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Abstract: The dynamics of the SARS-CoV-2 pandemic showed that closed environments, such as
hospitals and schools, are more likely to host infection clusters due to environmental variables like
humidity, ventilation, and overcrowding. This study aimed to validate our local transmission model
by reproducing the data on SARS-CoV-2 diffusion in a hospital ward. We implemented our model
in a Monte Carlo procedure that simulates the contacts between patients and healthcare workers
in Trieste’s geriatric ward and calculates the number of infected individuals. We found the median
number of infected workers to be 38.98 (IQR = 7.75), while all patients were infected in most of
the simulation runs. More infections occurred in rooms with lower volumes. Higher ventilation
and mask-wearing contribute to reduced infections; in particular, we obtained a median value of
35.06 (IQR = 9.21) for the simulation in which we doubled room ventilation and 26.12 (IQR = 10.33)
in the simulation run in which workers wore surgical masks. We managed to reproduce the data on
infections in the ward; using a sensitivity analysis, we identified the parameters that had the greatest
impact on the probability of transmission and the size of the outbreak.

Keywords: SARS-CoV-2; closed setting; diffusion; model validation; Monte Carlo; risk evaluation;
hospital setting

1. Introduction

The virus that caused the COVID-19 pandemic, SARS-CoV-2, is a pathogen that likely
spreads by means of droplets and diffusion [1,2] of airborne aerosol [3–7]. Owing to these
paths of transmission, the SARS-CoV-2 virus, like other microorganisms, causes a higher
risk of infection in closed environments where poor ventilation is more likely, especially
during the winter, and in environments with overcrowding [8]. Studies on the transmission
of SARS-CoV-2 have followed two main trends: epidemiology and local modeling. Many
epidemiological models have been proposed. Starting from the basic SIR (Susceptible,
Infected, Removed/Recovered) model [9], different research groups proposed models with
more compartments to address the complexity of the COVID-19 pandemic, to take into
account, for example, incubation (latency) time (i.e., time between exposure and onset
of symptoms), different severity of the infection (asymptomatic, mild symptomatic, and
severe symptomatic individuals), age differences, hospitalization, and vaccination [10–12].
Data-driven algorithms have also been considered [13]. Because closed environments are
recognized as areas at risk owing to the higher probability of transmission [14], different
aerosol diffusion models were proposed to evaluate the infection probability. The starting
point for many of these studies was the Wells–Riley model [15] of diffusion, which was
modified according to the specificity of the new pathogens; otherwise, other groups used

Microorganisms 2024, 12, 2401. https://doi.org/10.3390/microorganisms12122401 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms12122401
https://doi.org/10.3390/microorganisms12122401
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-7900-1783
https://orcid.org/0000-0002-7717-0417
https://orcid.org/0000-0001-7348-9765
https://doi.org/10.3390/microorganisms12122401
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms12122401?type=check_update&version=2


Microorganisms 2024, 12, 2401 2 of 19

other simulation techniques that involved the use of computational fluid dynamics [16].
Given the great variability in many problem parameters and the practical impossibility of
precisely defining the environment of hospital rooms, it is often not feasible to perform fluid
dynamics calculations. Therefore, we adopt a different, user-friendly approach [17] based
on that proposed by Riley [15], where we adopt an average description of the hospital
rooms and use a Monte Carlo simulation to validate its predictions with data from an
infection cluster that occurred at the University Hospital of Trieste, in which healthcare
workers were involved and followed up for infection and prevention controls. This study
aims to demonstrate that our model is reliable for estimating the number of infections
through the results of a simple numerical simulation. We also suggest using this tool
to predict the risk of infection in closed spaces for preventive purposes because of its
straightforward adaptation to different airborne pathogens.

