
Production of vector mesons in the string + 3P0 model
of polarized quark fragmentation

A. Kerbizi ,1 X. Artru ,2 and A. Martin 1

1INFN Sezione di Trieste and Dipartimento di Fisica, Università degli Studi di Trieste,
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The production of vector mesons in the fragmentation process of polarized quarks is studied within the
recursive stringþ 3P0 model, improving a previous version of the model in which the production of
pseudoscalar mesons only was considered. Two types of couplings of the vector meson to quarks are
introduced, their coupling constants being the additional free parameters of the model. The angular
distribution of the decay products of the polarized vector meson is deduced from the spin density matrix of
the meson and the spin information is propagated along the fragmentation chain taking into account the
entanglement of spin states. The new model is implemented in a stand alone Monte Carlo program utilized
to investigate in detail kinematic distributions and transverse spin asymmetries. The sensitivity of these
observables to the new free parameters is discussed and the Monte Carlo results are compared with
experimental data on transverse spin asymmetries.
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I. INTRODUCTION

The quark (and gluon) fragmentation process is one
of the most intriguing and interesting phenomenon of
quantum chromodynamics. It belongs to the soft (long-
distance), nonperturbative domain and it is usually encoded
in fragmentation functions (FFs). FFs are thought to be
universal functions, i.e., common to all high energy
collision processes producing jets of hadrons (for a review
see Ref. [1]). The most studied FF is Dh

1qðz; pTÞ which
describes the fragmentation of an unpolarized quark q in a
not analyzed hadron h. The variable z is the fraction of the
quark energy carried by the hadron and pT is the transverse
momentum of the hadron with respect to the quark
momentum. The Q2 dependence of the fragmentation
functions is not considered in this work.
Particularly interesting is the spin-dependent fragmenta-

tion function Hh⊥
1q ðz; pTÞ which describes the Collins effect

in the fragmentation of a transversely polarized quark q in a
not analyzed hadron [2]. The effect is an azimuthal
distribution of the form

d3Nh

dzdpTdϕh
∝ 1þ aq↑→hþXjSTj sinðϕh − ϕSÞ: ð1Þ

The angles ϕh and ϕS are, respectively, the azimuthal angles
of the hadron transverse momentum and of the fragmenting
quark transverse polarization ST around the quark momen-
tum. The combination ϕC ¼ ϕh − ϕS is the Collins angle
of the hadron and the amplitude aq↑→hþX of the sinϕC
modulation for a fully polarized quark is the Collins
analyzing power. It is conventionally written as aq↑→hþX ¼
−pTHh⊥

1q =ðzMDh
1qÞ, M being the hadrons mass.

The Collins FF appears, coupled to the transversity
parton distribution function (transversity PDF) hq1 , in the
so-called Collins asymmetry in semi-inclusive deep inelas-
tic scattering (SIDIS) off transversely polarized nucleons.
Neglecting the intrinsic quark transverse momentum, the
asymmetry can be written as

AColl ¼
P

qe
2
qh

q
1 × aq↑→hþXDh

1qP
qe

2
qf

q
1 ×Dh

1q

; ð2Þ

where q ¼ u; d; s; ū; d̄ or s̄, and fq1 is the unpolarized PDF.
The Collins asymmetry has been measured by HERMES
[3] on protons, by COMPASS on deuterons [4] and on
protons [5], and at Jefferson Lab on 3He [6] and found
different from zero for the proton target. The Collins effect
can be directly accessed in eþe− annihilation to hadrons,
assuming that one knows the directions of the fragmenting
quark and antiquark, by measuring the asymmetry [7]
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a12 ¼ âNN ×

P
qe

2
qaq↑→h1þXDh1

1q × aq̄↑→h2þXDh2
1q̄P

qe
2
qD

h1
1q ×Dh2

1q̄

; ð3Þ

where h1 and h2 are two back-to-back hadrons, and âNN is
the elementary quark double transverse spin asymmetry
[8]. By combining in phenomenological analyses SIDIS
and eþe− data it has been possible to extract both the
Collins FF and the transversity PDF [9–11].
It is important to have a simulation model of quark

fragmentation, implemented in a Monte Carlo (MC) pro-
gram, reproducing the Collins effect as well as other effects
like the dihadron asymmetry [12–14] in the fragmentation
of transversely polarized quarks and the jet handedness
[15–17] in the fragmentation of longitudinally polarized
quarks. A promising model for the polarized quark frag-
mentation is the recursive stringþ 3P0 model [18–22]. This
model extends the Lund model of string fragmentation [23]
with the inclusion of the quark spin degree of freedom. It
respects confinement, it is left-right (LR) symmetric1 [23]
and is based on quantum amplitudes instead of probabil-
ities. The basic assumption which explains the spin effects
is that at each string breaking the quark-antiquark pairs
are produced in the 3P0 state [24], namely with total spin
S ¼ 1, relative orbital angular momentum L ¼ 1 and total
angular momentum J ¼ 0. Two slightly different versions
of the stringþ 3P0 model have been proposed, M18 [21]
and M19 [22], the difference being the choice of an input
function. Both of them are restricted to the production of
pseudoscalar mesons (PS) and have been implemented in
stand alone MC programs which gave similar results. In
particular, they both provide a satisfactory description of
the main properties of the measured Collins and dihadron
asymmetries and produce also the jet-handedness effect.
While M18 is more general than M19, the latter is more
simple and more suitable for further developments. It has
been interfaced to the hadronization part of the PYTHIA8

event generator [25] to fully exploit its predictive power
and to have a more complete description of the polarized
SIDIS process [26].
For a more complete description of the fragmentation

process, vector meson (VM) production must be consid-
ered. Hadrons coming from VM decays in fact give an
important contribution to the sample of the observed
hadrons. The VM production was first included in the
stringþ 3P0 model for the process pp↑ → ρX [27] limited
to the production of leading vector mesons which were
treated as unpolarized. The main difficulty of including
polarized VMs in the polarized quark fragmentation proc-
ess is to take properly into account the spin correlations
among the initial quark, the VM and the leftover quark in
the recurring process q↑ → h↑ þ q0↑.

In this paper we present the new stringþ 3P0 model
(M20), extending M19, in which the production of VMs in
the polarized quark fragmentation chain is taken into
account. The new model has been first presented in
Ref. [28] and it is partly based on the work of Ref. [18].
It is assumed that vector mesons are coupled to quarks
with coupling constants GL and GT for longitudinally and
transversely polarized vector mesons, respectively. Besides
the ratio fVM=PS ¼ jGLj2 þ 2jGTj2 between the abundances
of vector and pseudoscalar mesons, we have essentially two
new free parameters for the spin effects, jGL=GTj gov-
erning the relative fraction of longitudinal and transverse
vector mesons and θLT ¼ arg jGL=GTj governing the
oblique polarizations, namely the interference between
longitudinal and transverse polarizations. The model is
formulated at the amplitude level which automatically
preserves positivity and allows to propagate the spin
information along the fragmentation chain respecting
quantum entanglement following the prescriptions of
Refs. [29,30]. At present M20 has been implemented in
a stand alone MC program which allows us to study in
depth the model predictions.
The article is organized as follows. The theoretical aspects

of the new model are described in Sec. II. Section III
describes the stand alone MC implementation of M20. The
results of the simulations including the sensitivity to the free
parameters are presented in Sec. IV. New dihadron asym-
metries arising from the possible oblique polarization of
VMs are presented in Sec. V. The comparison with the
existing SIDIS and eþe− data are presented in Sec. VI. The
conclusions are given in Sec. VII.

