concatenation of
N gadgets corresponding to i = 1,..., N, and we construct the bit vector U7) of
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the AP problem as a concatenation of N bit vectors, one per gadget. Each gadget
consists of the same string a’ba’; we set to 1 the k’-th bit of the i-th gadget bit
vector if A[i, (K — 1)L+ k'] = 1. The solution of the AP problem V) will allow us
to recover the solution of BMM, as we will ensure that the bit corresponding to the
j'-th a in the second half of the gadget is set to 1 if and only if, for some k' € [L],
Ali,(K—1)L+k]=1and B[(K —1)L+k',(J — 1)L+ j'] = 1. In order to enforce
this, we will include the following strings in set S5

a’*bal’, for every k', ;' € [L] such that B[(K — 1)L+ k', (J — 1)L+ j'] = 1.

This guarantees that after solving the AP problem we have the required property,
and thus, after solving all the instances, we have obtained matrix C'=Ax B. Indeed,
consider values j, i.e., the index that runs on the columns of C, in intervals of size L.
By construction and by definition of BMM, the i-th line of the J-th column interval
of C' is obtained by taking the disjunction of the second half of the i-th interval of
each (K, J)-th bit vector for every K =1,2,...,N/L.

We have a total of (N/L)? instances. In each of them, the total length of all
strings is O(L?), and the length of the input string P is (2L +1)N = O(L-N). Using
our assumed algorithm for each instance, we obtain the following total time:

O((N/L)2 . (L3 + (N . L)1.5—e)) _ O(J\/2 . L +N345—€/L0.5+6).
If we set L = N'(1:5=€)/(15+) "then the total time becomes:
O(N2+(1 .b—e)/(1.54¢€ +N35 e—(0. 5+e)(1.57e)/(1.5+e))

N2+(1 .b—e)/(1.54¢€ _|_N2+ (1.5—€)— (1.576)(0‘5+6)/(1.5+6))
N2+(1 5—€)(1.5+e—0.5—¢) /(1. 5+e))

)
O( )
(’)(./\/2+(1 5—€)/(1.5+¢)
O(N2+(1 b—e)/(1. 5+e))

Hence we obtain a combinatorial BMM algorithm with complexity O (AN 3_6/) , where
€=1—(15—-¢€)/(1.5+¢€) >0. 0

EXAMPLE 3. Consider the following instance of the BMM problem with N = 6
and L = 3.

A B c
0 1 0] 0 1 0] 0 0 0] 0 0 17 1 0 0|1 0 0]
10 1]0 0 1 001]0 0 00 1 11
00 00 1 01010 10 0
X =
1 00[0 10 010000 000|101
0001 0 0 0|10 0 010 00
0 1 0[]0 0 0| 1 000 1 0] 1 0 0|0 0 0]

From matrices A and B, we now show how the resulting matriz C can be found
by building and solving 4 instances of the AP problem constructed as follows. The
pattern s

P = aaabaaa - aaabaaa - aaabaaa - aaabaaa - aaabaaa - aaabaaa

where the siz gadgets are separated by a '~ to be highlighted. For the AP instances,
the vectors UYT) shown below are the input bit vectors, and the sets ST are the
input set of strings. For each instance, the bit vector VUS7) shown below is the output
of the AP problem.

This manuscript is for review purposes only.
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i 1 2 3 4 5 6

U . [0100000]1010000/0000000/1000000[0000000[0100000]
SOV . {aba,baaa}

v [0000100(0000001[0000000[0000000[0000000[0000100]

U . [0100000|1010000[0000000[1000000[0000000[0100000
5§02 . {aabaaa,baa}

v(2 . [0000000/0000011[0000000(0000001[0000000[0000000

U [0100000[0000000[0010000/0100000[1000000/0000000]
SV . {aabaa,ba}

v [0000000(0000000[0000100[0000000[0000010[0000000]

U . [0100000/0000000[0010000[(0100000[1000000[0000000]
§%2 . {aba,baa}
V2. [0000100/0000000[0000010[0000100[0000000[0000000

As an example on how to obtain matriz C, consider the bold part of C above (i.e.,
the first line of block (1,1) of C). This is obtained by taking the disjunction of the
bold parts of VLV and V(21

4. EDSM Conditional Lower Bound. Since the lower bound for the AP
problem does not imply per se a lower bound for the whole EDSM problem, in this
section we show a conditional lower bound for the EDSM problem. Specifically, we
perform a reduction from Triangle Detection to show that, if the EDSM problem could
be solved in O(nm!-®~¢+ N) time, this would imply the existence of a truly subcubic
algorithm for TD. We show that TD can be reduced to the decision version of the
EDSM problem: the goal is to detect whether there exists at least one occurrence of
P in T. To this aim, given three matrices A, B, C, we first decompose matrix B into
blocks of size N'/s x N'/s, where s is a parameter to be determined later; the pattern
P is obtained by concatenating a number (namely z = N's?) of constituent parts P;
of length O(N/s), each one built with five letters from disjoint subalphabets. The
ED text T is composed of three parts: the central part consists of three degenerate
segments, the first one encoding the 1s of matrix A, the second one those of matrix B
and the third one those of matrix C'. These segments are built in such a way that the
concatenation of strings of subsequent segments is of the same form as the pattern’s
building blocks. This central part is then padded to the left and to the right with
sets containing appropriately chosen concatenations of substrings P; of P, so that an
occurrence of the pattern in the text implies that one of its building blocks matches
the central part of the text, thus corresponding to a triangle. Formally:

THEOREM 1.1. If the EDSM problem can be solved in O(nm!'->=¢ + N) time,
for any € > 0, with a combinatorial algorithm, then there exists a truly subcubic

This manuscript is for review purposes only.
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combinatorial algorithm for TD.

Proof. Consider an instance of TD, where we are given three A x A/ Boolean
matrices A, B, C, and the question is to check if there exist i, j, k such that A[i, j] =
Blj, k] = C[k,i] = 1. Let s be a parameter, to be determined later, that corresponds
to decomposing B into blocks of size (N/s) x (N/s). We reduce to an instance of
EDSM over an alphabet ¥ of size O(N). Let us remark that, since we search for exact
occurrences of the pattern, it would also be possible to assume that the instance of
EDSM we reduce to is over a constant-sized (binary) alphabet. We could in fact
replace each letter of the O(N')-sized alphabet with its binary encoding, increasing
the length of the involved strings by only a logarithmic factor.

Pattern P. We construct P by concatenating, in some fixed order, the following
strings:
P(i,z,y) = v(i)za/*2$ya />y (i)

forevery i =1,2,...,N and 2,y = 1,2,...,s, where a € X1, $ € Xp, z € X3, y € Xy,
v(i) € X5, and 31, Yo, ..., X5 are disjoint subsets of 3.
ED text 7. The text T consists of three parts. Its middle part encodes all the entries
equal to 1 in matrices A, B and C, and consists of three string sets X =X} - X - X3,
where:
1. &} contains all strings of the form v(i)za’, for some i € [N], z € [s] and
j € [N/s] such that Afi,(z —1)- (N/s) +j] = 1;
2. X, contains all strings of the form aN/*~7 z$ya?N/*=*, for some z,y € [s] and
J.k € [N/s] such that B[(z —1)- (N/s) +4,(y —1)- (N/s) + k] =1, ie., if
the corresponding entry of B is 1;
3. X3 contains all strings of the form a*ywv(i), for some i € [N], y € [s] and
k € [N'/s] such that C[(y — 1) - (N/s) + k4] = 1.
It is easy to see that |P(i,z,y)| = O(N/s). This implies the following:
1. The length of the pattern is m = O(N - s - N/s) = O(N? - s);
2. The total length of X is || X|| = ON -s-N/s-N/s+ s> (N/s)?> - N/s+ N -
s-N/s-N/s)=O(N3/s).