2. Materials and Methods
2.1. Mathematical Model

We implemented a model that is a modified version of the Wells–Riley model. Be-
cause data provided by the hospital are generally insufficient to simulate the airflow in
the ward through fluid dynamics and are very likely to remain so in all possible future
occurrences of similar infections, we opted to simulate an average scenario and assume
that the air volume in the region of interest is well mixed, with a uniform distribution of
the pathogen concentration. The probability of at least one infection follows from Poisson
statistics and is given by [18]:

1 − exp(− Ī), (1)

where Ī is the number of pathogenic particles inhaled by susceptible individuals and is
given by [18]:

Ī = (1 − α)(1 − β) I
rp

∑i λiV
t. (2)

In this equation:

• α and β are the outward and inward mask filtration efficiency, respectively;
• I is the number of infectious individuals, r is the quanta emission rate, p is the

pulmonary ventilation rate, V is the room volume, and t is the exposure time;
• λi are decay constants accounting for removing mechanisms; in particular, we consid-

ered ventilation, relative humidity, solar illumination, and droplet deposition.

The specific values of these parameters are detailed in the Section 3. These values
are derived from the literature and experimental data specific to the infection type and
hospital conditions.

2.2. Algorithm of the Monte Carlo Simulation
2.2.1. Initial Conditions

The simulation starts by setting the initial scenario:

• Number of patients and healthcare workers. Let Np represent the number of pa-
tients hospitalized in the ward and Nw the number of infected workers. Patients are
distributed across Nr rooms.

• Room assignment. Each patient Pj (j = 1,. . . Np) is randomly assigned to room Rj,
chosen from the list of occupied rooms, with the corresponding volume Vj.

• Controlled environment. To model real hospital conditions, ventilation, relative
humidity, and illumination are assumed to be controlled uniformly across the ward.

2.2.2. Choice of Patient Zero

At the start of the simulation, one patient is randomly selected as patient zero, P0, and
is set as infectious with a latency time τ0 = 0 days, meaning that they begin spreading the
disease immediately. The patient’s infectious status, which is represented by a binary value
ι, is set to true (ι0 = 1). For other patients and workers, the latency time τi is randomly
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sampled from a specific distribution f (τi) as explained in Section 2.3. Their infectious
status is set to false (ιi = 0).

2.2.3. Computation of Infection Probability

Each day, Tday, workers and patients interact within the ward. Each day„ a group
of workers Aw (Aw ≤ Nw) is admitted to the ward and each of them visits some rooms
singularly. If worker Wj (j = 1, . . . , Aw) encounters the infectious patient Pk (k = 1, . . . , Np),
the probability of infection is computed according to a Bernoulli distribution:

Pin f ection,W ∼ Bernoulli(k), (3)

where k is computed according to Equation (1). If Wj is infected (i.e., Pin f ection,W = 1), his or
her infection status is updated, but he or she becomes infectious at the end of their latency
period τj. The day on which they become infected is given by:

Tin f ectious,W = Tday + τj. (4)

Otherwise, if an infectious worker Wj enters a room with at least one susceptible
individual, the probability of infection is calculated similarly.

Moreover, for patients sharing the same room Rj, if one of the occupants is infectious,
the infection probability is computed using the same principles. Multiple infections are
not allowed.

2.2.4. Time Evolution of the Outbreak

The process is repeated each day Tday until the end of the epidemic.

2.2.5. Iterations of the Simulation Runs

To achieve robust statistical results, the entire simulation process is repeated over
100,000 independent Monte Carlo simulation runs. Each run provides an estimate of
infection outcome, allowing us to study the variability in outbreak spread under different
initial conditions. By averaging over a large number of runs, we obtain the expected
magnitude of the outbreak.

For a detailed explanation of the code structure and implementation, please refer to
the Supplementary Materials.