II. Vector meson production
in the String+ 3P0 model

The fragmentation process qAq̄B → h1h2…hr…hN ,
where qA is a quark, q̄B either an antiquark in eþe−
annihilation or the target remnant in SIDIS and
h1h2…hr…hN the primary produced hadrons, is phenom-
enologically described as the decay of a relativistic string,
stretched between qA and q̄B [23,31]. The string decay
appears, in the infinite momentum frame, as a recursive
series of elementary splittings q → hþ q0, q is the recur-
ring splitted quark, h ¼ qq̄0 the emitted hadron in the
splitting and q0 the leftover quark. The label r indicates the
rank and the rank one hadron contains qA. We denote by k,
p, and k0 the four-momenta of q, h and q0. We will use the
null-plane components p� ¼ p0 � pz and k� ¼ k0 � kz.
The ẑ axis or string axis points towards the direction of the
initial quark qA in the string rest frame. The hadron
momentum can then be expressed in terms of the longi-
tudinal splitting variable Z ¼ pþ=kþ and the hadron trans-
verse momentum pT ¼ kT − k0

T with respect to the string
axis, kT and k0

T being the transverse momenta of q and q0,
respectively. The mass shell condition writes pþp− ¼ ϵ2

1LR symmetry should better mean [quark] line reversal
symmetry, namely the reversal of the quark fragmentation chain.
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where ϵ2 ¼ M2 þ p2
T is the transverse energy squared of

the hadron and M its mass. The quark spin information is
encoded in 2 × 2 density matrices ρ̂ðqÞ ¼ ð1þ σ · SqÞ=2
where Sq is the quark polarization vector.
The general formalism of the stringþ 3P0 model pre-

sented in Ref. [21] can include the production of mesons of
arbitrary spin. The spin variable sh of the meson enters the
quark-meson-quark vertex Γh;shðk0

T;kTÞ, which is a 2 × 2

matrix in quark spin space. sh refers to the helicity, the spin
along a chosen transverse axis or, for spin 1, specifies a
linearly polarized state. To make a full Monte Carlo
simulation of quark fragmentation with PS and VM
production, we must add two items to the prescriptions
of M18 or M19, namely

(i) the generation of M from a continuous resonant
mass spectrum and

(ii) the simulation of the decay process.
The second point deserves special attention, because the
spin state of the ðhq0Þ system is generally entangled. One
cannot simulate separately the decay of h and the frag-
mentation of the leftover quark q0.

A. The q↑ → VM↑+ q0 splitting function

1. General formula

Let us start by including the emission of VMs in the
formalism of M19 without treating the subsequent decay.
To label the VM spin state, we replace sh by the 3-vector V,
which is the space part of the covariant amplitude Aμ in
the VM rest frame, as specified in Sec. II A 2. V is real
for linear polarization, complex for vector polarization
and normalized by V · V� ¼ 1. The probability density of
emitting h in the elementary splitting is given by the
splitting function, which, when summing over the spin
states of q0, writes [cf. Eq. (36) of [21]]

Fq0;h;qðM;V;Z;pT;kT;SqÞ≡dNðq↑→h↑þq0Þ
dM2d2pTdZ=Z

¼Tr½Tðq0;h;qÞρðqÞT†ðq0;h;qÞ�:
ð4Þ

The gothic letter h≡ fh; p; shg ¼ fhadron species; 4-
momentum; spin stateg represents the meson state, whereas
q≡ fq; kg ¼ fquark flavor; quarkmomentumg represents
the quark state, spin excluded. T is the 2 × 2 splitting
matrix, given by

Tðq0; h; qÞ ¼ Cq0;h;qDhðMÞǧðϵ2Þ½ð1 − ZÞ=ϵ2�a=2

× exp½−bLϵ2=ð2ZÞ�Δq0 ðk0
TÞΓh;Vû

−1=2
q ðk2

TÞ:
ð5Þ

The coefficient Cq0;h;q is proportional to the ðq̄0qÞ wave
function in flavor space; a and bL correspond to the

parameters a and b of the Lund Model. ǧðϵ2Þ is a model
input function which, like in M19, we take

ǧ2ðϵ2Þ ¼ 1=Naðϵ2Þ;

Naðϵ2Þ ¼
Z

1

0

dZ
Z

�
1 − Z
ϵ2

�
a
expð−bLϵ2=ZÞ: ð6Þ

The 2 × 2 matrix

ΔqðkTÞ ¼ ðμþ σzσ · kTÞfTðk2
TÞ ð7Þ

contains the spin and kT dependence of the quark propa-
gator in the stringþ 3P0 model, μ being a complex mass
parameter and fTðk2

TÞ a fast decreasing function of k2
T,

mainly responsible for the transverse momentum cutoff.
We take fTðk2

TÞ ¼ exp ð−bTk2
T=2Þ, with bT a free param-

eter already present in the Lund model.
DhðMÞ has the denominator of the vector meson

propagator. We take the Breit-Wigner form

DhðMÞ ¼
ffiffiffiffiffiffiffi
ND

p
M2 − m̄2

h þ im̄hγh
; ð8Þ

where m̄h is the position of the resonance peak and γh
the resonance width, both set to the values in PDG [32].
ND is the normalization constant of the mass distribution
jDhðMÞj2 of the resonance.
The 2 × 2 matrix Γh;V sets the coupling of the vector

meson to the quark line. Its most simple form is [18]

Γh;V ¼ GTσT · V�
Tσz þ GLV�

z × 1: ð9Þ

GL and GT are the coupling constants for longitudinal and
transverse linear polarizations of the VM. This decom-
position is analogous to that in GM and GE of the nucleon
form factor and that in 3S1 and 3D1 of the deuteron wave
function. In a covariant quark-multiperipheral model the
analog couplings would be γμ and σμνpν. We allow GL=GT
to be complex, as a result of different quantum actions of
the initial string for the L and T polarizations. In the
following we will use as parameters

jGL=GTj; θLT ¼ argðGL=GTÞ; ð10Þ

which are the new free parameters of M20. A relevant
quantity is the fraction

fL ¼ jGLj2
2jGTj2 þ jGLj2

; ð11Þ

for Sq ¼ 0 it is fL ¼ ρ̂ll [see Eq. (33)], hence fL is the
fraction of the longitudinally polarized vector mesons.
ûq is a 2 × 2 matrix given by Eq. (47) of [21], which we

decompose as
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ûqðkTÞ ¼
X
h

ûq;hðkTÞ; ð12Þ

ûq;hðkTÞ ¼ jCq0;h;qj2
Z

d2k0
Tǧ

2ðϵ2ÞNaðϵ2Þ

×
X
sh

Γ†
h;sh

Δ†
q0 ðk0

TÞΔq0 ðk0
TÞΓh;sh : ð13Þ

ûq;hðkTÞ is the contribution of hadron species h. For vector
mesons, sh ¼ V and

P
V is made over three orthonormal

basic vectors.2 For pseudoscalar mesons it is sh ≡ 0
and Γh ¼ σz.
With our choice ǧ2ðϵ2ÞNaðϵ2Þ ¼ 1 (choice of M19) both

ûqðkTÞ and ûq;hðkTÞ become proportional to the unit
matrix and independent of kT:

ûq;h ¼ 1 × jCq0;h;qj2ðjμj2 þ hk2
TifTÞ

×

�
1 ðPS caseÞ
ð2jGTj2 þ jGLj2Þ ðVM caseÞ ; ð14Þ

with the notation

hk2
TifT ≡

Z
d2kTk2

Tf
2
Tðk2

TÞ=
Z

d2kTf2Tðk2
TÞ; ð15Þ

where fT is the function appearing in Eq. (7). So, from
now ûqðk2

TÞ and ûq;hðk2
TÞ will be considered as constant

numbers and we will omit “1×” which appears in Eq. (14).
The relative probability of getting the hadron species h in
the splitting q → hþ q0 is then

Pðq → hþ q0Þ ¼ ûq;h=ûq: ð16Þ

It is independent of kT and of the polarization of q, contrary
to other choices of the function ǧðϵ2Þ.

