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Abstract
This paper explores the corner tower of the Anagni Cathedral, a Romanesque 
structure built in the eleventh and thirteenth centuries. The tower, located beneath 
the baptistery, was likely constructed to support a small chapel with a font. Through 
digital surveying and geometric analysis, this study examines the tower’s structural 
element and speculates on the ideal stereotomic apparatus and reference models. The 
paper also delves into the mechanism responsible for maintaining the cantilevering 
structure’s equilibrium. The tower and baptistery exemplify the role of stereotomy 
and friction in maintaining equilibrium, with internal tensile forces and unilateral 
contact between the structure’s blocks. This study provides valuable insights into 
the Anagni Cathedral’s structural elements and highlights the importance of 
understanding stereotomy and friction principles.

Keywords Structural systems · Geometric analysis · Statics · Stereotomy · Masonry 
structures

Introduction

The Anagni Cathedral is a Romanesque structure built between 1072 and 1104. 
Additional chapels were added in the thirteenth century. This paper focuses on the 
corner tower (Fig. 1) located beneath the baptistery, which was likely constructed 
to support the small chapel with the font. Using an accurate digital survey and 
geometric analysis, this study examines the structural element and speculates on 
the ideal conformation of the stereotomic apparatus and potential reference models. 
This paper also interprets and explains the primary mechanism responsible for 
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maintaining the equilibrium of the cantilevering structure. The tower and baptistery 
are excellent examples of the role of stereotomy and friction in maintaining the 
state of equilibrium, where internal tensile forces are necessary, and the blocks 
composing the structure interact with each other via unilateral contact. Overall, this 
paper provides valuable insights into the structural elements of the Anagni Cathedral 
and highlights their significance in understanding the principles of stereotomy and 
friction.

The Research

Historical Notes

There are not many ancient documents related to Anagni Cathedral that can ensure 
an accurate reconstruction of the historical phases that led to the current layout of 
this building. We know that the construction of this complex was commissioned by 
bishop Pietro (?-1105), prince of Salerno, between 1072 and 1104, and it was carried 
out starting from the foundations of a previous church dedicated to St. Magnus. In 
this first phase, the building had a typical Romanesque three-nave structure with 
alternating quadrangular and circular pillars, a transept, and three apses (Matthiae 
1942; Palandri 2006).

Two coeval crypts are located below the transept and part of the nave to the west: 
the first crypt – entirely frescoed and defined as the ’Sistine Chapel of the Middle 
Ages’ – houses the body of St. Magnus. The second chapel was dedicated to St. 
Thomas Becket by Pope Alexander III. Both of these underground places were 
originally accessible from outside the church through an arched passage located 
on the west side. Today’s access is guaranteed by two stairways that lead from the 
church’s aisles to the level below. The building was probably constructed following 
the Abbey of Monte Cassino model, which was erected under abbot Desiderio’s 
guidance between 1066 and 1072, as confirmed by spatiotemporal proximity and the 
friendship between Desiderio and the bishop Pietro (Urcioli 2006: 191).

Fig. 1  The corner tower of 
Anagni Cathedral: a view of 
the western façade with the 
corner tower and “the blessing 
Loggia”; b corner tower 
observed from the staircase 
that gives access to the main 
entrance of the Cathedral
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Side chapels were added in the thirteenth century (Lauri, Caetani, and the one 
hosting the baptismal font) on the west area, as well as a monumental staircase (later 
demolished in 1830) that used to give access to the church from the underlying 
Piazza Innocenzo III through a new portal walking on a terrace called ’the blessing 
Loggia.’ As mentioned above, the room of the baptistery was also built between 
these chapels, under which there was a corner supporting vault, placed in continuity 
with the portico below the blessing Loggia (Fig. 2). The vaults of the portico have 
incorporated a system of hanging arches on zoomorphic shelves; to this day, they 
protrude out the intrados surfaces, but at the time they were used to support the 
above-elements (Matthiae 1942; Piacentini 2006).