2.3. Distribution of the Latency Periods

Since the evolution of the infectiousness of the occupants with time remains unknown,
we decided to run the simulation twice by using two different sets of initial conditions,
corresponding to two simple distributions of latency times for both patients and healthcare
workers, to understand the dependence of the results on the knowledge of the distribution
of the incubation period. In the first case, we assumed a uniform distribution, whose
probability density function (PDF) is given by:

PDFuni f orm(x) =

{
1

b−a if x ∈ (a, b)
0 if x /∈ (a, b)

; (5)

In the second case, we used the gamma distribution which has the following PDF:

PDFgamma(x, δ, θ) =

{
1

Γ(δ)θδ
xδ−1e−x/θ ; (6)

where δ and θ are the shape and scale parameters, respectively, and Γ(δ) is a gamma
function defined as:

Γ(δ) =
∫ ∞

0
tδ−1e−tdt, (7)
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where the δ parameter is loosely associated with the number of accidental events, while θ
is the average time interval between events.

2.4. Distribution of Infected Workers

The resulting distribution of infected workers turned out to be asymmetrical, as dis-
cussed in the following sections. Therefore, we described the data trend using a phe-
nomenological asymmetrical (skewed) Gaussian distribution:

PDFskewed−Gaussian(x) =
2
ω

ϕ

(
x − ξ

ω

)
Φ

[
K

(
x − ξ

ω

)]
, (8)

where ξ is the location of the peak, ω is the scale parameter, k is the shape parameter, ϕ(x)
and Φ(x) are the standard normal probability density function (i.e., a Gaussian distribution
with null mean and standard deviation equal to 1) and cumulative distribution function,
which are defined as follows:

ϕ(x) = 1√
2π

e−
x2
2

Φ(x) =
∫ x

−∞
ϕ(t)dt =

1√
2π

∫ x

−∞
e−

t2
2 dt

. (9)

Four examples of the curve described by Equation (8) with different parameter values
are shown in Figure 1. The red solid line represents the standard normal distribution, while
the blue dashed line and green dotted curve represent two examples of skewed Gaussian
distributions. The negative value of the k parameter for both distributions means that the
curves are left-skewed, that is, values smaller than the mean are more probable than those
larger than the mean.

Figure 1. Four examples of the curve described by Equation (8), with different values of the parameters.

2.5. Effect of Containment Strategies

We repeated the simulation by varying two parameters of the model, room ventilation
and the use of personal protection equipment, to quantify how these strategies can be
effective in reducing the spread of the disease.
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3. Results
3.1. The Simulation Scenario for the COVID-19 Clusters in the University Hospital of Trieste

The simulation scenario was set in the geriatric ward of the University Hospital of
Trieste, where Np = 26 patients were arranged in Nr = 13 rooms with two beds each, and
where Nw = 54 healthcare workers were allowed during the days of the outbreak. None of
the occupants wore masks, which means that the factors α and β in Equation (2) are equal
to 0. The plan of the ward is shown in Figure 2; red arrows indicate the patients’ rooms,
the volumes Vi of the rooms are reported in Table 1, and the mean ventilation is 2.5 air
exchanges per hour, with an indoor relative humidity of 40% (see [18] for the corresponding
decay constant). We assume the worst-case scenario in which infectious individuals have
the highest quanta emission rate and the highest infectiousness [18]. From data provided
by the Protection and Prevention Service of the University Hospital of Trieste, the average
permanence time of a healthcare worker in a room is 0.30 h, and the number of admitted
personnel (Aw) is fourteen workers per day. The values of the parameters in Equation (2)
are collected in Table 2.

Figure 2. Plan of the Geriatric Department of the University Hospital of Trieste; numbers indicate
patients’ rooms, as reported in Table 1.

Table 1. Room volumes and occupations of the Geriatric Department of the University Hospital of
Trieste supplied by the Protection and Prevention Service.

Volume [m3] Beds

Room 7 70.36 2
Room 9 69.08 2

Room 12 65.85 2
Room 16 61.29 2

Room 17a 56.36 2
Room 18 60.34 2
Room 21 60.18 2
Room 24 60.18 2
Room 27 60.37 2
Room 29 60.34 2
Room 32 54.45 2
Room 34 54.49 2
Room 39 80.37 2
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Table 2. Parameter values used in Equation (2).