By the above construction, we obtain the following fact.

Fact 1. P(i,z,y) matches X if and only if, for some j,k = 1,2,....N/s, we
have Ali, (x —1)- (N/s)+j] =1, Bl(x —1)- N/s)+ 5, (y—1)- N/s)+ k] =1 and
Clly —1)-(N/s) + k,i] = 1.

Solving the TD problem thus reduces to taking the disjunction of all such con-
ditions. Let us write down all strings P(i,x,y) in some arbitrary but fixed order to
obtain P = P\ P, ... P, with 2 = Ns? being a power of 2, where every P; = P(i,x,y),
for some i,x,y. We aim to construct a small number of sets of strings that, when
considered as an ED text, match any prefix P; P, ... P; of the pattern, 1 <t <z —1;
a similar construction can be carried on to obtain sets of strings that match any suffix
Py...P,_1P,, 2 <k <z These sets will then be added to the left and to the right
of X, respectively, to obtain the ED text T.

ED Prefix. We construct logz sets of strings as follows. The first one contains
the empty string € and PiP>...P,/5. The second one contains €, P1Ps... P,
and P, /541 ...P./24./4. The third one contains €, P1 P ... P,/8, P.jaqy1--- Prjayzys,
Poyi.o . Poogzgand Poyyagr - Pojogzjayzys.

Formally, for every ¢ = 1,2,...,log z, the i-th of such sets is:

TP = u{Pp;

it Pisg2 | j=0,1,,27 -1

This manuscript is for review purposes only.
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ED Suffix. We similarly construct log z sets to be appended to X:

TP =cU{P,_ P,

L2 1

The total length of all the ED prefix and ED suffix strings is O(logz - N? - s) =
O(N?-s-log ). The whole ED text T is thus: T =17 ----- Th, X Ty Ts.
We next show how a solution of such instance of EDSM corresponds to the solution

of TD.

LEMMA 4.1. The pattern P occurs in the ED text T if and only if there exist i, j, k
such that Ali, j| = Blj, k] = Clk,i] = 1.

Proof. By Fact 1, if such 4, j, k exist then P, matches X, for some ¢t € {1,...,z}.
Then, by construction of the sets Tip and 7237 the prefix P; ... P;,_1 matches the ED
prefix (this can be proved by induction), and similarly the suffix P;11 ... P, matches
the ED suffix, so the whole P matches T, and so P occurs therein. In the other
direction, assume that there is an occurrence of the pattern P in T. Because the
letter $ appears only in the center of every P; and in the strings from &3, and it can
be verified that in any string from T ----- TlO , or Tlf) JEERRE T‘S there are fewer than
z such letters, it must be the case that for some P its $ is ahgned with a $ from some
X5 € X5. But then by the subalphabets being disjoint we must have X7 Xo X35 = P,
for some X; € Xy, Xy € Xy, X3 € A5, and by Fact 1 there exists a triangle. 0

Note that for the EDSM problem we have m = N2 - s, n = 14+2logz and N =
[|X]| + O(N?:-s:log N). Thus if we had a solution running in O(log z - m!'-5=¢ 4 || X ||+
N? . s-1logN)=0(ogN - (N? - 5)157¢ + N3 /s) time, for some € > 0, by choosing
a sufficiently small o > 0 and setting s = N'® we would obtain, for some § > 0, an
O(N379)-time algorithm for TD. This ends the proof of Theorem 1.1. |

In order to show that AP cannot be solved in time O(m!®~¢+ N) with a combi-
natorial algorithm unless there is a truly subcubic combinatorial algorithm for BMM
(Theorem 1.3), in Section 3, we have exhibited a fully detailed reduction from BMM
to the AP problem. However, now that we have proved a lower bound for EDSM,
we remark that Theorem 1.1 also implies Theorem 1.3. Indeed, assuming that the
AP problem can be solved in O(m!°~¢ + N) time, then by calling the AP problem n
times (as described in Section 2 under the definition of the EDSM problem), we could
solve the EDSM problem in O(nm!5=¢ + N) time. At that point, we could apply
Theorem 1.1 and obtain a truly subcubic combinatorial algorithm for BMM.

5. An O(nm®~! + N)-time Algorithm for EDSM. Our goal is to design a
non-combinatorial O(nm®~!' + N)-time algorithm for EDSM, which in turn can be
achieved with a non-combinatorial (7)(m“’*1 + N)-time algorithm for the AP problem,
that is the bottleneck of EDSM (cf. [39)]).

We reduce AP to a logarithmic number of restricted instances of the same prob-
lem, based on the length of the strings in S. We start by giving a lemma that we will
use to process naively the strings of length up to a constant ¢, to be determined later,
in O(mlogm + N) time.

LEMMA 5.1. For any integert, all strings in S of length at most t can be processed
in O(mlogm + mt+ N) time.

Proof. We first construct the suffix tree ST of P in O(mlogm) time [65]. Let us
remark that we are spending O(mlogm) time and not just O(m) so as to avoid any
assumptions on the size of the alphabet. For every explicit node u € ST, we construct
a perfect hash function mapping the first letter on every edge outgoing from u to the
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corresponding edge. This takes O(mlogm) total time [61] and allows us to navigate
in ST in constant time per letter. For every S € S, find and mark its corresponding
(implicit or explicit) node of ST. This takes O(N) time overall. For every possible
length ¢’ <t, scan P with a window of length ¢’ while maintaining its corresponding
(implicit or implicit) node of ST. To move the window to the right, we first follow
the suffix link of the current node (if the node is implicit, we follow the suffix link
of its nearest explicit ancestor, and then descend to find the node corresponding to
the truncated window), and then follow the appropriate edge. This takes O(mt) total
time by standard amortization based on counting the number of explicit ancestors of
the current node. If the current window PJi.. (i +¢ — 1)] corresponds to a marked
node of ST and additionally Ui — 1] = 1, we set V[i +¢' — 1] = 1. O

We build the restricted instances of the AP problem by considering only strings in

Sk C S of length in [(19/18)%, (19/18)**1) for each integer k ranging from Logﬁ’%—‘

to L%J . These sets form a partition of the set of all strings in S of lengths up

to m; longer strings are not needed when solving the AP problem.

For each integer k from Logg%—l to Logl(olg%} let ¢ be an integer such that

the length of every string in Sy, belongs to [9/8 - £,5/4 - £). Note that such an integer
always exists for an appropriate choice of the integer constant c¢. In fact, it must hold
that

9, - 19’“< 19’“+1<5€<:>4 19k+1<£<8 19\*
g = \18 18 = 4 5 \18) =" =9 \18) "

To ensure that there exists an integer £ satisfying such conditions, we require that

LT e s (19) o (1Y
5 \18 - 9 \18 2 — \18)

The last equation holds for £ > 58, implying that we will process naively the strings

of length up to ¢ = 23, and each Sy, for k ranging from 58 to {%Jv will be

processed separately as described in the next paragraph.

Remark 5.2. The length of every string in S belonging to [9/8 - £,5/4 - £) implies
that every string in S contains at most £/4 length-£ substrings (and at least 1+ ¢/8
of them).

Denoting by N the total size of strings in Sg, we have that, if we solve every
such instance of AP in O(Ni+f(m)) time, then we can solve the original instance of
AP in O(N + f(m)logm) time by taking the disjunction of the results. Switching to
O notation that disregards polylog factors, it thus suffices to solve each such instance
of the AP problem in O(N + m®~!) time.

