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In the present paper, we study the fast rotation limit for the density-dependent 
incompressible Euler equations in two space dimensions with the presence of the 
Coriolis force. In the case when the initial densities are small perturbation of a 
constant profile, we show the convergence of solutions towards the solutions of a 
quasi-homogeneous incompressible Euler system. The proof relies on a combination 
of uniform estimates in high regularity norms with a compensated compactness 
argument for passing to the limit. This technique allows us to treat the case of 
ill-prepared initial data.

1. Introduction

In this paper, we are interested in describing the evolution of the density and the velocity field of a fluid 
in a rotational framework. The density � = �(t, x) is a scalar function belonging to R+ and u = u(t, x)
represents the velocity field of the fluid on R2. The choice of the R2 plane is motivated by the fact that 
the 2-D setting is relevant for fluids in a fast rotation regime, like currents in the oceans under the Earth’s 
rotational effects. Indeed, the motion of a 3-D highly rotating fluid is, in a first approximation, planar: this 
property is the so-called Taylor-Proudamn theorem (see Chapter 7 of [14], Chapter 2 of [40] and Chapter 
2 of [44] for details in this respect). Then, the mathematical model we are going to consider, describes 
the dynamics of flows on large scales which occurs in nature (i.e. the so-called geophysical flows). In our 
model we keep three characteristics which are relevant from the physical side: the fluid is supposed to be 
non-homogeneous (we deal with variations of the density), incompressible (the volumes are preserved along 
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the motion) and inviscid (the viscosity effects are neglected). Therefore, the system describing the 2-D 
evolution of the fluid, reads
 ⎧⎪⎪⎨⎪⎪⎩

∂t� + div (�u) = 0
∂t(�u) + div (�u⊗ u) + 1

Ro
�u⊥ + ∇P = 0

divu = 0
(1.1)

in the domain Ω = R2.
The pressure term ∇P , where P = P (t, x) ∈ R, represents the Lagrangian multiplier associated to the 

divergence-free constraint on the velocity field. In addition, the rotational effects (due to the rotation of the 
Earth) are translated in the system (1.1) by the presence of the Coriolis force 1

Ro
�u⊥, where u⊥ := (−u2, u1)

is the rotation of angle π/2 of the velocity field u = (u1, u2). This simple form for the Coriolis term is a
physically well-justified approximation of that force at mid-latitudes: we consider the motion far from the 
poles and far from the equator (see again Chapter 7 of [14], Chapter 1 of [40] and Chapter 2 of [44] for 
useful insight). Finally, the adimensional number Ro in (1.1) is the so-called Rossby number. It represents 
the inverse of the rotation speed: choosing the Rossby number small will mean considering fast rotational 
effects in the dynamics. Specifically, we introduce the following scaling: given ε ∈ ]0, 1] we take

Ro = ε. (1.2)

The main scope of our analysis will be to study the asymptotic behaviour of the system (1.1) when ε → 0. 
We refer to [10] for an overview of the broad literature in the context of homogeneous rotating fluids (see 
[1] and [2] for the pioneering studies).

Similar problems to the one presented in (1.1) have been studied by several authors, who in different 
ways inspected the well-posedness issues and the asymptotic analysis of models for geophysical flows. For 
example, in the context of compressible fluids, we refer to [8], [32], [34] for the first works on 2-D viscous 
shallow water models (see also [19], [20], [21] for the inviscid case), to [23], [24], [28], [29] for the barotropic 
Navier-Stokes system and to [39] for weakly compressible and inviscid fluids (see also [27] for other singular 
limits in thermodynamics of viscous fluids). In the compressible case, the fact that the pressure is a given 
function of the density implies a double advantage in the analysis: on the one hand, one can recover good 
uniform bounds for the oscillations (from the reference state) of the density; on the other hand, at the limit, 
one disposes of a stream-function relation between the densities and the velocities.

On the contrary, although the incompressibility condition is physically well-justified for the geophysical 
fluids, only few studies tackle this case. We refer to [22], in which Fanelli and Gallagher have studied 
the fast rotation limit for viscous incompressible fluids with variable density. In the case when the initial 
density is a small perturbation of a constant state (the so-called slightly non-homogeneous case), they proved 
convergence to the quasi-homogeneous type system. Instead, for general non-homogeneous fluids (the so-
called fully non-homogeneous case), they have showed that the limit dynamics is described in terms of the 
vorticity and the density oscillation function, since they lack enough regularity to prove convergence on the 
momentum equation itself (see more details below).

We have also to mention [12], where the authors rigorously prove the convergence of the ideal magneto-
hydrodynamics (MHD) equations towards a quasi-homogeneous type system (see also [11] in this respect). 
Their method relies on a relative entropy inequality for the primitive system that allows to treat also the 
inviscid limit but requires well-prepared initial data.

In the present paper, we tackle the asymptotic analysis (for ε → 0) in the case of density-dependent 
Euler system in the slightly non-homogeneous context, i.e. when the initial density is a small perturbation 
of order ε of a constant profile (say � = 1). These small perturbations around a constant reference state are 
physically justified by the so-called Boussinesq approximation (see e.g. Chapter 3 of [14] or Chapter 1 of 
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[38] in this respect). As a matter of fact, since the constant state � = 1 is transported by a divergence-free 
vector field, the density can be written as �ε = 1 + εRε at any time (provided this is true at t = 0), where 

one can state good uniform bounds on Rε. We also point out that in the momentum equation of (1.1), with 
the scaling introduced in (1.2), the Coriolis term can be rewritten as

1
ε
�εu

⊥
ε = 1

ε
u⊥
ε + Rεu

⊥
ε . (1.3)

We notice that, thanks to the incompressibility condition, the former term on the right-hand side of (1.3) is 
actually a gradient: it can be “absorbed” into the pressure term, which must scale as 1/ε. In fact, the only 
force that can compensate the effect of fast rotation in system (1.1) is, at geophysical scale, the pressure 
term: i.e. we can write ∇Pε = (1/ε) ∇Πε.

Let us point out that the fully non-homogeneous case (where the initial density is a perturbation of 
an arbitrary state) is out of our study. This case is more involved and new technical troubles arise in the 
well-posedness analysis and in the asymptotic inspection. Indeed, as already highlighted in [22] for the 
Navier-Stokes-Coriolis system, the limit dynamics is described by an underdetermined system which mixes 
the vorticity and the density fluctuations. In order to depict the full limit dynamics (where the limit density 
variations and the limit velocities are decoupled), one had to assume stronger a priori bounds than the ones 
which could be obtained by classical energy estimates. Nonetheless, the higher regularity involved is not
propagated uniformly in ε in general, due to the presence of the Coriolis term. In particular, the structure 
of the Coriolis term is more complicated than the one in (1.3) above, since one has �ε = �+ εσε (with σε’s 
the fluctuations), if at the initial time we assume �0,ε = �+εR0,ε, where � represents the arbitrary reference 
state. At this point, if one plugs the previous decomposition of �ε in (1.3), a term of the form (1/ε) �u⊥

ε

appears: this term is a source of troubles in order to propagate the Hs estimates.
Equivalently, if one tries to divide the momentum equation in (1.1) by the density �ε, then the previous 

issue is only translated on the analysis of the pressure term, which becomes 1/(ε�ε) ∇Πε.
Finally, we refer to [6] (and references therein) for the fully non-homogeneous case in the context of 

barotropic Navier-Stokes equations (see also [26] for a first result in that direction).
In light of all the foregoing discussion, let us now point out the main difficulties arising in our work.
First of all, our model is an inviscid and hyperbolic type system for which we can expect no smoothing 

effects and no gain of regularity. For that reason, it is natural to look at equations in (1.1) in a regular 
framework like the Hs spaces with s > 2. The Sobolev spaces Hs(R2), for s > 2, are in fact embedded in the 
space W 1,∞ of globally Lipschitz functions: this is a minimal requirement to preserve the initial regularity 
(see e.g. Chapter 3 of [4] and also [16], [17] for a broad discussion on this topic). As a matter of fact, all 
the Besov spaces Bs

p,r(Rd) which are embedded in W 1,∞(Rd), a fact that occurs for (s, p, r) ∈ R × [1, +∞]2
such that

s > 1 + d

p
or s = 1 + d

p
and r = 1 , (1.4)

are good candidates for the well-posedness analysis. However, the choice of working in Hs ≡ Bs
2,2 is dictated 

by the presence of the Coriolis force: we will deeply exploit the antisymmetry of this singular term.
Moreover, the fluid is assumed to be incompressible, so that the pressure term is just a Lagrangian 

multiplier and does not give any information on the density, unlike in the compressible case. In addition, 
due to the non-homogeneity, the analysis of the gradient of the pressure term is much more involved since 
we have to deal with an elliptic equation with non-constant coefficients, namely

−div (A∇P ) = divF where divF := div
(
u · ∇u + 1

Ro
u⊥
)

and A := 1/� . (1.5)
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The main difficulty is to get appropriate uniform bounds (with respect to the rotation parameter) for the 
pressure term in the regular framework we will consider (we refer to [16] and [17] for more details).
Once we have analysed the pressure term, we will show the local well-posedness for system (1.1) in the 
Hs setting (see Theorem 2.1 below). It is worth to notice that, in Theorem 2.1 below, all the estimates 
are uniform with respect to the rotation parameter and, in addition, we have that the time of existence is 
independent of ε.

With the local well-posedness result at the hand, we perform the fast rotation limit for general ill-
prepared initial data. We will show the convergence of system (1.1) towards what we call quasi-homogeneous 
incompressible Euler system ⎧⎪⎪⎨⎪⎪⎩

∂tR + div (Ru) = 0
∂tu + div (u⊗ u) + Ru⊥ + ∇Π = 0
divu = 0 ,

(1.6)

where R represents the limit of fluctuations Rε (see Theorem 2.2 for details). We also point out that in the 
momentum equation of (1.6) a non-linear term of lower order (i.e. Ru⊥) appears: it is a sort of remainder 
in the convergence for the Coriolis term, recasted as in (1.3).

Passing to the limit in the momentum equation of (1.1) is no more evident, although we are in the Hs

framework: the Coriolis term is responsible for strong in time oscillations of solutions (the so-called Poincaré 
waves) which may prevent the convergence of the convective term towards the one of (1.6). To overcome this 
issue, we employ an approach based on a compensated compactness argument (see e.g. [22] and reference 
therein, in the case of viscous fluids). This technique was firstly applied to the barotropic Navier-Stokes 
equations by Lions and Masmoudi in [37] and later developed in the fast rotation, incompressible and 
homogeneous case by Gallagher and Saint-Raymond in [33]. The strategy consists in making use of the 
algebraic structure hidden behind the system (recasted as a wave system) to reveal strong convergence 
properties for special quantities: in our case, γε := curl (�εuε) (see Section 4.2 below). We refer also to 
[12], for a different approach based on relative entropy inequalities for the primitive equations to prove the 
convergence towards the limit system.

Now, once the limit system is rigorously depicted, one could address its well-posedness issue: it is worth 
noticing that system (1.6) is not globally well-posed even in two dimensions. However, roughly speaking, 
for R0 small enough, the system (1.6) is “close” to the 2-D homogeneous and incompressible Euler system, 
for which it is well-known the global well-posedness. Thus, it is natural to wonder if there exists an “asymp-
totically global” well-posedness result in the spirit of [17] and [13]: for small initial fluctuations R0, the 
quasi-homogeneous system (1.6) behaves like the standard Euler equations and the lifespan of its solutions 
tends to infinity. In particular, as already shown in [13] for the quasi-homogeneous ideal MHD system (see 
also references therein) the lifespan goes as

T ∗
δ ∼ log log 1

δ
, (1.7)

where δ > 0 is the size of the initial fluctuations (see Theorem 2.4 below).
The result for the time of existence of solutions to (1.6) pushes our attention to the study of the lifespan 

of solutions to the primitive system (1.1). For the 3-D homogeneous Euler system with the Coriolis force, 
Dutrifoy in [18] has proved that the lifespan of solutions tends to infinity in the fast rotation regime (see also 
[31], [9] and [42], where the authors inspected the lifespan of solutions in the context of viscous homogeneous 
fluids). For system (1.1) it is not clear to us how to find similar stabilization effects (due to the Coriolis 
term), in order to improve the lifespan of the solutions: for instance to show that T ∗

ε → +∞ when ε → 0. 
Nevertheless, independently of the rotational effects, we are able to state an “asymptotically global” well-
posedness result in the regime of small oscillations, in the sense of (1.7): namely, when the size of the initial 
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fluctuation R0,ε is small enough, of size δ > 0, the lifespan T ∗
ε of the corresponding solution to system (1.1)

can be bounded from below by T ∗
ε ≥ T ∗(δ), with T ∗(δ) → +∞ when δ → 0 (see also [17] for a density-
depend fluid in the absence of the Coriolis force). As an immediate corollary of the previous lower bound, if 
we consider the initial densities of the form �0,ε = 1 + ε1+αR0,ε with α > 0, then we get T ∗

ε ∼ log log(1/ε). 
We refer to Theorem 2.1 below for the precise statement.

Now, let us sketch the main steps to show (1.7) for the primitive system (1.1).
The key point in the proof of (1.7) is to study the lifespan of solutions in critical Besov spaces. In those 

spaces, we can take advantage of the fact that, when s = 0, the B0
p,r norm of solutions can be bounded 

linearly with respect to the Lipschitz norm of the velocity, rather than exponentially (see the works [45] by 
Vishik and [36] by Hmidi and Keraani). Since the triplet (s, p, r) has to satisfy (1.4), the lowest regularity 
Besov space we can reach is B1

∞,1. Then if u belongs to B1
∞,1, the vorticity ω := −∂2u1 + ∂1u2 has the 

desired regularity to apply the quoted improved estimates by Hmidi-Keraani and Vishik (see Theorem A.13
in the Appendix). Analysing the vorticity formulation of system (1.1), we discover that the curl operator 
cancels the singular effects produced by the Coriolis force (in this respect, see equation (6.2) below). That 
cancellation is not apparent, since the skew-symmetric property of the Coriolis term is out of use in the 
critical framework considered.

Finally, we need a continuation criterion (in the spirit of Baele-Kato-Majda criterion, see [5]) which 
guarantees that we can “measure” the lifespan of solutions indistinctly in the space of lowest regularity 
index, namely s = r = 1 and p = +∞. That criterion is valid under the assumptions that

T∫
0

∥∥∇u(t)
∥∥
L∞ dt < +∞ with T < +∞ .

We refer to Subsection 6.1 below for more detailed consequences of the previous continuation criterion.
Let us now give a more precise overview of the contents of the paper. In the next section, we collect our 

assumptions and we state our main results. In Section 3, we investigate the well-posedness issues in the 
Sobolev spaces Hs for any s > 2. In Section 4, we study the singular perturbation problem, establishing 
constraints that the limit points have to satisfy and proving the convergence to the quasi-homogeneous 
Euler system thanks to a compensated compactness technique. In Section 5 we review, for the limit system 
(1.6), the results presented in [12] and [13], and we explicitly derive the lifespan of solutions to equations 
(1.6) (see relation (2.9)).