Parameter Symbol Value Source

Outward mask efficiency α 0.0 No mask
Inward mask efficiency β 0.0 No mask
Quanta emission rate r 2856.0 quanta/h [19]

Pulmonary ventilation rate p 0.48 m3/h [20]
Exposure time t 0.30 h Hospital staff

Decay due to ventilation λvent 2.5 h−1 Hospital staff
Decay due to RH λRH 0.158 h−1 [19] for RH = 40%

Decay due to solar illumination λUV 7.26 h−1 mean value from [21]
Decay due to droplets deposition λdep 0.24 h−1 mean value from [22]

3.2. Distribution of Latency Periods

The histograms in Figure 3 show the distribution of latency times for patients and
healthcare workers, where we generated random numbers according to Equation (5). We
removed all data referring to patient zero, who has a latency time τ0 equal to 0, to avoid
peaks at t = 0, which would have biased the distributions. The histograms in Figure 4
are analogous to the previous ones, but we generated the latency times for the occupants
according to Equation (6). We assigned a different latency time to each individual to
account for differences in susceptibility and immune response. We based the choice of the
parameters in Equations (5) and (6) on data obtained from the hospital about the dates
of encounters between infectious individuals and the onset of symptoms. In particular,
we chose a = 0 and b = 14 days as extreme values of the uniform distribution, and δ = 2
and θ = 3.3 for the gamma distribution. In the simulation, we also considered that
individuals might spread the disease one day before the end of the latency period [23],
which means that the time between infection and infectiousness (latent time) was shorter
than the latency time.

Figure 3. Distribution of latency times for patients and healthcare workers, generated according to
Equation (5).
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Figure 4. Distribution of latency times for patients and healthcare workers, generated according to
Equation (6).

3.3. Distribution of Infected Individuals

Figures 5 and 6 show histograms of the number of infections for the two simulation
scenarios with different distributions of latency times. The distributions of infected patients
(histograms in red) were truncated to the value of twenty-five patients, which is the number
of susceptible patients at the beginning of the simulation. The peak of the distribution was
in agreement with data provided by the hospital.

As anticipated in the Section 2, the histograms of infected workers are asymmetrical.
Figures 7 and 8 show the histograms of the number of infected workers with the trend
line given by Equation (8), whose parameters are reported in Table 3. These distributions
are left-skewed; indeed, the k parameter in Table 3 is negative, which means there is a
higher fraction of simulation runs in which the number of infected workers is less than
the mean value. Since the distribution is skewed, the mean value is not a good estimator
of the most probable value; therefore, we computed the median values of the histograms
in Figures 7 and 8 as better estimators and the interquartile ranges (IQR), defined as the
difference between the 75th and 25th percentiles of the data, to determine their statistical
dispersion. The parameters are listed in Table 4.

Figure 5. Distribution of the number of infections (uniform distribution of latency times).
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Figure 6. Distribution of the number of infections (gamma distribution of latency times).

Figure 7. Number of infected workers (uniform distribution of latency times).

Figure 8. Number of infected workers (gamma distribution of latency times).



Microorganisms 2024, 12, 2401 9 of 19

Table 3. Fit results on histograms of infected workers for the geriatric ward scenario. We report an N
parameter due to the normalization of the data.

Normal. [N] Scale [ω] Location [ξ] Shape [K]

Uniform (3.99 ± 0.01)·104 9.82 ± 0.03 45.67 ± 0.03 −3.29 ± 0.04
Gamma (3.99 ± 0.01)·104 8.76 ± 0.03 44.92 ± 0.03 −2.81 ± 0.03

Table 4. First and second momenta and quantiles of histograms in Figures 7 and 8.

