
MNRAS 500, 1755–1771 (2021) doi:10.1093/mnras/staa3312
Advance Access publication 2020 October 27

On the delay times of merging double neutron stars

Laura Greggio,1‹ Paolo Simonetti 2,3 and Francesca Matteucci2,3

1INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
2INAF, Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste, Italy
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ABSTRACT
The merging rate of double neutron stars (DNS) has a great impact on many astrophysical issues, including the interpretation
of gravitational waves signals, of the short gamma-ray bursts (GRBs), and of the chemical properties of stars in galaxies. Such
rate depends on the distribution of the delay times (DDT) of the merging events. In this paper, we derive a theoretical DDT of
merging DNS following from the characteristics of the clock controlling their evolution. We show that the shape of the DDT
is governed by a few key parameters, primarily the lower limit and the slope of the distribution of the separation of the DNS
systems at birth. With a parametric approach, we investigate on the observational constraints on the DDT from the cosmic rate of
short GRBs and the europium-to-iron ratio in Milky Way stars, taken as tracer of the products of the explosion. We find that the
local rate of DNS merging requires that ∼1 per cent of neutron stars progenitors live in binary systems which end their evolution
as merging DNS within a Hubble time. The redshift distribution of short GRBs does not yet provide a strong constraint on the
shape of the DDT, although the best-fitting models have a shallow DDT. The chemical pattern in Milky Way stars requires an
additional source of europium besides the products from merging DNS, which weakens the related requirement on the DDT. At
present both constraints can be matched with the same DDT for merging DNS.
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1 IN T RO D U C T I O N

The detection of gravitational waves in the most recent years has
opened a new venue for astrophysics, in particular with respect to the
topic of the merging of compact objects. So far, 11 confirmed events
of binary black hole merging, and two confirmed binary neutron star
merging have been collected (Abbott et al. 2019; The LIGO Scientific
Collaboration et al. 2020; Abbott et al. 2020). For more than three
decades, the merging of two neutron stars has been proposed to be
at the origin of the short gamma-ray bursts (SGRB) phenomenon
(Paczynski 1986; Eichler et al. 1989; Narayan, Paczynski & Piran
1992; Li & Paczyński 1998; Tutukov & Fedorova 2007; Giacomazzo
et al. 2013). These events have also been proposed as responsible of
part of the enrichment of some r-process elements, like europium
(Eu, Lattimer et al. 1977; Meyer 1989; Freiburghaus, Rosswog
& Thielemann 1999; Rosswog et al. 1999; Korobkin et al. 2012;
Hotokezaka et al. 2013). This picture has gained strong credit with the
observations of the counterpart of the gravitational waves detection
GW170817 (see e.g. Ciolfi 2020), originated from the merging of
two neutron stars (Abbott et al. 2017a), in gamma-rays (Abbott et al.
2017c), and X-rays and optical wavelengths (Abbott et al. 2017b).
The latter transients correspond to the electromagnetic emission
which accompanies an explosive event resulting from the merging of
the two neutron stars, often addressed to as kilonova (see e.g. Tanvir
et al. 2013; Berger 2014). Therefore, the rate of merging of binary
neutron stars in stellar systems is a fundamental element to interpret
the data measured by gravitational waves detectors, to model the
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occurrence of SGRBs in galaxies and as a function of redshift, as
well as to model the chemical evolution of galaxies, especially for
what concerns those nucleosynthetic products from kilonovae.

In a stellar system, the merging rate of double neutron stars
(hereafter DNS) results from the convolution of the star formation
history with the distribution of the delay times1 (herafter DDT) of
the events. If the delay times are short the rate of DNS merging
closely follows the star formation rate, similar to the case of core-
collapse supernovae (CC-SNe). The fact that some SGRBs have been
associated with early type galaxies (Fong & Berger 2013) argues for
some events occurring well after star formation has ceased, that is,
for a component with long delay times, similar to the case of type
Ia supernovae (SNe Ia). In other words, the DDT of DNS merging
is likely to be a wide distribution function, including prompt as
well as delayed events. The DDT, which is proportional to the DNS
merging rate from one single stellar generation, is a crucial ingredient
for modelling the occurrence of kilonovae explosions in galaxies of
different types, and, in turn, for calculating the time-scale over which
their products are released to the interstellar medium (ISM).

The redshift distribution of SGRBs and their properties (e.g.
luminosity, fluence, and duration) have been used to characterize
the DDT of DNS merging events in several works (e.g. Guetta &
Piran 2006; Virgili et al. 2011; D’Avanzo et al. 2014; Wanderman
& Piran 2015). These efforts combine a description of the cosmic
star formation history with parametrized functions for the DDT, to
construct models and compare them to the data. Often the results

1The delay time is the time elapsed between the birth of the binary system
and its final merging.
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indicate a DDT which scales with the inverse of the delay time (see
also Ghirlanda et al. 2016).

Abundance and abundance ratios of Milky Way stars can also
be used to derive important constraints on the DDT of merging
DNS. Models of chemical evolution (Matteucci et al. 2014) including
merging DNS as producers of a pure r-process element like Eu have
shown that these events can be responsible for the total Eu production
in the solar vicinity, but only if the delay time for merging is constant
and quite short (1 Myr from the formation of the system), and if
the mass range of neutron stars progenitors extends from 9 to 50
M�. Alternatively, if both CC-SNe and merging DNS contribute to
the Eu production, the data could be reproduced allowing longer
delay times for the merging DNS. Côté et al. (2018) pointed out
that in order to reproduce the [Eu/Fe] versus [Fe/H] relation in
the solar vicinity, which is very similar to that of any α-element
relative to Fe, a DDT such as that of SNe Ia would produce results at
variance with the observations. They tested time delay distribution
functions scaling as ∝t−a (with a = 1 and 1.5). Adopting a modified
power law for the DDT, and exploring a variety of options, Simonetti
et al. (2019) showed that in order to reproduce the observed cosmic
rate of SGRBs and to justify the occurrence of the GW170817
event in an early type galaxy, the DDT should be rather shallow,
with an average coalescence time of 300–500 Myr. On the other
hand, the evolution of [Eu/Fe] versus [Fe/H] abundance ratio in the
solar vicinity requires a shorter time-scale for the Eu production,
which could be accomplished either adding an early and continuous
contribution by CC-SNe, or assuming that the fraction of merging
DNS per unit mass of the parent stellar population varies with time,
with more events in the past.

The DDT of merging DNS can also be computed numerically with
the binary population synthesis (BPS) technique, which takes full
advantage of the results of the stellar evolution theory (e.g. Tutukov
& Yungelson 1993; Nelemans, Yungelson & Portegies Zwart 2001;
Dominik et al. 2012; Mennekens & Vanbeveren 2016; Mapelli et al.
2017; Giacobbo & Mapelli 2018; Eldridge, Stanway & Tang 2019;
Tang et al. 2020). The typical evolutionary path leading to the
formation of a DNS system which merges within a Hubble time
starts with a close binary made of two massive stars, progenitors of
a neutron star remnant (Faber & Rasio 2012; Tauris et al. 2017). The
primary evolves and upon expansion it may overfill its Roche lobe and
lose mass, which may or may not be accreted by the companion. In
any case, the primary will eventually explode as an SN leaving behind
a neutron star remnant. Upon evolution, the secondary expands and
fills its Roche lobe. A common envelope (CE) phase follows, during
which the binary system shrinks because of friction. Part of the
orbital energy is transferred to the CE which is eventually dispersed
in the ISM, leaving behind a system composed of a neutron star
and a Helium star companion. During its evolution the Helium star
expands and may again fill its Roche lobe, possibly leading to another
CE phase, and further shrinking the system. The SN explosion from
the secondary will thus leave a close binary neutron star system,
which will eventually merge because of angular momentum loss due
to the emission of gravitational waves radiation. The DNS formation
may however be aborted when either of the two SN explosions occur,
as the system may disrupt because of the effect of the SN kick.

The BPS computations start from a population of primordial
binaries and follow their evolution through the several mass exchange
phases. Many recipes need to be implemented in BPS codes,
including those describing the response of the two stars to Roche
lobe overflow, the SN kick and its impact on the system (e.g. Bray
& Eldridge 2018), the binding energy of the stellar envelope, the
efficiency of the CE phase in shrinking the system, the initial–final

mass relation, the radius evolution of the individual components, as
well as the dependence on the chemical composition of the stellar
evolutionary models. In addition, the distribution of the binaries in
mass of the primary, mass ratio, and separation add parameters to the
BPS computations. Some of these ingredients are robust, some are
founded on empirical data, some are poorly known, for example, the
CE efficiency. Meanwhile, the computation of the DDT of merging
DNS involves following the evolution of the binaries from an initial
separation of several hundreds of R�, needed to avoid premature
merging, down to a final separation of a few R� or less, in order
to ensure merging within a Hubble time, through an intermediate
phase in which the separation could reach a few thousands of R�
(see Belczynski et al. 2018). This requires an accurate description of
the various mass exchange phases. Besides, as noticed in Chruslinska
(2019), only a small fraction of the theoretical binary population ends
up in DNS merging within a Hubble time, some systems merging
before the formation of the two neutron stars, some ending up with
too long coalescence time-scales, some other because of disruption
when either of the two SNe explode. Therefore, the description of the
SN kick and of the system response to it strongly impact on the BPS
results (see Giacobbo & Mapelli 2018). The local rates of kilonovae
predicted by BPS computations and reported in Chruslinska (2019)
show a large variance, likely due to different recipes implemented in
the codes (Tang et al. 2020).