In the last section, we deal with the lifespan analysis for system (1.1) and we point out some consequences 
of the continuation criterion we have established (see in particular Subsection 6.1).

Some notation and conventions The symbol C∞
c (R2) denotes the space of ∞-times continuously differ-

entiable functions on R2, having compact support in R2. The space D′(R2) is the space of distributions 
on R2. We use also the notation C0

w([0, T ]; X), with X a Banach space, to refer to the space of contin-
uous in time functions with values in X endowed with its weak topology. Given p ∈ [1, +∞], by Lp(R2)
we mean the classical space of Lebesgue measurable functions g, where |g|p is integrable over the set R2

(with the usual modifications for the case p = +∞). We use also the notation Lp
T (Lq) to indicate the space 

Lp
(
[0, T ]; Lq(R2)

)
with T > 0. Given k ≥ 0, we denote by Hk(R2) the Sobolev space of functions which 

belongs to L2(R2) together with all their derivatives up to order k. Moreover, the notation Bs
p,r(R2) stands 

for the Besov spaces in R2 that are interpolation spaces between the Sobolev ones (we refer to Paragraph A.1
in the Appendix for a more detailed discussion).

For the sake of simplicity, we will omit from the notation the set R2, that we will explicitly point out if 
needed.

In the whole paper, the symbols c and C will denote generic multiplicative constants, which may change 
from line to line, and which do not depend on the small parameter ε. Sometimes, we will explicitly point 
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out the quantities that these constants depend on, by putting them inside brackets. We agree to write f ∼ g

whenever we have c g ≤ f ≤ C g.( )

Let fε 0<ε≤1 be a family of functions in a normed space X. If this family is bounded in X, we use the 

notation 
(
fε
)
ε
⊂ X.
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2. Setting of the problem and main results

In this section, we formulate our working hypotheses (Subsection 2.1) and we state our main results 
(Subsection 2.2).

2.1. Formulation of the problem

In this subsection, we present the rescaled density-dependent Euler equations with the Coriolis force, 
which we are going to consider in our study, and we formulate the main working hypotheses.

To begin with, let us introduce the “primitive system”, that is the rescaled incompressible Euler system 
(1.1), supplemented with the scaling (1.2), where ε ∈ ]0, 1] is a small parameter. Thus, the system consists 
of continuity equation (conservation of mass), the momentum equation and the divergence-free condition: 
respectively ⎧⎪⎪⎨⎪⎪⎩

∂t�ε + div (�εuε) = 0
∂t(�εuε) + div (�εuε ⊗ uε) + 1

ε�εu
⊥
ε + 1

ε∇Πε = 0
divuε = 0 .

(2.1)

The unknowns are the fluid mass density �ε = �ε(t, x) ≥ 0 and its velocity field uε = uε(t, x) ∈ R2 with 
t ∈ R+, x ∈ R2.

In (2.1), the pressure term has to scale like 1/ε, since it is the only force that allows to compensate the 
effect of fast rotation, at the geophysical scale.

From now on, in order to make condition (1.4) holds, we fix

s > 2 .

We assume that the initial density is a small perturbation of a constant profile. Namely, we consider 
initial densities of the following form:

�0,ε = 1 + εR0,ε , (2.2)

where we suppose R0,ε to be a bounded measurable function satisfying the controls

sup
ε∈ ]0,1]

‖R0,ε‖L∞(R2) ≤ C , (2.3)

sup
ε∈ ]0,1]

‖∇R0,ε‖Hs−1(R2) ≤ C (2.4)

6



G. Sbaiz / J. Math. Anal. Appl. 512 (2022) 126140 7

and the initial mass density is bounded and bounded away from zero, i.e. for all ε ∈ ]0, 1]:

2
0 < � ≤ �0,ε(x) ≤ � , x ∈ R (2.5)

where �, � > 0 are positive constants.
As for the initial velocity fields, due to framework needed for the well-posedness issues, we require the 

following uniform bound

sup
ε∈ ]0,1]

‖u0,ε‖Hs(R2) ≤ C . (2.6)

Thanks to the previous uniform estimates, we can assume (up to passing to subsequences) that there exist 
R0 ∈ W 1,∞(R2), with ∇R0 ∈ Hs−1(R2), and u0 ∈ Hs(R2) such that

R0 := lim
ε→0

R0,ε in L∞(R2)

∇R0 := lim
ε→0

∇R0,ε in Hs−1(R2)

u0 := lim
ε→0

u0,ε in Hs(R2) ,

(2.7)

where we agree that the previous limits are taken in the corresponding weak-∗ topology.

2.2. Main results

We can now state our main results. We recall the notation 
(
fε
)
ε
⊂ X to denote that the family 

(
fε
)
ε

is 
uniformly (in ε) bounded in X.

The following theorem establishes the local well-posedness of system (2.1) in the Sobolev spaces Bs
2,2 ≡ Hs

(see Section 3) and gives a lower bound for the lifespan of solutions (see Section 6).

Theorem 2.1. For any ε ∈ ]0, 1], let initial densities �0,ε be as in (2.2) and satisfy the controls (2.3) to (2.5). 
Let u0,ε be divergence-free vector fields such that u0,ε ∈ Hs(R2) for s > 2.

Then, for any ε > 0, there exists a time T ∗
ε > 0 such that the system (2.1) has a unique solution 

(�ε, uε, ∇Πε) where

• �ε belongs to the space C0([0, T ∗
ε ] ×R2) with ∇�ε ∈ C0([0, T ∗

ε ]; Hs−1(R2));
• uε belongs to the space C0([0, T ∗

ε ]; Hs(R2));
• ∇Πε belongs to the space C0([0, T ∗

ε ]; Hs(R2)).

Moreover, the lifespan T ∗
ε of the solution to the two-dimensional density-dependent incompressible Euler 

equations with the Coriolis force is bounded from below by

C

‖u0,ε‖Hs

log
(

log
(

C ‖u0,ε‖Hs

max{Aε(0), εAε(0) ‖u0,ε‖Hs} + 1
)

+ 1
)

, (2.8)

where Aε(0) := ‖∇R0,ε‖Hs−1 + ε ‖∇R0,ε‖λ+1
Hs−1 , for some suitable λ ≥ 1.

In particular, there exists a time T ∗ > 0 such that

inf
ε>0

T ∗
ε ≥ T ∗ > 0 .

7
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Looking at (2.8), we stress the fact that fast rotational effects are not enough to state a global well-
posedness result for system (2.1), in the sense that T ∗

ε does not tend to +∞ when ε → 0: this is coherent 

with the previous results, as the one in [17].

Now, once we have stated the local in time well-posedness for system (2.1) in the Sobolev spaces Hs, in 
Section 4 we address the singular perturbation problem describing, in a rigorous way, the limit dynamics 
depicted by the quasi-homogeneous incompressible Euler system (1.6).

Theorem 2.2. Let s > 2. For any fixed value of ε ∈ ]0, 1], let initial data (�0,ε,u0,ε) verify the hypotheses 
fixed in Paragraph 2.1, and let (�ε,uε) be a corresponding solution to system (2.1). Let (R0,u0) be defined 
as in (2.7).

Then, one has the following convergence properties:

�ε → 1 in L∞([0, T ∗];L∞(R2)
)
,

Rε := �ε − 1
ε

∗
⇀ R in L∞([0, T ∗];L∞(R2)

)
,

∇Rε
∗
⇀ ∇R in L∞([0, T ∗];Hs−1(R2)

)
,

uε
∗
⇀ u in L∞([0, T ∗];Hs(R2)

)
.

In addition, 
(
R , u

)
is a solution to the quasi-homogeneous incompressible Euler system (1.6) in R+ ×R2. 

In that system (1.6) the gradient ∇Π is a suitable pressure term belonging to L∞([0, T ∗]; Hs(R2)
)
.

Remark 2.3. Due to the fact that the system (1.6) is well-posed in the previous functional setting (see 
Theorem 2.4 below), we get the convergence of the whole sequence of weak solutions to the solutions of the 
target equations on the large time interval where the weak solutions to the primitive equations exist.

At the limit, we have found that the dynamics is prescribed by the quasi-homogeneous incompressible 
Euler system (1.6), for which we recall the local well-posedness in Hs (see Section 5). It is worth to remark 
that the global well-posedness issue for system (1.6) is still an open problem.

Theorem 2.4. Take s > 2. Let 
(
R0, u0

)
be initial data such that R0 ∈ L∞(R2) and u0 ∈ Hs(R2), with 

∇R0 ∈ Hs−1(R2) and divu0 = 0.
Then, there exists a time T ∗ > 0 such that, on [0, T ∗] ×R2, problem (1.6) has a unique solution (R, u, ∇Π)

with the following properties:

• R ∈ C0([0, T ∗] ×R2) and ∇R ∈ C0([0, T ∗]; Hs−1(R2)
)
;

• u belongs to C0([0, T ∗]; Hs(R2)
)
;

• the pressure term ∇Π is in C0([0, T ∗]; Hs(R2)
)
.

In addition, the lifespan T ∗ > 0 of the solution (R, u, ∇Π) to the 2-D quasi-homogeneous Euler system 
(1.6) enjoys the following lower bound:

T ∗ ≥ C

‖u0‖Hs

log
(

log
(
C

‖u0‖Hs

‖R0‖L∞ + ‖∇R0‖Hs−1
+ 1
)

+ 1
)

, (2.9)

where C > 0 is a “universal” constant, independent of the initial datum.

The proof of the previous “asymptotically global” well-posedness result is presented in Subsection 5.3.

8
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As already anticipated in the introduction, the next section will be devoted to the well-posedness analysis 
of system (2.1) in the Sobolev framework. In Section 4, we will focus on the description of the limit dynamics, 

reviewing in Section 5 the local well-posedness results for the limit system: the accent is put on the derivation 
of the lower bound for the lifespan of solutions to (1.6). Finally, in Section 6, we will show an improved 
lower bound for the time of existence of solutions to the primitive system (2.1).

3. Well-posedness for the original problem

This section is devoted to the well-posedness issue in the Hs spaces stated in Theorem 2.1. We recall that, 
due to the Littlewood-Paley theory, we have the equivalence between Hs and Bs

2,2 spaces (see Appendix for 
details).

We also underline that in this section we keep ε ∈ ]0, 1] fixed. We will take care of explicitly pointing 
out the dependence to the Rossby number in all the computations in order to get controls that are uniform 
with respect to the ε-parameter. The choice in keeping explicit the dependence on the rotational parameter 
is motivated by the fact that we will perform the fast rotation limit (see Section 4 below).

First of all, since �ε is a small perturbation of a constant profile, we set

αε := 1
�ε

− 1 = εaε with aε := −Rε/�ε . (3.1)

The choice of looking at αε is dictated by the fact that we will extensively exploit the elliptic equation (1.5)
above (see e.g. [16] and [17] in this respect).

Now, using the divergence-free condition, we can rewrite the system (2.1) in the following way (see also 
Lemma 3 in [17]):

⎧⎪⎪⎨⎪⎪⎩
∂taε + uε · ∇aε = 0
∂tuε + uε · ∇uε + 1

εu
⊥
ε + (1 + εaε)1

ε∇Πε = 0
divuε = 0 ,

(3.2)

with the initial condition (aε, uε)|t=0 = (a0,ε, u0,ε).
We start by presenting the proof of existence of solutions at the claimed regularity. For that scope, we 

follow a standard procedure: first, we construct a sequence of smooth approximate solutions. Next, we deduce 
uniform bounds (with respect to the approximation parameter and also to ε) for those regular solutions. 
Finally, by use of those uniform bounds and an energy method, together with an interpolation argument, 
we are able to take the limit in the approximation parameter and gather the existence of a solution to the 
original problem.

We end this Section 3, proving uniqueness of solutions in the claimed functional setting, by using a 
relative entropy method.

3.1. Construction of smooth approximate solutions

For any n ∈ N, let us define

(an0,ε,un
0,ε) := (Sna0,ε, Snu0,ε) ,

where Sn is the low frequency cut-off operator introduced in (A.1) in the Appendix. We stress also the fact 
that a0,ε ∈ C0

loc, since a0,ε and ∇a0,ε are in L∞.

9
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Then, for any n ∈ N, we have the density functions an0,ε ∈ L∞. Moreover, one has that ∇an0,ε and un
0,ε

belong to H∞ :=
⋂

σ∈RHσ which is embedded (for a suitable topology on H∞) in the space C∞
b of C∞
functions which are globally bounded together with all their derivatives.
In addition, by standard properties of mollifiers, one has the following strong convergences

an0,ε → a0,ε in C0
loc

∇an0,ε → ∇a0,ε in Hs−1

un
0,ε → u0,ε in Hs .

(3.3)

This having been established, we are going to define a sequence of approximate solutions to system 
(3.2) by induction. First of all, we set (a0

ε, u
0
ε, ∇Π0

ε) = (a0
0,ε, u

0
0,ε, 0). Then, for all σ ∈ R, we have that 

∇a0
ε, u

0
ε ∈ Hσ and a0

ε ∈ L∞ with divu0
ε = 0. Next, assume that the couple (anε , un

ε ) is given such that, for 
all σ ∈ R,

anε ∈ C0(R+;L∞) ∇anε ,u
n
ε ∈ C0(R+;Hσ) and divun

ε = 0 .

First of all, we define an+1
ε as the unique solution to the linear transport equation

∂ta
n+1
ε + un

ε · ∇an+1
ε = 0 with (an+1

ε )|t=0 = an+1
0,ε . (3.4)

Since, by inductive hypothesis and embeddings, un
ε is divergence-free, smooth and uniformly bounded with 

all its derivatives, we can deduce that an+1
ε ∈ L∞(R+; L∞). Moreover, from

∂t ∂ia
n+1
ε + un

ε · ∇ ∂ia
n+1
ε = −∂iu

n
ε · ∇an+1

ε with (∂ian+1
ε )|t=0 = ∂ia

n+1
0,ε for i = 1, 2

and thanks to the Theorem A.12, we can propagate all the Hσ norms of the initial datum. We deduce that 
an+1
ε ∈ C0(R+; L∞) and ∇an+1

ε ∈ C0(R+; Hσ) for any σ ∈ R. Next, we consider the approximate linear 
iteration ⎧⎪⎪⎨⎪⎪⎩

∂tu
n+1
ε + un

ε · ∇un+1
ε + 1

εu
⊥,n+1
ε + (1 + εan+1

ε )1
ε∇Πn+1

ε = 0
divun+1

ε = 0
(un+1

ε )|t=0 = un+1
0,ε .

(3.5)

At this point, one can solve the previous linear problem finding a unique solution un+1
ε ∈ C0(R+; Hσ) for 

any σ ∈ R and the pressure term ∇Πn+1
ε can be uniquely determined (we refer to [15] for details in this 

respect).

3.2. Uniform estimates for the approximate solutions

We now have to show (by induction) uniform bounds for the sequence (anε , un
ε , ∇Πn

ε )n∈N we have con-
structed above.