Mean Std. dev. Q1 Q2 (Median) Q3 IQR

Uniform 37.64 6.30 34.20 38.95 42.81 8.62
Gamma 37.82 5.76 34.78 39.98 42.53 7.75

These median values are in good agreement with the actual value of 39 infected
workers, with fractional errors of 0.13% and 0.05%, respectively. These results show that
the simulation with the gamma distribution of latency times better reproduces the original
data, even if the differences are small (see Section 4 below).

We determined that a higher fraction of infections for healthcare workers occurred
during the first days of the outbreak due to encounters with patient zero and the other
occupant of the room, who quickly became infected. For this reason, we studied the
dependence of the final size of the infection cluster on the volume of patient zero’s room.
Because ventilation, relative humidity, illumination, and occupancy were the same for
every room in the ward, room volume was the only parameter that changed in the formula
of the infection probability. The results are presented in Table 5, where we indicate the
room number, volume, median value of the distribution of infected workers, and the IQR.
The same data are shown in the box plot in Figure 9 (we have truncated the whiskers for
better data visualization). From this graph, it is possible to observe a smooth decrease in
the cluster size with increasing volume.

Table 5. Median values and IQR of the distribution of infected workers depending on the volume of
patient zero’s room.

Median (IQR)

Room 7 38.41 (8.38)
Room 9 38.49 (8.28)

Room 12 38.77 (7.92)
Room 16 39.06 (7.65)

Room 17a 39.47 (7.27)
Room 18 39.24 (7.55)
Room 21 39.12 (7.71)
Room 24 39.04 (7.48)
Room 27 38.96 (7.61)
Room 29 39.05 (7.52)
Room 32 39.52 (7.25)
Room 34 39.67 (7.31)
Room 39 37.52 (8.98)

We also studied the distribution of infected workers with respect to the number of
visits, particularly in the region with more than 15 infections (see the top left panels in
Figures 10 and 11). We further subdivided the data into two groups: one for data referring
to rooms with a volume higher than the mean of 62.65 m3 (see top right panels in the figures)
and one for those with a volume lower than the mean (see bottom left panels). While the
mean number of visits remains almost constant between the whole data distribution and
the cuts, there is a difference in the mean values of infections that occurred in the room, that
is, the mean value on the y-axis. In particular, for data referring to the simulation run with
a uniform distribution of latency periods, the mean value of infections in smaller rooms is
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higher than that of the total distribution, with a difference of 1.1%, while the mean value
for larger volumes is lower with a fractional shift of 2.8%. For the run with the gamma
distribution, the trend is the same; however, we computed a fractional difference of 1.2%
and 3.1%. The differences are small, but given that the infection probability depends on
exp(-c/volume) (c represents all other parameters in the calculation that do not change),
we did not expect larger differences due to room volume. Given the integral of the data
reported in the aforementioned figures, the fraction of workers who get infected in larger
rooms is 28.3% (28.5%) of the total distribution, almost two and half times less than those
infected in smaller rooms; thus, the volume of the environments is an important factor to
be considered to reduce infection probability.

Figure 9. Box plots of the number of infected workers vs. room volume. The median value is
indicated by the yellow horizontal line (gamma distribution of latency times).

Figure 10. Number of infected workers vs. number of visits (uniform distribution of latency
times). Top left panel: all room volumes; top right panel: volume >62.65 m3; bottom left panel:
volume <62.65 m3.
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Figure 11. Number of infected workers vs. number of visits (gamma distribution of latency
times). Top left panel: all room volumes; top right panel: volume >62.65 m3; bottom left panel:
volume <62.65 m3.