We further partition the strings in Sy into three types, compute the corresponding
bit vector V for each type separately and, finally, take the disjunction of the resulting
bit vectors V' to obtain the answer for each restricted instance.

Partitioning Sj,. Keeping in mind that from now on (until Section 5.4) we address
the AP problem assuming that S only contains strings of length in [9/8 - £,5/4 - £),
and thus is in fact Sg, to lighten the notation we now switch back to denote it simply
with S, and similarly write N to denote the total length of all strings given as the
input to the AP problem. The three types of strings are as follows:
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Type 1: Strings S € S such that every length-¢ substring of S is not strongly peri-
odic.

Type 2: Strings S € S containing at least one length-£ substring that is not strongly
periodic and at least one length-¢ substring that is strongly periodic.

Type 3: Strings S € S such that every length-¢ substring of S is strongly periodic
(in Lemma 5.3 we show that in this case per(S) < £/4).

These three types are evidently a partition of S. We start with showing that, in

fact, strings of type 3 are exactly strings with period at most ¢/4. It is straightfor-

ward to verify that strings with period at most £/4 are such that all their length-¢

substrings have period at most £/4; the following lemma addresses the other (less

obvious) direction.

LEMMA 5.3. Let S be a string. If per(S[j..j+ € —1]) < £/4 for every j then
per(S) < ¢/4.

Proof. We first show that, for any string W and letters a, b, if per(aW) < |aW|/4
and per(Wb) < |Wb|/4 then per(aW) = per(Wb). This follows from Lemma 2.1: since
per(aW) and per(Wb) are both periods of W and (14 |W])/4 < |W|/2, then we have
that d = ged(per(aW), per(Wb)) is a period of W. Assuming by contradiction that
per(aW) # per(Wb), then it must be that either d < per(aW) or d < per(Wb); by
symmetry it is enough to consider the former possibility, and we claim that then d is a
period of aW. Indeed, a = Wper(aW)] (observe that, since per(aW) < (14+|W|)/4 <
|W|/2, in particular per(aW) < |W|) and W[i] = Wi+d] for any i = 1,2,...,|W|—d,
so by per(aW) being a multiple of d, we obtain that a = W per(aW)] = W{d], which is
a contradiction because, by definition of per(aW), we have that d < per(aW) cannot
be a period of aW.

If per(S[j..j+£€—1]) < ¢/4 for every j then by the above reasoning the periods of
all substrings S[j..j+¢—1] are all equal to the same p < £/4. But then S[i] = S[i+p]
for every 14, so per(S) < £/4. |

Before proceeding with the algorithm, we show that, for each string S € S, we
can determine its type in O(]S]) time.

LEMMA 5.4. Given a string S we can determine its type in O(|S|) time.

Proof. It is well-known that per(T") can be computed in O(|T|) time for any string
T (cf. [28]). We partition S into blocks T, = S[a|¢/2] .. (a+1)|£/2] —1] of size | /2],
and compute per(Ty,) for every o in O(|S]) total time. Observe that every substring
S[i..i+ ¢ — 1] contains at least one whole block inside.

If per(T,) > £/4 then the period of any substring S[i..i+ ¢ — 1] that contains T,
is also larger than ¢/4. Consequently, if per(T,) > ¢/4 for every «, then we declare S
to be of type 1.

Consider any a such that p = per(T,) < £/4. If the period p’ of a substring
S’ = S[i..i+ ¢ — 1] that contains T, is at most £/4, then in fact it must be equal to
p, because p’ > p and so, by Lemma 2.1 applied on T,, p’ must be a multiple of p
and, by repeatedly applying S’[j] = S'[j +p'] and T,[j] = Tw[j +p] and using the fact
that T, occurs inside S’, we conclude that in fact S’[j] = S’[j + p| for any j, and thus
p’ = p. This allows us to check whether there exists a substring S’ = S[i..i 4+ £ — 1]
that contains T, such that per(S’) < ¢/4 by computing, in O(¢) time, how far the
period p extends to the left and to the right of T, in Ty, 174 o1 (if either T, 1 or
T,+1 do not exist, then we do not extend the period in the corresponding direction).
There exists such a substring S’ if and only if the length of the extended substring
with period p is at least £. Therefore, for every o we can check in O(¢) time if there
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exists a length-¢ substring S’ containing T, with per(S’) < £/4. By repeating this
procedure for every «, we can distinguish between S of type 2 and S of type 3 in
O(|S]) total time. |

Since we have shown how to efficiently partition the strings of S into the three
types, in what follows we present our solution of the AP problem for each type of
strings separately.

5.1. Type 1 Strings. In this section we show how to solve a restricted instance
of the AP problem where every string S € S is of type 1, that is, each of its length-¢
substrings is not strongly periodic, and furthermore |S| € [9/8 - £,5/4 - £) for some
¢ < 'm. Observe that all (and hence at most £/4 by Remark 5.2) length-£ substrings of
any S € S must be distinct, as otherwise we would be able to find two occurrences of
a length-£ substring at distance at most £/4 in S, making the period of the substring
at most £/4 and contradicting the assumption that S is of type 1.

We start with constructing the suffix tree ST of P (our pattern in the EDSM
problem) and storing, for every node, the first letters on its outgoing edges in a static
dictionary with constant access time. Then, for every S € S, we check in O(]S|) time
using ST if it occurs in P and, if not, we disregard it from further consideration.
Therefore, from now on we assume that all strings S, and thus all their length-¢
substrings, occur in P. We will select a set of length-¢ substrings of P, called the
anchors, each represented by one of its occurrences in P, such that:

1. The total number of occurrences of all anchors in P is O(m/{ - logm).

2. For every S € S, at least one of its length-¢ substrings is an anchor.

3. The total number of occurrences of all anchors in strings S € S is O(|S] -

logm).

We formalize this using the following auxiliary problem, which is a strengthening of
a well-known Hitting Set problem, which given a collection of m sets over [n], each of
size at least k, asks to choose a subset of [n] of size O(n/k - logm) that nontrivially
intersects every set.

NODE SELECTION (NS)

INPUT: A bipartite graph G = (U, V, E) with deg(u) € (d,2d] for every u € U
and weight w(v) for every v € V, where W =3, w(v).

OUTPUT: A set V' C V of total weight O(W/d-log |U|) such that N[u]NV’ # ()
for every node w € U, and ), iy |[N[u] N V'| = O(|U|log |U]).

We reduce the problem of finding anchors to an instance of the NS problem, by
building a bipartite graph G in which the nodes in U correspond to strings S € S,
the nodes in V' correspond to distinct length-¢ substrings of P, and there is an edge
(u,v) if the length-¢ string corresponding to v occurs in the string S corresponding
to u. Using suffix links, we can find the node of the suffix tree corresponding to
every length-¢ substring of S in O(|S|) total time, so the whole construction takes
O(mlogm+3 gcs|S]) = O(mlogm + N) time. The size of G is O(m + N), and the
degree of every node in U belongs to (¢/8,¢/4]. We set the weight of a node v € V to
be its number of occurrences in P, and solve the obtained instance of the NS problem
to obtain the set of anchors. We remark that, because each string S € S can be
assumed to be a substring of P and we do not need to keep duplicate strings in S,
we have log |[U| = ©(logm) and the three required properties indeed hold assuming
that we have found a solution. However, it is not immediately clear that an instance
of the NS problem always has a solution. We show that indeed it does, and that it
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can be found in linear time.

