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Abstract—The aim for organic farming is obtaining food of
the highest quality, avoiding synthetic chemicals, protecting the
environment and preserving the fertility of the land. In this
context, effective pest control allows to reduce yield loss and
pesticides application producing pollution-free vegetables. In fruit
crops, Carpocapsa is the main pest present in pear, apple, walnut
and quince trees. This insect produces irreversible damage to
the fruit, since the larvae feed the seeds inside the fruit. In this
paper, we present automatic pest detection and classification in
the context of fruit crops based on image processing and Deep
Neural Networks, employing an image collection obtained from
in-field traps. Due to the limited size of the data set, we perform
data augmentation to increase the number of images for training,
to prevent over-fitting and to improve the deep neural network
learning rate. Results showed an overall accuracy of 94.8%, while
precision and recall scores for the class related with the moth
were around 97.2% and 93.6% respectively, demonstrating the
efficacy of this type of classifier proposed for pest detection. An
inference time of 40 ms per image for the deep neural network
classifier has been reached.

Index Terms—image processing, deep neural networks, CNN,
classification, pest detection

I. INTRODUCTION

Nectras [1] is an integral solution for real time pest detec-
tion, evaluation and control, which combines IoT traps with
spraying drones through machine learning algorithms. Fruit
crops such as grapes, apples and pears are affected by various
diseases and pests during their growth process. If the control
is not timely, it will lead to a reduction of the soil or even
to the loss of the harvest. Identify accurately insect pests and
effectively control them is very important to help fruit growers
improve fruit yield.

Pest prevention is the best way to reduce soil loss and reduce
pesticide application to produce pollution-free vegetables. In
addition, the application of agrochemicals and pesticides has
a poor control effect and is easy to cause environmental pollu-
tion, which leads to excessive pesticide residues on vegetables

and a higher pest resistance, lower efficiency, higher cost,
stronger subjectivity, lower precision and punctuality.

An approach to solve this problem is a manual method
to quantify the number of insects, but this solution is time-
consuming and susceptible to errors. Nevertheless, the appli-
cation of information technology provides original methods
and ideas for the identification of insect pests. Also, using au-
tomatic and efficient image recognition methods could reduce
cost and improve fumigation accuracy.

The particular pest to be detected is Carpocapsa (Cydia
Pomonella), also known as worm or moth. The difficulty
to control the lepidoptera threatens regional economies. Car-
pocapsa is the main pest of the pear, apple, walnut and quince
tree. This insect produces irreversible damage to the fruit since
its larvae (juvenile state of the insect) feed inside the fruit
reaching the seeds.

In the context of pest detection, several works have been
presented to tackle this problem through image processing
techniques, aiming to generate an automatic detection and
classification framework. The work presented in [2] proposed
an IoT Smart Trap to detect a pest in coffee plantations
based on image binarization, morphological operations and
contour searching. Ramalingam et al. [3] employed Faster
RCNN (Region-based Convolutional Neural Networks) and
Residual Neural Networks 50 (ResNet50) for pest detection,
using images collected from different online sources. Authors
in [4] implemented a Deep Convolutional Neural Network
architecture with a data set composed by 200 images, using
a data augmentation technique to increase the data base,
obtaining accuracy rates of detection and classification in 84%
and 86% respectively. They remark that Single Shot Detector
(SSD) object detection algorithm was optimal for the case of
study.

Another approach was presented in [5] using IP102 insect
pest data set. AlexNet, GoogleNet and SqueezeNet were cho-
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sen as base networks to perform transfer learning, due to the
smaller amount of layers compared to other architectures. The
results exhibited that the model based on AlexNet achieved
the highest testing accuracy at 89.33%.

Moth detection was performed in [6] using a sliding
window-based detection pipeline with a ConvNet as classifier.
Hong et al. [7] performs the moth detection in pheromone traps
using deep learning techniques. Despite the good results, the
images used for training were not real-time remote sensing
images and the traps were photographed in the laboratory.

Most of the developments devoted to this type of applica-
tions are based on transfer learning, due to the reduced amount
of images for training obtained in real climatic conditions. On
the other side, it is not an easy task to access real data sets,
making it difficult to verify and validate these techniques.

In this work, we present automatic pest detection on fruit
crops based on image processing and Deep Neural Networks
(DNN), employing an image collection obtained from in-field
traps provided by Nectras, in real environment conditions.
Through pre-processing techniques, we are able to detect the
objects in the images obtained from the IoT traps, generating
the data base for training the DNN. We use data augmentation
to extend the data set, preventing over-fitting and improving
the DNN performance.