3.4. Effect of Ventilation and Mask Wearing

To show the effect of the environmental parameters, we repeated the simulation by
doubling the ventilation of each room, thus setting it to five air exchanges per hour while
keeping the other parameters constant. The resulting histogram of the number of infected
workers is shown in Figure 12, with mean and median values of 34.01 ± 6.59 and 35.06
(IQR = 9.21), while the parameters of the skewed Gaussian distribution are reported in
Table 6. Finally, we modified the simulation code and allowed healthcare workers to wear
surgical masks during daily visits. The results are shown in Figure 13, where the mean
and median values of this histogram are 25.70 ± 7.14 and 26.12 (IQR = 10.33), respectively.
Because the value of the K parameter from Equation (8) was compatible with zero, we
used a standard Gaussian distribution with mean µ and standard deviation ω; see Table 7.
The small difference between the mean and median values indicates that the data are
approaching a Gaussian distribution. In the simulation, the outward and inward protection
effectiveness are different [18,24], with the former being higher than the latter, which
means that masks protect patients from being infected by workers rather than prevent
workers from becoming infected. In particular, we assumed α = 0.53 and β = 0.49 [24]
Figure 14 shows the resulting distributions of infected patients for the four simulations.
The distribution corresponding to the simulation with surgical masks (bottom right panel)
does not have a peak value at 25 infected patients, but it reaches a peak at 23 and then
decreases, which shows the degree of the preventive efficacy of masks. For simulations
with doubled ventilation and surgical masks, we used the gamma distribution for the
latency periods. Finally, we summarize the results of the four numerical simulations in the
box plot in Figure 15.
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Figure 12. Number of infected workers (gamma distribution of latency times). In the simulation, we
doubled the air exchange rate compared to the simulations that produced the data in Figure 8.

Table 6. Fit results on the histogram of infected workers for the geriatric ward scenario with doubled
ventilation (latency time = gamma distribution).

Normal. [N] Scale [ω] Location [ξ] Shape [K]

(3.99 ± 0.01)·104 9.67 ± 0.04 41.57 ± 0.05 −2.81 ± 0.03

Figure 13. Same as Figure 8, but with healthcare workers wearing surgical masks.

Table 7. Fit results on the histogram of infected workers for the geriatric ward scenario with workers
wearing surgical masks (latency time = gamma distribution).

Normal. [N] Mean [µ] Sigma [σ]

(5.58 ± 0.02)·103 26.20 ± 0.02 7.14 ± 0.02
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Figure 14. Empirical probability distributions (not normalized) of the number of infected patients in
four different settings. Top left panel: uniform distribution; top right panel: gamma distribution;
bottom left panel: gamma distribution and doubled rate of air exchanges; bottom right panel: gamma
distribution and healthcare workers wearing surgical masks.

Figure 15. Box plot summarizing the histograms of the infected workers of the four numerical simulations.

3.5. Evaluation of the Statistical Uncertainty on the Median Values

To evaluate the statistical uncertainty associated with the median values, we repeated
the entire simulation several times, computed the median value of the histogram of the
number of infected workers for each repetition, and calculated the standard deviation of the
mean value of the sample we obtained. Figures 16 and 17 summarize the results obtained
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for different numbers of repetitions and simulation runs. The uncertainty decreases with
increasing sample size, and the trend lines in the graph approximate one over the square
root of the sample size, and with the number of simulation runs for each repetition, then
stabilizes at a certain value. We expect to improve this evaluation by increasing the number
of runs.

Figure 16. The plot shows the statistical uncertainty of the median of the number of infected workers
(uniform distribution of latency times).

Figure 17. The plot shows the statistical uncertainty of the median number of infected workers
(gamma distribution of latency times).

3.6. Sensitivity Analysis

We have already discussed the impact of ventilation and mask-wearing in reducing
the size of the outbreak.

In this section, we present the results of a sensitivity analysis we conducted to quantify
the impact of the choice of the simulation parameters. In particular, we focus on:
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• The parameters of the two distributions of the latency times, i.e., b, δ and θ in
Equations (5) and (6);

• Time difference between the start of the infectiousness window and onset of symptoms.

For this analysis, we choose the OAT (one-factor-at-a-time) method [25]. If the output
of the simulation, in our case the value of infected workers, is written as a function of all
the parameters O(q1, . . . qn), we repeat the simulation by varying each of the parameters
above by ±1% while keeping the other n − 1 parameters constant.