2. Frame for the polarization vector V

V is obtained from the covariant 4-vector Aμ of the VM
wave function by bringing the VM at rest via two
successive Lorentz boosts: a longitudinal one B−1

L which
suppresses pz and a transverse one B−1

T which suppresses
pT, where

BT ¼ BðpT=ϵÞ; BL ¼ Bðpzẑ=EÞ ð17Þ

and the argument of B is the velocity vector of the
boost. The action of BT and BL is shown in Fig. 1.
Thus ð0;VÞ ¼ B−1

T B−1
L Aμ. This transformation preserves

the longitudinal Lorentz invariance and the LR symmetry
[23] of the model. We call LR symmetric (rest) frame the

resulting reference frame for V (also named PL frame
in Ref. [33]).
The VM could have been put at rest with the direct boost

B−1ðp=EÞ, leading to a different vector Vhl (“hl” refers to
the so-called helicity frame). We have ð0;VÞ ¼ RWð0;VhlÞ
where RW ¼ B−1

T B−1
L Bðp=EÞ is a Wigner rotation about

ẑ × p, of angle αWðp=EÞ given by

αWðp=EÞ ¼ arcsin

�
pzpT

EϵþMϵ

�
;

¼ π

2
− θp − β; β ¼ arcsin

�
Mpz

ϵjpj
�

ð18Þ

and represented in Fig. 1.3 Vhl and αWðp=EÞ are not
invariant under a longitudinal boost. In particular, in the
SIDIS process they change from the target frame to the
γ�-nucleon frame. When pz → þ∞ (dashed lines of Fig. 1)
the helicity frame becomes the null plane (rest) frame and

Vhl → Vnpl: ð19Þ

αWðp=EÞ → αW∞ ¼ arctanðpT=MÞ: ð20Þ

Vnpl is longitudinally Lorentz invariant but not LR
symmetric.
The above transformations also serve to adjust the

individual momenta p�
1;p

�
2;… or the relative momenta

of the decay products in the rest frame of the VM. For a
2-body decay, the relative 4-momentum pμ

rel ¼ ðE�
2p

μ
1 −

E�
1p

μ
2Þ=M [with E�

i ¼P ·pi=M and M2¼P2≡ðp1þp2Þ2]
transforms like Aμ;

r≡ p�
rel ¼ p�

1 ¼ −p�
2 ð21Þ

is the analog of V and

FIG. 1. Boost compositions involved in the definition of V and
the Wigner angle αW, following Eqs. (17) and (18). v ¼ p=E.
The dashed lines figure the pz → ∞ limit, Eq. (20).

2Due to the fluctuating mass of the VM, one should insertR
dM2jDhðMÞj2 in Eq. ð13Þ before the integral over k0

T.

3Other expressions are αW ¼ N ·
R
Cðp × dpÞ=ðE2 þmEÞ ¼

M
R R

A d
2p=E3, where C is the closed path run by the vector p in

the successive boosts Bðp=EÞ, B−1
L , B−1

T , and A is the area
enclosed by C, and N is defined in Eq. (23).
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R ¼
�
RT

Rz

�
¼ 1

z1 þ z2

�
z2p1T − z1p2T

E�
2z1 − E�

1z2

�
ð22Þ

is the analog of Vnpl. R is obtained from r in the LR
symmetric frame by the rotation of angle −αW∞ about
ẑ × pT.RT is the relative transverse momentum involved in
the dihadron asymmetry, whether or not h1 and h2 come
from a resonance. It was introduced and named κτ
in Ref. [34].

3. Coordinates in the rest frame

Independently of the choice of frame (LR symmetric
or null plane) we need three basic vectors to define the
coordinates of Sq, V, p�

1, orR. A natural basis, fL;M;Ng,
is linked to the meson transverse momentum pT:

L ¼ ẑ; M ¼ pT=jpTj; N ¼ ẑ ×M: ð23Þ

We will also use the fl;m;ng basis linked to the antiquark
momentum −k0

T,

l ¼ ẑ; m ¼ −k0
T=jk0

Tj; n ¼ ẑ ×m; ð24Þ

and the fX;Y;Zg basis linked to the quark transverse
polarization,

Y ¼ SqT=jSqTj; Z ¼ ẑ; X ¼ Y × Z: ð25Þ

These bases are simply related by rotations about ẑ. From
now on, Sq, Sq · n, Sq ·X etc., will shortly be written S, Sn,
SX etc. To a vector V is associated the pure spin state of the
vector meson

jVi ¼ VLjLi þ VMjMi þ VN jNi;
¼ Vljli þ Vmjmi þ Vnjni; etc: ð26Þ

Note that jVi and j − Vi are the same state.

4. Splitting function for pseudoscalar mesons

Before studying the splitting function for vector mesons,
let us first recall the one for pseudoscalar mesons
[cf. Eq. (26) of [22]]. Removing the argument V in
Eq. (4) and using Eqs. (5)–(7) and (9)–(16), one gets

Fq0;hðPSÞ;qðZ;pT;kT;SqÞ

¼ ûq;h
ûq

f2Tðk02
T Þ

jμj2 þ hk2
TifT

N−1
a ðϵ2Þ

�
1 − Z
ϵ2

�
a
exp ð−bLϵ2=ZÞ

× ðjμj2 þ k02
T Þ½1þ âSn�; ð27Þ

with

â≡ 2ImðμÞk0T
jμj2 þ k02

T
> 0: ð28Þ

The square bracket of Eq. (27) is responsible for the Collins
effect, since n is correlated with N. In particular, n ¼ N for
a rank one hadron.

5. Splitting function for vector mesons

In the case of vector mesons, selecting one polarization
of the fl;m;ng basis, we obtain from Eqs. (4)–(7),
Eqs. (9)–(16), and Eq. (28)

Fq0;h;qðM;V; Z;pT;kT;SqÞ

¼ ûq;h
ûq

jDhðMÞj2f2Tðk02
TÞ

ðjμj2 þ k02
TÞ

jμj2 þ hk2
TifT

× N−1
a ðϵ2Þ

�
1 − Z
ϵ2

�
a
exp ð−bLϵ2=ZÞ

×

8>>><
>>>:

ð1 − âSnÞfL for V ¼ l

ð1 − âSnÞð1 − fLÞ=2 for V ¼ m

ð1þ âSnÞð1 − fLÞ=2 for V ¼ n

1 − fLâSn for the sum over V

:

ð29Þ
The last line after the brace is for the case where the VM

polarization is not analyzed. Equation (29) with this choice
and Eq. (27) are used in simulations to generate first
the vector or pseudoscalar meson species of the emitted
particle, then its transverse momentum pT ¼ kT − k0

T and
then its Z.
Global Collins effect.—It is the Collins effect of the

vector meson and it comes from the Sn term of Eq. (29). It
is to be distinguished from the dihadron asymmetry (or
relative Collins effect) of the decay products. These have
individual Collins effects resulting from both the global and
the relative one.
For a rank one meson, −k0