The paper is organized as follows: section II presents the
overall system for data acquisition, section III exposes the
methodology to perform object detection and classification.
Results are discussed in section IV and finally, conclusions
are presented in section V.

II. OVERALL SYSTEM

The expansion of technological developments has made
possible the arrival of data processing in many areas of life.
The growth of organic ecology is advancing in favor of the
environment and the care of the land and crops, to produce
pollution-free vegetables. In this direction, Internet of Things
(IoT) traps have been developed to help pest control and detec-
tion to improve food safety. This technology connects devices
and sensors, collects and stores the generated data and allows
new understanding of pest trends and their characteristics.

The pest to be detected through this research is the moth
called Carpocapsa, which is captured using intelligent IoT
traps designed by Nectras. The sensors present in the elec-
tronic traps allow constant monitoring of the insects existing
in the field. The capture surface is gummed with pheromones
and its dimension is 16x18cm, which allows capturing up to
150 moths per trap. Each pheromone lure lasts approximately
5 to 6 weeks. Due to its specific pheromone-based attractants,
male insects are attracted and stuck to the gummed bottom of
the trap, however it has no effect on other insects. Regarding its
distribution, 1 trap is placed every 3 to 5 trees approximately,
which is hanging from a branch at 1.5-2m height. Fig. 1 shows
the IoT trap placed in the operating environment and its inside
is depicted in Fig. 2.

An Arduino OV2640 2M camera (Maximum image
size and sampling rate: 1600×1200@15fps, Transfer rates:

Fig. 1. IoT trap in the operating environment.

Fig. 2. IoT trap - Inside view.

SVGA@30fps and CIF@60fps, 352x240) placed at the top
of the IoT trap captures the images periodically, during the
morning and in the afternoon, since at these times the moth
makes its flight, allowing constant control of the insects.

Digital images are sent to the cloud through a custom
hardware developed by Nectras and stored in .jpg format,with
a resolution of 800x600 and 1600x1200 pixels in the RGB
color space. Then, the images are downloaded and processed
through dedicated software. From the user side, an application
allows them to be informed of the status of the crop. When
the system detects a predefined number of moths, it sends
an alert to the user to proceed with the fumigation by the
drone in the area where the IoT trap is located. If the
suggestion is accepted, the platform sends the flight plan to the
fumigator drone. By means of this methodology, the process is
constrained in location and time, decreasing the total amount
of the applied pesticide. Moreover, this is a way to avoid strong
infestation in the crops.

III. METHODOLOGY

The general flow for the pest detection and classification in
fruit crops is depicted in Fig. 3. The input image obtained in
the field is downloaded from the cloud and pre-processed in
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Fig. 3. General flow.

order to perform object detection through conventional tech-
niques, such as filtering, color balance, noise reduction, among
others. After this stage, an object detection is performed to
crop the elements contained in the images. The result is
sent to a classifier based on DNN, which is responsible to
identify the class of the input object. If a moth was detected,
a counter is increased until certain threshold. Once this value
is overcome, the application sends a suggestion to proceed
with the fumigation.

In real environment conditions, in-field traps are exposed to
rain, wind, temperature variation and non-uniform illumina-
tion, among others. Also, leaves, dust and raindrops could be
present inside the traps located in natural environments. These
circumstances are a challenge when applying algorithms based
on image processing, as we can observe in Fig. 4. Several
other factors should be considered when processing images
with digital techniques (such as natural conditions, paper
colour among others), looking for the optimal combination
of strategies to perform image analysis.

A. Pre-processing

The first step is to adjust the image size to a pre-defined
square by cropping (or expanding) the image until the number
of rows and columns become an integer multiple of the chosen
window value, focusing the analysis on the region of interest
(the base paper). After this operation, color space conversion
from RGB to grayscale is performed and denoising is carried

Fig. 4. In-field traps under natural conditions.

out by means of a Gaussian filter. Finally, morphological
operations (erosion and dilatation) are used with different
kernels.

B. Object detection

This stage is aimed at detecting different elements (insects,
pheromone lure and other objects) contained in the traps.
Using the image obtained after the pre-processing, we obtain
the contour of the objects applying edge detection based on
Canny and convex hull, followed by bounding-box calculation
and its area.