We start by finding uniform estimates for an+1
ε . Thanks to equation (3.4) and the divergence-free condition 

on un
ε , we can propagate the L∞ norm for any t ≥ 0:

‖an+1
ε (t)‖L∞ ≤ ‖an+1

0,ε ‖L∞ ≤ C‖a0,ε‖L∞ . (3.6)

Next, we want to estimate ∇an+1
ε in Hs−1. We have for i = 1, 2:

∂t ∂ia
n+1
ε + un

ε · ∇ ∂ia
n+1
ε = −∂iu

n
ε · ∇an+1

ε .

10
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Taking the non-homogeneous dyadic blocks Δj, we obtain

n+1 n n+1 n n+1 (
n n+1)
∂tΔj ∂iaε + uε · ∇Δj ∂iaε = [uε · ∇,Δj ] ∂iaε − Δj ∂iuε · ∇aε .

Multiplying by Δj ∂ia
n+1
ε , we have

‖Δj ∂ia
n+1
ε (t)‖L2 ≤ ‖Δj ∂ia

n+1
0,ε ‖L2 + C

t∫
0

(∥∥[un
ε · ∇,Δj ] ∂ian+1

ε

∥∥
L2 + ‖Δj

(
∂iu

n
ε · ∇an+1

ε

)
‖L2
)

dτ .

We apply now the second commutator estimate stated in Lemma A.10 to the former term in the integral 
on the right-hand side, getting

2j(s−1) ∥∥[un
ε · ∇,Δj ] ∂ian+1

ε

∥∥
L2 ≤ C cj(t)

(
‖∇un

ε ‖L∞‖∂ian+1
ε ‖Hs−1 + ‖∇un

ε ‖Hs−1‖∂ian+1
ε ‖L∞

)
,

where (cj(t))j≥−1 is a sequence in the unit ball of �2.
Instead, the latter term can be bounded in the following way:

2j(s−1)‖Δj

(
∂iu

n
ε · ∇an+1

ε

)
‖L2 ≤ C cj(t) ‖∇un

ε ‖Hs−1‖∇an+1
ε ‖Hs−1 .

Then, due to the embedding Hσ(R2) ↪→ L∞(R2) for σ > 1,

2j(s−1)‖Δj ∇an+1
ε (t)‖L2 ≤ 2j(s−1)‖Δj∇an+1

0,ε ‖L2 +
t∫

0

C cj(τ)
(
‖un

ε ‖Hs‖∇an+1
ε ‖Hs−1

)
dτ .

At this point, after summing on indices j ≥ −1, thanks to the Minkowski inequality (for which we refer to 
Proposition 1.3 of [4]) combined with a Grönwall type argument, we finally obtain

sup
0≤t≤T

‖∇an+1
ε (t)‖Hs−1 ≤ ‖∇an+1

0,ε ‖Hs−1 exp

⎛⎝ T∫
0

C ‖un
ε (t)‖Hs dt

⎞⎠ . (3.7)

Now, we have to estimate the velocity field un+1
ε and for that purpose we start with the L2 estimate. We 

take the momentum equation in the original form:

�n+1
ε

(
∂tu

n+1
ε + un

ε · ∇un+1
ε

)
+ 1

ε
�n+1
ε u⊥,n+1

ε + 1
ε
∇Πn+1

ε = 0 , (3.8)

where we construct �n+1
ε := 1/(1 + εan+1

ε ) starting from an+1
ε . Notice that �n+1

ε satisfies the transport 
equation

∂t�
n+1
ε + un

ε · ∇�n+1
ε = 0 .

We test equation (3.8) against un+1
ε and we integrate by parts on R2, deriving the following estimate:∫

R2

�n+1
ε ∂t|un+1

ε |2 +
∫
R2

�n+1
ε un

ε · ∇|un+1
ε |2 = 0 ,

which implies (making use of the transport equation for �n+1
ε )

11
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ε (t)un+1

ε (t)
∥∥∥∥
L2

≤
∥∥∥∥√�n+1

0,ε un+1
0,ε

∥∥∥∥
L2

.

From the previous bound, due to the assumption (2.5), we can deduce the preservation of the L2 norm for 
the velocity field un+1

ε : ∥∥un+1
ε (t)

∥∥
L2 ≤ C

∥∥un+1
0,ε
∥∥
L2 ≤ C ‖u0,ε‖L2 .

Taking now the operator Δj in the momentum equation in (3.5), we obtain

∂tΔju
n+1
ε + un

ε · ∇Δju
n+1
ε = [un

ε · ∇,Δj ]un+1
ε − 1

ε
Δju

⊥,n+1
ε − Δj

[(
1 + εan+1

ε

) 1
ε
∇Πn+1

ε

]
and multiplying again by Δju

n+1
ε , we have cancellations so that

∥∥Δju
n+1
ε (t)

∥∥
L2 ≤

∥∥Δju
n+1
0,ε
∥∥
L2 + C

t∫
0

(∥∥[un
ε · ∇,Δj ]un+1

ε

∥∥
L2 +

∥∥Δj

(
an+1
ε ∇Πn+1

ε

)∥∥
L2

)
dτ . (3.9)

As done before, we employ here the commutator estimates of Lemma A.10 in order to have

2js
∥∥[un

ε · ∇,Δj ]un+1
ε

∥∥
L2 ≤ C cj

(
‖∇un

ε ‖L∞‖un+1
ε ‖Hs + ‖∇un+1

ε ‖L∞‖un
ε ‖Hs

)
≤ C cj

(
‖un

ε ‖Hs‖un+1
ε ‖Hs

)
.

For the latter term on the right-hand side of (3.9), we take advantage of the Bony decomposition (see 
Paragraph A.2) and we apply Proposition A.7. We may infer that

∥∥an+1
ε ∇Πn+1

ε

∥∥
Hs ≤ C

(
‖an+1

ε ‖L∞ + ‖∇an+1
ε ‖Hs−1

)
‖∇Πn+1

ε ‖Hs .

To finish with, we have to find a uniform bound for the pressure term. For that, we apply the div operator 
in (3.5). Thus, we aim at solving the elliptic problem

−div
((

1 + εan+1
ε

)
∇Πn+1

ε

)
= ε div (un

ε · ∇un+1
ε ) − curlun+1

ε . (3.10)

Thanks to the assumption (2.5) and Lemma 2 of [16], we can obtain

‖∇Πn+1
ε ‖L2 ≤ C

(
ε ‖un

ε · ∇un+1
ε ‖L2 + ‖u⊥,n+1

ε ‖L2
)

≤ C
(
ε ‖un

ε ‖L2‖un+1
ε ‖Hs + ‖un+1

ε ‖L2
)
.

(3.11)

Now, we apply the spectral cut-off operator Δj to (3.10). We get

− div
(
AεΔj∇Πn+1

ε

)
= div

(
[Δj , Aε]∇Πn+1

ε

)
+ div ΔjFε ,

for all j ≥ 0 and where we have defined Aε :=
(
1 + εan+1

ε

)
and Fε := εun

ε · ∇un+1
ε + u⊥,n+1

ε . Hence 
multiplying both sides by ΔjΠn+1

ε and integrating over R2, we have

−
∫
R2

ΔjΠn+1
ε div

(
AεΔj∇Πn+1

ε

)
dx =

∫
R2

ΔjΠn+1
ε div

(
[Δj , Aε]∇Πn+1

ε

)
dx +

∫
R2

ΔjΠn+1
ε div ΔjFε dx.

Since for j ≥ 0 we have ‖Δj∇Πn+1
ε ‖L2 ∼ 2j‖ΔjΠn+1

ε ‖L2 (according to Lemma A.1) and using Hölder’s 
inequality for the right-hand side, we obtain for all j ≥ 0:

12
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2j‖Δj∇Πn+1
ε ‖2

L2 ≤ C‖Δj∇Πn+1
ε ‖L2

(
‖div [Δj , Aε]∇Πn+1

ε ‖L2 + ‖div ΔjFε‖L2
)
.

To deal with the former term on the right-hand side, we take advantage of the following commutator estimate 
(see Lemma A.9 in the Appendix):

‖div [Δj , Aε]∇Πn+1
ε ‖L2 ≤ C cj 2−j(s−1)‖∇Aε‖Hs−1‖∇Πn+1

ε ‖Hs−1 ,

for a suitable sequence (cj)j belonging to the unit sphere of �2.
After multiplying by 2j(s−1), we get

2js‖Δj∇Πn+1
ε ‖L2 ≤ C

(
cj ‖∇Aε‖Hs−1‖∇Πn+1

ε ‖Hs−1 + 2j(s−1)‖div ΔjFε‖L2

)
.

Taking the �2 norm of both sides and summing up the low frequency blocks related to Δ−1∇Πn+1
ε , we may 

have

‖∇Πn+1
ε ‖Hs ≤ C

(
‖∇Aε‖Hs−1‖∇Πn+1

ε ‖Hs−1 + ‖divFε‖Hs−1 + ‖Δ−1∇Πn+1
ε ‖L2

)
.

We observe that ‖Δ−1∇Πn+1
ε ‖L2 ≤ C‖∇Πn+1

ε ‖L2 and

‖∇Πn+1
ε ‖Hs−1 ≤ C‖∇Πn+1

ε ‖1/s
L2 ‖∇Πn+1

ε ‖1−1/s
Hs .

Therefore,

‖∇Πn+1
ε ‖Hs ≤ C

(
‖∇Aε‖Hs−1‖∇Πn+1

ε ‖1/s
L2 ‖∇Πn+1

ε ‖1−1/s
Hs + ‖divFε‖Hs−1 + ‖∇Πn+1

ε ‖L2

)
.

Then applying Young’s inequality we finally infer that

‖∇Πn+1
ε ‖Hs ≤ C

(
(1 + ‖∇Aε‖Hs−1)s ‖∇Πn+1

ε ‖L2 + ‖divFε‖Hs−1
)
. (3.12)

It remains to analyse the term divFε where Fε := εun
ε · ∇un+1

ε + u⊥,n+1
ε . Due to the divergence-free 

conditions, we can write

div (un
ε · ∇un+1

ε ) = ∇un
ε : ∇un+1

ε

and as Hs−1 is an algebra, the term div (un
ε · ∇un+1

ε ) is in Hs−1, with

‖div (un
ε · ∇un+1

ε )‖Hs−1 ≤ C‖un
ε ‖Hs‖un+1

ε ‖Hs . (3.13)

Putting (3.11) and (3.13) into (3.12), we find that

‖∇Πn+1
ε ‖Hs ≤ C

(
1 + ε‖∇an+1

ε ‖Hs−1
)s (

ε‖un
ε ‖L2‖un+1

ε ‖Hs + ‖u⊥,n+1
ε ‖L2

)
+ C

(
ε‖un

ε ‖Hs‖un+1
ε ‖Hs + ‖u⊥,n+1

ε ‖Hs

)
≤ C

(
1 + ε‖∇an+1

ε ‖Hs−1
)s (ε‖un

ε ‖Hs + 1) ‖un+1
ε ‖Hs ,

(3.14)

which implies the L∞
T (Hs) estimate for the pressure term:

‖∇Πn+1
ε ‖L∞

T Hs ≤ C
(
1 + ε‖∇an+1

ε ‖L∞
T Hs−1

)s (
ε‖un

ε ‖L∞
T Hs + 1

)
‖un+1

ε ‖L∞
T Hs . (3.15)

Combining all the previous estimates together with a Grönwall type inequality, we finally obtain an estimate 
for the velocity field:

13
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sup
0≤t≤T

‖un+1
ε (t)‖Hs ≤ ‖un+1

0,ε ‖Hs exp

⎛⎝ T∫
0

An(t) dt

⎞⎠ , (3.16)
where

An(t) = C
(
‖an+1

ε (t)‖L∞ + ‖∇an+1
ε (t)‖Hs−1

) (
1 + ε‖∇an+1

ε (t)‖Hs−1
)s (ε‖un

ε (t)‖Hs + 1) + C‖un
ε (t)‖Hs .

We point out that the above constants C do not depend on n nor on ε.
The scope in what follows is to obtain uniform estimates by induction. Thanks to the assumptions stated 

in Paragraph 2.1, we can suppose that the initial data satisfy

‖a0,ε‖L∞ ≤ C0

2 , ‖∇a0,ε‖Hs−1 ≤ C1

2 and ‖u0,ε‖Hs ≤ C2

2 ,

for some C0, C1, C2 > 0. Due to the relation (3.6) we immediately infer that, for all n ≥ 0,

‖an+1
ε ‖L∞

t L∞ ≤ C‖a0,ε‖L∞ ≤ C C0 for all t ∈ R+.

At this point, the aim is to show (by induction) that the following uniform bounds hold for all n ≥ 0:

‖∇an+1
ε ‖L∞

T∗Hs−1 ≤ C1

‖un+1
ε ‖L∞

T∗Hs ≤ C2

‖∇Πn+1
ε ‖L∞

T∗Hs ≤ C3 ,

(3.17)

provided that T ∗ is sufficiently small.
The previous estimates in (3.17) obviously hold for n = 0. Then, we will prove them for n +1, supposing 

that the controls in (3.17) are true for n. From (3.7), (3.16) and (3.15) we obtain

‖∇an+1
ε ‖L∞

T Hs−1 ≤ C1

2 exp
(
CTC2

)
‖un+1

ε ‖L∞
T Hs ≤ C2

2 exp
(
CT (C0 + C1) (1 + εC1)s (εC2 + 1)C2

)
‖∇Πn+1

ε ‖L∞
T Hs ≤ C(εC2 + 1) (1 + εC1)s ‖un+1

ε ‖L∞
T Hs .

So we can choose T ∗ such that exp
(

max{C0 + C1, 1} CT (1 + C1)s (1 + C2) C2

)
≤ 2. Notice that T ∗ does 

not depend on ε.
Thus, by induction, (3.17) holds for the step n + 1, and therefore it is true for any n ∈ N.

3.3. Convergence

To prove the convergence, we estimate the difference between two iterations. First of all, let us define

ãnε := anε − an0,ε

that satisfies the transport equation{
∂tã

n
ε + un−1

ε · ∇ãnε = −un−1
ε · ∇an0,ε

ãnε |t=0 = 0 .

14
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Hence, since the right-hand side is definitely uniformly bounded (with respect to n) in L1
loc(R+; L2), from 

classical results for transport equations we get that (ãnε )n∈N is uniformly bounded in C0([0, T ]; L2). Now, 
n n n 0 2
we want to prove that the sequence (ãε , uε , ∇Πε )n∈N is a Cauchy sequence in C ([0, T ]; L ). So, let us 

define, for (n, l) ∈ N2, the following quantities,

δan,lε := an+l
ε − anε

δãn,lε := ãn+l
ε − ãnε = δan,lε − δan,l0,ε , where δan,l0,ε := an+l

0,ε − an0,ε

δun,l
ε := un+l

ε − un
ε

δΠn,l
ε := Πn+l

ε − Πn
ε ,

that solve the following system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tδã

n,l
ε + un+l−1

ε · ∇δãn,lε = −δun−1,l
ε · ∇anε − un+l−1

ε · ∇δan,l0,ε

∂tδu
n,l
ε + un+l−1

ε · ∇δun,l
ε = −δun−1,l

ε · ∇un
ε − 1

ε (δun,l
ε )⊥ − (1 + εan+l

ε )1
ε∇δΠn,l

ε − δan,lε ∇Πn
ε

div δun,l
ε = 0

(δãn,lε , δun,l
ε )|t=0 = (0, δun,l

0,ε) .