In this paper, we present an alternative approach for determining
the DDT of DNS mergers, similar to that developed in Greggio
(2005) for the rate of SNe Ia, that is, focusing on the properties of
the clock which governs the merging events. Rather than following
the evolution of individual systems, we look at the parameters which
predominantly control the delay time and derive the DDT from the
distribution of these parameters. Based on this approach, we elaborate
parametrized models for the shape of the DDT which results from
the properties of the clock; then we derive constraints on the shape
of the DDT by comparing the redshift distribution of SGRBs to
models obtained combining the theoretical DDTs with the cosmic
star formation history in Madau & Dickinson (2014). The local rate
of kilonovae estimated by Abbott et al. (2020) is used to calibrate
the models, which allows us to evaluate the efficiency of kilonova
production from a stellar population. Finally, we test the models
on their ability to account for the chemical trend of Eu and Iron
abundances in the Milky Way. A similar exercise was presented
in Simonetti et al. (2019) where we adopted a shape for the DDT
based on generic arguments in accordance to the results in Greggio
(2005) for SNe Ia. Here, we revisit the problem with a more rigorous
determination of the DDT, exploring the effect of the distribution of
the binary masses, eccentricity and separations. Our results include a
variety of DDTs which cover a wide parameter space. We anticipate
that the shape of the DDT turns out to crucially depend on the
distribution of the separations of the binary neutron stars at birth and
on its lower boundary. This offers a key to appraise the results of
BPS codes with respect to the various recipes implemented to follow
the close binaries evolution.

As a note of caution we remark that the models presented here are
applicable only to binaries which evolve in isolation, while merging
DNS can also be produced by dynamical processes which take place
in dense environments, for example, globular clusters (Lee, Ramirez-
Ruiz & van de Ven 2010). The contribution of the dynamical to the
total rate of merging DNS events is unclear: according to Belczynski
et al. (2018), in old stellar populations the current rate of DNS
merging from the dynamical channel is ∼150 times lower than the
rate from isolated binaries. On the other hand, models for the cosmic
rate of DNS mergers by Santoliquido et al. (2020) show that the
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Figure 1. The mass-dependent term in equation (2) is plotted as a function
of the total mass of the binary, for m1 and m2 (≤m1) ranging from 1.1 to 2
M�. Larger symbols refer to higher values of the primary mass. The solid
line represents a good approximation to this term.

dynamical channel contributes ∼1/3 of all the local events. Our
arguments are based on a delay time which does not include the
time taken by the dynamical interaction to form the DNS system;
therefore they are relevant for the contribution to the merging DNS
events from binaries which evolve unperturbed by the environment.

The paper is organized as follows: in Section 2, we describe the
properties of the coalescence time-scales, in Section 3 we show
our models for their distribution, illustrating the dependence on the
distribution of the total mass, of the separation and eccentricity of
the DNS systems at birth. In Section 4, we derive model distributions
of the total delay times, which include the time necessary to produce
the DNS system. In Section 5, we discuss the constraints on the
DDT from the SGRBs redshift distribution and derive an estimate
for the efficiency of DNS system production from a stellar population
needed to account for the local rate of kilonovae. In Section 6,
we compare chemical evolution models constructed with our model
DDTs to the Eu and Fe trend in Milky Way stars; and in Section 7
we summarize our results and draw some conclusions.

2 TH E D E L AY T I M E

For a binary system which evolves in isolation the time elapsed
between the formation of the primordial system and the final merging
is the sum of the evolutionary lifetime of the secondary component
(τ n, hereafter referred to as the nuclear delay) and the time taken by
the gravitational wave radiation to bring the components into contact
(τGW, hereafter referred to as GWR delay). The first time-scale is
a function of the initial mass of the star (m) and of the chemical
composition. For the sake of simplicity, we neglect the dependence
on metallicity, and adopt the relation

log m = 0.49(log τn)2 − 7.80 log τn + 31.88 (1)

with mass in solar units and time years. Equation (1) was derived from
fitting the lifetimes of the neutron stars progenitors in the Limongi &
Chieffi (2006) models, complemented with the Bertelli et al. (2009)
tracks, with solar metallicity. We notice that, due to interaction, in

Figure 2. The GWR delay as from equation (3), as a function of the
eccentricity, for different values of the separation of the DNS system at
formation (A) labelled on the solid lines (values are in units of R�). Solid
lines adopt a total mass of the binary of 3 M�, while the shaded areas show
the range of τGW for MDN varying between 2.2 and 4 M� at fixed separation
and eccentricity. The dashed line is drawn at τGW= 13.5 Gyr.

a close binary the masses of the components may change, leading
to a modification of the evolutionary lifetimes. For example, the
mass of the secondary may increase leading to a shortening of the
nuclear delay with respect to equation (1). In our simple approach,
we also neglect the lifetime of the CE phase which is likely very
short compared to other time-scales involved (e.g. Igoshev, Perets
& Michaely 2020). In general, equation (1), which is appropriate
for stars evolving in isolation, represents an approximation to the
evolutionary lifetime of the secondary star in a close binary; yet it
accounts for a basic trend of this component of the delay time related
to the different masses of the secondaries in the progenitor systems.

The time delay due to the action of the gravitational waves
radiation can be expressed as (Peters 1964):

τGW = 0.15 A4

m1m2(m1 + m2)
× (1 − e2)7/2 Gyr (2)

where A, m1, and m2 are respectively the separation and the masses of
the components (in solar units), and e is the eccentricity of the binary,
all parameters evaluated at formation of the DNS system. Fig. 1
shows the mass dependent factor in equation (2) as a function of the
total mass of the binary (MDN = m1 + m2), assuming that the mass
of a neutron star varies between 1.1 and 2 M�, a range suggested
by observational determinations (Martinez et al. 2015; Antoniadis
et al. 2013). It appears that the mass dependent factor can be well
represented with the expression y = 0.25 × M3

DN; equation (2) can
then be approximated as

τGW = 0.6A4

M3
DN

× (1 − e2)7/2 Gyr. (3)

Fig. 2 shows the GWR delay as a function of the eccentricity for
different values of the separation and total mass of the binary. This
figure illustrates the main characteristics of the GWR clock:
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(i) τGW is sensitive to all three parameters and it decreases as
the eccentricity and the binary mass increase, and as the separation
decreases;

(ii) although a value of τGW corresponds to a variety of combina-
tions of the parameters, there is a maximum delay achievable with a
given value of the separation. In other words, all close systems merge
on a short time-scale, while only wide systems can merge on a long
τGW;

(iii) most of the relevant parameter space is limited to the range
A � 10 R�, since wider systems can contribute to merging within a
Hubble time only if born with very high eccentricities. Indeed, the
range of eccentricities leading to merging time-scales shorter than
the Hubble time rapidly shrinks as A increases beyond 8 R�.

To summarize: (i) the great majority of the systems merging within
a Hubble time have initial separations in a small range, (ii) the total
mass of the DNS system also varies within a small range, and (iii) for
any (A, MDN) combination, a wide range of eccentricities yields the
same value of τGW. To the aim of describing the general properties
of the distribution of the GWR delays, it appears then appropriate to
adopt continuous parametrized expressions for the distributions of
(A, MDN, e), to be folded with equation (3). In this way, we aim at
characterizing the distribution of τGW and its dependence on the var-
ious astrophysical parameters, identifying the most important ones.

3 MO N T E C A R L O SI M U L AT I O N S F O R TH E
D I S T R I BU T I O N O F TH E G W R D E L AY S

We adopt power-law distributions for the separation, binary mass,
and eccentricity:⎧⎪⎪⎨
⎪⎪⎩

f (A) ∝ Aβ

f (MDN) ∝ M
γ

DN

f (e) ∝ eρ.

(4)

The choice for the distribution of A finds some support from the
numerical results of BPS computations: for example, in Giacobbo &
Mapelli (2018) the distributions of the separations of DNS systems
which merge within a Hubble time can be described as a power
law with exponent �−1, and a downturn at separations below ∼1
R�. Also Belczynski et al. (2018) find a power-law distribution for
the separations of the DNS systems at formation, albeit with steeper
exponent, �−3, and no evident downturn at the smallest separations.
The adoption of power-law distributions for MDN and e is more arbi-
trary, but will turn out relatively unimportant for the slope of the DDT.