For each parameter q, we compute the relative variation, which is defined as:

C = 100 × |O(q+)− O(q−)|
O(q)

, (10)

where O(q+) and O(q−) are the mean number of infected workers resulting from the
simulation run in which we change q by ±1%, respectively, and O(q) is the mean number
without parameter modification.

The results of the sensitivity analysis are reported in Table 8.
The parameters with the largest relative variation are b, δ, and θ, which have a greater

impact on the infectivity window and therefore modify the simulation result; however,
these differences can be considered negligible in terms of risk prediction as we have already
seen that overall, the gamma distribution provides a reasonable approximation and results
that are nearly indistinguishable from those provided by a uniform distribution of the
latency times. Notably, we find that the results show a very low sensitivity on the “time
difference” parameter.

Table 8. Results of the sensitivity analysis.

Uniform distribution of latency times

Parameter O(q) O(q+) O(q−) C[%]

b 37.71 37.74 38.54 2.12
Time diff. 37.83 37.68 0.40

Gamma distribution of latency times

Parameter O(q) O(q+) O(q−) C[%]

δ
38.28

38.1 38.46 0.94
θ 37.86 38.43 1.49

Time diff. 38.23 38.06 0.45

4. Discussion

In this study, we validated our user-friendly tool for biological risk assessment in
closed workplaces for the transmission of SARS-CoV-2 [18] by implementing it in a numer-
ical simulation to reproduce data of the infection cluster that occurred in March 2020 in the
geriatric ward of the University Hospital of Trieste.

We implemented the α and β parameters in the original model by Riley [15], which
account for the shielding effect of the masks. In contrast to other works in the literature [19],
we used them as a multiplying factor rather than introducing them as an additional decay
constant λi. Indeed, masks mechanically shield the particles and reduce the number of
pathogenic particles inhaled by susceptible individuals. Moreover, we considered relative
humidity, solar illumination, and deposition as reducing factors, along with ventilation.

4.1. Dependence of the Results on Initial Conditions.

We repeated the simulation with two distributions of latency time, considering the
differences with the latent period, and obtained marginally better results for the simulation
with the gamma distribution, with a smaller fractional difference from the actual data.
Because the difference between the results obtained with the two distributions is small,
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the choice of the distribution of latency times is not a determining factor for the final results
of the simulation.

4.2. Role of Environmental Variables in the Infection Dynamics

We analyzed the parameters that had the greatest impact on the size of the infection
cluster. First, we determined how room volume could contribute to reducing the number
of infections by comparing the number of infected workers in rooms with smaller volumes
with those in larger rooms. We also recognized a positive trend in the size of the cluster
with decreasing room volume, which hosts patient zero.

Many models in the literature [26] suggest that mitigation measures such as controlled
ventilation through monitoring systems, continued mask-wearing, and strategic control
of room occupancy are effective against the spread of the disease. The important role of
ventilation has already been demonstrated in various models [26–28], in which the air
change per hour rate and the fraction of outside air emitted in the room volume are crucial
in reducing viral transmission. In the case of mechanical ventilation, the purification system,
along with the airflow rate, can dramatically reduce exposure, particularly if high-efficiency
particulate air (HEPA) filters are used [29]. In agreement with these results, our simulations
showed that higher ventilation could reduce the cluster size.

4.3. Role of Mask-Wearing

Moreover, it was demonstrated that mask-wearing also has a protective effect on
patients and reduces the probability of transmission from infected workers wearing
them [29,30], which agrees with the results obtained in the simulation run in which we
introduced masks; see Figure 14.

Thus, this study shows that their use must be encouraged, especially in wards with
more susceptible individuals, such as geriatrics. In Italy, the use of personal protection
equipment was already mandatory for workers in some wards at risk, like the infec-
tious disease ward, before the pandemic and was subsequently extended to all depart-
ments during the peaks of the epidemics, but now we are returning to the conditions
pre-dating COVID-19.