LEMMA 5.5. A solution to an instance of the NS problem always exists and can
be found in linear time in the size of G.

Proof. We first show a solution that uses the probabilistic method and leads us
to an efficient Las Vegas algorithm; we will then derandomize the solution using the
method of conditional expectations.

We independently choose each node of V' with probability p to obtain the set V'
of selected nodes. The expected total weight of V' is > .y, p-w(v) = p- W, so by
Markov’s inequality it exceeds 4p - W with probability at most 1/4. For every node
u € U, the probability that N[u] does not intersect V' is at most (1 — p)? < e7P%.
Finally, E[} ", IN[u] N V'[] < |U|-2pd, so by Markov’s inequality >, o/ |V [u] N V|
exceeds |U| - 8pd with probability at most 1/4. We set p = In(4|U|)/d (observe that
if p > 1 then we can select all nodes in V). By union bound, the probability that V'
is not a valid solution is at most 3/4, so indeed a valid solution exists. Furthermore,
this reasoning gives us an efficient Las Vegas algorithm that chooses V' randomly
as described above and then verifies if it constitutes a valid solution. Each iteration
takes linear time in the size of G, and the expected number of required iterations is
constant.

To derandomize the above procedure we apply the method of conditional expec-
tations. Let X7, Xs,... be the binary random variables corresponding to the nodes
of V. Recall that in the above proof we set X; = 1 with probability p. Now we
will choose the values of X7, Xs, ... one-by-one. Define a function f(X;, Xs,...) that
bounds the probability that X7, X5, ... corresponds to a valid solution as follows:

Z X w ZuGU ZvEN[u] XU
X1, Xy, )= St .
J(Xy Xo,o) = AW/d - In( 4\U| +1§JU€1;VI[U} 8|U[In(4|U])

As explained above, we have E[f(X1, X5,...)] = 3/4. Assume that we have already
fixed the values X7 = x1,...,X; = x;. Then there must be a choice of X; 11 = x;11
that does not increase the expected value of f(X7, Xs,...) conditioned on the already
chosen values. We want to compare the following two quantities:

E[f(Xl,XQ’...)|X1 = ml,...,Xi = xhX'H-l = O]
E[f(Xl,XQ,...HXl = Il,...,Xi = l‘i,Xi+1 = 1]

and choose x;41 corresponding to the smaller one. Canceling out the shared terms,
we need to compare the expected values of:

0 + > Il a-x) + 0 and
wEN[i+1] vEN [u]
w(i+1) deg(i+1)
S S 0 _cest )
4W/d - In(4|U]) 8|U| In(4|U])

The second quantity can be computed in constant time. We claim that (ignoring the
issue of numerical precision) the first quantity can be computed in time O(deg(i+ 1))
after a linear-time preprocessing as follows. In the preprocessing we compute and
store Efi] = (1 — p)?, for every i = 0,1,...,|V| in O(|V]) total time. Then, during
the computation we maintain, for every u € U, the number c[u] of v € Nu] for which
we still need to choose the value X., and a single bit b[u] denoting whether for some
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v € NlulNn{l,...,i} we already have x, = 1. This information can be updated in
O(deg(i+1)) time after selecting x;11. Now to compute the first quantity, we iterate
over u € N[i + 1] and, if b[u] = 0 then we add E[c[u]] to the result. Finally, we
claim that it is enough to implement all calculations with precision of ©(log |V]) bits.
This is because such precision allows us to calculate both quantities with relative
accuracy 1/(8|V]), so the expected value of f(X71, Xo,...) might increase by a factor
of (1+1/(4|V])) in every step, which is at most (14 1/(4|]V]))IVI < e'/* overall. This
still guarantees that the final value is at most 3/4 - e!/4 < 1, so we obtain a valid
solution. |

In the rest of this section we explain how to compute the bit vector V from the bit
vector U, and thus solve the AP problem, after having obtained a set A of anchors.
For any S € S, since S contains an occurrence of at least one anchor H € A, say
Slj..(j+|H|-1)]=H, so any occurrence of S in P can be generated by choosing
some occurrence of H in P, say Pli..(i + |H| — 1)] = H, and then checking that
S[L...(j—1)] = P[(i—j+1).. (i—1)] and S[(j+H]) ..|S]] = P{(i-+[H]) . (i-+]S] ).
In other words, S[1..(j —1)] should be a suffix of P[1.. (i —1)] and S[(j + |H])..|S]]
should be a prefix of P[(i+|H]|)..|P|]. In such case, we say that the occurrence of S in
P is generated by H. By the properties of A, any occurrence of S € S is generated by
occs > 1 occurrences of anchors, where ) g s occs = O(|S|logm). For every H € A
we create a separate data structure D(H) responsible for setting V[i + |S|—1] =1,
when Ui — 1]=1 and P[i..(i+|S|—1)]=S is generated by H. We now first describe
what information is used to initialize each D(H ), and how this is later processed to
update V.

Initialization. D(H) consists of two compact tries T(H) and T"(H). For every
occurrence of H in P, denoted by P[i..(i+|H|—1)] = H, T(H) should contain a leaf
corresponding to P[(i + |H])..|P|]$ and T"(H) should contain a leaf corresponding
to (P[1..(i —1)])"$, both decorated with position 7. Additionally, D(H) stores a list
L(H) of pairs of nodes (u,v), where u € T"(H) and v € T(H) (both nodes might be
implicit or explicit). Each such pair corresponds to an occurrence of H in a string
S eSS, Sj..(j +|H|—1)] = H, where u is the node of T"(H) corresponding to
(S[1..(7 —1)])"$ and v is the node of T'(H) corresponding to S[(j + |H|+1)..]S]]$.
We claim that D(H), for all H, can be constructed in O(mlogm + N) total time.
We first construct the suffix tree ST of P$ and the suffix tree ST of P"$ (again in
O(mlogm) time not to make assumptions on the alphabet). We augment both trees
with data for answering both weighted ancestor (WA) and lowest common ancestor
(LCA) queries, that are defined as follows. For a rooted tree T on n nodes with an
integer weight D(v) assigned to every node w, such that the weight of the root is
zero and D(u) < D(v) if w is the parent of v, we say that a node v is a weighted
ancestor of a node v at depth ¢, denoted by WA (u,£), if v is the highest ancestor
of u with weight at least ¢. Such queries can be answered in O(logn) time after an
O(n) preprocessing [32]. For a rooted tree T', LCAr(u, v) is the lowest node that is an
ancestor of both u and v. Such queries can be answered in O(1) time after an O(n)
preprocessing [12]. Recall that every anchor H is represented by one of its occurrences
in P. Using WA queries, we can access in O(log m) time the nodes corresponding to H
and H", respectively, and extract a lexicographically sorted list of suffixes following an
occurrence of H in P$ and a lexicographically sorted list of reversed prefixes preceding
an occurrence of H in P"$ in time proportional to the number of such occurrences.
Then, by iterating over the lexicographically sorted list of suffixes and using LCA
queries on ST we can build T'(H) in time proportional to the length of the list, and
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Fi1G. 1. An occurrence of S starting at position ¢ in P is generated by H: (u,v) corresponds to
Slj..(+|H|—1)] = H and i appears in the subtree of T"(H) rooted at u, as well as in the subtree
of T(H) rooted at v.

similarly we can build T"(H). To construct L(H) we start by computing, for every
SeSandj=1,...,|5]|, the node of ST" corresponding to (S[1..7])" and the node
of ST corresponding to S([(j + 1) ..|S]|] (the nodes might possibly be implicit). This
takes only O(]S|) time, by using suffix links. We also find, for every length-¢ substring
Slj..(F+€—1)] of S, an anchor H € A such that S[j..(j+¢—1)] = H, if any exists.
This can be done by finding the nodes (implicit or explicit) of ST that correspond to
the anchors, and then scanning over all length-¢ substrings while maintaining the node
of ST corresponding to the current substring using suffix links in O(|S]) total time.
After having determined that S[j..(j + ¢ —1)] = H we retrieve the previously found
nodes u of ST" and v of ST corresponding to (S[1..(j — 1)])" and S[(j + ¢)..|S|],
respectively. Then we look up the node w € T"(H) corresponding to v and the node
v' € T(H) corresponding to v, and if they both exist we add (u,v) to L(H). This
lookup can be implemented in O(logm) time by binary searching over the leaves of
the compact tries. By construction, we have the following property, also illustrated
in Figure 1.