T ¼ pT and n ¼ N. Then the
analyzing power aqA↑→hþXðz; pTÞ is equal to the coefficient
ofSn in Eq. (27) for PSmesons or (29) forVM. It ismaximum
for jpTj ¼ jμj. For the VM, it depends on the linear
polarization, as pictured in Fig. 2, which gives a semiclassical
description of PS andVMproduction in themodel. If theVM
polarization is normal to the production plane as in Fig. 2(a),
then the Collins asymmetry equals that of a pion of the
same jpTj. If the polarization is in the production plane as in
Fig. 2(b), then the asymmetry is opposite to that of a pion.
A “hidden spin” effect.—Figure 3 is the analog of Fig. 2

for a meson of rank ≥2. It shows that the quark and the
antiquark transverse momenta are on the same side for a
PS meson [Fig. 3(a)]. The same occurs for a VM with
probability ð1 − fLÞ=2. In the case of Fig. 3(b), which
occurs with probability ð1þ fLÞ=2, the q and q̄0 momenta
are on the opposite sides. So, hpT

2i is expected to be
larger for PS mesons than for VMs. This prediction is
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independent on the polarization of the initial quark and
specific of the 3P0 mechanism. It could be tested in
unpolarized experiments, looking at “unfavored” quark
fragmentation or at the central rapidity region.

B. The density matrix of the vector meson

Rewriting Tðq0;h;qÞ, defined in Eq. (5), as Tαðq0;h;qÞVα,
the relative probability to find the VM in a state jVi is of
the form

hVjρ̂ðhÞjVi ¼ V�
αρ̂αα0 ðhÞVα0 ð30Þ

where α and α0 ∈ fL;M;Ng or fl; m; ng or fX; Y; Zg,
depending on the basis, and

ρ̂αα0 ðhÞ ¼
TrfTαρ̂ðqÞT†

α0 gP
βTrfTβρ̂ðqÞT†

βg
;

¼ Trfðμþ σzσ ·k0
TÞΓh;αρ̂ðqÞΓ†

h;α0 ðμ� þ σ ·k0
TσzÞg

ðjμj2 þk02
TÞNðSÞ ;

ð31Þ

with

NðSÞ ¼ 2jGTj2 þ jGLj2 − jGLj2âSn: ð32Þ

ρ̂αα0 ðhÞ is the polarization matrix or (spin) density matrix of
the VM, normalized to Trρ̂ðhÞ ¼ 1.
The real part of ρ̂ is the tensor, or linear polarization.4 It

is convenient to represent it by a polarization ellipsoid as in
Figs. 2–5. The axes of this ellipsoid are parallel to the
eigenvectors of Reρ̂ and their half-lengths are equal to the
square roots of the eigenvalues (see Appendix A). Reρ̂
governs the angular distribution of the decay product.
Thus, in the VM → h1h2 decay, the relative h1h2 momen-
tum tends to be aligned with the major axis (but without
preferred sense).
In the ðl;m;nÞ basis Reρ̂αα0 ðhÞ writes the following:

ρ̂ll ¼ ð1 − âSnÞjGLj2=NðSÞ;
ρ̂mm ¼ ð1 − âSnÞjGTj2=NðSÞ;
ρ̂nn ¼ ð1þ âSnÞjGTj2=NðSÞ;

Reρ̂mn ¼ âSmjGTj2=NðSÞ;
Reρ̂ml ¼ ðâ − SnÞ sin θLTjGLGTj=NðSÞ;
Reρ̂nl ¼ ðâ cos θLTSl − sin θLTSmÞjGLGTj=NðSÞ; ð33Þ

together with Reρ̂αα0 ¼ Reρ̂α0α.
5 These are in accordance

with Eq. (29) and satisfy automatically the positivity
conditions.
The imaginary, antisymmetric part of ρ̂ðhÞ is the vector

or circular polarization. It plays no role in the decay
processes considered here. The complete matrix elements
are given in Appendix A.
Alignedand transverse linearpolarizations.—The element

ρ̂ll ≡ ρ̂LL is related to the alignment parameter ð3ρ̂LL − 1Þ=2.
The elements ρ̂mm, ρ̂nn, and ρ̂mn define the transverse linear
polarization, whereas ρ̂ml and ρ̂nl depend on θLT and describe
oblique polarizations. Note, however, that our separation in
aligned, transverse and oblique is linked to our choice of the
Lorentz transformations bringing the meson at rest.
Figure 4 represents, for a first-rank VM and various

orientations of pT with respect to ST, the transverse linear

polarization defined by the 2 × 2 restricted matrix Reρ̂ðTÞαα0 ¼
Reρ̂αα0 for α and α0 ≠ z. The ellipses are the projections of
the polarization ellipsoids. Their axes are parallel to the
eigenvectors of ρ̂ðTÞ and have lengths equal to the square
roots of the eigenvalues ð1� âjSTjÞjGTj2=NðSÞ of ρ̂ðTÞ.
Note that for a 2-body decay and ϕðpTÞ ¼ π (case of ellipse
E2), the left-moving decay hadron gets a large transverse
momentum and the same Collins effect as the VM itself.

(a)

(b)

FIG. 3. Production mechanism of a rank ≥2 meson, here the
q3q̄4 meson. Same notations as in Fig. 2.

(a)

(c)

(b)

FIG. 2. Production mechanism of a first-rank meson in the
stringþ 3P0 model. (a) PS meson or VM of linear polarization
perpendicular to the figure plane (the ẑ, pT plane). (b) VM of
linear polarization in this plane. Straight simple arrows represent
quark or antiquark momenta. Circular arrows represent quark
spins or qq̄ relative orbital momenta. Linearly polarized VMs are
represented by ellipsoids. (c) Correlations between the ellipsoid
major axis, the q spin and the q̄ spin.

4A general description of the density matrix for spin 1 particles
can be found in Ref. [35].

5Equation (27) of [18] is in agreement with Eq. (33) except for
its wrong sign in front of 2ImðμÞðVT · t̃VT · Sþ VT · tVT · S̃Þ.
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Oblique polarizations.—They are interferences between
transverse and longitudinal amplitudes, therefore depend
on jGLGTj and θLT and correspond to the elements ρ̂ml and
ρ̂nl. We analyze it in the basis fX;Y;Zg introduced in
Eq. (25). Let us consider separately, in Eq. (33) or (B2), the
effects of the terms â sin θLT, â cos θLTSz, and sin θLTST in
ρ̂ml and ρ̂nl.
The term â sin θLT in ρ̂ml is independent of the quark

polarization and gives an oblique polarization in the l, m
plane, projected on the ðX;ZÞ plane in Fig. 5(a). For the
2-body decay VM → h1h2 it acts upon the dependence of
hpT

2
i i on zi: at large z1, p�

1z is likely positive and, for rank
one, Fig. 5(a) indicates a larger hp2

1Ti for positive than for
negative sin θLT. It comes from the pT composition law

piT ¼ p�
iT þ ½E�

i þ pT · p�
iTðϵþMÞ�pT=M ð34Þ

and the fact that the sign of pT · p�
iT is most likely that of

p�
iz × sin θLT. The term â cos θLTSl in ρ̂nl gives an oblique

polarization in the ðl;nÞ plane. This is a jet handedness
effect like the one with only direct pions treated in Sec. VI
of [21]. For the decay of a first-rank VM in two mesons h1,
h2 we have at fixed p�

1z

p�
1zhðp1 × p2Þzi ¼ −ð2=5ÞReρ̂nljp�

1j2jpTj: ð35Þ

The terms in sin θLTST, gathered in one term of (B2), are
independent of Imμ and produce an oblique polarization in
the ðX;ZÞ plane [Fig. 5(b)]. In a 2-body decay it contrib-
utes to the individual Collins asymmetry of the decay
products. Considering Eq. (34), we see that at fixed zi this

obliquity adds to or subtracts from the part inherited from
the global Collins effect. This effect will be studied in more
detail in Sec. IV C 2.
The oblique polarization is also a source of dihadron

asymmetry, which bears on the variable RT defined in
Eq. (22). The asymmetry sign is not simply deduced from
the orientation of the ellipses in Fig. 5, due to the Wigner
rotation. In Eq. (22) the distinction between h1 and h2 must
not be done according to their charges (like h1 ¼ πþ,
h2 ¼ π−) but between “fast” and “slow,” for instance, by
z1 > z2. A distinction by the charges gives no dihadron
asymmetry because of the p�

1 ↔ p�
2 invariance of the decay

angular distribution. This dihadron asymmetry is not the
result of an interference with a nonresonant amplitude. It is
related to the fragmentation function H1LT of Ref. [36].
The asymmetry will be discussed in more detail in Sec. V.