(3.18)

We perform an energy estimate for the first equation in (3.18), getting

‖δãn,lε (t)‖L2 ≤ C

t∫
0

(
‖∇anε ‖L∞‖δun−1,l

ε ‖L2 + ‖un+l−1
ε ‖L2‖∇δan,l0,ε‖L∞

)
dτ .

Moreover, from the momentum equation multiplied by δun,l
ε , integrating by parts over R2, we obtain

∫
R2

1
2∂t |δu

n,l
ε |2 = −

∫
R2

(δun−1,l
ε · ∇un

ε ) · δun,l
ε +

∫
R2

(an+l
ε ∇δΠn,l

ε ) · δun
ε +
∫
R2

(δan,lε ∇Πn
ε ) · δun,l

ε ,

which implies

‖δun,l
ε (t)‖L2 ≤ C‖δun,l

0,ε‖L2 + C

t∫
0

‖∇un
ε ‖L∞‖δun−1,l

ε ‖L2 + ‖an+l
ε ‖L∞‖∇δΠn,l

ε ‖L2 dτ

+ C

t∫
0

(
‖δãn,lε ‖L2 + ‖δan,l0,ε‖L∞

)
‖∇Πn

ε ‖L2∩L∞ dτ ,

where we have also employed the fact that δan,lε = δãn,lε + δan,l0,ε.
Finally, for the pressure term we take the div operator in the momentum equation of system (3.18), 

obtaining

−div
(

(1 + εan+l
ε )1

ε
∇δΠn,l

ε

)
= div

(
−δun,l

ε · ∇un+l−1
ε + δun−1,l

ε · ∇un
ε + 1

ε
(δun,l

ε )⊥ + δan,lε ∇Πn
ε

)
,

so that we have

15
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‖∇δΠn,l
ε ‖L2 ≤ Cε

(
‖δun−1,l

ε ‖L2‖∇un
ε ‖L∞ + ‖δan,lε ∇Πn

ε ‖L2
)

+ Cε‖δun,l
ε ‖L2‖∇un+l−1

ε ‖L∞ + C‖(δun,l
ε )⊥‖L2( )
≤ Cε ‖δun−1,l
ε ‖L2‖∇un

ε ‖L∞ + ‖δãn,lε ‖L2‖∇Πn
ε ‖L∞ + ‖δan,l0,ε‖L∞‖∇Πn

ε ‖L2

+ Cε‖δun,l
ε ‖L2‖∇un+l−1

ε ‖L∞ + C‖δun,l
ε ‖L2 .

(3.19)

Applying Grönwall lemma and using the bounds established in Paragraph 3.2, we thus argue that for 
t ∈ [0, T ∗]:

‖δãn,lε (t)‖L2 + ‖δun,l
ε (t)‖L2 ≤ CT∗

(
‖∇δan,l0,ε‖L∞ + ‖δan,l0,ε‖L∞ + ‖δun,l

0,ε‖L2

)
+ CT∗

t∫
0

(
‖δãn−1,l

ε (τ)‖L2 + ‖δun−1,l
ε (τ)‖L2

)
dτ ,

where the constant CT∗ depends on T ∗ and on the initial data.
After setting

Fn
0 := sup

l≥0

(
‖∇δan,l0,ε‖L∞ + ‖δan,l0,ε‖L∞ + ‖δun,l

0,ε‖L2

)
and Gn(t) := sup

l≥0
sup
[0,t]

(
‖δãn,lε ‖L2 + ‖δun,l

ε ‖L2
)
,

by induction we may conclude that, for all t ∈ [0, T ∗],

Gn(t) ≤ CT∗

n−1∑
k=0

(CT∗T ∗)k

k! Fn−k
0 + (CT∗T ∗)n

n! G0(t) .

Now, bearing (3.3) in mind, we have

lim
n→+∞

Fn
0 = 0 .

Hence, we may infer that

lim
n→+∞

sup
l≥0

sup
t∈[0,T∗]

(
‖δãn,lε (t)‖L2 + ‖δun,l

ε (t)‖L2
)

= 0 . (3.20)

Property (3.20) implies that both (ãnε )n∈N and (un
ε )n∈N are Cauchy sequences in C0([0, T ∗]; L2): there-

fore, such sequences converge to some functions ãε and uε in the same space. Taking advantage of previous 
computations in (3.19), we have also that (∇Πn

ε )n∈N converges to a function ∇Πε in C0([0, T ∗]; L2).
Now, we define aε := a0,ε + ãε. Hence, aε−a0,ε is in C0([0, T ∗]; L2). Moreover, as (∇anε )n∈N is uniformly 

bounded in L∞([0, T ∗]; Hs−1) and Sobolev spaces have the Fatou property, we deduce that ∇aε belongs 
to the same space. Moreover, since (anε )n∈N is uniformly bounded in L∞([0, T ∗] × R2), we also have that 
aε ∈ L∞([0, T ∗] ×R2). Analogously, as (un

ε )n∈N and (∇Πn
ε )n∈N are uniformly bounded in L∞([0, T ∗]; Hs), 

we deduce that uε and ∇Πε belong to L∞([0, T ∗]; Hs).
Due to an interpolation argument, we see that the above sequences converge strongly in every intermediate 

space C0([0, T ∗]; Hσ) for all σ < s. This is enough to pass to the limit in the equations satisfied by 
(anε , un

ε , ∇Πn
ε )n∈N . Hence, (aε, uε, ∇Πε) satisfies the original problem (3.2).

This having been established, we look at the time continuity of aε. We exploit the transport equation:

∂taε = −uε · ∇aε ,
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noticing that the term on the right-hand side belongs to L∞
T∗(L∞). Thus, we can deduce that ∂taε is in 

L∞
T∗(L∞). Moreover, by embeddings, we already know that ∇aε ∈ L∞

T∗(L∞). The previous two relations 
1,∞ ∞ ∞ 1,∞ 0 ∗ 2
imply that aε ∈ WT∗ (L ) ∩LT∗(W ). This gives us the desired regularity property aε ∈ C ([0, T ] ×R ). 

In addition, looking at the momentum equation in (3.2) and employing Theorem A.12, one obtains the 
claimed time regularity property for uε. Finally, the time regularity for the pressure term ∇Πε is recovered 
from the elliptic problem (3.10).

3.4. Uniqueness

We conclude this section showing the uniqueness of solutions in our framework.
We start by stating a uniqueness result, that is a consequence of a standard stability result based on 

energy methods. Since the proof is similar to the convergence argument of the previous paragraph, we will 
omit it (see e.g. [16] for details). We recall that, in what follows, the parameter ε > 0 is fixed.

Theorem 3.1. Let 
(
�
(1)
ε ,u

(1)
ε ,∇Π(1)

ε

)
and 

(
�
(2)
ε ,u

(2)
ε ,∇Π(2)

ε

)
be two solutions to the Euler system (2.1)

associated to the initial data 
(
�
(1)
0,ε,u

(1)
0,ε

)
and 

(
�
(2)
0,ε,u

(2)
0,ε

)
. Assume that, for some T > 0, one has the 

following properties:

(i) the densities �(1)
ε and �(2)

ε are bounded and bounded away from zero;
(ii) the quantities δ�ε := �

(2)
ε − �

(1)
ε and δuε := u

(2)
ε − u

(1)
ε belong to the space C1([0, T ]; L2(R2)

)
;

(iii) ∇u
(1)
ε , ∇�

(1)
ε and ∇Π(1)

ε belong to L1([0, T ]; L∞(R2)
)
.

Then, for all t ∈ [0, T ], we have the stability inequality:

‖δ�ε(t)‖L2 +
∥∥∥∥√�

(2)
ε (t) δuε(t)

∥∥∥∥
L2

≤
(
‖δ�0,ε‖L2 +

∥∥∥∥√�
(2)
0,ε δu0,ε

∥∥∥∥
L2

)
eCA(t) , (3.21)

for a universal constant C > 0, where we have defined

A(t) :=
t∫

0

⎛⎜⎝
∥∥∥∥∥∥∇�

(1)
ε√
�
(2)
ε

∥∥∥∥∥∥
L∞

+

∥∥∥∥∥∥ ∇Π(1)
ε

�
(1)
ε

√
�
(2)
ε

∥∥∥∥∥∥
L∞

+ ‖∇u(1)
ε ‖L∞

⎞⎟⎠ dτ .

It is worth to notice that, adapting the relative entropy arguments presented in Subsection 4.3 of [12], we 
can replace (in the statement above) the C1

T (L2) requirement for δ�ε and δuε with the C0
T (L2) regularity. 

However, one needs to pay an additional L2 assumption on the densities. In this way, we will have a 
weak-strong uniqueness type result and we will prove it in the next theorem.

Concerning weak-strong results for density-dependent fluids, we refer to [35], where Germain exhibited 
a weak-strong uniqueness property within a class of (weak) solutions to the compressible Navier-Stokes 
system satisfying a relative entropy inequality with respect to a (hypothetical) strong solution of the same 
problem (see also the work [30] by Feireisl, Novotný and Sun). Moreover, in [25], the authors established the 
weak-strong uniqueness property in the class of finite energy weak solutions, extending thus the classical 
results of Prodi [41] and Serrin [43] to the class of compressible fluids.

Before presenting the proof of the weak-strong uniqueness result, we state the definition of a finite energy 
weak solution to system (2.1), such that �0,ε − 1 ∈ L2(R2). We also recall that our densities have the form 
�ε = 1 + εRε.

17
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Definition 3.2. Let T > 0 and ε ∈ ]0, 1] be fixed. Let (�0,ε, u0,ε) be an initial datum fulfilling the assumptions 
in Paragraph 2.1. We say that (�ε, uε) is a finite energy weak solution to system (2.1) in [0, T ] ×R2, related 

to the previous initial datum, if:

• �ε ∈ L∞([0, T ] ×R2) and �ε − 1 ∈ C0([0, T ]; L2(R2));
• uε ∈ L∞([0, T ]; L2(R2)) ∩ C0

w([0, T ]; L2(R2));
• the mass equation is satisfied in the weak sense:

T∫
0

∫
R2

(
�ε ∂tϕ + �εuε · ∇ϕ

)
dxdt +

∫
R2

�0,εϕ(0, ·) dx =
∫
R2

�ε(T )ϕ(T, ·) dx ,

for all ϕ ∈ C∞
c ([0, T ] ×R2; R);

• the divergence-free condition divuε = 0 is satisfied in D′(]0, T [×R2);
• the momentum equation is satisfied in the weak sense:

T∫
0

∫
R2

(
�εuε · ∂tψ + [�εuε ⊗ uε] : ∇ψ − 1

ε
�εu

⊥
ε ·ψ

)
dxdt +

∫
R2

�0,εu0,ε ·ψ(0) dx

=
∫
R2

�ε(T )uε(T )ψ(T ) dx,

for any ψ ∈ C∞
c ([0, T ] ×R2; R2) such that divψ = 0;

• for almost every t ∈ [0, T ], the two following energy balances hold true:∫
R2

�ε(t)|uε(t)|2 dx ≤
∫
R2

�0,ε|u0,ε|2 dx and
∫
R2

(�ε(t) − 1)2 dx ≤
∫
R2

(�0,ε − 1)2 dx .

Theorem 3.3. Let ε ∈ ]0, 1] be fixed. Let 
(
�
(1)
ε ,u

(1)
ε

)
and 

(
�
(2)
ε ,u

(2)
ε

)
be two finite energy weak solutions to 

the Euler system (2.1) as in Definition 3.2 with initial data 
(
�
(1)
0,ε,u

(1)
0,ε

)
and 

(
�
(2)
0,ε,u

(2)
0,ε

)
. Assume that, for 

some T > 0, one has the following properties:

(i) ∇u
(1)
ε and ∇R

(1)
ε belong to L1([0, T ]; L∞(R2)

)
;

(ii) ∇Π(1)
ε is in L1([0, T ]; L∞(R2) ∩ L2(R2)

)
.

Then, for all t ∈ [0, T ], we have the stability inequality (3.21).

Proof. We start by defining, for i = 1, 2:

R(i)
ε := �

(i)
ε − 1
ε

and R
(i)
0,ε :=

�
(i)
0,ε − 1
ε

,

and we notice that, owing to the continuity equation in (2.1) and the divergence-free condition divu(i)
ε = 0, 

one has

∂tR
(i)
ε + div (R(i)

ε u(i)
ε ) = 0 with R(i)

ε (0) = R
(i)
0,ε. (3.22)

For simplicity of notation, we fix ε = 1 throughout this proof and let us assume for a while the couple 
(R(1), u(1)) to be a pair of smooth functions such that R(1), u(1) ∈ C∞

c (R+ × R2) and divu(1) = 0, with 

18
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the support of R(1) and u(1) included in [0, T ] ×R2. First of all, we use u(1) as a test function in the weak 
formulation of the momentum equation, finding that
∫
R2

�(2)(T )u(2)(T ) · u(1)(T ) dx =
∫
R2

�
(2)
0 u

(2)
0 · u(1)

0 dx +
T∫

0

∫
R2

�(2)u(2) · ∂tu(1) dxdt

+
T∫

0

∫
R2

(�(2)u(2) ⊗ u(2)) : ∇u(1) dxdt +
T∫

0

∫
R2

�(2)u(2) · (u(1))⊥ dxdt ,

(3.23)

where we have also noted that (u(2))⊥ · u(1) = −u(2) · (u(1))⊥.
Next, testing the mass equation against |u(1)|2/2, we obtain

1
2

∫
R2

�(2)(T )|u(1)(T )|2 dx = 1
2

∫
R2

�
(2)
0 |u(1)

0 |2 dx +
T∫

0

∫
R2

�(2)u(1) · ∂tu(1) dxdt

+ 1
2

T∫
0

∫
R2

�(2)u(2) · ∇|u(1)|2 dxdt

= 1
2

∫
R2

�
(2)
0 |u(1)

0 |2 dx +
T∫

0

∫
R2

�(2)u(1) · ∂tu(1) dxdt

+ 1
2

T∫
0

∫
R2

(�(2)u(2) ⊗ u(1)) : ∇u(1) dxdt.

(3.24)

Recall also that the energy inequality reads

1
2

∫
R2

�(2)(T )|u(2)(T )|2 dx ≤ 1
2

∫
R2

�
(2)
0 |u(2)

0 |2 dx .