The starting point for image analysis is to use files con-
taining only the pheromone lure, applying the techniques
mentioned above to characterize it. Once pheromone lure’s
features are defined, they are used to discard this object,
proceeding with insects and objects detection, which are
present in small quantities, achieving their characterization
and location. Examples of these distributions are shown in
Fig. 5. As evidenced, from the left image the pheromone lure
is present and in the right image, moth, pheromone lure and
flies appear, each of one with unique characteristics in a first
attempt to separate them from the background.

Objects having a maximum size larger than 250 pixels were
discarded, since insects and pheromone lures have smaller size.

Nevertheless, the object area is not sufficient by itself for
discrimination, since it is possible that the area of two objects
be similar. In this case, a second level of filtering is required
using the bounding box properties to select the elements. Fig.

Fig. 5. Object detection.
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Fig. 6. Object detection.

6 shows the output of this stage, where each element is marked
with a rectangle.

Once objects are detected, the next step is to realize a crop
operation and save the corresponding images. The result of this
stage is presented in Fig. 7, which contains separated insects
and pheromone lures.

After this first attempt of detection based on traditional
techniques and to decrease the misclassification rate, we
introduced a DNN classifier, to obtain an efficient model for
this task. The new images generated from the object detection
process were used to build the data set to perform the training.

C. Classification based on DNN

For this stage, the image collection employed was obtained
from in-field traps. As images were collected in real conditions
and due to the limited amount of them, compared with the
data sets used for training networks such as VGG16 (over 14
million high-resolution images) [8], we performed data aug-
mentation [9]. This technique allows to increase the amount
of images by creating copies of them, which will be slightly
modified by operations such as: horizontal and vertical flip,
rotation, scaling, cropping, translation, among others. Data
augmentation contributes to prevent over-fitting when training
machine learning models, acting as a regularizer. For instance,
works presented in [10], [11], [12] proved the effectiveness and
benefits of data augmentation when network training is done
with a reduced number of input images.

Regarding the operations used in data augmentation, we
selected horizontal and vertical flip, rotation, scaling, zoom
and height shift.

Starting from the new image collection, which is formed by
the objects detected in the previous stage, we perform a color

Fig. 7. Objects present in the trap.

Fig. 8. Objects present in the trap after Gray-world algorithm application.

Fig. 9. Labeled objects. A. Other objects (class 0). B. Moth (class 1). C.
Pheromone lure (class 2)

correction to improve the DNN performance using the Gray-
world algorithm [13], a classical method of color constancy.
Results are depicted in Fig. 8, showing an image enhancement
compared to those presented in Fig. 7.

After this process, a total of 16500 images were obtained
and three classes for the classification process were defined as
follows: others objects (class 0), moth (class 1) and pheromone
lure (class 2), made up of 5500 images each. An example of
this distribution is shown in Fig. 9. The image labeling to
define the ground-truth was performed in collaboration with
a biologist. For training, the data set was split into train,
validation and test.

The multi-class classification was performed using a Con-
volutional Neural Network (CNN) architecture, composed of
a stack of 2D convolutional layers (2D Conv) and Max
pooling (Max Pool) for feature extraction. At the end of the
architecture, a stack of fully connected layers (FC) defines
the classifier. The architecture is depicted in Fig. 10, with a
total number of training parameters of 636,444. In regard to
activation functions, a rectifier linear unit (ReLU) [14] was
employed for each layer. Softmax was used in the output layer
to calculate the final probability corresponding to each class.

IV. RESULTS

Experimental setup: image processing was realized using
OpenCv libraries, TensorFlow was employed to describe and
train the CNN architecture and Python was selected as pro-
gramming language.

The training was performed using k-fold cross validation
[15], with 7 folds. To use a fixed input size, images were
re-scaled up to 80 × 80 pixels in the RGB color space and
normalized (each value was divided by 255). Adam [16]
optimizer was chosen with a learning rate of 0.0001. As
regularizer for each layer, we employed L2 norm with 0.0001.
The number of epochs was configured in 32.

To perform inference tests, we employed 15% of the data
set (an amount of images separated from the training and
validation sets). The result is presented through the confusion
matrix and it is depicted in Fig. 11. It is noticed that a
high number of true positives were obtained, preventing false
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Fig. 10. Classifier based on CNN architecture.

negatives and false positives. Regarding class 0, a small
percentage of images were classified as class 1.

For a multi-class classifier, average accuracy (Acc) is
defined through Eq.1, with TP: true positive samples, TN:
true negative samples, FP: false positive samples, FN: false
negative samples and k: number of classes.