C. The decay of a polarized VM

Decay in two pseudoscalar mesons.—We suppose that,
by the Monte Carlo method, we have generated the species
h of the VM, its running mass M, its momentum p and
calculated its density matrix ρ̂αα0 in the fl;m;ng basis, for
instance, with Eq. (33).
First, one chooses the h1 and h2 species, e.g., Kþπ0 for a

K�þ, following the known branching ratio. This fixes the
modulus of the relative momentum r ¼ p�

1 ¼ −p�
2 in the

VM rest frame,

jrj ¼ ð2MÞ−1½M2 −m2þ�1=2 × ½M2 −m2
−�1=2; ð36Þ

where m� ¼ m1 �m2. It remains to generate its
direction r̂. The decay amplitude is

FIG. 4. Transverse polarization of a first-rank vector meson, for
azimuths ϕðpTÞ ¼ jπ=2 (j ¼ 0;…3) of pT in the (X;Y) frame.
The ellipses are projections of the polarization ellipsoids. The
darknesses of Ej figure the depths ∝ ðρ̂ZZÞ1=2 of the ellipsoids in
the Z direction. Ellipse E is for an ordinary azimuth. Its major axis
(dashed) is parallel to the bisector of ST and N.

(a) (b)

FIG. 5. Oblique polarization in the ðZ;XÞ plane of a first-rank
vector meson, corresponding to cases E0 and E2 of Fig. 4. (a) with
only the â sin θLT term in Reρ̂ml in Eq. (33). (b) with only the
sin θLTSY term in Reρ̂XZ in Eq. (B2). The continuous (dashed)
contours are for positive (negative) SY sin θLT. Ellipsoid E0 is
drawn darker to figure its larger depth ∝ ðρYYÞ1=2 in the Y
direction. The bent arrows indicate the Wigner rotation when
passing from the LR symmetric to the null-plane frame, accord-
ing to Eqs. (19) and (20).
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MðVM → h1h2Þ ¼ ghh1h2A
μðp1 − p2Þμ ¼ −2ghh1h2V · r:

ð37Þ

Then, the resonant q → h1 þ h2 þ q0 amplitude is propor-
tional to

X
V¼l;m;n

TαVαVβrβ ¼ Tαrα; ð38Þ

and the angular distribution takes the form

dN ðr̂Þ=dΩ ¼ 3ð4πÞ−1r̂αρ̂αα0 ðhÞr̂α0 ; ð39Þ

reminiscent of Eq. (30). A corresponding formula is found
in Eq. (B10) of Ref. [36].
Decay ω → π0γ.—The decay amplitude is

Mðω → π0γÞ ∝ Vω · ðVγ × rÞ; ð40Þ

where Vγ⊥r is the vector amplitude of the photon and
r ¼ p�

γ . Averaging over Vγ, we have to replace in Eq. (39)
r̂αr̂α0 by the tensor ð1=2Þðδαα0 − r̂αr̂α0 Þ.
Decay ω or ϕ → πþπ−π0.—Due to parity conservation

the invariant decay amplitude in three pseudoscalars is of
the form

MðVM → h1h2h3Þ ∝ F ðs1; s2; s3ÞV · τ; ð41Þ

where τ ¼ p�
1 × p�

2 is normal to the decay plane, si¼
ðpjþpkÞ2 and fi; j; kg is a cyclic permutations of f1; 2; 3g.
From energy-momentum conservation, p�

1 þ p�
2 þ p�

3 ¼ 0
and E�

1 þ E�
2 þ E�

3 ¼ M, which is the variable mass of the
resonance. The E�

i are linearly related to the si by

E�
i ¼ ½p�

i þm2
i �1=2 ¼ ðM2 þm2

i − siÞ=ð2MÞ: ð42Þ

Taking into account energy-momentum conservation, the
3-body phase space element reduces to

dΦðp�
1;p

�
2Þ ∝ dΩðτÞdϕ1jτdE�

1dE
�
2; ð43Þ

where ϕ1jτ is the azimuth of p�
1 about τ. In the ðE�

1; E
�
2Þ

plane (Dalitz plot) the physical phase space is limited to the
domain

τ2 ≡ p�2
1 p�2

2 − ð1=4Þðp�2
1 þ p�2

2 − p�2
3 Þ2 ≥ 0: ð44Þ

The form factor F ðs1; s2; s3Þ depends on the dynamics, in
particular on final state 2-body interactions. Following
the isobar model, we assume that the VM decay occurs in
two steps, h → πi þ ρ̄i, then ρ̄i → πj þ πk, where now
fþ; 0;−g replace f1; 2; 3g. So, we take

F ðsþ; s−; s0Þ ¼
X

i¼þ;0;−

ghρ̄iπigρ̄iπjπk

si − m̄2
ρi
þ im̄ρi γ̂ρi

: ð45Þ

By isospin symmetry the coupling constants ghρπ and gρππ
do not depend on the charge of the intermediate ρ meson:
ghρþπ− ¼ ghρ−πþ ¼ ghρ0π0 and gρþπ0πþ ¼ gρ−π−π0 ¼ gρ0πþπ− .
To generate the pion momenta p�

i , we proceed in three
steps. First we draw E�

1 and E�
2 according to the (not

normalized) distribution

wðE�
1; E

�
2Þ ¼ τ2jF ðs1; s2; s3Þj2: ð46Þ

and calculate jp1j, p1 · p2, and jτj.
Then we generate τ̂ ¼ τ=jτj according to Eq. (39) with

r̂ → τ̂. Indeed, τ̂ plays the same role as r̂ in the two-
body decay.
Then we draw at random ϕ1jτ in ½0; 2π� and build

p�
1 ¼ jp�

1jRẑ×τðθ�τÞðcosϕ1jτ ; sinϕ1jτ ; 0ÞT; ð47Þ

where θ�τ is the polar angle of τ.
Finally we build p�

2 and p�
3 ¼ −p�

1 − p�
2, using

p�
2 ¼ jp�

1j−2½ðp1 · p2Þp�
1 þ τ × p�

1�: ð48Þ

Boosting the decay mesons.—Once ðE�
i ;p

�
i Þ have been

generated, the momenta ðEi;piÞ in the string frame are
obtained by the inverse of the boosts which serve to define
V in Sec. II A 2:

ðEi;piÞ ¼ BLBTðE�
i ;p

�
i Þ; ð49Þ

where BL and BT are the boosts defined in Eq. (17). The
effect of these boosts on the momenta of the decay pions
from a ρ is illustrated in Fig. 6.