3.1 Results for independent variables

Fig. 3 shows the distribution of the GWR delays under different
options for the exponents (β, γ , ρ), in the hypothesis that A, MDN,
and e are independent variables. We consider β varying between −1
and −3 on the basis of the results of BPS realizations mentioned
above, while the tested values of the parameters γ and ρ are meant
to explore the general response of the distribution of τGW to the
distributions of binary mass and eccentricity. The two cases γ = 0
and −10 show the effect of going from a flat distribution of MDN to a
case in which the great majority of systems are found at the low-mass
end; the three values of ρ depict the effect of varying the distribution
of eccentricities from a function favouring low (ρ = −0.5) to one
favouring high (ρ = 1) values of e.

At delays longer than 0.1 Myr, the distribution of τGW is very well
described by a power law with an exponent s � −1, −1.25, and

−1.5, respectively for β = −1, −2, and −3, while the parameters
γ and ρ have a negligible effect. In Appendix A, we show that,
under some simplifications, the distribution of τGW can be derived
analytically, and results in a power law with exponent s = 0.25
× β − 0.75 modified at short delay times. In fact, the lower limit
adopted for the separation A implies a dearth of fast merging systems,
causing a flattening of the distribution at short τGW. The effect is
amplified when lower values of γ , which disfavour massive systems,
are assumed. Similarly, the flattening is more pronounced for lower
vaues for ρ, which imply a larger fraction of low eccentricity systems.

These patterns appear well visible in the cumulative distributions
of the GWR delays (bottom panels). For β = −3, 90 per cent of
the systems merge within ∼1 Myr from the formation of the second
neutron star, while for β = −1 only ∼70 per cent of the systems
merge within a Hubble time. Therefore, the time-scale for the release
of nucleosynthetic products from kilonovae is extremely sensitive
to this parameter. The cumulative distributions also emphasize the
dependence of the results on ρ and γ , with a larger fraction of systems
at short τGW obtained with the higher values of ρ and γ .

3.2 Effect of the supernova kick

As mentioned above, the distributions in Fig. 3 have been computed
assuming that A, MDN and e are independent variables. However,
in real DNS systems one may expect that the larger separations are
coupled to higher eccentricities as a consequence of the SN kick. The
effect on the orbit of the DNS system induced by the kick due to an
asymmetric explosion of the second SN has been studied in detail by
Kalogera (1996) and more recently by Andrews & Zezas (2019). In
the latter paper, the authors perform simulations of binaries formed
by a neutron star plus a massive Helium star which undergo a kick
when the Helium star explodes. The simulations are computed for a
distribution of SN kicks, Helium star masses and separations of the
system. The results show that the ratio between the final and the initial
separation (Af/Ai) and the eccentricity are not uniformily distributed,
but rather cluster around two loci: Af/Ai = (1 ± e)−1. Thus, it appears
that the effect of the kick is that of promoting a relation between the
separation and eccentricity of DNS systems: some on the branch Af/Ai

= (1 + e)−1 (branch 1) characterized by a general shrinking of a factor
up to 2, others on the branch Af/Ai = (1 − e)−1 (branch 2), which
can turn out very wide, but at the same time with large eccentrities.
Since the GWR delay is very sensitive to both the separation and the
eccentricity it is important to explore the effect of these relations.
Therefore, we performed another set of Monte Carlo simulations in
which we extract pairs of values of (Ai, e), to which we associate a
value for the separation to be used in equation (3) of Af = Ai/(1 ±
e), the two branches randomly represented in equal proportions. The
parameters (Ai, e) are considered independent and follow the power
law distributions with exponents β and ρ, respectively. The results
of this set of Monte Carlo extractions are shown in Fig. 4. Systems
which belong to branch 1 end up with a relatively short τGW due to the
smaller separation, while systems which belong to branch 2 have a
long τGW because of the larger Af. In our experiment the second effect
prevails so that the overall distribution becomes more populated at the
long GWR time-scales compared to what obtained when the variables
are assumed independent (see grey lines in Fig. 4). The differential
distributions still appear well represented by a power law with slope s
= 0.25β − 0.75 at τGW � 1 Myr, but the flattening of the distributions
at early times is more pronounced, and more systems merge on longer
GWR delays. The cumulative distributions (bottom panel) better
illustrate the change, with 50 per cent of the systems merging within
1 Gyr if β = −1. Steeper distributions of Ai yield much shorter time-
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Figure 3. Differential (top) and cumulative (bottom) distributions of the GWR delays from Monte Carlo simulations, assuming that (A, MDN, e) vary
independently in 0.2 ≤ A/R� ≤ 30, 2.2 ≤ MDN/M� ≤ 4, and 0 ≤ e < 1. The simulations include (6000, 500, 1000) values of respectively (A, MDN, e) for a total
of 3 × 109 random extractions. Left-, central, and right-hand panels show the results obtained with β = −1, −2, and −3, respectively. The colour and line type
encode the parameter ρ, while the line thickness encodes the parameter γ , as labelled in the left-hand panels. The arrows in the top panels show power laws
with slopes of s = −1, −1.25, −1.5 from left to right.

scales, but still longer than those obtained for the case of independent
variables, for the same value of β. It also appears that in this set of
simulations the relation between e and Af/Ai reduces the sensitivity
of the distributions on the γ and ρ parameters, the cumulative curves
running close to each other, especially at τGW � 0.1 Myr.

Given the sensitivity of the GWR delay to the separation, the
limits on this parameter impact on the resulting distributions. We
have then performed more simulations varying the minimum (Ai, min)
and maximum (Ai, max) separation of the binary systems before the
second SN explosion. In these simulations we adopt the scheme
which describes the effect of the SN kick on the orbit which seems
more akin to actual astrophysical situations. Fig. 5 shows the effect
of varying Ai, min, while varying Ai, max has a weak impact, as we show
in Appendix A. The differential distributions (top panels) still appear
to follow two regimes: a power law with slope s = 0.25β − 0.75 at
relatively long GWR delays, and a flatter relation at short delays. The
value of τGW at which this transition occurs gets shorter and shorter as
Ai, min decreases, because of the higher number of systems with small
values of Ai. For the same reason, as Ai, min decreases, the fraction of
early merging increases. For β = −1, the fraction of systems merging
within 1 Myr varies from ∼0.05 to ∼0.3 as Ai, min decreases from 1 to
0.1 R�. As the distribution of the separations steepens (β decreases)

more and more systems are born with small separations and their
merging time-scales become shorter and shorter. For β = −3, the
fraction of systems merging within 1 Myr goes from ∼15 per cent to
∼90 per cent as Ai, min decreases from 1 to 0.1 R�. Notice however
that these figures result from having described the distribution of the
separations as a pure power law, which maximizes the number of
systems at the low Ai values by construction.

3.3 The distribution of the GWR delays

The results of the simulations can be summarized as follows:

(i) The distribution of the GWR delays is mostly sensitive to the
distribution of the separations of the binary systems when the second
neutron star is formed. Describing the latter with a power law with
exponent β, the distribution of the GWR delays is also a power law
with exponent s = −0.75 + 0.25 × β for delays longer than some
characteristic τGW (�10 Myr).

(ii) The minimum value of the separation is a crucial parameter
for the fraction of systems with short merging time-scales; its impact
depends on how steep the distribution of Ai is; in the extreme
combination Ai, min=0.05 R� and β = −3 we find that all DNS
systems merge within 1 Myr from their formation.
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Figure 4. The same as in Fig. 3 but for Monte Carlo simulations which incorporate a description on the effect of the SN kick on the orbital parameters (see the
text). The simulations include 106 values of (Ai,e) pairs and 1000 values of MDN, for a total of 109 random extractions. In grey, we plot the results of the Monte
Carlo simulations shown in Fig. 3. The distributions in the top panels have been scaled to the same total number of extractions of 109.

(iii) The dependence of the distribution of the GWR delays on the
distribution of the other variables, (MDN and e) is less pronounced.
However, in general, the larger the fraction of massive and/or
eccentric binaries, the larger the fraction of systems merging on
a short time-scale.