Acc =

∑k
n=1

TNn+TPn

TNn+TPn+FNn+FPn

k
(1)

Overall accuracy gives a preliminary information in this
context, but this metric makes no distinction between classes,
which is needed in this particular application. Assuming a
classifier one-vs-all, to analyze the behaviour of the trained
model through performance indicators we selected accuracy,

Fig. 11. Confusion matrix corresponding to the inference testing

TABLE I
METRICS PER CLASS: ACCURACY, PRECISION, RECALL AND ERROR RATE.

Classes
Metrics 0 1 2

Accuracy 97.2% 93.6% 93.5%
Precision 89% 97.2% 99.2%
Recall 97.2% 93.6% 93.5%

TABLE II
OVERALL METRICS: ACCURACY, MICRO-AVERAGING AND

MACRO-AVERAGING FOR RECALL AND PRECISION.

Overall
Accuracy 94.8%

Micro-averaging
Precision 94.76%
Recall 94.76%

Macro-averaging
Precision 95.09%
Recall 93.9%

precision and recall (sensitivity) [17]. Micro and macro av-
eraging versions were considered for precision (Pµ and Pm)
and recall (Rµ and Rm), presented from Eq. 2 to Eq. 5 and
defined in [18]. To obtain these scores, we employed sklearn
[19], a tool for predictive data analysis.

Pµ =

∑k
n=1 TPn∑k

n=1(TPn + FPn)
(2)

Pm =

∑k
n=1

TPn

TPn+FPn

k
(3)

Rµ =

∑k
n=1 TPn∑k

n=1(TPn + FNn)
(4)

Rm =

∑k
n=1

TPn

TPn+FNn

k
(5)

Precision score is defined as the proportion between correct
results and the number of all returned results. Recall represents
the percentage of correct images classified and the number of
images classified that should have been retrieved. For a given
n-class, precision at micro level is obtained from the individual
TP, TN, FP, and FN. As regards macro level, precision is
defined as the average of the performances of each class. From
Table I, we conclude that precision is 89% for class 0, while
for classes 1 and 2 is higher than 90%, highlighting a good
percentage for class 1 (moth). Recall for class 1 presented a
score larger than 90%, which implies a large ratio of correctly
predicted moths to the all observations in the positive class.

Table II presents the overall behaviour of the system for the
3 classes (k=3 in the previous equations), being the average
accuracy=94.8%, using 4314 test images. This value gives a
sense of how effective the classifier is at the per-class level.
Regarding precision and recall, the values are near 95%.

Due to this specific pest and its behaviour, the system has a
threshold for the amount of moth fixed in 10. Up to this value,
an alert should be send recommending the fumigation. From
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Fig. 12. Confusion matrix corresponding to the inference testing without
applying Gray-World algorithm.

the metrics analyzed, we observe that the classifier presents a
good behaviour at assigning positive classifications correctly
and at classifying positive objects properly.

Moreover, to observe the effects of color correction in DNN
for this particular application, an architecture was designed
using the data set without applying the Gray-world algorithm.
The resulting confusion matrix is depicted in Fig. 12. We
observed that, using the same architecture exposed in Fig.
10, the overall accuracy of the system was 79.2%, with a
value 58% for recall and precision for class 1 (moth). After
this result, we extended the DNN with two more 2D-Conv
layers, getting 855,268 parameters. This modification yielded
an overall accuracy of 84%, with 89% and 76.7% for precision
and recall respectively for class 1.

Inference time reported by the DNN classifier was 40
ms/image, exhibiting a good compromise between execution
time and the metrics analyzed, which are higher than 90% in
all classes.

V. CONCLUSIONS

The focus of this research was to develop an automatic pest
detection and classification algorithm combining traditional
image processing techniques (for object detection) and DNN
(for classification), using a CNN architecture as classifier. This
development finds a direct application to reduce pesticide use
in fruit crops to control Carpocapsa, the main pest presented
in pear, apple, walnut and quince tree. Based on this method-
ology, the fumigation process can be constrained in location
and time, decreasing the frequency of pesticide application.

The combination of pre-processing techniques and DNN al-
lowed us to develop an effective classifier. Results exposed the
feasibility for this type of development using images obtained
in-field, where traps are exposed to natural conditions. We
improve the performance of DNN by means of color correction
and we conclude that data augmentation for training DNN is
a good choice when having a reduced data set.

Further studies will include inference times reduction for on
line generation of a map of the infested areas, classification
of multiple types of insects, and implementation of the multi-

class discrimination for pest detection using other machine
learning architectures. In addition, compression techniques for
models based on machine learning will be addressed, and
detection by machine learning algorithms will be developed.
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