D. Spin density matrix of q0

When a VM has been generated by the splitting
q → VMþ q0, the information about the spin state of q0,
encoded in its density matrix ρ̂ðq0Þ ¼ ð1þ σ · Sq0 Þ=2,
depends on the information about the decay products of
the VM.

1. Case without information about the decay products

Suppose that the VM is not analyzed (only p is recorded,
not the momenta of the decay products). Then

ρ̂ðq0Þ ¼
� X
V¼l;m;n

Tðq0; h; qÞρ̂ðqÞT†ðq0; h; qÞ
�
=Tr½� � ��;

¼ ðμþ σzσ · k0
TÞΓh;αρ̂ðqÞΓ†

h;αðμ� þ σ · k0
TσzÞ

ðjμj2 þ k02
TÞNðSqÞ

; ð50Þ
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where ½� � �� repeats the numerator. The second expression
looks like in Eq. (31), but summing over α ¼ α0 and
removing the symbol Tr in the numerator.
For the emission of a pseudoscalar meson, the spin

density matrix of q0 can be calculated using Eq. (50) with
Γh ¼ σz as in M19 [22].
Depolarization of the recurring quark.—As in the model

with only pseudoscalar mesons [cf. Eqs. (31)–(32) of [22]],
the recurring quark becomes less and less polarized as its
rank increases, if the transverse momenta of the emitted
hadrons are integrated over. The depolarization coefficients
DVM

TT ≡ Sq0T=SqT and DVM
LL ≡ Sq0L=SqL following the emis-

sion of a VM are obtained by replacing the numerator and
the denominator of Eq. (50) by their averages on k0

T
weighted by f2Tðk0

TÞ:

DVM
TT ¼ fLð1þ hk2

TifT=jμj2Þ−1 ¼ −fLDPS
TT;

DVM
LL ¼ ð2fL − 1Þ jμj

2 − hk2
TifT

jμj2 þ hk2
TifT

¼ ð2fL − 1ÞDPS
LL; ð51Þ

where DPS
TT and DPS

LL are given in Eqs. (31)–(32) of [22].
Note that these coefficients are smaller for VM than for PS.
This is due to the loss of information when the momenta of
the decay products are not measured. Note also the opposite
signs of DVM

TT and DPS
TT.

2. Case where the momenta of decay products are known

The VM decay matrix.—As already said, ρ̂ðq0Þ depends
on the information about the decay products of the VM.
This information is encoded in a matrix ρ̌ðhÞ called the
decay matrix (also indicated with D in literature) [29,30]
or acceptance (density) matrix [35]. ρ̌ðhÞ can be seen as
the density matrix of the VM running backward in time,
contrary to the emittance density matrix ρ̂ðhÞ studied in

Sec. II B. For a definite state jp�
1;p

�
2 � � �i of the decay

products,

ρ̌α0αðhÞ ¼ M†
α0 ðp1; p2 � � �ÞMαðp1; p2 � � �Þ; ð52Þ

writing the decay amplitude as Mαðp1; p2 � � �ÞVα. For the
decays that we consider,

ρ̌α0αðhÞ ∝

8>>><
>>>:

r̂α0 r̂α ðVM → 2PSÞ
τ̂α0 τ̂α ðVM → 3PSÞ
δαα0 − r̂αr̂α0 ðω → π0γÞ
δαα0 ðVMnot analyzedÞ

: ð53Þ

Wewrite “∝” instead of “¼” because we do not fix the trace
of ρ̌ðhÞ. The angular distribution in Eq. (39) or in Eq. (43) is
proportional to Trfρ̂ðhÞρ̌ðhÞg. In the third line of Eq. (53),
the decay state is an incoherent superposition of the states
with photon helicities�1. The last line is for the case where
r̂ or n̂ is not recorded. In lines 1 and 2, ρ̌ðhÞ is the density
matrix of a pure state, instead in lines 3 and 4 it is that of a
statistical mixture.
Combining ρ̌ðhÞ and ρ̂ðqÞ.—Taking into account the

information encoded in ρ̌ðhÞ, we replace Eq. (50) by

ρ̂ðq0Þ ∝ TαρðqÞT†
α0 ρ̌α0αðhÞ

∝ ðμþ σzσ · k0
TÞΓh;αρ̂ðqÞ

× Γ†
h;α0 ρ̌α0αðhÞðμ� þ σ · k0

TσzÞ: ð54Þ

Compared to Eq. (50), there are two indices α and α0, which
we contract with those of ρ̌α0αðhÞ. Again the use of “∝”
instead of “¼” means that we have not yet fixed the trace
of ρ̂ðq0Þ.
Note.—Carrying information “backward in time” with

ρ̌ðhÞ is necessary to generate the correct correlations
between the spin of q0 and the momenta of the decay
products when the joint density matrix

hαj ⊗ hsq0 jρ̂ðh; q0Þjs0q0 i ⊗ jα0i ¼ hsq0 jTαρ̂ðqÞT†
α0 js0q0 i ð55Þ

is entangled. This is the general case: for instance, if q is in
the pure spin state jSq ¼ þŷi, the VMþ q0 system is in the
entangled (nonseparable) state

X
α

jαi⊗TαjSqi∝GT½jxi⊗σxjŷiþjyi⊗σyjŷi�

þGLjzi⊗ jŷi¼GTjxi⊗ j− ŷiþ½GTjyiþGLjzi�⊗ jŷi:
ð56Þ

III. MONTE CARLO IMPLEMENTATION

The structure of the stand alone MC implementation of
M20 is the same as that of M19 [22]. First the flavor u, d,

FIG. 6. Boosts transforming the pion momenta of ρ decay, from
the LR symmetric frame (p�

1 ¼ r and p�
2 ¼ −r) to the string frame

(p1 and p2). Also shown is the relative momentum R in the null-
plane frame, related to r by a Wigner rotation of angle αW∞. The
line “…:≫….” represents the move of the extremity of a vector p
during the boosts BT and BL. The figure is calculated for
jpTj=Mρ ¼ 8=15, PL=ϵðρÞ ¼ 35=12, and p1 and p2 in the
ðẑ;pTÞ plane.
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or s, the four-momentum and the spin density matrix of the
fragmenting quark qA are defined. In the simulations of the
fragmentation process in a SIDIS event the initial quark
energy has been taken from a sample of SIDIS events
collected by the COMPASS experiment with a 160 GeV=c
muon beam, and having Q2 > 1 ðGeV=cÞ2 and the invari-
ant mass of the final hadronic system larger than 5 GeV=c2,
as in Ref. [22]. For the comparison with eþe− data a fixed
center of mass energy

ffiffiffi
s

p ¼ 10 GeV has been used to
compare with the BELLE experiment. Once the initial
quark state has been set up, the fragmentation chain is
simulated by repeating recursively the elementary splitting
q → hþ q0 until the condition for the termination of the
fragmentation chain is reached. The hadron h is assigned
to the vector or pseudoscalar multiplet according to the
relative probability fVM=PS. This parameter is fixed and
taken as in PYTHIA8, namely for light mesons containing
only u and d quarks it is fVM=PS ¼ 0.62 whereas for
mesons containing at least one strange quark it is
fVM=PS ¼ 0.725.
The simulation of the elementary splittings in M20

proceeds in the following steps:
(1) Generate a new q0q̄0 pair with q0 ¼ u, d, s taking into

account the suppression of s quarks according to
the relative probabilities PðuūÞ∶Pðdd̄Þ∶Pðss̄Þ ¼
3=7∶3=7∶1=7 as in [22] with M19.