Fact 2. A string S € S starts at position i—j+1 in P if and only if, for some
anchor H € A, L(H) contains a pair (u,v) corresponding to S[j..(j+|H|-1)]=H,
such that the subtree of T"(H) rooted at u and that of T(H) rooted at v contain a leaf
decorated with 1.

Note that the overall size of all lists L(H), when summed up over all H € A, is
> ses occs = O(|S]logm), and since each S is of length at least £ this is O(N/{-logm).

Processing. The goal of processing D(H) is to efficiently process all occurrences
generated by H. As a preliminary step, we decompose T"(H) and T(H) into heavy
paths. Then, for every pair of leaves u € T"(H) and v € T'(H) decorated by the same
i, we consider all heavy paths above u and v. Let p = u; — us — ... be a heavy path
above w in T"(H) and ¢ = v; — v2 — ... be a heavy path above v in T(H), where
uy is the head of p and vy is the head of ¢, respectively. Further, choose the largest
x such that u is in the subtree rooted at u,, and the largest y such that v is in the
subtree rooted at v, (this is well-defined by the choice of p and g, as u is in the subtree
rooted at uq and v is in the subtree rooted at v1). We add (¢, | L(ug)|,| £(vy)]) to an
auxiliary list associated with the pair of heavy paths (p,q), where £(u) denotes the
concatenation of the edge labels on the path from the root to node u. In the rest
of the processing we work with each such list separately. Notice that the overall size
of all auxiliary lists, when summed up over all H € A, is O(m/{ - log® m), because
there are at most log® m pairs of heavy paths above u and v decorated by the same 1,
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F1G. 2. An occurrence of S starting at position i in P corresponds to a triple (i, L(ug), L(vy))
on some auziliary list.

and the total number of leaves in all trees T"(H) and T'(H) is bounded by the total
number of occurrences of all anchors in P, which is O(m/¢ - logm). By Fact 2, there
is an occurrence of a string S generated by H and starting at position ¢ —j+1 in P if
and only if L(H) contains a pair (u,v) corresponding to S[j..(j+|H|—1)] = H such
that, denoting by p the heavy path containing u in T"(H) and by ¢ the heavy path
containing v in T'(H ), the auxiliary list associated with (p, q) contains a triple (i, z, y)
such that > | L(u)| and y > |L(v)|. This is illustrated in Figure 2. Henceforth,
we focus on the problem of processing a single auxiliary list associated with (p, q),
together with a list of pairs (u,v), such that v belongs to p and v belongs to g.

Processing an auxiliary list can be interpreted geometrically as follows: for ev-
ery (i,x,y) we create a red point (z,y), and for every (u,v) we create a blue point
(| L(u)|,| L(v)]). Then, each occurrence of S € S generated by H corresponds to a
pair of points (p1, p2) such that p; is red, py is blue, and p; dominates py. We further
reduce this to a collection of simpler instances in which all red points already dom-
inate all blue points. This can be done with a divide-and-conquer procedure which
is essentially equivalent to constructing a 2D range tree [13]: we first apply a divide-
and-conquer that splits the current set of points along the median = coordinate, and
inside every each obtained subproblem consisting of the left and the right part we ap-
ply another divide-and-conquer that splits the current set of points along the median y
coordinate. The total number of points in all obtained instances increases by a factor
of O(log? m), making the total number of red points in all instances O(m/£ -log® m),
while the total number of blue points is O(N/£ - log® m). There is an occurrence of
a string S € S generated by H and starting at position ¢ — j + 1 in P if and only if
some simpler instance contains a red point created for some (i, x,y) and a blue point
created for some (u, v) corresponding to S[j..(j +|H|—1)] = H. In the following we
focus on processing a single simpler instance.

To process a simpler instance we need to check if Ui — j] = 1, for a red point
created for some (i,z,y) and a blue point created for some (u,v) corresponding to
Slj..(j+|H|—1)] = H, and if so set V[i —j +|S|] = 1. This has a natural
interpretation as an instance of BMM: we create a [5/4-¢] x [5/4 - ] matrix M such
that M[|S|—7,[5/4-£]+1—j] = 1 if and only if there is a blue point created for some
(u,v) corresponding to S[j..(j + |H| — 1)] = H; then for every red point created for
some (i, z,y) we construct a bit vector U; = U[(i — [5/4-£])..(i—1)] (ifi < [5/4-£],
we pad U; with 0s to make its length always equal to [5/4-£]); calculate V; = M x U;;
and finally set V[i + j] = 1 whenever V;[j] =1 (and i + j < m).

LEMMA 5.6. V;[k] = 1 if and only if there is a blue point created for some (u,v)
corresponding to S[j..(j + |H| —1)] = H such that U[i —j] =1 and k = |S| — j.
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Proof. By definition of V; = M x U;, we have that V;[k] = 1 if and only if
Mk, t] = 1 for some ¢ such that U;[t] = 1. By definition of U;, we have that U;[t] =1
if and only if Ui — [5/4 - £] +t — 1] = 1, and hence the previous condition can be
rewritten as M[k,t] = 1 and U[i—[5/4-¢] +t—1] = 1, or equivalently, by substituting
j=15/4-01+1—t, M[k,[5/4-]+1—j]=1and Ui — j] = 1. By definition of M,
we have that Mk, [5/4-¢] +1— j] =1 if and only if there is a blue point created for
some (u,v) corresponding to S[j..(j + |H| —1)] = H with k = |S| — j, which proves
the lemma. |

The total length of all vectors U; and V; is O(mlog®m), so we can afford to
extract the appropriate fragment of U and then update the corresponding fragment
of V. The bottleneck is computing the matrix-vector product V; = M x U;. Since the
total number of 1s in all matrices M is bounded by the total number of blue points,
a naive method would take O(N/¢ - log® m) time; we overcome this by processing
together all multiplications concerning the same matrix M, thus amortizing the costs.
Let Ui, ,Ui,, ..., U;, be all bit vectors that need to be multiplied with M, and let z
a parameter to be determined later. We distinguish between two cases: (i) if s < z,
then we compute the products naively by iterating over all 1s in M, and the total
computation time, when summed up over all such matrices M, is O(N/£-log® m - z);
(#4) if s > z, then we partition the bit vectors into [s/z] < s/z + 1 groups of z
(padding the last group with bit vectors containing all 0s) and, for every group, we
create a single matrix whose columns contain all the bit vectors belonging to the
group. Thus, we reduce the problem of computing all matrix-vector products M x U;
to that of computing O(s/z) matrix-matrix products of the form M x M’, where M’
is an [5/4 - ¢] X z matrix. Even if M’ is not necessarily a square matrix, we can still
apply the fast matrix multiplication algorithm to compute M x M’ using the standard
trick of decomposing the matrices into square blocks.