Now, we take care of the density oscillations R(i). We test the transport equation (3.22) for R(2) against 
R(1), getting

∫
R2

R(2)(T )R(1)(T ) dx =
∫
R2

R
(2)
0 R

(1)
0 dx +

T∫
0

∫
R2

R(2)∂tR
(1) dxdt +

T∫
0

∫
R2

R(2)u(2) · ∇R(1) dxdt. (3.25)

Recalling Definition 3.2, we have the following energy balance:∫
R2

|R(2)(T )|2 dx ≤
∫
R2

|R(2)
0 |2 dx .

At this point, testing ∂t1 + div (1 u(2)) = 0 against |R(1)|2/2, we may infer that

1
2

∫
R2

|R(1)(T )|2 dx = 1
2

∫
R2

|R(1)
0 |2 dx +

T∫
0

∫
R2

R(1)∂tR
(1) dxdt +

T∫
0

∫
R2

R(1)u(2) · ∇R(1) dxdt . (3.26)
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Now, for notational convenience, let us define

(2) (1) (2) (1)
δR := R −R and δu := u − u .

Putting all the previous relations together, we obtain

1
2

∫
R2

(
�(2)(T )|δu(T )|2 + |δR(T )|2

)
dx ≤ 1

2

∫
R2

(
�
(2)
0 |δu0|2 + |δR0|2

)
dx−

T∫
0

∫
R2

�(2)u(2) · (u(1))⊥ dxdt

−
T∫

0

∫
R2

(
�(2)δu · ∂tu(1) + ∂tR

(1) δR
)

dxdt

−
T∫

0

∫
R2

(
�(2)u(2) ⊗ δu : ∇u(1) + δRu(2) · ∇R(1)

)
dxdt .

(3.27)

We remark that we can write

�(2)u(2) ⊗ δu : ∇u(1) = �(2)u(2) · ∇u(1) · δu

and that we have u(2) · (u(1))⊥ = δu · (u(1))⊥ by orthogonality.
Therefore, relation (3.27) can be recasted as

1
2

∫
R2

(
�(2)(T )|δu(T )|2 + |δR(T )|2

)
dx ≤ 1

2

∫
R2

(
�
(2)
0 |δu0|2 + |δR0|2

)
dx

−
T∫

0

∫
R2

�(2)
(
∂tu

(1) + u(2) · ∇u(1) + (u(1))⊥
)
· δu dxdt

−
T∫

0

∫
R2

(
∂tR

(1) + u(2) · ∇R(1)
)
δR dxdt .

Next, we add and subtract the quantities ±�(2)u(1) · ∇u(1) · δu± �(2) 1
�(1)∇Π(1) · δu and ±u(1) · ∇R(1) δR, 

yielding

1
2

∫
R2

(
�(2)(T )|δu(T )|2 + |δR(T )|2

)
dx ≤ 1

2

∫
R2

(
�
(2)
0 |δu0|2 + |δR0|2

)
dx

−
T∫

0

∫
R2

(
�(2)δu · ∇u(1) + δR

1
�(1)∇Π(1)

)
· δu dxdt

−
T∫

0

∫
R2

δu · ∇R(1) δR dxdt ,

(3.28)

where we have used the fact that u(1) is solution to the Euler system (2.1) and 
∫
R2 ∇Π(1) · δu dx = 0.
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Therefore, setting E(T ) := ‖
√
�(2)(T )δu(T )‖2

L2 + ‖δR(T )‖2
L2 , from relation (3.28) we can deduce that

T∫ ( ∥ ∥ ∥ ∥ )

E(T ) ≤ E(0) +

0

‖∇u(1)‖L∞ +
∥∥∥∥ 1√

�(2)�(1)
∇Π(1)

∥∥∥∥
L∞

+
∥∥∥∥ 1√

�(2)
∇R(1)

∥∥∥∥
L∞

E(t) dt .

An application of Grönwall lemma yields the desired stability inequality (3.21).
In order to get the result, having the regularity stated in the theorem, we argue by density.
Thanks to the regularity (stated in Definition 3.2) of weak solutions to the Euler equations (2.1) and 

assumption (i) of the theorem, all the terms appearing in relations (3.23) and (3.24) are well-defined, if in 
addition we have ∂tu(1) ∈ L1

T (L2). However, this condition on the time derivative of the velocity field u(1)

comes free from the momentum equation

∂tu
(1) = −

(
u(1) · ∇u(1) + (u(1))⊥ + 1

�(1)∇Π(1)
)

. (3.29)

Since u(1) ∈ L∞
T (L2) with ∇u(1) ∈ L1

T (L∞) and �(1) ∈ L∞
T (L∞), condition (ii) implies that the right-hand 

side of (3.29) is in L1
T (L2). Recalling the regularity in Definition 3.2 of u(1), one gets u(1) ∈ W 1,1

T (L2) and 
hence u(1) ∈ C0

T (L2).
Analogously in order to justify computations in (3.25) and (3.26), besides the previous regularity con-

ditions, one needs the additional assumption ∂tR(1) ∈ L1
T (L2). Once again, one can take advantage of the 

continuity equation (3.22) to obtain the required regularity for ∂tR(1). Finally, condition (ii) is necessary 
to make sense of relation (3.28).

This concludes the proof of the theorem. �
4. Asymptotic analysis

The main goal of this section is to prove Theorem 2.2, showing the convergence when ε → 0: we achieve 
it employing a compensated compactness technique. We point out that, in the sequel, the time T > 0 is 
fixed by the existence theory developed in Section 3.

We will show that (1.1) converges towards a limit system, represented by the quasi-homogeneous incom-
pressible Euler equations: ⎧⎪⎪⎨⎪⎪⎩

∂tR + u · ∇R = 0
∂tu + u · ∇u + Ru⊥ + ∇Π = 0
divu = 0 .

(4.1)

The previous system (4.1) consists of a transport equation for the quantity R (that can be interpreted as 
the deviation with respect to the constant density profile) and an Euler type equation for the limit velocity 
field u.

Nowadays, the strategy to tackle this family of problems (called singular perturbation problems) is some-
how standard. First of all, one has to show existence of (�ε, uε, ∇Πε) for any value ε > 0 fixed and to find 
uniform (with respect to ε) bounds for the sequence (�ε, uε, ∇Πε)ε. This analysis was performed in the 
previous Section 3. Next, thanks to the uniform bounds, one can extract weak limit points, for which one 
has to find some constraints: the singular terms have to vanish at the limit. This is done in Subsection 4.1.

Finally, after performing the compensated compactness arguments, one can describe the limit dynamics 
(see Paragraph 4.2 below).

The choice of using this technique derives by the fact that the oscillations in time of the solutions are out 
of control (see Subsection 4.2). To overcome this issue, rather than employing the standard Hs estimates, 
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we take advantage of the weak formulation of the problem. We test the equations against divergence-free 
test functions: this will lead to useful cancellations. In particular, we avoid to study the pressure term. At 

the end, we close the argument by noticing that the weak limit solutions are actually regular solutions.

4.1. Preliminaries and constraint at the limit

We start this subsection by recalling the uniform bounds developed in Section 3. The fluctuations Rε

satisfy the controls

sup
ε∈ ]0,1]

‖Rε‖L∞
T (L∞) ≤ C

sup
ε∈ ]0,1]

‖∇Rε‖L∞
T (Hs−1) ≤ C ,

where Rε := (�ε − 1)/ε as above.
As for the velocity fields, we have obtained the following uniform bound:

sup
ε∈ ]0,1]

‖uε‖L∞
T (Hs) ≤ C .

Thanks to the previous uniform estimates, we can state the following lemma.

Lemma 4.1. Up to passing to subsequences, there exist R ∈ L∞
T (W 1,∞(R2)), with ∇R ∈ L∞

T (Hs−1(R2)), 
and u ∈ L∞

T (Hs(R2)) such that

R := lim
ε→0

Rε in L∞
T (L∞)

∇R := lim
ε→0

∇Rε in L∞
T (Hs−1)

u := lim
ε→0

uε in L∞
T (Hs) ,

(4.2)

where we agree that the previous limits are taken in the corresponding weak-∗ topology.

Remark 4.2. It is evident that �ε − 1 = O(ε) in L∞
T (L∞) and therefore that �εuε weakly-∗ converge to u

e.g. in the space L∞
T (L2).

Next, we notice that the solutions stated in Theorem 2.1 are strong solutions. In particular, they satisfy 
in a weak sense the mass equation and the momentum equation, respectively:

−
T∫

0

∫
R2

(�ε∂tϕ + �εuε · ∇xϕ) dxdt =
∫
R2

�0,εϕ(0, ·) dx , (4.3)

for any ϕ ∈ C∞
c ([0, T [×R2; R);

T∫
0

∫
R2

(
−�εuε · ∂tψ − �ε[uε ⊗ uε] : ∇xψ + 1

ε
�εu

⊥
ε ·ψ

)
dxdt =

∫
R2

�0,εu0,ε ·ψ(0, ·) dx , (4.4)

for any test function ψ ∈ C∞
c ([0, T [×R2; R2) such that divψ = 0;

Moreover, the divergence-free condition on uε is satisfied in D′(]0, T [×R2).
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Before going on, in the following lemma, we characterize the limit for the quantity Rεuε. We recall that 
Rε satisfies
∂tRε = −div (Rεuε) , (Rε)|t=0 = R0,ε. (4.5)

Lemma 4.3. Let (Rε)ε be uniformly bounded in L∞
T (L∞(R2)) with (∇Rε)ε ⊂ L∞

T (Hs−1(R2)), and let the 
velocity fields (uε)ε be uniformly bounded in L∞(Hs(R2)). Moreover, for any ε ∈ ]0, 1], assume that the 
couple (Rε, uε) solves the transport equation (4.5). Let (R, u) be the limit point identified in (4.2). Then, up 
to an extraction:

(i) Rε → R in C0
T (C0

loc(R2));
(ii) the product Rεuε converges to Ru in the distributional sense.

Proof. We look at the transport equation (4.5) for Rε. We employ Proposition A.7 on the term in the 
right-hand side, obtaining

‖Rεuε‖Hs ≤ C (‖Rε‖L∞‖uε‖Hs + ‖∇Rε‖Hs−1‖uε‖L∞) .

By embeddings, this implies that the sequence (∂tRε)ε is uniformly bounded e.g. in L∞
T (L∞) and so (Rε)ε

is bounded in W 1,∞
T (L∞) uniformly in ε. On the other hand, we know that (∇Rε)ε is bounded in L∞

T (L∞). 
Then, by Ascoli-Arzelà theorem, we gather that the family (Rε)ε is compact in e.g. C0

T (C0
loc) and hence we 

deduce the strong convergence property, up to passing to a suitable subsequence (not relabelled here),

Rε → R in C0([0, T ] ;C0
loc) .

Finally, since (uε)ε is weakly-∗ convergent e.g. in L∞
T (L2) to u, we get Rεuε

∗
⇀ Ru in the space 

L∞
T (L2

loc). �
Now, as anticipated in the introduction of this section, we have to highlight the constraint that the limit 

points have to satisfy. We have to point out that this condition does not fully characterize the limit dynamics 
(see Subsection 4.2 below).

The only singular term present in the equations is the Coriolis force. Then, we test the momentum 
equation in (4.4) against εψ with ψ ∈ C∞

c ([0, T [×R2; R2) such that divψ = 0. Keeping in mind the 
assumptions on the initial data and due to the fact that (�εuε)ε is uniformly bounded in e.g. L∞

T (L2) and 
so is (�uε⊗uε)ε in L∞

T (L1), it follows that all the terms in equation (4.4), apart from the Coriolis operator, 
go to 0 in the limit for ε → 0.

Therefore, we infer that, for any ψ ∈ C∞
c ([0, T [×R2; R2) such that divψ = 0,

lim
ε→0

T∫
0

∫
R2

�εu
⊥
ε ·ψ dx dt =

T∫
0

∫
R2

u⊥ ·ψ dx dt = 0 .

This property tells us that u⊥ = ∇π, for some suitable function π.
However, this relation does not add more information on the limit dynamics, since we already know that 

the divergence-free condition divuε = 0 is satisfied for all ε > 0.

4.2. Wave system and convergence

The goal of the present subsection is to describe oscillations of solutions to show convergence to the limit 
system. The Coriolis term is responsible for fast oscillations in time of solutions, which may prevent the 
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convergence. To overcome this issue we implement a strategy based on compensated compactness arguments. 
Namely, we perform algebraic manipulations on the wave system (see (4.10) below), in order to derive 

compactness properties for the quantity γε := curl (�εuε). This will be enough to pass to the limit in the 
momentum equation (and, in particular, in the convective term).

Let us define

V ε := �εuε ,

that is uniformly bounded in L∞
T (Hs), due to Proposition A.7 in the Appendix.

Now, using the fact that �ε = 1 + εRε, we recast the continuity equation in the following way:

ε∂tRε + divV ε = 0 . (4.6)

In light of the uniform bounds and convergence properties stated in Lemma 4.3, we can easily pass to the 
limit in the previous formulation (or rather in (4.5)) finding

∂tR + div (Ru) = 0 . (4.7)

At this point, we decompose

�εu
⊥
ε = u⊥

ε + εRεu
⊥
ε

and from the momentum equation one can deduce

ε∂tV ε + ∇Πε + u⊥
ε = εfε , (4.8)

where we have defined

fε := −div (�εuε ⊗ uε) −Rεu
⊥
ε . (4.9)

In this way, we can rewrite system (2.1) in the wave form{
ε∂tRε + divV ε = 0
ε∂tV ε + ∇Πε + u⊥

ε = εfε .
(4.10)

Applying again Proposition A.7, one can show that the terms �εuε⊗uε and Rεu
⊥
ε are uniformly bounded 

in L∞
T (Hs). Thus, it follows that (fε)ε ⊂ L∞

T (Hs−1).
However, the uniform bounds in Section 3 are not enough for proving convergence in the weak formulation 

of the momentum equation. Indeed, on the one hand, those controls allow to pass to the limit in the ∂t term 
and in the initial datum; on the other hand, the non-linear term and the Coriolis force are out of control. 
We postpone the convergence analysis of the Coriolis force in the next Paragraph 4.3 and now we focus on 
the convective term div (�εuε ⊗ uε) in (4.4). We proceed as follows: first of all, we reduce our study to the 
constant density case (see Lemma 4.4 below). Next, we apply the compensated compactness argument.

Lemma 4.4. Let T > 0. For any test function ψ ∈ C∞
c ([0, T [×R2; R2), we get

lim sup
ε→0

∣∣∣∣∣∣
T∫

0

∫
R2

�εuε ⊗ uε : ∇ψ dxdt−
T∫

0

∫
R2

uε ⊗ uε : ∇ψ dxdt

∣∣∣∣∣∣ = 0 . (4.11)
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Proof. Let ψ ∈ C∞
c ([0, T [×R2; R2) with Suppψ ⊂ [0, T ] ×K for some compact K ⊂ R2. Therefore, we can 

write
T∫
0

∫
K

�εuε ⊗ uε : ∇ψ dxdt =
T∫

0

∫
K

uε ⊗ uε : ∇ψ dxdt + ε

T∫
0

∫
K

Rεuε ⊗ uε : ∇ψ dxdt .