Although the distributions of the three variables (A, MDN, e) will
not be pure power laws, we believe that our simulations explore a
sufficiently wide parameter space to derive crucial characteristics of
the distribution of the GWR delays. Concerning the value of the Ai, min

parameter, we remark that the radius of Helium stars progenitors of a
neutron star ranges between ∼0.3 and 1 R� (Woosley 2019) during
the central Helium-burning phase. Systems with separations smaller
than several tenths of R� are likely to undergo mass exchange before
Helium ignition, thereby avoiding the successive nuclear burnings
which lead to the SN explosion. For systems in which the Helium
star component completes core Helium burning inside its Roche lobe,
further orbital shrinking could however occur during the evolution
after central Helium exhaustion, when the Helium star expands.
Models by Laplace et al. (2020) show that the final separation of the
system could be as low as ∼0.07 R�. Therefore we also computed
models adopting Ai, min= 0.05 R�. It appears however very unlikely
that the distribution of the separations of DNS systems is a power

law all the way down to such a small value; nevertheless this extreme
case allows us to check the results of chemical evolution models
when the nucleosynthetic contribution from kilonovae occurs on an
extremely short time-scale.

4 TH E D I S T R I BU T I O N O F TH E TOTA L D E L AY
TI ME

As anticipated in Section 2, for a DNS system evolving in isolation,
the total delay time is the sum of the evolutionary lifetime of the
secondary component with the GWR delay. In this section, we derive
the differential distribution of the total delay times of merging DNS
systems, starting from the cumulative distribution.2

The contribution to the systems with total delay shorter than τ d

from systems with nuclear delay between τ n and τ n+dτ n is:

dn(τd) = n(τn) × g(τn, τd) dτn (5)

where n(τ n) dτ n is the number of binaries with nuclear delay between
τ n and τ n+dτ n, and g(τ n,τ d) is the fraction of them with GWR delay

2We follow this approach because τ n and τGW are not independent variables,
both being related to the mass of the secondary component of the system.
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Rate of merging DNS 1761

Figure 5. Differential (top) and cumulative (bottom) distributions of the GWR delays from Monte Carlo extractions for different choices of the minimum
separation of the binary system prior to the second SN explosion: Ai, min/R� = 0.1, 0.2, 0.5, and 1, plotted respectively as green (solid), blue (dashed), red
(dotted–dashed), and black (dotted) lines. All simulations adopt the same maximum value for the separation Ai, max = 50 R�. Each simulation comprises 106

values of (Ai,e) pairs and 1000 values of MDN, for a total of 109 random extractions, and includes a description of the effect of the SN kick. For each value of
Ai, we plot six lines, each corresponding to a choice for the parameters of the distribution of MDN (γ = −10, 0) and of the eccentricity (ρ = −0.5, 0, 1). The
left-hand, central, and right-hand panels show the results for different slopes of the distribution of separations Ai as labelled in the bottom left panel.

shorter than (τ d − τ n). For each nuclear delay, g(τ n,τ d) is the value of
the cumulative distribution of τGW presented in the previous section,
read off at the appropriate τGW= τ d − τ n.

Summing on the relevant range of τ n we derive the total number
of systems with delay shorter than τ d as:

F (< τd) =
∫ min(τd,τn,x)

τn,i

n(τn) g(τd, τn) dτn (6)

where τ n, i and τ n, x bracket the range of nuclear delays which
contribute to the kilonova explosions, that is, the evolutionary
lifetimes of their progenitors.

4.1 The distribution of the nuclear delay

The distribution of the nuclear delays can be derived as (see e.g.
Greggio & Renzini 2011):

n(τn) ∝ n(m2)

∣∣∣∣dm2

dτn

∣∣∣∣ (7)

where m2 is the mass of the secondary star with evolutionary lifetime
equal to τ n. The distribution function of the secondary masses in the
systems of interest can be derived from (see Greggio 2005):

n(m2) ∝
∫ m1,max

m1,min

n(m1) f (q)
dm1

m1
(8)

where m1 is the mass of the primary, n(m1) is its distribution function,
q is the mass ratio (m2/m1), and m1,min and m1,max bracket the range
of primary masses of interest. Assuming that the mass of neutron star
progenitors ranges between 9 and 50 M�, we have that m1,min/M�=
max(9,m2) and m1,max/M�=50.

Fig. 6 shows the distribution function of the nuclear delays
computed with equations (1), (7), and (8) for different distributions
of the primary masses and mass ratios (see the caption). The function
n(τ n) is defined between a minimum (�4.5 Myr) and a maximum
(�32 Myr) value of the nuclear delay, respectively the evolutionary
lifetimes of the maximum and minimum mass of neutron star pro-
genitors adopted. Within these limits, as τ n increases, the distribution
first increases, due to the effect of the initial mass function (IMF)
which provides more and more systems with smaller m2. This effect
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1762 L. Greggio, P. Simonetti and F. Matteucci

Figure 6. The distribution of evolutionary lifetimes of the secondary in DNS
system progenitors for three choices of the distribution of the primary masses
and mass ratios. Black solid line: n(m1)∝m−2.35, f(q)∝q (the combination
adopted here); red, long dashed line: n(m1)∝m−2.3, f(q)∝q−0.1 (the combina-
tion in Giacobbo & Mapelli 2018) and blue, short dashed line: n(m1)∝m−2.6,
f(q)∝q0 (a steep IMF combined with a flat distribution of the mass ratios).

is countered by the decrease of the rate of change of the secondary
mass (i.e. the ṁ2 factor in equation 7), so that the function shows
a wide maximum and then decreases. Note that the adopted mass
limits for the neutron star progenitors are not critical for the shape of
the distribution of the nuclear delays. The distribution n(τ n) appears
mildly affected by the choice of n(m1) and f(q); in the following, we
adopt a Salpeter IMF for the primary masses and a distribution of
the mass ratios which favours the high values of q (f(q)∝q).

4.2 The final DDT

With these ingredients we have computed the distribution of the
total delay time of kilonova explosions (fkn) by first deriving the
cumulative distribution from equation (6) and then computing its
derivative with respect to the delay time:

fkn(τd) = d

dτd
F (< τd). (9)

Fig. 7 shows the resulting DDT, normalized to unity over the
range 0 ≤ τ d ≤ 13.5 Gyr. All distributions show a strong early peak
followed by a decline which can be well described with a power law.
The peak is populated by systems merging soon after the formation
of the neutron star from the secondary component of the binary.
No merging occurs earlier than τ d� 4.5 Myr, because this is the
evolutionary lifetime of the most massive secondary considered here
as neutron star progenitor. In the range of delay times between 4.5
and 32 Myr the requirement τ d = τ n + τGW is met with an increasing
range of values of both τ n and τGW. The evolutionary lifetime of the
least massive neutron star progenitor considered here is �32 Myr:
mergings at delay times longer than this are achieved only with τ d −
32 � τGW/Myr � τ d − 4.5, reflecting the constraint on the nuclear
lifetimes of the kilonova progenitors. The hard limit on τ n causes
the discontinuity at 32 Myr in the delay times distribution; beyond
this limit fkn scales essentially as the distribution of the GWR delays.
The same argument was elaborated in Greggio (2005) for the DDT

of SNe Ia. We remark that the DDT is proportional to the event rate
for a single burst of star formation. Similar to the case of SNe Ia, the
rate of DNS merging per unit mass will be large in young and low
in old stellar systems, the actual value being the result of the DDT
weighted by the star formation history of the system.

Fig. 7 shows that the DDT depends mostly on the parameters
β and Ai, min which characterize the distribution of the separations
of the binaries when the second SN explodes. The peak at short
delay times is stronger for distributions which are more populated
at low values of Ai either because of a steeper β, or because of
a smaller limit Ai, min, or both. The dependence on the parameters
γ and ρ which characterize the distribution of binary masses and
eccentricities is small, especially so when the distribution of the
separations is relatively flat. In the upper panels of Fig. 7, we also
plot an arrow which represents a power law with exponent s =
−0.75 + 0.25β. In most cases the DDT decline follows this power
law at delay times longer than �0.1 Gyr, but for some combinations
of the parameters this regime sets at a later epoch. Actually, our
adopted scheme to describe the effect of the SN kick impacts on
the distribution of the coalescence delays enhancing the fraction of
systems with late merging time-scales (see Fig. 4). The effect is
stronger for lower values of β and higher values of ρ.

In the lower panels of Fig. 7 the vertical line is drawn at τ d

= 32 Myr, which can be taken as a partition between prompt and
delayed events: prompt kilonovae release their products on a time-
scale close to that of their progenitors, delayed kilonovae do so after
their SN progenitors have polluted the ISM. The fraction of prompt
and delayed events impacts on the chemical evolution of the system
by leaving their imprint on the abundance ratios. The fraction of
prompt events is very sensitive to the parameters β and Ai, min, but
notice that as Ai, min decreases this dependence greatly mitigates, and
the lower limit to the distribution of Ai becomes unimportant. For β

= −3 almost all systems merge within 32 Myr for Ai smaller than 0.2
R�. Conversely, a flat distribution of the separations of DNS system
and/or a large lower limit Ai, min imply a late pollution from kilonovae
with respect to that of their SNe predecessors.