LEMMA 5.7. If two N x N matrices can be multiplied in O(N*) time, then, for
any N > N, an N x N and an N x N matriz can be multiplied in O((N/N)2N"%)

time.

Proof. We partition both matrices into blocks of size N x N’. There are (N'/N")?
such blocks in the first matrix and N//A” in the second matrix. Then, to compute
the product we multiply each block from the first matrix by the appropriate block in
the second matrix in O(N'*) time, resulting in the claimed complexity. 0

By applying Lemma 5.7, we can compute M x M’ in O(£?2%~2) time (as long
as we later verify that 5/4 - ¢ > 2), so all products M x U; can be computed in
O(£?2%72.(s/241)) time. Note that this case can occur only O(m/(£-z)-log” m) times,
because all values of s sum up to O(m/£ - log” m). This makes the total computation
time, when summed up over all such matrices M, O(£22°~2 - m/({ - z) - log® m) =
O(0z*=3 - mlog® m). We can now prove our final result for strings of type 1.

THEOREM 5.8. An instance of the AP problem where all strings are of type 1 can
be solved in O(m*~! + N) time.

Proof. The total time complexity is first O(m + N) to construct the graph G,
then O(mlogm + N) to solve its corresponding instances of the NODESELECTION
problem and obtain the set of anchors H. The time to initialize all structures D(H)
is O(mlogm+N). For every D(H), we obtain in O(m/{-log” m+ N/{-log® m) time a
number of simpler instances, and then construct the corresponding Boolean matrices
M and bit vectors U; in additional O(mlog® m) time. Note that some M might be
sparse, so we need to represent them as a list of 1s. Then, summing up over all matrices
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M and both cases, we spend O(N/¢-log® m-z+£z*~3 - mlog® m) time. We would like
to assume that ¢ > log® m so that we can set z = £/ log® m. This is indeed possible,
because for any ¢t we can switch to a more naive approach to process all strings of length
at most ¢t in O(mlogm + mt + N) time as described in Lemma 5.1. After applying
it with ¢ = log® m in O(mlog® m + N) time, we can set z = £/ log® m (so that indeed
5/4-¢ > z as required in case s > z) and the overall time complexity for all matrices
M and both cases becomes O(N + £972 - m1log® 3G~ ;). Taking the initialization
into account we obtain O(mlog® m + <=2 - mlog® 3G~ i 4 N) = O(m»~! + N)
total time. ]

5.2. Type 2 Strings. In this section we show how to solve a restricted instance
of the AP problem where every string S € S is of type 2, that is, S contains a length-¢
substring that is not strongly periodic as well as a length-¢ substring that is strongly
periodic, and furthermore |S| € [9/8-¢,5/4 - ¢) for some ¢ < m.

Similarly as in Section 5.1, we select a set of anchors. In this case, instead of the
NODESELECTION problem we need to exploit periodicity. We call a string T' £-periodic
if |T| > ¢ and per(T) < ¢/4. We consider all maximal ¢-periodic substrings of S, that
is, ¢-periodic substrings S[i..j] such that either ¢ = 1 or per(S[(i — 1)..7]) > £/4,
and j = |S] or per(S[i..(j +1)]) > ¢/4. We know that S contains at least one such
substring (because there exists a length-¢ substring that is strongly periodic), and
that the whole S is not such a substring (because otherwise S would be of type 3).
Further, two maximal ¢-periodic substrings cannot overlap too much, as formalized
in the following lemma.

LEMMA 5.9. Any two distinct maximal £-periodic substrings of the same string S
overlap by less than £/2 letters.

Proof. Assume (by contradiction) the opposite; then we have two distinct ¢-
periodic substrings S[i..j] and S[¢'..j'] such that i <’ < j < j and j—i' +1 > £/2.
Then, both p = per(S[i.. j]) and p’ = per(S[i’. . j']) are periods of S[i’ .. j], and hence
by Lemma 2.1 we have that ged(p, p’) is a period of S[i’ .. j]. If p # p’ then, because
S[i’ .. j] contains an occurrence of both S[i.. (i +p —1)] and S[i'.. (' +p’ — 1)], we
obtain that one of these two substrings is a power of a shorter string, thus contradict-
ing the definition of p or p’. So p = p/, but then p < £/4 is actually a period of the
whole S[i..j'], meaning that S[i..j] and S[¢’. . '] are not maximal, a contradiction.n

By Lemma 5.9, every S € S contains exactly one maximal ¢-periodic substring,
and by the same argument P contains O(m/{) such substrings. The set of anchors
will be generated by considering the unique maximal /-periodic substring of every
S € S, so we first need to show how to efficiently generate such substrings.

LEMMA 5.10. Given a string S of length at most 5/4 - £, we can generate its
(unique) mazimal L-periodic substring in O(|S]) time.

Proof. We start with observing that any length-¢ substring of S must contain
S[(1£/2] + 1)..4] inside. Consequently, we can proceed similarly as in the proof of
Lemma 5.4. We compute p = per(S[(|£/2] +1)..¢]) in O(]S]) time. If p > £/4 then
S does not contain any ¢-periodic substrings. Otherwise, we compute in O(].S]) time
how far the period p extends to the left and to the right; that is, we compute the
smallest ¢ < [£/2] + 1 such that S[k] = S[k + p] for every k = i,i +1,...,[¢/2]
and the largest j > ¢ such that S[k] = S[k — p] for every k = £+ 1,04+ 2,...,4. If
j—i+1>{then S[i..j]is a maximal ¢-periodic substring of S, and, as shown earlier
by Lemma 5.9, S cannot contain any other maximal ¢-periodic substrings. We return
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S[i..j] as the (unique) maximal ¢-periodic substring of S. |

For every S € S, we apply Lemma 5.10 on S to find its (unique) maximal ¢-
periodic substring S[i..j] in O(|S]) time. If ¢ > 1 then we designate S[(i —1).. (i —
1+¢)] as an anchor, and similarly if j < |S| we designate S[(j+1—¢)..(j+1)] as an
anchor. Observe that because S is of type 2 (and not of type 3) either ¢ > 1 or j < |5/,
so for every S € S we designate at least one if its length-(¢41) substrings as an anchor.
As in Section 5.1, we represent each anchor by one of its occurrences in P, and so
need to find its corresponding node in the suffix tree of P (if any). This can be done
in O(]S]) time, so O(N) overall. During this process we might designate the same
string as an anchor multiple times, but we can easily remove the possible duplicates
to obtain the set A of anchors in the end. Then, we generate the occurrences of
all anchors in P by accessing their corresponding nodes in the suffix tree of P and
iterating over all leaves in their subtrees. We claim that the total number of all these
occurrences is only O(m/{). This follows from the following characterization.

LEMMA 5.11. If Plz..(z + £)] is an occurrence of an anchor then either P[(z +
1)..y] is a maximal £-periodic substring of P, for somey > x+£, or Plz’.. (x+£—1)]
is a mazimal {-periodic substring of P, for some x' < x.