As a consequence of the uniform bounds e.g. (uε)ε ⊂ L∞
T (Hs) and (Rε)ε ⊂ L∞

T (L∞), the second integral 
in the right-hand side is of order ε. �

Thanks to Lemma 4.4, we are reduced to study the convergence (with respect to ε) of the integral

−
T∫

0

∫
R2

uε ⊗ uε : ∇ψ dxdt =
T∫

0

∫
R2

div (uε ⊗ uε) ·ψ dxdt .

Owing to the divergence-free condition we can write:

div (uε ⊗ uε) = uε · ∇uε = 1
2∇|uε|2 + ωε u

⊥
ε , (4.12)

where we have denoted ωε := curluε.
Notice that the former term, since it is a perfect gradient, vanishes identically when tested against ψ

such that divψ = 0. As for the latter term we take advantage of equation (4.8). Taking the curl we get

∂tγε = curl fε , (4.13)

where we have set γε := curlV ε with V ε := �εuε. We recall also that fε defined in (4.9) is uniformly 
bounded in the space L∞

T (Hs−1). Then, relation (4.13) implies that the family (∂tγε)ε is uniformly bounded 
in L∞

T (Hs−2). As a result, we get (γε)ε ⊂ W 1,∞
T (Hs−2). On the other hand, the sequence (∇γε)ε is also 

uniformly bounded in L∞
T (Hs−2). Therefore, the Ascoli-Arzelà theorem gives compactness of (γε)ε in e.g. 

C0
T (Hs−2

loc ). Then, it converges (up to extracting a subsequence) to a tempered distribution γ in the same 
space. Thus, it follows that

γε −→ γ in D′(R+ ×R2) .

But since we already know the convergence V ε := �εuε
∗
⇀ u in e.g. L∞

T (L2), it follows the convergence 
γε := curlV ε ⇀ ω := curlu in D′, hence γ = curlu = ω.

Finally, writing �ε = 1 + εRε, we obtain

γε := curl (�εuε) = ωε + εcurl (Rεuε) ,

where the family (curl (Rεuε))ε is uniformly bounded in L∞
T (Hs−1). From this relation and the previous 

analysis, we deduce the strong convergence (up to an extraction) for ε → 0:

ωε −→ ω in L∞
T (Hs−2

loc ) .

In the end, we have proved the following convergence result for the convective term div (uε ⊗ uε).
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Lemma 4.5. Let T > 0. Up to passing to a suitable subsequence, one has the following convergence for ε → 0:

T∫ ∫ T∫ ∫

0 R2

uε ⊗ uε : ∇ψ dxdt −→
0 R2

ωu⊥ ·ψ dxdt , (4.14)

for any test function ψ ∈ C∞
c ([0, T [×R2; R2) such that divψ = 0.

4.3. The limit system

With the convergence established in Paragraph 4.2, we can pass to the limit in the momentum equation.
To begin with, we take a test-function ψ such that

ψ = ∇⊥ϕ with ϕ ∈ C∞
c ([0, T [×R2;R) . (4.15)

For such a ψ, all the gradient terms vanish identically. First of all, we recall the momentum equation in 
its weak formulation:

T∫
0

∫
R2

(
−�εuε · ∂tψ − �ε[uε ⊗ uε] : ∇xψ + 1

ε
�εu

⊥
ε ·ψ

)
dxdt =

∫
R2

�0,εu0,ε ·ψ(0, ·) dx . (4.16)

Making use of the uniform bounds, we can pass to the limit in the ∂t term and thanks to our assumptions 
and embeddings we have �0,εu0,ε ⇀ u0 in e.g. L2

loc.
For the convective term �εuε ⊗ uε, taking advantage of the analysis presented in Subsection 4.2 and 

performing equalities (4.12) backwards, we find that

T∫
0

∫
R2

�εuε ⊗ uε : ∇ψ dxdt −→
T∫

0

∫
R2

u⊗ u : ∇ψ dxdt ,

for ε → 0 and for all smooth divergence-free test functions ψ.
Let us consider now the Coriolis term. We can write:

T∫
0

∫
R2

1
ε
�εu

⊥
ε ·ψ dxdt =

T∫
0

∫
R2

Rεu
⊥
ε ·ψ dxdt +

T∫
0

∫
R2

1
ε
u⊥
ε ·ψ dxdt .

Since uε is divergence-free, the latter term vanishes when tested against such ψ defined in (4.15). On the 
other hand, again thanks to Lemma 4.3, one can get

T∫
0

∫
R2

Rεu
⊥
ε ·ψ dxdt −→

T∫
0

∫
R2

Ru⊥ ·ψ dxdt .

In the end, letting ε → 0 in (4.16), we gather

T∫
0

∫
R2

(
−u · ∂tψ − u⊗ u : ∇xψ + Ru⊥ ·ψ

)
dxdt =

∫
R2

u0 ·ψ(0, ·) dx ,

for any test function ψ defined as in (4.15).
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From this relation, we immediately obtain that

⊥
∂tu + div (u⊗ u) + Ru + ∇Π = 0 ,

for a suitable pressure term ∇Π. This term appears as a result of the weak formulation of the problem. 
It can be viewed as a Lagrangian multiplier associated to the divergence-free constraint on u. Finally, the 
quantity R satisfies the transport equation found in (4.7).

We conclude this paragraph, devoting our attention to the analysis of the regularity of ∇Π. We apply 
the div operator to the momentum equation in (4.1), deducing that Π satisfies

−ΔΠ = divG where G := u · ∇u + Ru⊥ . (4.17)

On the one hand, Lemma 2 of [16] gives

‖∇Π‖L2 ≤ C‖G‖L2 ≤ C (‖u‖L2‖∇u‖L∞ + ‖R‖L∞‖u‖L2) .

This implies that ∇Π ∈ L∞
T (L2).

On the other hand, owing to the divergence-free condition on u, we have

‖ΔΠ‖Hs−1 ≤ C
(
‖u‖2

Hs + ‖R‖L∞‖u‖Hs + ‖∇R‖Hs−1‖u‖L∞
)
,

where we have also used Proposition A.7.
In the end, we deduce that ΔΠ ∈ L∞

T (Hs−1). Thus, we conclude that ∇Π ∈ L∞
T (Hs).

At this point, employing classical results on solutions to transport equations in Sobolev spaces, we may 
infer the claimed C0 time regularity of u and R. Moreover, thanks to the fact that R and u are both 
continuous in time, from the elliptic equation (4.17), we get that also ∇Π ∈ C0

T (Hs). Thus, we have 
completely proved Theorem 2.2.

We point out that, thanks to Lemma 4.1, we have shown the existence of the weak limit points (R, u)
which satisfy the reduced system (4.1) (see Subsection 4.3 above). In the next section, we limit ourselves 
to recall some known well-posedness results for system (4.1) (see also [12] and [13] for details) in order to 
state the uniqueness of those solutions in the Hs framework. This material is also preparatory in view of 
the description of the lifespan of solutions to (4.1).

5. Well-posedness results for the quasi-homogeneous system

In this section, for the reader’s convenience, we review the well-posedness theory of the quasi-homogeneous 
Euler system (4.1), with particular attention to the “asymptotically global” well-posedness result presented 
in [13]. In the first paragraph, we recall the local well-posedness theorem for system (4.1) in the Hs frame-
work. Actually, equations (4.1) are locally well-posedness in all Bs

p,r Besov spaces, under the condition (1.4). 
We refer to [12] where the authors apply the standard Littlewood-Paley machinery to the quasi-homogeneous 
ideal MHD system to recover local in time well-posedness in spaces Bs

p,r for any 1 < p < +∞. The case 
p = +∞ was reached in [13] with a different approach based on the vorticity formulation of the momentum 
equation.

In Subsection 5.3, we explicitly derive the lower bound for the lifespan of solutions to system (4.1). The 
reason in detailing the derivation of (5.9) for T ∗ is due to the fact that it is much simpler than the one 
presented in [13], where (due to the presence of the magnetic field) the lifespan behaves like the fifth iterated 
logarithm of the norms of the initial oscillation R0 and the initial magnetic field. In addition, that lower 
bound (see (5.9) below) improves the standard lower bound coming from the hyperbolic theory, where the 
lifespan is bounded from below by the inverse of the norm of the initial data.
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5.1. Local well-posedness in Hs spaces

s
In this subsection, we state the well-posedness result for system (4.1) in the H functional framework 
with s > 2, in which we have analysed the well-posedness issue for system (2.1).

Theorem 5.1. Take s > 2. Let 
(
R0, u0

)
be initial data such that R0 ∈ L∞, with ∇R0 ∈ Hs−1, and the 

divergence-free vector field u0 ∈ Hs.
Then, there exists a time T ∗ > 0 such that, on [0, T ∗] ×R2, problem (4.1) has a unique solution (R, u, ∇Π)

with:

• R ∈ C0([0, T ∗] ×R2) and ∇R ∈ C0
T∗(Hs−1(R2));

• u and ∇Π belong to C0
T∗(Hs(R2)).

In addition, if T ∗ < T < +∞ and we assume that

T∫
0

∥∥∇u(t)
∥∥
L∞ dt < +∞ ,

then the triplet (R, u, ∇Π) can be continued beyond T into a solution of system (4.1) with the same regularity.

Remark 5.2. We point out that, in the previous Section 4, the convergence (in the weak formulation) 
arguments do not need the well-posedness analysis of the limit system (4.1), as it is required e.g. in the 
relative entropy methods. Actually, we have showed an alternative (with respect to the techniques performed 
in Section 3) proof of the existence of solutions to the limit system (4.1).

5.2. Well-posedness in Besov spaces

The main goal of this subsection is to review the lifespan estimate presented in [13] (for the MHD system) 
in order to get (2.9). To show that, one has to work in critical Besov spaces where one can take advantage 
of the improved estimates for linear transport equations à la Hmidi-Keraani-Vishik. In order to ensure that 
the condition (1.4) is satisfied, the lowest regularity space we can reach is B1

∞,1. In addition, since u ∈ B1
∞,1, 

we have that the B0
∞,1 norm of the curlu can be bounded linearly with respect to ‖∇u‖L1

t (L∞), instead of 
exponentially as in classical Bs

p,r estimates (see Theorem A.13 in the Appendix).
Finally, we construct a “bridge” between Hs and B1

∞,1 Besov spaces establishing a continuation criterion, 
in the spirit of the one by Beale-Kato-Majda in [5].

We start by recalling the local well-posedness result for system (4.1) in Bs
∞,r and, in particular, in the 

end-point space B1
∞,1. We highlight that the physically relevant L2 condition on u, in the following theorem, 

is necessary to control the low frequency part of the solution, so as to reconstruct the velocity from its curl
(see Lemma 5.5 below). We refer to [13] for full details about the proof of the following Theorem 5.3.

Theorem 5.3. Let (s, r) ∈ R × [1, +∞] such that s > 1 or s = r = 1. Let (R0, u0) be an initial datum 
such that R0 ∈ Bs

∞,r(R2) and the divergence-free vector field u0 ∈ L2(R2) ∩Bs
∞,r(R2). Then, there exists a 

time T ∗ > 0 such that system (4.1) has a unique solution (R, u) with the following regularity properties, if 
r < +∞:

• R ∈ C0([0, T ∗]; Bs
∞,r(R2)) ∩ C1([0, T ∗]; Bs−1

∞,r(R2));
• u and ∇Π belong to C0([0, T ∗]; Bs

∞,r(R2)) ∩ C1([0, T ∗]; L2(R2) ∩Bs−1
∞,r(R2)).

In the case when r = +∞, we need to replace C0([0, T ∗]; Bs
∞,r(R2)) by the space C0

w([0, T ∗]; Bs
∞,r(R2)).

28



G. Sbaiz / J. Math. Anal. Appl. 512 (2022) 126140 29

Next, one can state the following continuation criterion for solutions of system (4.1) in Bs
∞,r, where the 

couple (s, r) satisfies the Lipschitz condition (1.4) (see again [13] for details of the proof).
Proposition 5.4. Let (R0, u0) ∈ Bs
∞,r × (L2 ∩ Bs

∞,r) with divu0 = 0. Given a time T > 0, let (R, u) be a 
solution of (4.1) on [0, T [ that belongs to L∞

t (Bs
∞,r) × L∞

t (L2 ∩Bs
∞,r) for any t ∈ [0, T [. If we assume that

T∫
0

‖∇u‖L∞ dt < +∞ , (5.1)

then (R, u) can be continued beyond T into a solution of (4.1) with the same regularity.
Moreover, the lifespan of a solution (R, u) to system (4.1) does not depend on (s, r) and, in particular, 

the lifespan of solutions in Theorem 2.4 is the same as the lifespan in B1
∞,1 ×

(
L2 ∩B1

∞,1
)
.

5.3. The asymptotically global well-posedness result

In this paragraph we focus on finding an asymptotic behaviour (in the regime of small oscillations for the 
densities) for the lifespan of solutions to system (4.1). Namely, for small fluctuations R0 of size δ > 0, the 
lifespan of solutions to system (4.1) tends to infinity when δ → 0. To show that, we have to take advantage 
of the linear estimate in Theorem A.13 for the transport equations in Besov spaces with zero regularity 
index. For that reason, it is important to work with the vorticity formulation of (4.1), since ω ∈ B0

∞,1. 
Thanks to the continuation criterion presented in Proposition 5.4, it is enough to find the bound of the 
lifespan in the lowest regularity space B1

∞,1.
To begin with, we recall a general relation between a function and its curl that will be useful in the 

sequel. We refer to [13] for details of the proof.

Lemma 5.5. Assume f ∈ (L2 ∩ Bs
∞,r)(R2) to be divergence-free. Denote by curl f := −∂2f1 + ∂1f2 its curl

in R2. Then, we have

‖f‖L2∩Bs
∞,r

∼ ‖f‖L2 + ‖curl f‖Bs−1
∞,r

. (5.2)

Therefore, due to the relation (5.2), we can define

E(t) := ‖u(t)‖L2 + ‖ω(t)‖B0
∞,1

∼ ‖u(t)‖L2∩B1
∞,1

, (5.3)

where we have set ω := curlu = −∂2u1 + ∂1u2, as above.
Since the L2 norm of the velocity field is preserved, to control u in B1

∞,1, it will be enough to find 
estimates for curlu in B0

∞,1. Hence, we apply again the curl operator to the second equation in system 
(4.1) to get the following system

{
∂tR + u · ∇R = 0
∂tω + u · ∇ω = −div (Ru) ,

(5.4)

where we recall ω := curlu.
Making use of Theorem A.13, we obtain

‖ω(t)‖B0
∞,1

≤ C

⎛⎝‖ω(0)‖B0
∞,1

+
t∫

0

‖div (Ru)‖B0
∞,1

dτ

⎞⎠⎛⎝1 +
t∫

0

‖∇u‖L∞ dτ

⎞⎠ .
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Now, we look at the bound for div (Ru), finding that( )

‖div (Ru)‖B0

∞,1
≤ C ‖R‖L∞‖u‖B1

∞,1
+ ‖u‖L∞‖R‖B1

∞,1
≤ C‖R‖B1

∞,1
E(t) .