Digital Survey

This research has employed laser scanners and photogrammetric techniques to 
develop the morphological genesis of the vaulted surface of Anagni Cathedral’s 
corner tower. The survey practice involved the placement of targets on the vertical 
walls supporting the vault and performing four scans with a Leica BLK 360 laser 
scanner (Fig. 3), followed by a photogrammetric survey via a Fujifilm X-T20 camera. 
The resulting textured mesh model was scaled and oriented using data from the laser 
scanner and imported into 3D modelling software for geometric analysis. This study 
found that the intrados surface of the vault closely resembled an abstract geometric 
surface arising from the intersection between two cylinders (Fig. 4), demonstrating 
significant precision of the constructive method despite the monument’s age.

The study also examined the similarities and differences between the Anagni vault 
and a complex architectural element called the Trompe  (De l’Orme 1567;  Calvo-
Lopez 2020), created using stereotomic techniques during the Renaissance, 
particularly in France. The Trompe is a suspended corner tower that connects 
interior spaces and two converging walls, typically positioned outside in the corner 
of the facade. However, the Anagni vault differs from the Trompe because the latter 
has an intrados surface resembling a conoid rather than a cylindrical surface. The 

Fig. 2  Volumetric 3d 
reconstruction of the historical 
phases: in dark grey the 
romanesque church, in light grey 
the chapels built during the XIII 
century with the hypothetical 
staircase semitransparent
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most famous example of the Trompe—created by the architect Philibert de L’Orme 
(1514–1570) at the Castle of Anet—has disappeared since then.

This research sheds light on using stereotomic techniques in architecture and 
implies a better understanding of the similarities and differences between the Anagni 
vault and the Trompe. The use of laser scanners and photogrammetric techniques 
in this research demonstrates the potential of modern technology to investigate and 
analyze historical architecture.

Fig. 3  The point cloud of the 
corner tower obtained with a 3d 
laser scanning

Fig. 4  Investigation about the 
geometrical genesis of the vault
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Structural Analysis

The vault in Fig. 5 is more challenging since the Anagni vault is made of smaller 
and rougher stone elements. Hereafter, we will focus on a qualitative description of 
the mechanism that can be used to interpret and explain the equilibrium of such a 
cantilevering structure. This structure is a perfect example of the role of stereotomy 
and friction in maintaining equilibrium. 

The stone blocks do not run from taut to compressed parts of the masonry 
(Fig.  6a). They are assumed to be in unilateral mutual contact and capable of 
exploiting small tensile forces in their “long” direction—orthogonal to the main 
thrust forces. The compressive thrust forces act transversely to the stone joints, 
allowing the employment of tangential friction forces that turn out to be pull forces 
inside the stones in the long joint directions. The equilibrium solution assumes that 
two spatial Linear Arches, called Γ1 and Γ2 , exist inside the masonry (Fig. 6). These 
arches spring from the walls and produce thrusts, interacting with each other through 
tensile forces transmitted to them by the transverse stones. We consider these spatial 
Linear Arches—essentially spatial thrust lines—as 1D structures inside the masonry. 
Some authors recently introduced this kind of compressive line network (Angelillo 
et al. 2021), and it was also discussed in Carlo Olivieri’s PhD thesis (Olivieri 2021).

We introduce a Cartesian reference system 
{

O; x1, x2, x3
}

 with the axis x2 located 
along the cord of the arch from the springings, the origin O in the midpoint of the cord 
and the axis x3 along the vertical (Fig. 6a). We start by assigning the shapes Γ1

� ,Γ2
� of 

the linear arches Γ1,Γ2 into the horizontal plane � = {x1, x2} (Fig. 6b).