Proof. By symmetry, it is enough to consider an anchor H created because of a
maximal ¢-periodic substring S[i . . j] such that ¢ > 1, when we add S[(i—1) .. (i—1+¢)]
to A. Thus, per(H[2..|H|]) < {¢/4 and if P[z..(z+¢)] = H then per(P[(z+1)..(z+
0)]) < £/4, making P[(x+1) .. (z+£)] a substring of some maximal ¢-periodic substring
of P[(z'+1)..y], where 2’ <z and y > z+£. If 2/ < x then per(H) < £/4. But then
H=S8[i—-1)..(i = 1+ ¢)] can be extended to some maximal ¢-periodic substring
S[i'..7'] such that ¢/ < i—1and j' > i — 1+ £. The overlap between S[i..j] and
S[i"..4'] is at least ¢, so by Lemma 5.9 ¢ = ¢’ and j = j/, which is a contradiction.
Consequently, ' = z and we obtain the lemma. 0

By Lemma 5.11, the number of occurrences of all anchors in P is at most two
per each maximal ¢-periodic substrings, so O(m/¢) in total. We thus obtain a set of
length-(¢ + 1) anchors with the following properties:

1. The total number of occurrences of all anchors in P is O(m/{).

2. For every S € S, at least one of its length-(¢ 4 1) substrings is an anchor.

3. For every S € S, at most two of its length-(¢ 4+ 1) substrings are anchors.
These properties are even stronger than what we had used in Section 5.1 (except that
now we are working with length-(¢ + 1) substrings, which is irrelevant), we can now
prove our final result also for strings of type 2.

THEOREM 5.12. An instance of the AP problem where all strings are of type 2
can be solved in O(m“~1 + N) time.

5.3. Type 3 Strings. In this section we show how to solve a restricted instance
of the AP problem where every string S € S is of type 3, and furthermore |S| €
[9/8-¢,5/4-¢) for some ¢ < m. Recall that strings S € S are such that every length-¢
substring of S is strongly periodic and, by Lemma 5.3, in this case, per(S) < (/4.
An occurrence of such S in P must be contained in a maximal ¢-periodic substring
of P. Recall that a string T is called ¢-periodic if |T'| > ¢ and per(T) < ¢/4. For an
¢-periodic string T, let its root, denoted by root(T), be the lexicographically smallest
cyclic shift of T[1..per(T)]. Because per(T) < £/4 and |T'| > ¢ by definition, there are
at least four repetitions of the period in T', so we can write T = R[i..|R|]R*R]1 .. j],
where R = root(T'), for some 4,7 € [1,|R|] and a > 2. It is well known that root(T)
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can be computed in O(|T|) time [31].

EXAMPLE 4. Let T = babababab and { = 8. We have |[T| = 9 > £ = 8 and
per(T) =2 </{/4=2, so T is {-periodic. We have root(T) = R = ab, and T can be
written as T =1b - (ab)? - ab, fori =2 and j = 2.

We will now make a partition of type 3 strings based on their roots. We start
with extracting all maximal ¢-periodic substrings of P by proceeding similarly as in
the proof of Lemma 5.10, and then compute the root of every such substring in O(m)
total time. In more detail, we partition P into blocks of length ¢/2, and compute the
period of each such block. Any maximal ¢-periodic substring of P needs to contain
at least one such block inside. Therefore, for each block with period at most £/ we
can compute how far its period extends to the left and to the right, and output the
corresponding substring if it is long enough. The only difficulty is that we should not
extend the period beyond the preceding block. Two maximal ¢-periodic substrings
cannot overlap by more than £/2 letters, hence their total length is O(m) and we can
compute the root of each such substring in O(m) total time. We also extract the root
of every S € § in O(N) total time. We then partition maximal ¢-periodic substrings
of P and strings S € § into groups that have the same root. In the remaining part
we describe how to process each such group corresponding to root R in which all
maximal ¢-periodic substrings of P have total length m’, and the strings S € S have
total length N’.

Recall that the bit vector U stores the active prefixes input to the AP problem,
and the bit vector V' encodes the new active prefixes we aim to compute. For every
maximal ¢-periodic substring of P with root R we extract the corresponding fragment
of the bit vector U and need to update the corresponding fragment of the bit vector
V. To make the description less cluttered, we assume that each such substring of P
is a power of R, that is, R* for some a > 4. This can be assumed without loss of
generality as it can be ensured by appropriately padding the extracted fragment of
U and then truncating the results, while increasing the total length of all considered
substrings of P by at most half of their length. In the description below, for simplicity
of presentation, U and V denote these padded fragments of the original U and V.
When computing V from U we use two different methods for processing the elements
S = R[i..|R||R°R[1..4] of S depending on their length: either 3 > ¢ (large 3) or
B < t (small §), for some parameter ¢ to be chosen later. In both cases, we rely on
the observation that S = R[i..|R||JRPR[1..j] occurs R® at positions i + « - |R|, for
v=0,...,a— 8 —2. This follows from R being the root and 5 > 1.

Large B. We proceed in phases corresponding to 8 =t,...,a. In each single phase,
we consider all strings S € S with S = R[i..|R||RPR[1.. ], for some i and j. Let C(3)
be the set of the corresponding pairs (7, j), and observe that >4 [C(5)] - |RP| < N'.
This is because the length of R? is not greater than that of S = R[i..|R||R°R][1.. ],
there are |C'(8)| distinct strings of the latter form in S, and the total length of all S € S
is N’. The total number of occurrences of a string S = R[i..|R|JR°R[1..j] in R® is
bounded by O(«), and all such occurrences can be generated in time proportional to
their number. Thus, for every (i,j) € C(f8), we can generate all occurrences of the
corresponding string and appropriately update V in O(« - |C(8)|) total time.

Small 5. We start by giving a technical lemma on the complexity of multiplying two
r X r matrices whose cells are polynomials of degree up to d.

LEMMA 5.13. If two r X r matrices over Z can be multiplied in O(r¥) time, then
two T X T matrices over Z[z] with degrees up to d can be multiplied in O(r*d+r%dlog d)
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time.

Proof. Let A and B be two r X r matrices over Z[x] with degrees up to d. We
reduce the product A x B = C to (2d + 1) products of r X r matrices over Z as
follows. We evaluate the polynomials of each matrix in the complex (2d + 1)-th roots
of unity: let A; and B; be the matrices obtained by evaluating the polynomials of
A and B in the i-th such root, respectively. We then perform the 2d + 1 products
Ay X By,...,A2q41 X Bog41 to obtain matrices Cy,...,Coq4+1: the 2d + 1 values
C4li, 4], - -, Caa41]i, j] are finally interpolated to obtain the coefficient representation
of C[i,j], for each 4,5 = 1,...,r, in O(dlogd) time for each polynomial [27]. Since
we perform 2d + 1 products of matrices in Z"*", and we evaluate and interpolate
r2 polynomials of degree up to 2d + 1, the overall time complexity is 2dO(r*) +

r?0O(dlogd) = O(r*d + r*dlog d). |
Unlike in the large S case, we process § = 2,...,t — 1 simultaneously as follows
when ¢ > 3.