(2) Form h ¼ qq̄0 and choose the VM multiplet with
probability fVM=PS=ð1þ fVM=PSÞ. If ðqq̄0Þ is flavor
neutral, then choose the meson species h with
probability proportional to jCq0;h;qj2, according to
Eqs. (13) and (16). If h is PS, then assign the
corresponding mass. If h is a VM, then generate its
massM with the jDhðMÞj2 distribution, according to
Eq. (29) summed over V and integrated over Z
and k0

T.
(3) According to Eqs. (27) and (29) generate k02

T with
the distribution f2Tðk02

TÞðjμj2 þ k02
TÞ=hjμj2 þ k02

TifT ,
and the azimuthal angle ϕðk0

TÞ following the factor
ð1þ âSnÞ for a PS, ð1 − fLâSnÞ for a VM. Con-
struct pT ¼ kT − k0

T (with kT ¼ 0 for q ¼ qA).
(4) Generate Z with the distribution given in the second

line of Eq. (27) or third line of Eq. (29).
(5) Calculate pþ ¼ Zkþ, p− imposing the mass shell

condition pþp− ¼ ϵ2 and k0� ¼ k� − p�.
(6) Test the exit condition (see below) on the remaining

mass squared M2
X ¼ ðk0 þ kBÞ2. If it is not satisfied,

then continue with the next step, otherwise the
current hadron is removed and the fragmentation
chain ends. We do not treat the decay of the
remaining string piece.

(7) Construct the hadron four-momentum p ¼
ðE;pT; pzÞ by calculating E ¼ ðpþ þ p−Þ=2 and
pz ¼ ðpþ − p−Þ=2. Store the hadron in the event
record.

(8) If h is a PS calculate the spin density matrix of q0
using Eq. (50) with Γh ¼ σz and return to step (1). If
h is a VM, then do the following:
(i) Calculate the spin density matrix ρ̂ðhÞ of h

using Eq. (31).
(ii) Chose the decay channel (if more than one) as

specified below. Construct the momenta of the
decay hadrons using ρ̂ðhÞ to generate the angles
as explained in Sec. II C.

(iii) Boost the decay products according to Eq. (49).
Store the decay hadrons in the event record.

(iv) Build the acceptance matrix ρ̌ðhÞ of Eq. (53).
(v) Calculate the spin density matrix of q0 using

Eq. (54). Go to step 1.
The probabilities used to determine the PS meson species at
step (2) are the same as in M19. The probabilities of the
VM species are obtained from the corresponding wave
functions in flavor space. Unlike the PS case, for VM
production there is no suppression factor among flavor
neutral states, e.g., a spin-1uū or dd̄ pair is assigned to a ρ0

or to an ω with the same probability (see also Ref. [28]).
The exit condition in step 6 is satisfied when not enough

remaining mass squared is left in the string to produce at
least one resonance (baryonic in SIDIS, mesonic in eþe−)
as in M19.
The decay channels considered in (8.2) are ρ → ππ,

K� → Kπ, ω→πþπ−π0, ω→π0γ, ω → πþπ−, ϕ → KþK−,
ϕ → K0

SK
0
L, ϕ → πþπ−π0, ϕ → ηγ, and ϕ → π0γ. The

corresponding branching ratios are taken from the PDG
[32]. In the case of the K� → Kπ decay, we take the
branching ratios given by isospin symmetry, e.g., K�0 →
Kþπ− with branching ratio 2=3 and K�0 → K0π0 with
branching ratio 1=3. Concerning K0 and K̄0 we keep the
quantum state as it is immediately after emission without
evolving with mixing and oscillations.

IV. RESULTS OF SIDIS SIMULATIONS

This section is dedicated to the results obtained from the
Monte Carlo simulations of the fragmentation of u quarks
with full transverse polarization along the Y axis (hence
jSqATj ¼ 1). Results for d quarks can be deduced from
isospin and charge conjugation arguments. The primordial
transverse momentum of the fragmenting quark has been
switched off. Its effect on transverse spin asymmetries was
studied for M18 in Ref. [21].
Concerning the free parameters of the model a, bL,

bT, and μ, the same values as in M19 are used, namely
a ¼ 0.9, bL ¼ 0.5ðGeV=c2Þ−2Þ, bT ¼ 5.17ðGeV=cÞ−2,
and μ ¼ ð0.42þ i0.76Þ GeV=c2. For the two new free
parameters, we take first jGL=GTj ¼ 1 (i.e., fL ¼ 1=3) and
θLT ¼ 0, in agreement with Ref. [27] (see the text con-
cerning Fig. 10). The sensitivity of the observables on the
values of the new parameters is then discussed in Sec. IV C.
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A. Kinematic distributions

In the study of the distributions of the hadrons fractional
energy z and transverse momentum pT we apply the cuts
pT > 0.1 GeV=c when looking at the z distribution, and
z > 0.2 when looking at the pT distribution, in analogy
with real data analyses.
In the top row of Fig. 7 we compare the z (left plots) and

pT (right plots) distributions for the primary πþ, the ρþ and
the πþ produced in ρþ decays. The analog distributions for
π− and ρ− are given in the bottom row.
As can be seen, vector mesons carry typically larger

fractions of the initial quark energy than primary pseudo-
scalar mesons. It is due to the exponential factor in Eq. (27)
which favors large Z for large M.
Concerning the pT distributions, VMs have typically

smaller transverse momenta than primary PS mesons.
This is due to the hidden spin effect described in Fig. 3:
for rank r ≥ 2 in the stringþ 3P0 model the transverse
momenta of the quarks that constitute the vector meson have
on the average opposite directions while in the pseudoscalar
case where they lay along the same direction. We have then
hp2

TiVM < 2hk2
Ti < hp2

TiPS. This is at variance with PYTHIA,
where the Z-integrated splitting function is the same for
vector mesons and for primary pseudoscalar mesons.
Coming to PS mesons from a VM decay, they carry

smaller fractional energies and comparable transverse
momenta with respect to their parent. They inherit only
part of the parent transverse momentum, but to this is added
a contribution from the PS momentum p�

iT in the VM rest
frame, following Eq. (34).

The hierarchy among the transverse momenta of the
different final hadrons is more clearly seen in Fig. 8. The
left panel shows hp2

Ti, namely themean of thep2
T distribution,

as function of z for positive and negative hadrons. The same
quantity for primary and secondary (fromVMdecay)mesons
is shown in the right panel. Among the primary mesons,
the negative ones have larger transverse momenta than the
positive ones, as expected from recursive fragmentation
models and discussed in Ref. [22]. Positive and negative
secondary mesons, instead, have nearly the same hp2

Ti, thus
the large difference between the positive and negative hadrons
at large z is reduced when looking at all hadrons but it is still
there, at variance with the experimental data [37].
Figure 9 shows the fraction of secondary charged

hadrons as function of z and of pT in the final sample.
Again, the contribution of VM decay decreases with z.
Also, the fraction of the secondary mesons is large at
pT < 0.5 ðGeV=cÞ, rising up to 0.8 for negative hadrons at
small transverse momenta.