5 TH E C O S M I C R AT E O F M E R G I N G D N S A N D
AV E R AG E EF F I C I E N C Y O F K I L O N OVA E
P RO D U C T I O N

In order to compute the evolution of the rate of merging neutron stars
in stellar systems, we need to estimate the efficiency of production
of these events by a stellar population, or the number of merging
neutron stars from a stellar population of unitary mass (kkn). To
evaluate this quantity, we consider the cosmic rate of SGRBs, as
well as the rate of kilonovae estimated by Abbott et al. (2020). The
rate of merging at epoch t0 in a system experiencing a star formation
history ψ(t) is given by:

Rkn(t0) =
∫ t0

0
kkn ψ(t − τd) fkn(τd) dτd (10)

where fkn is the DDT of merging DNS, and the integration extends
over all the successive stellar generations occurred in the system.
The efficiency kkn could well depend on time, for example, because
of IMF variations, and/or because of the metallicity evolution which
may impact on the paths of close binary evolution, as well as on the
distribution of initial binary parameters. We take a simplified view
neglecting the potential variations of kkn, and proceed evaluating
an average value of this efficiency which describes the observed
cosmic rates.
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Rate of merging DNS 1763

Figure 7. Differential (top) and cumulative (bottom) distributions of the total delay times of kilonova explosions for different distributions of the separations,
DNS total masses and eccentricity, in the same fashion as in Fig. 5. The arrows in the top panels show power laws with slope of s = −1, −1.25, and −1.5
from left to right. The vertical line in the bottom panels is drawn at a delay time of 32 Myr, that is, the evolutionary lifetime of the least massive neutron star
progenitor adopted here.

The DDTs presented in the previous section have been normalized
to 1 in the range of delay times 0 ≤ τ d ≤ 13.5 Gyr. Therefore,
equation (10) becomes

Rkn(13.5) = kkn× < ψ > (11)

where the last term is the average star formation rate in the system
over the last 13.5 Gyr. If ψ is a mild function of time, the last term can
be estimated as the ratio between the stellar mass in the considered
system and the Hubble time. Equation (11) yields a handy way to
estimate the typical efficiency of the evolutionary channel providing
merging DNS systems within a Hubble time, which is needed to meet
the observed rate of such events. To some extent, this is applicable
to the cosmic star formation history, and to stellar populations in
late-type galaxies, since their star formation rate is a mild function
of time. The efficiency kkn is normalized to the total (initial) mass
of a stellar population, and can be expressed as the product of the
number of neutron star progenitors per unit mass (kα) and the fraction
of them members of binary systems which merge within a Hubble
time (αMNS): kkn= kα× αMNS. This notation is convenient for the
computation of chemical evolution models.

To evaluate kkn we fit the redshift distribution of SGRBs with mod-
els obtained from equation (10) adopting the cosmic star formation

rate by Madau & Dickinson (2014)

ψ(z) = 0.015(1 + z)2.7

1 + ((1 + z)/2.9)5.6
M�Mpc−3yr−1 (12)

and our DDTs described in the previous section. The relation
between redshift and look-back time adopted is that of the 	-
cold dark matter cosmological model using the parameters found by
Bennett et al. (2014) (i.e. H0 = 69.6 km s−1 Mpc−1, 
M = 0.286 and

	 = 0.714). As observational constraint we select the two curves
(models a and c) proposed by Ghirlanda et al. (2016). These authors
choose the following functional form for the redshift distribution of
all events:

ψSGRB(z) = ψSGRB(z = 0) × 1 + p1z

1 + (z/zp)p2
(13)

and find the parameters which best fit a variety of observational data,
including the observed redshift distribution and energetic properties
of the SGRBs. These parameters turn out of (p1, p2, zp) = (2.8,
3.5, 2.3) and (3.1, 3.6, 2.5), respectively for models a and c. Other
options for the redshift distribution of SGRBs can be found in the
literature (e.g. Zhang & Wang 2018), but require a DDT poor of
prompt events, which is difficult to reconcile with the fact that
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1764 L. Greggio, P. Simonetti and F. Matteucci

Figure 8. The redshift distribution of SGRBs as in curves a (upper panels) and c (lower panels) in Ghirlanda et al. (2016, dashed black lines) compared to the
best-fitting models obtained convolving the cosmic star formation history with selected DDT distributions (coloured lines). Blue, green, and red lines show the
models computed with β = −1, −2, and −3, respectively. Left-hand (right) panels show models which adopt Ai, min=0.1 (1) R�. For each combination of the
(β,Ai, min) parameters, we plot with dotted lines all the models computed with the different values of ρ and γ and highlight the best fitting of them with the solid
line. Notice that the dependence of the models on the ρ and γ parameters is virtually absent when Ai, min = 0.1 R�, while for Ai, min = 1 R�, the distribution of
binary masses and eccentricity affect the fitted models.

neutron stars are produced by massive stars which have very short
evolutionary lifetimes (see e.g. Simonetti et al. 2019). We obtain
the redshift distribution in natural units (events per yr per Gpc3) by
adopting a value of ψSGRB(z = 0) equal to the local rate of merging
neutron stars estimated by Abbott et al. (2020). Notice that this value
is compatible with the estimates of the local rate of SGRBs found in
the literature (Coward et al. 2012; Petrillo, Dietz & Cavaglià 2013;
Fong et al. 2015) within the (large) uncertainties. To find the best-
fitting value of the kkn parameter we minimize the distance between
the constraining curves and the models in 0 ≤ z ≤ 2, which is the
redshift range covered by events in the (Ghirlanda et al. 2016) sample.

Fig. 8 shows the results of our fitting procedure using DDTs with
the three values of β and two extreme values for the minimum
separation of the DNS systems at birth. The combination (β = −3
and Ai, min = 0.1), shown in red on the left-and panels of Fig. 8,
favours prompt mergings; the combination (β = −1 and Ai, min = 1),
shown in blue on the right-hand panels of Fig. 8, favours mergings at
late epochs. In spite of the very different values of the astrophysical
parameters characterizing the chosen DDTs, all plotted models yield
an acceptable representation of the empirical curves, considering that
the latter are not directly measured rates, but rather the result of a
fitting procedure applied to observational data, which brings along
some uncertainty beyond what indicated with the two solutions a
and c. Models with a small value of Ai, min are characterized by a
relatively steep rise of the rate as the redshift increases from z = 0
to the peak at z = 2, followed by a milder decrease towards higher
redshift, while models with Ai, min = 1 R� show the opposite trend.
Since the empirical redshift distribution is not well constrained at
redshifts larger than the peak, it is not possible to draw conclusions
from this comparison. It seems however that models with β = −1
(in blue) better describe the empirical curves in all cases, except for
the case plotted in the lower right panel, where curve c appears to
require a steeper distribution of the separations to compensate for

the relatively large Ai, min(= 1 R�). Formally, the minimum distance
between models and empirical curves a and c, in the range 0 ≤ z ≤
2, is obtained respectively for the combinations (Ai, min/R�, β, ρ, γ )
= (1, −1, 1, 0) and (0.1, −1, −0.5, 0).

From the redshift distribution of the SGRBs, we derive an
indication in favour of a DDT with a sizable component at long
delay times, but the constraining power of this kind of comparison
is very limited, because of the shape of the cosmic star formation
rate which accomodates stellar populations with a wide range of
ages. On the other hand, this property allows us to derive an estimate
for the efficiency kkn which is virtually insensitive to the DDT. We
find kkn = (6.5 ± 0.4) × 10−5M−1

� for all the models fitted to the
(Ghirlanda et al. 2016) curves a. Fitting the redshift distribution to
curve c leads to a very close value of kkn = (7.3 ± 0.4) × 10−5M−1

� .
We acknowledge that these values rest on observational determina-
tions which are affected by a large uncertainty, and that the factor
of ∼10 uncertainty on the local rate of kilonovae (Abbott et al.
2020) implies the same uncertainty of kkn. We also acknowledge
that the approximations introduced to determine kkn weaken its
realiability; nevertheless we regard our result as robust, since it is
derived under a wide variety of possibilities for the DDT. The cosmic
star formation history adopted for the fit assumes a Salpeter IMF, with
kα = 0.006 M−1

� stars with mass between 9 and 50 M�; therefore the
measured cosmic rate of merging neutron stars requires that, in a
single stellar population, �1 per cent of neutron star progenitors
should be found in binary systems which merge within a Hubble
time.

6 TH E C H E M I C A L E VO L U T I O N O F TH E
M I L K Y WAY

We now consider the constraints on the DDT of merging DNS
that can be derived from the chemical properties of Milky Way
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stars. As mentioned in the Introduction, this can be achieved by
comparing models for the trend of the [Eu/Fe] abundance ratio with
increasing [Fe/H] to corresponding observations. Eu is a pure r-
process element and is produced via explosive nucleosynthesis in
neutron-rich environments. This makes merging neutron stars a very
likely site for Eu production. Some Eu may also be synthesized in
CC SNe (Argast et al. 2004), and in rarer, more exotic explosions of
very massive stars, that is, collapsars (Winteler et al. 2012; Siegel,
Barnes & Metzger 2019).