Then, we deduce

E(t) ≤ C

⎛⎝E(0) +
t∫

0

E(τ)‖R(τ)‖B1
∞,1

dτ

⎞⎠⎛⎝1 +
t∫

0

E(τ) dτ

⎞⎠ . (5.5)

Next, Theorem A.12 implies that

‖R(t)‖B1
∞,1

≤ ‖R0‖B1
∞,1

exp

⎛⎝C

t∫
0

E(τ) dτ

⎞⎠ .

Plugging this bound into (5.5) gives

E(t) ≤ C

⎛⎝1 +
t∫

0

E(τ) dτ

⎞⎠⎛⎝E(0) + ‖R0‖B1
∞,1

t∫
0

E(τ) exp

⎛⎝ τ∫
0

E(s) ds

⎞⎠ dτ

⎞⎠ .

We define

T ∗ := sup

⎧⎨⎩t > 0 : ‖R0‖B1
∞,1

t∫
0

E(τ) exp

⎛⎝ τ∫
0

E(s) ds

⎞⎠ dτ ≤ E(0)

⎫⎬⎭ . (5.6)

Then, for all t ∈ [0, T ∗], we deduce

E(t) ≤ C

⎛⎝1 +
t∫

0

E(τ) dτ

⎞⎠ E(0)

and thanks to the Grönwall’s lemma we infer

E(t) ≤ CE(0) eCE(0)t , (5.7)

for a suitable constant C > 0.
It remains to find a control on the integral of E(t). We have

t∫
0

E(τ) dτ ≤ eCE(0)t − 1

and, due to the previous bound (5.7), we get

‖R0‖B1
∞,1

t∫
0

E(τ) exp

⎛⎝ τ∫
0

E(s) ds

⎞⎠ dτ ≤ C‖R0‖B1
∞,1

t∫
0

E(0) eCE(0)τ exp
(
eCE(0)τ − 1

)
dτ

≤ C‖R0‖B1
∞,1

(
exp
(
eCE(0)t − 1

)
− 1
)
.

(5.8)
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Finally, by definition (5.6) of T ∗, we can argue

( (
∗

) )

E(0) ≤ C‖R0‖B1

∞,1
exp eCE(0)T − 1 − 1 ,

that give the following lower bound for the lifespan of solutions:

T ∗ ≥ C

E(0) log
(

log
(
C

E(0)
‖R0‖B1

∞,1

+ 1
)

+ 1
)

.

From there, recalling the definition (5.3) for E(0), we have

T ∗ ≥ C

‖u0‖L2∩B1
∞,1

log
(

log
(
C
‖u0‖L2∩B1

∞,1

‖R0‖B1
∞,1

+ 1
)

+ 1
)

, (5.9)

for a suitable constant C > 0. This is the claimed lower bound stated in Theorem 2.4.

6. The lifespan of solutions to the primitive problem

The main goal of this section is to present an “asymptotically global” well-posedness result for system 
(3.2), when the size of fluctuations of the densities goes to zero, in the spirit of Subsection 5.3. We start 
by showing a continuation type criterion for system (3.2) and discussing the related consequences (see 
Subsection 6.1 below for details). We conclude this section presenting the asymptotic behaviour of the 
lifespan of solutions to system (3.2): the lifespan may be very large, if the size of non-homogeneities a0,ε

defined in (3.1) is small (see relation (6.14) below). We point out that it is not clear at all that the global 
existence still holds even in a fast rotation regime.

6.1. The continuation criterion and consequences

In this paragraph, we start by presenting a continuation type result in Sobolev spaces for system (3.2), 
in the spirit of the Beale-Kato-Majda continuation criterion [5]. We refer to the work [3] by Bae, Lee and 
Shin, regarding the details of the proof.

Proposition 6.1. Take ε ∈ ]0, 1] fixed. Let (a0,ε, u0,ε) ∈ L∞×Hs with ∇a0,ε ∈ Hs−1 and divu0,ε = 0. Given 
a time T > 0, let (aε, uε, ∇Πε) be a solution of (3.2) on [0, T [ that belongs to L∞

t (L∞) ×L∞
t (Hs) ×L∞

t (Hs)
and ∇aε ∈ L∞

t (Hs−1) for any t ∈ [0, T [. If we assume that

T∫
0

‖∇uε‖L∞ dt < +∞ , (6.1)

then (aε, uε, ∇Πε) can be continued beyond T into a solution of (3.2) with the same regularity.

At this point, if we are able to control the norm ‖uε‖L∞
T (L2∩B1

∞,1), then we are able to bound 
‖∇uε‖L∞

T (L∞). This will imply (6.1) and, therefore, the solution will exist until the time T .
Indeed, we have that

‖∇uε‖L∞
T (L∞) ≤ C ‖uε‖L∞

T (B1
∞,1) .

31



32 G. Sbaiz / J. Math. Anal. Appl. 512 (2022) 126140

As already pointed out in Lemma 5.5, to control the B1
∞,1 of uε it is enough to have a L2 estimate for uε

and a B0
∞,1 estimate for its curl . Those estimates are the topic of the next Subsection 6.2, provided that 
the time T > 0 is defined as in (6.13) below. Therefore, ‖∇uε‖L∞
T (L∞) < +∞ and so

T∫
0

‖∇uε‖L∞ < +∞ ,

for such T > 0.
Finally, we note that we have already shown the existence and uniqueness of solutions to system (3.2)

in the Sobolev spaces Hs with s > 2 (see Section 3) and thanks to Proposition A.3, those spaces are 
continuously embedded in the space B1

∞,1.

6.2. The asymptotic lifespan

In this paragraph we focus our attention on the lifespan of solutions to the primitive system (3.2). As 
we will see in the sequel, the fast rotation effects are not enough to get an “asymptotically global” well-
posedness result. Similarly to the quasi-homogeneous case, we need smallness for the B1

∞,1 norm of the 
initial fluctuations a0,ε defined in (3.1).

First of all, we have to take advantage of the vorticity formulation of system (3.2). To do so, we apply 
the curl operator to the momentum equation, obtaining

∂tωε + uε · ∇ωε + ∇aε ∧ ∇Πε = 0 , (6.2)

where ωε := curluε and ∇aε ∧ ∇Πε := ∂1aε ∂2Πε − ∂2aε∂1Πε.
We notice that vorticity formulation is the key point to bypass the issues coming from the Coriolis force, 

which singular effects disappear in (6.2).
Next, we make use of Theorem A.13 (in the Appendix) and we deduce that

‖ωε‖B0
∞,1

≤ C

⎛⎝‖ω0,ε‖B0
∞,1

+
t∫

0

‖∇aε ∧ ∇Πε‖B0
∞,1

dτ

⎞⎠⎛⎝1 +
t∫

0

‖∇uε‖L∞ dτ

⎞⎠ . (6.3)

We start by bounding the B0
∞,1 norm of ∇aε ∧ ∇Πε. We observe that

∂1aε ∂2Πε − ∂2aε ∂1Πε = T∂1aε
∂2Πε − T∂2aε

∂1Πε + T∂2Πε
∂1aε − T∂1Πε

∂2aε

+ ∂1R(aε − Δ−1aε, ∂2Πε) − ∂2R(aε − Δ−1aε, ∂1Πε)

+ R(∂1Δ−1aε, ∂2Πε) + R(∂2Δ−1aε, ∂1Πε) .

(6.4)

Applying Proposition A.4 directly to the terms involving the paraproduct T , we have

‖T∇aε
∇Πε‖B0

∞,1
+ ‖T∇Πε

∇aε‖B0
∞,1

≤ C
(
‖∇aε‖L∞‖∇Πε‖B0

∞,1
+ ‖∇aε‖B0

∞,1
‖∇Πε‖L∞

)
.

Next, we have to deal with the remainders R.
We start by bounding the B0

∞,1 norm of ∂1R(aε − Δ−1aε, ∂2Πε). One has:

‖∂1R(aε − Δ−1aε, ∂2Πε)‖B0
∞,1

≤ C‖R(aε − Δ−1aε, ∂2Πε)‖B1
∞,1

≤ C
(
‖∇Πε‖B0

∞,∞
‖(Id − Δ−1) aε‖B1

∞,1

)
≤ C

(
‖∇Πε‖L∞‖∇aε‖B0

∞,1

)
,
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where we have employed the localization properties of the Littlewood-Paley decomposition. In a similar 
way, one can argue for ∂2R(aε − Δ−1aε, ∂1Πε).
It remains to bound R(∂1Δ−1aε, ∂2Πε). Analogously, one can treat the term R(∂2Δ−1aε, ∂1Πε) in (6.4). 
We obtain that

‖R(∂1Δ−1aε, ∂2Πε)‖B0
∞,1

≤ C‖R(∂1Δ−1aε, ∂2Πε)‖B1
∞,1

≤ C
(
‖∇Πε‖L∞‖∂1Δ−1aε‖B1

∞,1

)
.

Employing the spectral properties of operator Δ−1, one has that

‖∂1Δ−1aε‖B1
∞,1

≤ C‖Δ−1∇aε‖L∞ .

Then,

‖R(∂1Δ−1aε, ∂2Πε)‖B0
∞,1

≤ C
(
‖∇Πε‖L∞‖∇aε‖B0

∞,1

)
.

Finally, we get

‖∇aε ∧ ∇Πε‖B0
∞,1

≤ C
(
‖∇aε‖L∞‖∇Πε‖B0

∞,1
+ ‖∇aε‖B0

∞,1
‖∇Πε‖L∞

)
.

So plugging the previous estimate in (6.3), one gets

‖ωε‖B0
∞,1

≤ C

⎛⎝‖ω0,ε‖B0
∞,1

+
t∫

0

‖∇aε‖B0
∞,1

‖∇Πε‖B0
∞,1

dτ

⎞⎠⎛⎝1 +
t∫

0

‖∇uε‖L∞ dτ

⎞⎠ . (6.5)

Now, we define

Eε(t) := ‖uε(t)‖L2∩B1
∞,1

and Aε(t) := ‖∇aε(t)‖B0
∞,1

. (6.6)

In this way, we have

Eε(t) ≤ C

⎛⎝Eε(0) +
t∫

0

Aε(τ)‖∇Πε(τ)‖B0
∞,1

dτ

⎞⎠⎛⎝1 +
t∫

0

Eε(τ) dτ

⎞⎠ . (6.7)

Next, we recall that, for i = 1, 2:

∂t ∂iaε + uε · ∇ ∂iaε = −∂iuε · ∇aε

and, due to the divergence-free condition on uε, we can write

∂iuε · ∇aε =
∑
j

∂iu
j
ε ∂jaε =

∑
j

(
∂i(uj

ε ∂jaε) − ∂j(uj
ε ∂iaε)

)
.

So, using Proposition A.4 and the fact that

‖∂iR(uj
ε, ∂jaε)‖B0

∞,1
≤ C ‖R(uj

ε, ∂jaε)‖B1
∞,1

≤ C ‖∇aε‖B0
∞,1

‖uε‖B1
∞,1

,

we may finally get

‖∂iuε · ∇aε‖B0
∞,1

≤ C‖∇aε‖B0
∞,1

‖uε‖B1
∞,1

.
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Thus, ⎛
t

⎞

‖∇aε(t)‖B0

∞,1
≤ ‖∇a0,ε‖B0

∞,1
exp⎝C

∫
0

‖uε‖B1
∞,1

dτ⎠ .

Therefore, recalling (6.6), one has

Aε(t) ≤ Aε(0) exp

⎛⎝C

t∫
0

E(τ) dτ

⎞⎠ . (6.8)

The next goal is to bound the pressure term in B0
∞,1. Actually, we shall bound its B1

∞,1 norm. Similarly 
to the analysis performed in Subsection 3.2 for the Hs norm (see e.g. inequality (3.12)), there exists some 
exponent λ ≥ 1 such that

‖∇Πε‖B1
∞,1

≤ C
((

1 + ε‖∇aε‖λB0
∞,1

)
‖∇Πε‖L2 + ε ‖�ε div (uε · ∇uε)‖B0

∞,1
+ ‖�ε divu⊥

ε ‖B0
∞,1

)
. (6.9)

The L2 estimate for the pressure term follows in a similar way to one performed in (3.11), i.e.

‖∇Πε‖L2 ≤ C ε ‖uε‖L2‖∇uε‖L∞ + ‖uε‖L2 . (6.10)

Next, as showed above in the bound for ‖∂iuε ·∇aε‖B0
∞,1

, combining Bony’s decomposition with the fact 
that div (uε · ∇uε) = ∇uε : ∇uε, we may infer:

‖div (uε · ∇uε)‖B0
∞,1

≤ C ‖uε‖2
B1

∞,1
.

Now, from Proposition 3 of [17], we can estimate the B1
∞,1 norm of the density in the following way:

‖�ε‖B1
∞,1

≤ C
(
� + ε ‖∇aε‖B0

∞,1

)
.

Finally, plugging the L2 estimate (6.10) and all the above inequalities in (6.9), one may conclude that

‖∇Πε‖B1
∞,1

≤ C
(
1 + ε ‖∇aε‖λB0

∞,1

)(
ε ‖uε‖L2‖∇uε‖B0

∞,1
+ ‖uε‖L2

)
+ C

(
1 + ε ‖∇aε‖B0

∞,1

)(
ε ‖uε‖2

B1
∞,1

+ ‖uε‖B1
∞,1

)
≤ C(1 + εAλ

ε )(εE2
ε + Eε) + C(1 + εAε)(εE2

ε + Eε)

≤ C(εE2
ε + Eε)(1 + εAε + εAλ

ε )

≤ C(εE2
ε + Eε)(1 + εAλ

ε ) .

(6.11)

We insert now in (6.7) the estimates found in (6.11) and in (6.8), deducing that

Eε(t) ≤ C

⎛⎝Eε(0) + Bε(0)
t∫

0

exp

⎛⎝C

τ∫
0

Eε(s) ds

⎞⎠(εE2
ε (τ) + Eε(τ)

)
dτ

⎞⎠⎛⎝1 +
t∫

0

Eε(τ) dτ

⎞⎠ , (6.12)

where we have set Bε(0) := Aε(0) + ε Aε(0)λ+1.
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At this point, we define T ∗
ε > 0 such that

⎧
t

⎛
τ

⎞ ⎫

T ∗
ε := sup

⎨⎩t > 0 : Bε(0)
∫
0

exp⎝C

∫
0

Eε(s) ds⎠(εE2
ε (τ) + Eε(τ)

)
dτ ≤ Eε(0)

⎬⎭ . (6.13)

So, from (6.12) and using Grönwall’s inequality, we obtain that

Eε(t) ≤ C Eε(0)eCtEε(0) ,

for all t ∈ [0, T ∗
ε ].

The previous estimate implies that, for all t ∈ [0, T ∗
ε ], one has

t∫
0

Eε(τ) dτ ≤ eCtEε(0) − 1 .