We construct three-dimensional Boolean tables: M with dimensions |R| X |R| x t
and M’ with dimensions [a/t] X |R| x t. We set M[i, j, 54+ 1] = 1 if and only if (i,5) €
C(B). M can be constructed in time proportional to its size by first precomputing
a lexicographically sorted list of triples (8,4,j) corresponding to S € S such that
S = R[i..|R||RPR[1..j]. The lists corresponding to different roots are constructed
in O(N') total time, and we sort them together with radix sort to avoid paying O(m)
per each root. Then, we construct M by considering the prefix of the list consisting of
all triples with sufficiently small first coordinates. Next, we set M'[k,,v+1] = 1 if and
only if U[((k—1)t+~)|R|+i—1] = 1. Finally, we interpret M’ and M as matrices over
Z|x] with degrees up to t — 1, and compute their product M"” = M’ x M. That is, we
think that M'[k,i] = 30— M'[k,4,v+1]2” and M][i, j] = 35— M[i, j, 3+ 1]2”, and
compute M” [k, j] = SB[k, i]-M]i, j] for every k = 1,..., [a/t] and j = 1,...,|R]
(this will be eventually implemented with Lemma 5.13). Note that each M"[k, j] is
a polynomial with degree up to 2(t — 1). We claim that this allows us to recover the
updates to V' by setting V[((k—1)t+q+1)|R|+j] = 1 whenever 27 appears with non-
zero coefficient in the polynomial at M" [k, j], for all k = 1,...,[a/t], 5 =1,...,|R]
and g = 0,...,2(t—1). Equivalently, we set V[((k—1)t+v-+8+1)|R|+j] = 1 whenever
M'k,i,y+1] =1and M[i,j,+ 1] =1,forall k =1,...,[a/t],i,j =1,...,|R| and
v,8=0,...,t—1. This can be rewritten as setting V[((k—1)t+~v+8+1)|R|+j] =1
whenever U[((k — 1)t + v)|R| + ¢ — 1] = 1 and there exists S € S such that S =
R[i..|R|RPR[1..j], for all k = 1,...,[a/t], j = 1,...,|R| and 7,8 = 0,...,t — 1,
which is indeed correct as any « € {0,...,a — 1} can be written as © = (k — 1)t + v
for ke {1,...,[a/t]} and v € {0,...,t — 1}.

We are now in a position to prove the following result for type 3 strings.

THEOREM 5.14. An instance of the AP problem where all strings are of type 3
can be solved in O(m*~! + N) time.

Proof. Recall that we consider strings S of type 3 with root R and substrings
of P with root R together. We first analyze the time to process a single group
containing a number of substrings of P of total length m’ and a number of strings
S € S of total length N’. Let us denote by R®» the h-th considered substring of
P and by t; the value of ¢ used to distinguish between small and large value of
when processing this substring. We partition all substrings into log m levels, with the
k-th level G} containing h such that «y, € [2%, 2F+1). We define ay, = ZheGk oy, and
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choose t;, = min(2**!, [ay/|R| - logm]) for every h € Gy.

For each level k, h € Gy, and 8 = ty, ..., ap, we use the first method and spend
Ol(ay, - |C(B)]) time, where C(5) is the set of (i,7) for this specific 8. This needs to
be done only when ¢, < ay, that is, t, = [a/|R| - logm]. The overall time used for
all applications of the first method is thus at most:

YD Olaw- Y 1CBN=00" > an/IR™ Y 1C(B)]-|R™))

k heG B>t k heG B>t
=00 Y an/(RI-th) Y [CB)-[R7)
k heG B>t
=0 ar /(IR - ay/|R| -logm) - N') = O(N'),
k

using the fact that 5 [C(B)] - |RP| < N’ and there are logm values of k.

For each level k and h € Gy, we process together all 5 = 2,...,t, — 1 using the
second method. This requires multiplying two matrices of polynomials of degree up to
tn, —1. We observe that the second matrix is in fact the same for all h € G, and so we
denote the first matrix by Mj,, the second by simply M, and think that the degree of
each polynomial in M, and M is strictly upper bounded by dj, = min(2*+1, [a,/|R| -
logm]). Mj is of size [« /d) ] x |R| while M is of size |R| x |R|. Instead of computing
each product Mj, x M separately, we vertically concatenate all matrices Mj, to obtain
a single matrix M’. The number of rows in M’ is r = >, . [an/di]. Next, we
compute M’ x M with [r/|R]|] invocations of Lemma 5.13. We separately analyse the
overall time complexity for dj = 25! and dj, = [ay/|R| - logm].
dy = [a1/|R| - logm]: Using aj, > 2% > d;,/2 we bound r as follows:

r= > lan/d] < Y (an +di)/de < ) (an +205) /ds

heGy, heGy heGy
<3 Y an/(a/|R| - logm) = 3|R|/logm < |R],
heGy,

for sufficiently large m. Thus, one invocation suffices and takes time
O(|R|“dy, + | R|*dy log dy) = O(|R|“ ™ ay log® m)

using dy > 3 and di < 2m.

d = 2*1: Because oy, € [2F,2F11) for each h € Gy, we have r = |G| < ay/2%.
The number of invocations is thus at most [ay /(2% - |R|)] < ar /(2% - |R|) + 1.
The total time used by all these invocations is

(a/(2" - |R]) + DO(IR[*25 ! + [RPP2" (K + 1))
= O(|R|*"*ay logm + |R|“2" ! logm)
using 25+ < 2m. Next, because 2871 < [ai/|R| - logm] and 281 > 2 we
have 281 < 24, /| R| - logm, so the total time can be further bounded by
O(|R|*Yag logm + |R|“2* 1 logm)

O RI“aix logm + |RI* (@x/|R| - log m) log m)
O(|R|*tay log® m).
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Hence in both cases the time used by all multiplications is O(|R|*~'ay log? m).
Using >, ar = m//|R| and |R| < m’, when summed over all logm levels k this
is in fact O((m’)*~'log®m). We remark that the matrix M can be built in time
proportional to its size assuming O(N’) preprocessing, while the matrix M’ can be
built in time proportional to its size by just scanning over the corresponding fragment
of U.

Finally, summing possibly many groups corresponding to different roots R, be-
cause all values of N’ sum up to N and all values of m’ sum up to O(m), by convexity
of 271 we obtain that the overall time complexity including the preprocessing is
O(m“~' + N). 0

5.4. Wrapping Up. In Sections 5.1, 5.2 and 5.3 we design three @(m“’*1 +N)-
time algorithms for an instance of the AP problem where all strings are of type 1,
2 and 3, respectively. Summing up over all values of k and all the types, we thus
obtain Theorem 1.2. In every case, the complexity is actually O(nm®~1)+O(N), so
using the fact that w < 2.373 [51,66] we can hide the polylog factors and obtain the
following corollary.

COROLLARY 5.15. The EDSM problem can be solved on-line in O(nm'37 + N)
time.

6. Final Remarks. Our contribution in this paper is twofold. First, we de-
signed an appropriate reduction showing that a combinatorial algorithm solving the
EDSM problem in O(nm!®~¢+ N) time, for any € > 0, refutes the well-known BMM
conjecture. Second, we designed a non-combinatorial (7)(nm‘”71 + N) -time algorithm
to attack the same problem. By using the fact that w < 2.373, our algorithm runs in
O(nm!3™ + N) time thus circumventing the combinatorial conditional lower bound
for the EDSM problem. Let us point out that if w = 2 then our algorithm for the
AP problem is time-optimal up to polylog factors, as any algorithm needs to read
the input. As for the EDSM problem, such an argument only shows a lower bound
of Q(N). However, at the same time we can show that there is no O((nm)!=¢)-time
algorithm, assuming the Strong Exponential Time Hypothesis (SETH) [19], by the
following argument. By prepending and appending a unique letter to both the ED
text and the pattern, we can reduce checking membership for a regular expression
of type ‘|-, as defined by Backurs and Indyk [10]. Combining this with their reduc-
tion from SETH, we immediately obtain the claimed conditional lower bound for the
EDSM problem.

We finally remark that, if we use the simple cubic-time matrix multiplication
algorithm in our solution then the total time complexity becomes O(nm“~! + N) =
O(nm? + N). At the same time, the solution by Aoyama et al. [8], which also does
not use fast matrix multiplication, runs in time O(nm!-® + N). It is thus plausible
that one could obtain an (7)(nm‘”/2 + N)-time algorithm for the EDSM problem. We
leave this question open for future work.
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