6.1 The model

The chemical evolution model employed in this work is the clas-
sical two-infall model of Chiappini, Matteucci & Gratton (1997),
described in detail in, for example, Matteucci (2012), which assumes
that the Galaxy formed out of two main gas infall episodes, one
giving rise to the halo plus thick disc and the other to the thin disc.
The computations follow the time evolution of the gas abundances
of 31 chemical elements (from H to Eu), by solving the equations:

dGi(t)

dt
= −�(t) Xi(t) + Ri(t) + Xi,0 A(t), (14)

written for all the i chemical species. For each element, Gi is the
surface density in the gas, normalized to the final total surface mass
density (gas plus stars), Xi is its abundance in the gas, and Ri is
the rate at which the element is given back to the ISM by winds or
stellar explosions. The first term, i.e. the product between the star
formation rate �(t) and Xi, describes the rate at which the element
i is subtracted from the gas due to star formation, while the last
term describes the infall of gas with abundance Xi, 0 at a rate A(t).
We adopt the star formation rate by Kennicutt (1998), the IMF by
Kroupa, Tout & Gilmore (1993) and a double-exponential infall law
of the two-infall model. We assume that the first episode of gas
accretion occurs on a time-scale of the order of 1 Gyr, whereas the
second on a time-scale of 7 Gyr. The abundances of the infalling
gas, Xi(t, 0), in both cases are assumed to be primordial (no metals).
The two infall episodes are separated by a gap in the star formation
due to the assumption of a gas threshold density for star formation
(see Chiappini et al. 1997; Matteucci 2012, for details). This gap
creates a little bump in the model evolutionary curves of the chemical
abundances, as we will see in the following. In our computations,
the prescriptions for the nucleosynthesis are taken from Karakas
(2010) for low- and intermediate-mass stars (0.8 ≤ M/M� ≤ 8),
from Doherty et al. (2014a, b) for super-asymptotic giant branch
stars (8–9 M�), from Nomoto, Kobayashi & Tominaga (2013) for
CC-SNe (M ≥ 10 M�). SNe Ia are important contributors of iron
and thus have a strong impact on the chemical evolution of galaxies.
In our model, for the SNe Ia we use the DDT derived by Greggio
(2005) in the wide double-degenerate scenario, with β = −0.9, in
combination with a production efficiency of kIa = 2.5 × 10−3M−1

� ,
fixed by the requirement of reproducing the current rate in the
Milky Way estimated by Li et al. (2011). This value is larger by
a factor of ∼2.5 with respect to that derived in Greggio & Cappellaro
(2019), partly because of the different IMF and law for the star
formation history adopted, partly because of the different method
employed to evaluate it. Greggio & Cappellaro (2019) consider the
correlation between the SNe Ia rate and the colour of the parent
galaxy from various SN surveys to derive the value of kIa which
best reproduces the observed level of the SNe Ia rate in galaxies
of intermediate colours. Therefore, their value of kIa represents an
average realization probability in galaxies. The value adopted here,
instead, has been obtained specifically for the Milky Way, under the

adopted prescriptions for its star formation history. The chemical
yields from SNe Ia are from Iwamoto et al. (1999), and from José
& Hernanz (1998) for nova systems. Concerning the nova rate, we
assume that it is a fraction of the rate of formation of white dwarfs,
as first computed by D’Antona & Matteucci (1991) where details
can be found. These prescriptions have been validated through the
comparison with a variety of observational data, such as abundance
ratios versus metallicity for many chemical elements (D, He, 7Li,
C, N, O, α-elements, Fe-peak elements, and heavier, see Grisoni,
Spitoni & Matteucci 2018; Grisoni et al. 2019; Romano et al. 2010;
Romano & Matteucci 2003).

For the kilonovae explosions we test various possibilities, selecting
among each family of model DDTs characterized by a combination
of the (β,Ai, min) parameters, the one which provides the best fit to
the Ghirlanda et al. (2016) curves, along with its particular value of
kkn. The yield of Eu from merging kilonovae is then set to reproduce
the solar abundance of this element at the time corresponding to the
formation of the Sun, namely 9 Gyr after the starting point of the
model, as reported by Lodders, Palme & Gail (2009). We found that
this constraint requires a yield of 5 × 10−6 M� of Eu per event. This
value is in agreement with both theoretical calculations (Korobkin
et al. 2012) and observations of the AT2017gfo kilonova (Tanvir et al.
2017; Troja et al. 2017), a fact that supports our determination of
αMNS. Although the Eu yield from merging neutron stars is uncertain
the recent event GW170817 has allowed us to restrict its value to a
range of (2 − 10) × 10−6 M�. We have also computed models in
which CC-SNe provide a sizable contribution to Eu. In this second
case, the yield per DNS merging event has been reduced to 2 ×
10−6 M�, while the yield from CC-SNe has been taken from the
SN2050 model of Argast et al. (2004).

6.2 Results

Fig. 9 shows a selection of our models compared to the data. The
latter come from two data bases, one for the halo stars compiled by
Abohalima & Frebel (2018) which includes 428 objects (crosses),
and another for the generally younger disc stars compiled by
Battistini & Bensby (2016) with 374 objects (squares). Abundances
are expressed using the square bracket notation, where [X/Y] = 0
represents the logarithmic ratio between elements X and Y in the Sun.
The black circles show the average trend obtained by binning the data
for individual stars. The low-metallicity stars are characterized by an
average overabundance of [Eu/Fe] ∼ 0.4 dex; starting at [Fe/H] ∼
−0.8, the abundance ratio starts decreasing towards the solar value.
This trend is typical for elements whose production time-scale is
shorter than the production time-scale of iron, which in turn is
determined by the explosion time of SNe Ia (see e.g. Matteucci 2012).
We notice the large spread of the [Eu/Fe] ratio in the low-metallicity
halo star. This is likely due to the inhomogeneous pollution of the
ISM in the early stages of the star formation history of the Milky Way,
as investigated by, for example, Cescutti et al. (2015) and Wehmeyer,
Pignatari & Thielemann (2015), an effect which is not captured by
our homogeneous model.

The models plotted on Fig. 9 encompass the range of possibilities
for the DDT of merging DNS envisaged in our approach: for each
value of the parameter β, we show models with the two extreme
values of the minimum separation of DNS systems (Ai, min), and
among the models with the same (β,Ai, min) parameters we plot the
one with the minimum distance from curve a of Ghirlanda et al.
(2016). We remark that models best-fitting curve c by Ghirlanda
et al. (2016) present a very similar trend on this plot. The small loop
present in all the lines at [Fe/H] � −0.6 is the result of the hiatus in
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Figure 9. Abundances of Milky Way stars compared to chemical evolution models (coloured lines) computed adopting different distribution of the separations
of the DNS systems. Specifically, black, blue, and cyan solid lines are obtained with Ai, min= 0.1 R� and β = −1, −2, and −3 respectively. In the same sequence,
violet, red, and orange dashed lines show the results for Ai, min=1 R�. Models in the left-hand panel have been computed adopting kilonovae as the sole source
of Eu, while models in the right-hand panel adopt a contribution from CC-SNe (see the text). Observational data are from a compilation of 426 Milky Way halo
stars (green crosses) taken from JINABase (Abohalima & Frebel 2018) and 374 Milky Way thin disc stars (green squares) from Battistini & Bensby (2016).
Black circles represent the average values, binned in 0.5 dex wide bins.

the star formation activity mentioned in Section 6.1. Panel (a) refers
to the scenario in which merging DNS are the only contributors to
the Eu production in the Galaxy, while panel (b) shows the effect of
adding a contribution from CC-SNe as detailed before.

When assuming that merging DNS are the only source of Eu, the
data can be roughly reproduced with a very low value of Ai, min in
combination with a steep DDT (β � −2). Larger values of Ai, min

result in a late contribution of Eu to the ISM so that low-metallicity
stars are formed out of gas with a low Eu abundance. The effect
is amplified for flatter DDTs (e.g. β = −1). Actually, even for the
steepest DDT, the [Eu/Fe] ratio of the models is systematically
smaller than the average value of the data, with a larger discrepancy
in the low-metallicity regime ([Fe/H] � −2). In other words, the
data seem to require an early source of Eu in the chemical evolution
of the Galaxy. Reichert et al. (2020) find a similar indication from
the analysis of the chemical pattern in Dwarf Spheroidal galaxies.
Notice that in our model, the abundance [Fe/H]=−2 is reached very
early, at ∼25 Myr after the start of star formation. In this early stage
the Fe enrichment in the ISM is due to CC-SNe, which explode on a
shorter time-scale with respect to kilonovae, due to the distribution
of the coalescence delays. Even for the steepest DDT (Ai, min =
0.1 R� and β = −3) 30 per cent of the explosions of each stellar
generation occur with a delay longer than 25 Myr.