Fig. 5  Trompe of the Abbey of 
toussaint in angers
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The weight of the superstructure, pavement, and filling is lumped in the two arches 
based on the "influence areas." Ω1andΩ2 depicted in Fig. 6a. Known vertical forces 
represent this load −q1,−q2 applied as loads per unit projected length along x2 . The 
two arches are assumed to interact through mutually distributed tensile forces p,−p, 
which have zero components in the direction x2 : p = {p, 0, q} (Fig. 6c).

Therefore, the linear arches Γ1,Γ2 are acted on by vertical loads −q1 + q,−q2 − q 
and by transverse forces acting in the directionx1:p,−p . The equilibrium of the linear 
arches Γ1,Γ2 can be decomposed into two planar equilibrium analyses concerning the 
archesΓ1,Γ2 , the first one in the horizontal plane� = {x1, x2} , and the second one in the 
vertical plane� = {x2, x3} . The equilibrium problem can be reduced to the following 
system of four ordinary differential equations.

in which g1
(

x2
)

, g2
(

x2
)

, f1
(

x2
)

, f2(x2) are scalar functions describing the linear 
arches Γ1,Γ2 , q = p

f2−f1

g2−g1
 , and H1,H2 are two arbitrary constants representing the 

projection of the thrust along the x2 axis. We note that this system of four odes has 

g
��

1
=

p

H1

, g
��

2
=

−p

H2

, f
��

1
=

−q1 + q

H1

, f
��

2
=

−q2 − q

H2

,

Fig. 6  Schematic view of the Linear Arches Γ1andΓ2 of their projections Γ1
�andΓ2

� on the horizontal 
plane π, and their "influence areas" Ω1 and Ω2 : a down-top view; b plan view; c axonometric view; d 
equilibrium solution
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five unknowns ( g1
(

x2
)

, g2
(

x2
)

, f1
(

x2
)

, f2
(

x2
)

, p
(

x2
)

 ) and there exists a class of 
equilibrium solutions, among which the most favourable can be identified through 
optimization.

The solution shown graphically in Fig.  6d gives the following values for the 
thrust forces: H1 = −48.0kN , H2 = −32.1kN , and of the maximum pulling stress: 
p = 9.6kN∕m . On the safe side, on assuming as the least stone slenderness ratio the 
value b◦∕l◦ = 0.217 – b◦, l◦ being the two surface dimensions of the stones (Fig. 6a) 
–, we can estimate the maximum tangential stresses produced by p and acting on the 
long stone joints as � = 2pb◦∕l◦ = 4.18kN∕m , and for the normal stresses produced 
by the thrust H2 acting on the same faces: � =

H2

L
= −33.7kN∕m . The ratio between 

these two stresses: f = −�∕� = 8.06 has to be compared with the friction coefficient 
between the stones, � = tan� = 0.839 (corresponding to a friction angle of 40°). The 
value of f  is much greater than � , indicating that the compressive forces are widely 
sufficient to sustain – through friction – the tangential stresses produced by the tensile 
stresses generated by the cantilevering arch section.

Conclusions

The vault covering the portico at the base of the corner tower is an impressive display of 
geometric complexity and morphological precision, given the time of its construction. 
It is possible that the builders took inspiration from previous solutions that had already 
been evaluated and tested in terms of static and stylistic efficiency. This is one of the 
few examples in which the role of tensile forces sustained by friction assumes (together 
with a clever and attentive cut of the stones) a crucial role in the equilibrium.

This study presented an accurate geometric restitution of the structure, and 
a simplified structural analysis was carried out using the equilibrium method. 
Preliminary findings indicate that the structure is in a stable equilibrium state with a 
large geometrical safety factor. Further work will provide this equilibrium analysis 
with a kinematical analysis based on the Distinct Element Method (DEM) and 3D 
analyses based on PRD (Olivieri et  al. 2022). These efforts will involve a more 
comprehensive understanding of the vault’s structural behaviour and contribute 
to our knowledge of the innovative construction techniques used in this period 
(Iannuzzo et al. 2021).
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