4.4. Conclusions and Future Work

We stress that a modified version of the Wells–Riley model of transmission, such as the
one we presented, can be adapted to other pathogens like influenza, as reported in other
works in dental settings [31] and that our results corroborate previous findings on the
efficacy of ventilation and mask-wearing in reducing diffusion of other similar pathogens
and the spreading of nosocomial events [32]. For preventive purposes, the determination
of the optimal forced ventilation of spaces can be useful also in the design of new buildings
and reorganizations of existing ones to address the problem of occupants’ safety from
biological hazards and can be combined with energy efficiency studies. A similar approach
was proposed by Guo [33], who combined the model of Wells–Riley with the spatial flow
impact factor, intending to control the infection risk in a built environment and make the
best use of the space and resources to curb the spread of infectious disease, even though
these authors did not consider the effects of mask-wearing. Moreover, the need to estimate
the absolute ventilation rate is crucial also in rooms where occupancy levels vary [34] to
limit indoor transmission.

Jones [35] proposed a model that permitted obtaining a Relative Exposure Index as a
function of space volume, viral emission rate, exposure time, occupant respiratory activity,
and room ventilation. However, his model did not consider the probability of infection
and the mitigation effect of mask-wearing. As mentioned in the introduction, other models
involving computation fluid dynamics were proposed, such as that of Vuorinen [36], who
used a pure Monte Carlo method to compute the exposure time needed to become infected
in different public indoor environments.
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We stress that our model returns numerical values of the infection probability and
diffusion of the disease among occupants in closed spaces that are consistent with epidemi-
ological data. For that reason, our approach permits us to perform a reliable risk assessment
evaluation in closed spaces and hints at how to improve work conditions.

In this context, our tool should not be assimilated to other risk assessment frame-
works [37], which are mostly used in clinical practice and define risk through scoring
systems that might mislead decisions and are difficult to apply to single-case scenarios.

The strength of our method is the ease of use of the available software tool: COVID-19-
Evaluation Tool, version 3 [17] used for risk assessment in workplaces as demonstrated by
its validation using data of infection clusters that occurred in hospitals that we presented
in this work. A comprehensive set of factors was considered in the model, such as different
room volumes and ventilation and especially the crucial role of masks in improving safety.
Moreover, the sensitivity analysis we presented in Section 3.6 shows how our model is
robust with respect to changes in parameter values and can reproduce the observed values
of the infected individuals with reduced uncertainty. Therefore, the model can be used to
predict the risk of nosocomial events and is highly reproducible. As a limitation of our
work and a possible topic of investigation for future work, we mention that the model does
not consider super-spreading events in which tiny droplets released by infected people
through coughing and sneezing propagate very quickly and reach large distances from
the spreader [38], and the model does not take into account differences in the size of the
droplets and their diffusion dynamics. However, we considered the definition of emission
quanta according to the literature [15] and aimed to model an average scenario, even though
the probability of infection might be overestimated. For a non-hospital environment, where
the conditions of the rooms are more stable, it would be possible to perform a fluid dynamic
simulation to better describe the airflow and diffusion of the viral quanta. Furthermore, we
suggest a model with parameters that can be easily managed by professionals in healthcare
and have an immediate confirmation of the clinical outcome.

Indeed, the tool [18] was distributed to members of the Prevention and Protection
Service for their evaluations of the infection probability and provides suggestions on how
to reduce risk in single rooms. Overall, this user-friendly tool can predict the outbreak of
SARS-CoV-2 infections in a closed setting and can be used for risk assessment. Furthermore,
it is possible to reduce risk by adopting the suggested preventive measures (ventilation,
use of personal protective equipment, time of exposure, number of workers exposed, etc.).

Lastly, this work can be extended to other environments, like school classrooms or
offices, to test its applicability. Given the escalating number of COVID-19 cases, we are
confident that our work will help to raise attention to the use of passive containment
strategies, which can be easily implemented, and help in their evaluations to prevent
diffusion in environments at risk.
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