When assuming that also CC-SNe contribute to the Eu pollution
of the ISM (panel b) all models nicely reproduce the average trend
of the Milky Way stars, including the DDTs with the longest time-
scale for the kilonovae explosions (Ai, min=1 R� and β = −1). We
notice that the models exhibit a somewhat too shallow trend of the
[Eu/Fe] ratio as [Fe/H] increases from ∼−1 to 0, with respect to the
data, especially in the case of Ai, min= 1, that is, for DDTs with long
pollution time-scales. The flattening of the [Eu/Fe] ratio in the disc
is, at least partly, the result of adopting Fe yields from CC-SNe of
Nomoto et al. (2013), which include the so-called hypernovae and
produce more Fe than the models by Woosley et al. (1994) adopted in
Matteucci et al. (2014). Other possibilities to produce a steep [Eu/Fe]
trend in disc stars are discussed in Hotokezaka, Beniamini & Piran
(2018), Côté et al. (2019), and Schönrich & Weinberg (2019).

7 SU M M A RY A N D C O N C L U S I O N S

The DDT of merging DNS can be constrained by considering its
impact on a number of astrophysical measurements: (i) the cosmic
rate of SGRBs, (ii) the chemical abundance pattern of elements
synthesized in kilonova explosions, and (iii) the relation between
the merging neutron stars events and the properties of the parent
galaxies. This issue has been considered in various papers (e.g. Côté
et al. 2019; Simonetti et al. 2019) to the general conclusion that
(i) and (iii) require a sizable fraction of events at late times, while
(ii) points to a large number of prompt events, if elements like Eu
should be mostly produced by kilonovae. In this paper, we further
test whether the three observational constraints can be met with a
unique DDT by considering a variety of astrophysically motivated
possibilities for the DDTs.

In order to figure out these possibilities we focus on the char-
acteristics brought about by the clock which controls the merging
event. Since the delay time is the sum of the evolutionary lifetime of
the secondary component of the binary system and the coalescence
lifetime of the DNS, the distribution of the total delay time is
a function of the mass of the secondary component and of the
total mass, separation and eccentricity of the DNS system. We
have computed Monte Carlo simulations to derive the distribution
of the coalescence time-scales assuming that the distributions of
the separations, total masses, and eccentricity follow power laws
with exponents (β, γ , ρ), respectively. Since the large majority
of explosions within a Hubble time are provided by systems with
separations smaller than ∼8 R�, and the total mass of the DNS system
ranges between ∼2 and 4 M�, the assumption of smooth distributions
for these variables (in the relevant ranges) seems adequate. In the
simulations, we have implemented a scheme to describe the effect
of the kick due to an asymmetric explosion of the second SN.
The distribution of the delays due to the evolutionary lifetimes has
been derived analytically, and folding the two distributions we have
obtained the distributions of the total delay times for a variety of
parameters, which is meant to cover a wide range of astrophysically
plausible situations.

Fig. 10 illustrates the results.
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Figure 10. DDT of merging DNS systems for a selection of the parameters
characterizing the distribution of the separations Ai. For each value of the β

parameter (indicated with the arrows) we show the distributions obtained with
three values of the minimum separation Ai, min= 0.2 R� (blue and green),
0.5 R� (red and magenta), and 1 R� (black and purple). For each of the β

and Ai, min options, we plot all combinations of the other parameters, in solid
lines we highlight the (γ , ρ) = (−10,0) one.

(i) The DDT shows an initial peak in the range 4.5 � τ d/Myr �
32 followed by power-law decline. This characteristic stems from
the clock controlling the events, which is the composition of the
evolutionary lifetime of the secondary star and the time taken by the
gravitational waves radiation to bring the system into contact.

(ii) The power-law exponent which describes the distribution at
(relatively) long delay times is close to s = 0.25 × β − 0.75. In
most of our explored cases the delay time at which this regime sets
in is short (∼0.1 Gyr), but for some specific combinations of the
parameters (e.g. β = −3, Ai, min = 1 R�, and ρ = 1) this epoch
becomes as late as a few Gyr.

(iii) The strength of the peak is very sensitive to the parameters
β and Ai, min, taken to describe the slope of the distribution of the
separations and the minimum separation of the DNS systems when
they form.

(iv) The parameters γ and ρ have a negligible effect on the slope
of the DDT, but they affect the strength of the peak. In general,
mass distributions which favour high values of MDN and eccentricity
distributions which favour high values of e yield more systems with
short delay times. However, there is a considerable interplay between
the three parameters which determine the modifications of the DDT
as response to variations of β, γ , and ρ.

(v) Decreasing Ai, max implies a reduction of the number of
mergings at very late epochs, but this effect can be appreciated when
Ai, max becomes smaller than a few R�, which seems very unlikely.

In the literature, it is often assumed that the DDT of merging
neutron stars can be described as a pure power law: this is not correct,
since at short delay times the DDT is characterized by a plateaux
(item (i) above). The width of the plateaux is equal to the difference
between the evolutionary lifetimes of the least massive and of the
most massive neutron star progenitors. In our computations, we have

Figure 11. Fraction of systems with delay times shorter than 32 Myr for the
various cases considered here. For each value of β, we plot the fractions as
function of Ai, min, reported on the x-axis. The point type encodes the values
of γ and ρ as labelled. For each β, the dotted line connects the fractions Fp

for the case (γ = −10 and ρ = 1) for illustration. Green crosses show the
prompt fractions for Ai, min=0.5 R�, in the case of correlation between MDN

and Ai. See the text for details.

adopted a mass range of 9 ≤ M/M� ≤ 50, which corresponds to a
width of ∼27 Myr.

Another common assumption concerns the slope of the power law
decline, taken to be s = −1. This is also not correct, since this slope
is a function of the shape of the distribution of the separations of
the DNS systems at birth [item (ii) above]. The power-law regime,
which follows the plateaux, sets in at a delay time which depends on
the minimum separation of the DNS systems at birth. In Appendix
A, these properties are justified analytically.

We notice that the DDT for merging DNS in Eldridge et al. (2019)
BPS models show similar characteristics, namely an early peak of
∼30 Myr duration, followed by a power-law decline with slope −1.
While the results of BPS codes can be ascribed to the combination of
the prescriptions adopted in the calculation, in our derivation these
characteristics are directly related to basic astrophysical properties,
that is, the mass of neutron stars progenitors, and the distribution of
the separations of the DNS systems at birth. This makes it possible
to obtain an easy, yet effective, parametrization of DDT.

Fig. 11 shows the fraction (Fp) of systems which merge within
32 Myr for the variety of combination of the parameters considered,
all of which appear to have some impact on this fraction. As the
distribution of Ai becomes steeper Fp increases, and, for a given β,
the lower the limit on Ai the larger the fraction of prompt events.
These two parameters appear equally important, with, for example,
the same value of Fp obtained with the combinations (β = −1 and
Ai, min = 0.2 R�) and (β = −2 and Ai, min = 0.5 R�). The fraction
of prompt events also depends on the distributions of the total mass
and of the eccentricity of the DNS systems, although to a lesser
extent, especially when the distribution of Ai has a large abundance
of binaries with low separations. We notice that the distributions
discussed so far do not consider the possibility of a correlation
between the separation Ai and the mass of the DNS system which may
result from a more effective shrinkage of the more massive systems
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during the CE phase, similar to the CLOSE DD variety of Greggio
(2005) models for SNe Ia. If this were the case, for a given β, the
distribution of the GWR delays would be steeper, and the fraction of
prompt events would be higher. We tested this possibility computing
the DDT for the cases Ai, min=0.5 R�, β = −1, −3, and ρ = −0.5,
0, 1, and assuming the (arbitrary) relation MDN − 2 = 1.4/

√
Ai. The

results are shown on Fig. 11 as green crosses. It appears that the
effect of adopting a correlation between MDN and Ai is modest, and
on the same order of that due to a variation of the distribution of the
eccentricities at fixed β and Ai, min.