Analogously to inequality (5.8) in Subsection 5.3, we can argue that

Bε(0)
t∫

0

exp

⎛⎝C

τ∫
0

Eε(s) ds

⎞⎠Eε(τ) dτ ≤ CBε(0)
(
exp
(
eCtEε(0) − 1

)
− 1
)
.

Then, it remains to control

εBε(0)
t∫

0

exp

⎛⎝C

τ∫
0

Eε(s) ds

⎞⎠E2
ε (τ) dτ .

For this term, we may infer that

εBε(0)
t∫

0

exp

⎛⎝C

τ∫
0

Eε(s) ds

⎞⎠E2
ε (τ) dτ ≤ C εBε(0)

t∫
0

E2
ε (0)eCtEε(0) exp

(
eCtEε(0) − 1

)
dτ

≤ C εBε(0)Eε(0)
(
exp
(
eCtEε(0) − 1

)
− 1
)
.

In the end, by definition (6.13) of T ∗
ε , we deduce

T ∗
ε ≥ C

Eε(0) log
(

log
(

CEε(0)
max{Bε(0), εBε(0)Eε(0)} + 1

)
+ 1
)
, (6.14)

for a suitable constant C > 0. This concludes the proof of Theorem 2.1.

Appendix A. A few tools from Fourier analysis

This appendix is devoted to present some tools from Fourier analysis, which we have exploited in our 
analysis. We recall some definitions and properties of Littlewood-Paley theory, Besov spaces and paradiffer-
ential calculus. Moreover, using those notions, we will focus on the study of transport equations in Besov 
spaces.
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A.1. Littlewood-Paley theory and Besov spaces
In this paragraph, we recall the main results concerning the Littlewood-Paley theory. We refer e.g. to 
Chapter 2 of [4] for details. For simplicity of exposition, let us deal with the Rd case, with d ≥ 1; however, the 
whole construction can be adapted also to the d-dimensional torus Td, and to the “hybrid” case Rd1 ×Td2 .

First of all, let us introduce the Littlewood-Paley decomposition. For this we fix a smooth radial function 
χ such that Suppχ ⊂ B(0, 2), χ ≡ 1 in a neighbourhood of B(0, 1) and the map r �→ χ(r e) is non-increasing 
over R+ for all unitary vectors e ∈ Rd. Set ϕ (ξ) = χ (ξ) − χ (2ξ) and ϕj(ξ) := ϕ(2−jξ) for all j ≥ 0. The 
dyadic blocks (Δj)j∈Z are defined by1

Δj := 0 if j ≤ −2, Δ−1 := χ(D) and Δj := ϕ(2−jD) if j ≥ 0 .

For any j ≥ 0 fixed, we also introduce the low frequency cut-off operator

Sj := χ(2−jD) =
∑

k≤j−1

Δk . (A.1)

Note that Sj is a convolution operator. More precisely, after defining

K0 := F−1χ and Kj(x) := F−1[χ(2−j ·)](x) = 2jdK0(2jx) ,

for all j ∈ N and all tempered distributions u ∈ S ′, we have that Sju = Kj ∗ u. Thus the L1 norm of Kj

is independent of j ≥ 0, hence Sj maps continuously Lp into itself, for any 1 ≤ p ≤ +∞.
The following classical property holds true: for any u ∈ S ′, then one has the equality u =

∑
j Δju in the 

sense of S ′. Let us also recall the so-called Bernstein inequalities.

Lemma A.1. Let 0 < r < R. A constant C exists so that, for any non-negative integer k, any couple (p, q)
in [1, +∞]2, with p ≤ q, and any function u ∈ Lp, we have, for all λ > 0,

Supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1 λ
k+d

(
1
p− 1

q

)
‖u‖Lp ;

Supp û ⊂ {ξ ∈ Rd : λr ≤ |ξ| ≤ λR} =⇒ C−k−1 λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1 λk‖u‖Lp .

By use of Littlewood-Paley decomposition, we can define the class of Besov spaces.

Definition A.2. Let s ∈ R and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space Bs
p,r is defined as the 

subset of tempered distributions u for which

‖u‖Bs
p,r

:=
∥∥∥(2js ‖Δju‖Lp

)
j≥−1

∥∥∥

r

< +∞ .

Besov spaces are interpolation spaces between Sobolev spaces. In fact, for any k ∈ N and p ∈ [1, +∞] we 
have the chain of continuous embeddings Bk

p,1 ↪→ W k,p ↪→ Bk
p,∞, which, when 1 < p < +∞, can be refined 

to

Bk
p,min(p,2) ↪→ W k,p ↪→ Bk

p,max(p,2) .

In particular, for all s ∈ R we deduce that Bs
2,2 ≡ Hs, with equivalence of norms:

1 We agree that f(D) stands for the pseudo-differential operator u �→ F−1[f(ξ) ̂u(ξ)].
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‖f‖Hs ∼

⎛⎝∑
j≥−1

22js ‖Δjf‖2
L2

⎞⎠1/2

. (A.2)
As an immediate consequence of the first Bernstein inequality, one gets the following embedding result, 
which generalises the Sobolev embeddings.

Proposition A.3. The space Bs1
p1,r1 is continuously embedded in the space Bs2

p2,r2 for all indices satisfying 
p1 ≤ p2 and either s2 < s1 − d

(
1/p1 − 1/p2

)
, or s2 = s1 − d

(
1/p1 − 1/p2

)
and r1 ≤ r2.

In particular, we get the following chain of continuous embeddings:

Bs
p,r ↪→ Bs−d/p

∞,r ↪→ B0
∞,1 ↪→ L∞ ,

whenever the triplet (s, p, r) ∈ R × [1, +∞]2 satisfies

s >
d

p
or s = d

p
and r = 1 . (A.3)

A.2. Paradifferential calculus

Let us now introduce the Bony decomposition (see [7]). Once again, we refer to Chapter 2 of [4] for 
details. Formally, the product of two tempered distributions u and v can be decomposed into

u v = Tuv + Tvu + R(u, v) ,

where the paraproduct T and the remainder R are defined as follows:

Tuv =
∑
j

Sj−1uΔjv and R(u, v) :=
∑
j

∑
|k−j|

ΔjuΔkv .

The paraproduct and remainder operators have nice continuity properties. The following ones will be of 
constant use in the paper.

Proposition A.4. For any (s, p, r) ∈ R × [1, +∞]2 and t > 0, the paraproduct operator T maps continuously 
L∞ ×Bs

p,r into Bs
p,r and B−t

∞,∞ ×Bs
p,r into Bs−t

p,r . Moreover, we have the following estimates

‖Tuv‖Bs
p,r

≤ C‖u‖L∞‖∇v‖Bs−1
p,r

and ‖Tuv‖Bs−t
p,r

≤ C‖u‖B−t
∞,∞

‖∇v‖Bs−1
p,r

.

For any (s1, p1, r1) and (s2, p2, r2) in R × [1, +∞]2 such that s1 + s2 > 0, 1/p := 1/p1 + 1/p2 ≤ 1 and 
1/r := 1/r1 + 1/r2 ≤ 1, the remainder operator R maps continuously Bs1

p1,r1 × Bs2
p2,r2 into Bs1+s2

p,r . In the 
case when s1 + s2 = 0 and 1/r1 + 1/r2 = 1, the operator R is continuous from Bs1

p1,r1 ×Bs2
p2,r2 to B0

p,∞.

As a consequence of the Proposition A.4, the spaces Bs
p,r are Banach algebras provided condition (A.3)

holds for s > 0. Moreover, in that case, we have the so-called tame estimates.

Corollary A.5. Let (s, p, r) ∈ R × [1, +∞]2. Then, for every f, g ∈ L∞ ∩Bs
p,r, one has

‖fg‖Bs
p,r

≤ C
(
‖f‖L∞‖g‖Bs

p,r
+ ‖f‖Bs

p,r
‖g‖L∞

)
.
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Remark A.6. The space B0
∞,1 is not an algebra. If f, g ∈ B0

∞,1, applying Proposition A.4, one can bound 
the paraproducts Tfg and Tgf but not the remainder R(f, g).
To end this paragraph, we present a fine estimate for products in which one of the two functions is only 
bounded but its gradient belongs to the Besov space Bs−1

p,r .

Proposition A.7. Let (s, p, r) ∈ ]0, +∞[ × [1, +∞]2 satisfy condition (A.3). Assume that g ∈ L∞ ∩Bs
p,r and 

f is a bounded function such that ∇f ∈ Bs−1
p,r . Then, the product fg belongs to L∞ ∩Bs

p,r and one has the 
following estimate:

‖fg‖Bs
p,r

≤ C
(
‖f‖L∞‖g‖Bs

p,r
+ ‖∇f‖Bs−1

p,r
‖g‖L∞

)
.

Proof. Taking advantage of Bony decomposition, one can write

fg = Tfg + Tgf + R(f, g)

and employing Proposition A.4, we get

‖Tfg‖Bs
p,r

≤ C‖f‖L∞‖g‖Bs
p,r

‖Tg f‖Bs
p,r

≤ C‖g‖L∞‖∇f‖Bs−1
p,r

‖R(f, g)‖Bs
p,r

≤ C‖f‖B0
∞,∞

‖g‖Bs
p,r

≤ C‖f‖L∞‖g‖Bs
p,r

.

This completes the proof of the proposition. �
A.3. Commutator estimates

In this paragraph, we recall the main commutator estimates widely employed throughout the paper (we 
refer to Chapter 2 of [4] for full details).

Definition A.8. We say that the triplet (s, p, r) ∈ R × [1, +∞]2 satisfies the Lipschitz condition if

s > 1 + d/p and r ∈ [1,+∞] or s = 1 + d/p and r = 1 . (A.4)

The proof of the following Lemma A.9 can be found in [16] by Danchin.

Lemma A.9. Let (s, p, r) satisfy condition (A.4) and σ be in ] − 1, s − 1]. Assume that w ∈ Bσ
p,r and A is a 

bounded function on Rd such that ∇A ∈ Bs−1
p,r . Then, there exists a constant C = C(s, p, r, σ, d) such that 

for all i ∈ {1, . . . , d}, we have:

‖∂i[A,Δj ]w‖Lp ≤ C cj 2−jσ‖∇A‖Bs−1
p,r

‖w‖Bσ
p,r

for all j ≥ −1 ,

with ‖(cj)j≥−1‖
r = 1.

The next statement concerns a standard commutator estimate between the transport operator and the 
frequency localisation operator.

Lemma A.10. Assume that v ∈ Bs
p,r with (s, p, r) satisfying the Lipschitz condition (A.4). Moreover, denote 

by [v · ∇, Δj ]f = (v · ∇)Δjf − Δj(v · ∇)f the commutator between the transport operator v · ∇ and the 
frequency localisation operator Δj. Then, for every f ∈ Bs

p,r,
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∥∥∥(2js‖[v · ∇,Δj ]f‖Lp

)
j

∥∥∥

r

≤ C
(
‖∇v‖L∞‖f‖Bs

p,r
+ ‖∇v‖Bs−1

p,r
‖∇f‖L∞

)

and also, for every f ∈ Bs−1

p,r ,

∥∥∥∥(2j(s−1)‖[v · ∇,Δj ]f‖Lp

)
j

∥∥∥∥

r

≤ C
(
‖∇v‖L∞‖f‖Bs−1

p,r
+ ‖∇v‖Bs−1

p,r
‖f‖L∞

)
,

for some constant C = C(s, p, d) > 0.

Finally, the next result deals with commutators between paraproduct operators and Fourier multipliers.

Lemma A.11. Let κ be a smooth function on Rd, which is homogeneous of degree m away from a neighbour-
hood of 0. Take (s, p, r) ∈ R × [1, +∞]2 and v a vector field such that ∇v ∈ L∞. Then, for every f ∈ Bs

p,r, 
one has

‖[Tv, κ(D)]f‖Bs−m+1
p,r

≤ C(d, s) ‖∇v‖L∞‖f‖Bs
p,r

.

A.4. Transport equations

In this paragraph, we deal with the transport equations in non-homogeneous Besov spaces. We refer to 
Chapter 3 of [4] for additional details. We study, in R+ ×Rd, the initial value problem

{
∂tf + v · ∇f = g

f|t=0 = f0 .
(A.5)

We always assume the velocity field v = v(t, x) to be a Lipschitz divergence-free function. In the case when 
the Lipschitz condition (A.4) is satisfied, we have the embedding Bs

p,r ↪→ W 1,∞.
We state now the main well-posedness result concerning problem (A.5) in Besov spaces. We point out 

also that the notation C0
w([0, T ]; X), with X a Banach space, refers to the space of functions which are 

continuous in time with values in X endowed with its weak topology.

Theorem A.12. Let (s, p, r) ∈ R × [1, +∞]2 satisfy the Lipschitz condition (A.4). Given T > 0, take g in 
L1
T (Bs

p,r). Assume that v ∈ L1
T (Bs

p,r) and that there exist two real numbers q > 1 and σ > 0 such that 
v ∈ Lq

T (B−σ
∞,∞). Finally, let f0 ∈ Bs

p,r be the initial datum. Then, the transport equation (A.5) has a unique 
solution f in:

• the space C0 ([0, T ];Bs
p,r

)
if r < +∞;

• the space 

(⋂
s′<s

C0
(
[0, T ];Bs′

p,∞

))
∩ C0

w

(
[0, T ];Bs

p,∞
)

if r = +∞.

Moreover, the unique solution satisfies the following estimate:

‖f‖L∞
T (Bs

p,r) ≤ exp

⎛⎝C

T∫
0

‖∇v‖Bs−1
p,r

dτ

⎞⎠⎛⎝‖f0‖Bs
p,r

+
T∫

0

exp

⎛⎝−C

t∫
0

‖∇v‖Bs−1
p,r

dτ

⎞⎠ ‖g‖Bs
p,r

dt

⎞⎠ ,

for some constant C = C(s, p, r, d) > 0.
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To conclude this paragraph, let us show a refinement of Theorem A.12, proved by Vishik in [45] and in 
a different way by Hmidi and Keraani (see [36]). It states that, if div v = 0 and the Besov regularity index 

is s = 0, the estimate in Theorem A.12 can be replaced by an inequality which is linear with respect to 
‖∇v‖L1

T (L∞).

Theorem A.13. Given T > 0, assume that v is a divergence-free vector field such that ∇v ∈ L1
T (L∞) and 

let g ∈ L1
T (B0

∞,r). Take r ∈ [1, +∞] and f0 ∈ L1
T (B0

∞,r). Then, there exists a constant C = C(d) such that, 
for any solution f to problem (A.5) in C0([0, T ]; B0

∞,r) (or with the usual modification of C0 into C0
w if 

r = +∞), we have

‖f‖L∞
T (B0

∞,r) ≤ C
(
‖f0‖B0

∞,r
+ ‖g‖L1

T (B0
∞,r)

)⎛⎝1 +
T∫

0

‖∇v(τ)‖L∞ dτ

⎞⎠ . (A.6)
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