It turns out that the currently available data on the cosmic rate
of SGRBs do not lead to a strong constraint on the parameters
controlling the DDT, with the various models yielding an acceptable
representation of the data, within the observational uncertainty. A
mild preference for models with a sizable component at relatively
long delay times (e.g. β = −1) is present. More stringent indications
can be achieved with a larger data base of SGRBs (and kilonova)
events. The measurement of the SGRB rates in galaxies with different
star formation history, and the correlation with the properties of
the parent galaxies, can greatly help in assessing the shape of the
DDT, as currently done for SNe Ia (e.g. Botticella et al. 2017). The
association with early type galaxies of some SGRBs, and of the
GW170817 event, support a shallow slope for the DDT of merging
DNS. However, due to the steep slope of the DDT (e.g. dropping by
factor of 103.8 from 20 Myr to 10 Gyr), a modest recent star formation
activity could give rise to a merging DNS even in a generally old
galaxy. More precise constraints will come from future observational
campaigns aimed at measuring the rate of these events in galaxies of
different type.

Notwithstanding the loose constraints on the DDT from the
redshift distribution of SGRBs, their local rate, as well as the local rate
of kilonovae, allows us to derive a robust indication of the fraction of
neutron star progenitors which should follow the evolutionary path
leading to DNS systems merging within a Hubble time. This fraction
turns out to be αMNS ∼ 1 per cent. A number of uncertainties bear
upon the determination of αMNS, including those related to the local
rate of kilonovae, the approximations introduced in our procedure
to evaluate kkn, and the possible systematic with age and metallicity
of the kilonova production from stellar populations. Nevertheless,
had we found a much different value for kkn, and in turn αMNS,
it would be hard to account for the solar Eu abundance with the
standard chemical evolution model. We point out that in the chemical
evolution model we follow not only the [Eu/Fe] versus [Fe/H], but
also the abundances of the elements produced by massive stars in
the same mass range of merging neutron stars. Therefore, also the
Fe and α-element abundances are affected by the adopted value of
αMNS. Our chemical evolution model follows 40 species and it is
aimed at reproducing the [X/Fe] versus [Fe/H] relations together
with the solar abundances of all the considered elements.

With the same approach adopted here Greggio & Cappellaro
(2019) find that in order to account for the observed rate of SNe
Ia in SN surveys, ∼3 per cent of the stars with mass between 2.5
and 9 M� should be found in systems which evolve to the final
explosion. Although the details of the evolution of the two kinds of
explosive events are different, still the observed rates indicate that a
few per cent of the progenitors should be found in close binaries of
the variety which secures the final explosion in a Hubble time. This
is a strong constraint to the BPS models and may be used to appraise
the input ingredients, for example those which impact on the fraction
of systems which are disrupted in the course of the evolution.

With our measurement of αMNS we have computed models for the
trend of [Eu/Fe] versus [Fe/H] in the chemical evolution of the Milky

Way. If merging DNS are the only contributors to the Eu abundance
in the ISM, a very prompt release of this element is necessary
to reproduce the high [Eu/Fe] ratio in low-metallicity, halo stars.
However even with the DDT which in our models has the highest
prompt fraction we cannot match the observed level of the abundance
ratio. Resorting to a steeper distribution of the separations (lower β)
or to an even smaller minimum separation (Ai, min) does not solve the
problem because the curves become insensitive to these parameters.
One possible solution consists in assuming some Eu production from
CC-SNe which would release Eu to the ISM at the same pace as their
iron production. In our models, the data are well matched with a
comparable contribution to Eu from CC-SNe and kilonovae. While
the discrepancy on the [Eu/Fe] ratio is more critical for the low-
metallicity stars, the assumption of a contribution to Eu from CC-SNe
leads to a better match over the whole Fe range. Unfortunately, in
this case, the Eu production from CC-SNe obscures the contribution
from kilonovae, so that it is very difficult to discriminate between
the various DDTs.

To conclude, based on a thorough exploration of the possibilities
for the DDT of merging DNS, the current data on the redshift
distribution of SGRBs and on the trend of the Eu to Fe ratio in
Milky Way stars leads to the following conclusions:

(i) approximately 1 per cent of the neutron star progenitors should
be found in binary systems which evolve up to the final exploding
event;

(ii) an additional source of Eu is required to account for the high
[Eu/Fe] ratio in the Galactic halo stars, besides the kilonova events.
This applies to a lesser extent also to disc stars, so that a contribution
from ordinary CC-SNe is favoured;

(iii) no strong constraint on the DDT can currently be derived
from the observations, so that it is possible to match all the currently
available data with the same DDT.
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A P P E N D I X : A NA LY T I C A L D E R I VAT I O N O F
T H E D I S T R I BU T I O N O F T H E C OA L E S C E N C E
TIMES

The time taken by the gravitational waves radiation to bring into
contact the two neutron stars members of a binary with total mass,
initial separation, and eccentricity (MDN, A, e) can be approximated as

Figure A1. Limits on eccentricity imposed by the limits on the separations.
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Figure A2. Correction factor to the straight power law as a function of τGW for various options of the parameters β and ρ, as labelled. Solid lines are computed
with MDN=2.2 M�, and dashed lines with MDN=4 M�. Blue, green, and red lines show the correction factor respectively for Ai, min=0.1, 0.5, and 1 R�and
Ai, max=50 R�. Black dotted lines illustrate how the correction factor is modified when Ai, max=30 R�is adopted.

in equation (3). In Simonetti et al. (2019), we derived the distribution
of τGW for systems with e = 0; here we take into account the
dependence on the eccentricity, but consider the case of constant
MDN = MDN0.

The contribution to the number of systems with delay τGW from
systems with total mass MDN0, separation A and eccentricity e is :

dn(τGW, e) = n(e) × n(A�) de dA�, (A1)

where n(e), n(A) are the distribution functions of the eccentricity and
of the separations, the latter evaluated at

A� =
(

M3
DN0 τGW

0.6 (1 − e2)3.5

)0.25

R�. (A2)

with MDN0 in solar masses and τGW in Gyr. Integrating on the
eccentricities, we get

n(τGW)dτGW = dτGW

∫ 1

0
n(e) × n(A�)

∣∣∣∣ ∂A

∂τGW

∣∣∣∣ de. (A3)

Substituting

∂A

∂τGW
∝ τ−0.75

GW × (1 − e2)−7/8 (A4)

equation (A3) becomes

n(τGW) ∝ τ−0.75
GW

∫ 1

0
n(e) × n(A�) × (1 − e2)−7/8de. (A5)

Adopting n(e)∝eρ and

n(A) ∝

⎧⎪⎪⎨
⎪⎪⎩

0 in A < Ai,min

Aβ in Ai,min ≤ A ≤ Ai,max

0 in A > Ai,max

(A6)

we get

n(τGW) ∝ τ
−0.75+0.25β

GW

∫ emax

emin

eρ

(1 − e2)7(1+β)/8
de (A7)

where emin and emax are, respectively, the minimum and maximum
values of the eccentricity which correspond to Ai, min and Ai, max.
Equation (A7) shows that the distribution of the GWR delays scales
proportionally to a power law with exponent s = −0.75 + 0.25β

modified by a factor, CF(τGW), which accounts for the limits on
the parameter space due to the conditions on the allowed range of
separations. On Fig. 2, one can see that at a given τGW a lower limit
on A implies lower limit on e greater than 0, and an upper limit on A
implies an upper limit on e smaller than 1. In fact:
⎧⎪⎪⎨
⎪⎪⎩

e2
min = max

[
0; 1 −

(
τGW M3

DN0
0.6A4

i,min

)2/7
]

e2
max = min

[
1; 1 −

(
τGW M3

DN0
0.6A4

i,max

)2/7
]

.

These limits are shown on Fig. A1 as function of τGW for our adopted
minimum and maximum values of MDN, and various options for the
range of separations. If Ai, max is sufficiently large, the upper limit emax

is close to 1 for all GWR delays within a Hubble time, irrespectively
of MDN. The effect of the lower limit Ai, min is much more important:
it implies a shrinkage of the range of eccentricities providing
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short GWR delays by an amount which depends on both Ai, min

and MDN.
Fig. A2 shows the correction factor CF(τGW) normalized to its

maximum value, for a few combinations of the parameters.

(i) The correction factor is very small at short τGW; it increases
with increasing τGW up to a maximum reached at τ �

GW, beyond which
it remains constant.

(ii) The value of τ �
GW increases with Ai, min increasing, and, for

Ai, min=1 R�, it is of (9.5, 57) Myr, respectively for MDN=4 and 2,2
M�.

(iii) The correction factor depends on Ai, max only if the distribution
of the separation is relatively flat, and even in that case it appears
quite mild.

(iv) Steeper values of β and flatter values of ρ lead to a sharper
variation of CF(τGW) approaching τ �

GW.

Equation (A7) and the correction factor shown on Fig. A2 have been
derived under the assumption that the variables (A, e) are indepen-
dent. When a correlation is introduced between Af/Ai and eccentricity,
as in the cases shown on Figs 4 and 5, some modifications on the
correction factor set in, especially in the vicinity of τ �

GW.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 500, 1755–1771 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/2/1755/5941556 by U
niversita degli Studi di Trieste user on 20 June 2022