B. Transverse spin asymmetries

1. Collins asymmetry

In the fragmentation process of transversely polarized
quarks, the final state hadrons are produced with an
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azimuthal distribution given in Eq. (1). When looking at the
simulated events, the Collins analyzing power aq↑→hþX is
extracted as

aqA↑→hþXðz; pTÞ ¼ 2
hsinðϕh − ϕSqA

Þi
jSqATj

: ð57Þ

It has been studied as function of the hadron rank r, of the
fractional energy z and of the transverse momentum pT
for primary and secondary PS and for VM. Also, we apply
the kinematic cuts z > 0.2 (when looking at pT) and
pT > 0.1 GeV=c. We remind that for these simulations
the values jGL=GTj ¼ 1 and θLT ¼ 0 have been used and
that other choices give different Collins analyzing powers,
as will be shown in Sec. IV C.
Figure 10 shows the rank dependence of the Collins

analyzing power for primary πþ and for ρþ. It is compared
with the analyzing power for πþ from M19. Rank one ρþ
have a Collins analyzing power of opposite sign with
respect to rank one πþ and a factor of 3 smaller. This is
expected when combining Eq. (27) with (29), which gives
for the rank 1 the relation au↑→VMþX=au↑→PSþX ¼ −fL.
For jGL=GTj ¼ 1 this ratio is −1=3 [27]. For r ≥ 2 the ρþ
analyzing power has the same sign as the πþ analyzing
power but is smaller. Indeed, both for VM and PS with
r ≥ 2, pT is more likely on the same side as kT, but it is
reduced by k0

T for a VM polarized in the ðẑ;pTÞ plane.
Also, the analyzing power of πþ mesons decays faster with
the rank as compared to M19. This is expected from the
opposite signs of the DTT depolarization factors and from
the fact that, for a given rank, the number of antecedent PS
mesons is not fixed.
Coming back to the observable quantities, Fig. 11 shows

the rank-averaged Collins analyzing power as function of z
(left panel) and as a function of pT (right panel) for ρþ and
πþ produced in the ρþ decay. The ρþ analyzing power is
positive as expected from Fig. 10. The analyzing power of
the decay πþ, inherited from the ρþ, exceeds the ρþ one at
large z. This is due to the fact that large z decay pions come

mostly from longitudinally polarized vector mesons, which
have an analyzing power three times larger than the not
analyzed ones, according to Eq. (29) with fL ¼ 1=3.
Looking at the pT dependence, decay πþ have negative
analyzing power at low pT that becomes positive at large
pT. This is due to the fact that decay πþ with large pT can
be produced from a rank one ρþ polarized alongM or from
rank ≥2 ρþ polarized along N. In the former case, the
transverse momentum that the pion acquires in the decay
adds constructively [see Eq. (34)] to the transverse momen-
tum inherited from the ρþ, which has positive analyzing
power. In the latter case, the ρþ has a large transverse
momentum and the same Collins analyzing power as a PS
meson [see Eq. (29)]. The negative analyzing power of the
decay πþ at low pT is interesting. It is probably due to pions
which have a transverse velocity in the ρþ rest frame larger
than, but opposite to, the transverse velocity of the ρþ in the
string rest frame.
The π0 produced in the same decay has the same

analyzing power as the positive pion because of parity
invariance. With the present choice of parameters, the ρ0 and
ρ− mesons have a similar analyzing power as ρþ and the
same features are seen also in the decay of ρ− and ρ0 mesons.
The effects of the decays of different VMs have been

investigated separately. The results are summarized in
Table I where the integrated analyzing power for positive
and negative pions is given for all decays switched off, after
switching on the ρ meson decays separately or at the same
time, and after switching on VM decays. The correspond-
ing values of the analyzing power as obtained with the
model M19 are also given. From Table I one can see that
primary πþ in M20 have larger analyzing power than πþ in
M19 while the reverse is true for π−. This is due to the fact
that rank two primary pions in M20 have smaller analyzing
power than in M19, as shown in Fig. 10. The largest
reduction of the analyzing power comes from decays of ρ
mesons while switching on ω, K�, and ϕ decays does not
have a large impact. All things considered, after switching
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on decays of all VMs the analyzing power of charged pions
is reduced by a factor of two compared to M19. It is also
important to note that in this model the absolute values of
the analyzing power of πþ and π− are different if restricted
to primary mesons, but after switching on vector meson
decays they become the same, as it is the case also in M19
and as seen in the experimental data [38].
The effect of vector mesons on the πþ and π− Collins

analyzing power is shown in Fig. 12 where the analyzing
powers for charged pions obtained with M20, when the
decays of all VMs are simulated, and with M19 are
compared. The effect is large for both charges and as
function of z and of pT. The z dependence of the πþ
analyzing power is not linear any longer, at variance
with M19.
The same considerations hold for the analyzing power of

charged kaons. In this case, the effect of vector mesons is
smaller than for pions.

2. Dihadron asymmetry

Dihadron transverse spin asymmetries are studied look-
ing at hadron pairs h1h2, where 1 (2) refer to the positive
(negative) charged hadron. The azimuthal angle ϕR of RT
is distributed according to

d3Nhh

dz12dM12dϕR
∝ 1þ aq↑→h1h2þXjSqATj sinðϕR − ϕSqA

Þ:

ð58Þ

The dihadron analyzing power aq↑→h1h2þX is calculated
as 2hsinðϕR − ϕSqA

Þi=jSqATj averaged on jRTj. It has

been evaluated as functions of the fractional energy z12 ¼
z1 þ z2 and the invariant mass M12 of the pair. In addition
for each hadron of the pair we apply the kinematic cuts
z > 0.1, xF > 0.1 and we ask for RT > 0.07 GeV=c, in
analogy with the COMPASS analysis [39]. The Feynman
xF variable is defined as xF ¼ 2pz

cm=
ffiffiffi
s

p
, with pz

cm being the
hadron longitudinal momentum in the string rest frame.
The result for is shown in Fig. 13 as function of z12 and

M12 when switching on the decays of all vector mesons.
The comparison with the dihadron analyzing power
obtained by M19 is shown there and summarized in
Table II. We see that the introduction of VMs reduces
the analyzing power obtained with only PS mesons in M19
by more than a factor of two. One reason is that the
dihadron asymmetry is strongly linked to the Collins effect
[38] and the latter is smaller for M20 than for M19 (see
Fig. 12). The other reason is that the VM decay process
is invariant by R → −R, thus secondary mesons do not
contribute to this dihadron analyzing power. Instead, they
dilute it. We note also that both in M19 and in M20 the
average values of the dihadron and the Collins analyzing
powers are comparable, like in the experimental result [38].
Still it must be reminded that these results are obtained
without primordial transverse momentum, which reduces

TABLE I. Average values of Collins analyzing power for
charged pions obtained with M20 and M19. For each hadron
the cuts z > 0.2 and pT > 0.1 GeV=c have been applied. GL ≡
GT case.

M20 hau↑→πþþXi hau↑→π−þXi
No VM decay −0.308� 0.003 0.218� 0.005
With ρþ decays −0.178� 0.003 0.216� 0.005
With ρ− decays −0.307� 0.003 0.172� 0.004
With ρ0 decays −0.210� 0.003 0.151� 0.004
With ρ�;0 decays −0.136� 0.003 0.140� 0.004
With all VM decays −0.124� 0.003 0.124� 0.003
M19 −0.251� 0.004 0.257� 0.006
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TABLE II. Average values of dihadron analyzing power for
charged pions obtained with M19 and with M20. GL ≡ GT case.

Model haq↑→πþπ−þXi
M19 −0.246� 0.005
M20 −0.111� 0.005
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the Collins analyzing power but does not affect the
dihadron analyzing power [21].

C. Case of jGLj ≠ jGTj and θLT ≠ 0

In this subsection and in Sec. V we show the effect of
changing the values of the parameters jGL=GTj and θLT on
the relevant observables, namely kinematic distributions
and spin asymmetries. We have selected three values for
jGL=GTj: 5, 1, and 1=5, corresponding to fL ¼ 0.93,
fL ¼ 1=3, and fL ¼ 0.02. For each value of jGL=GTj
we set θLT ¼ −π=2, θLT ¼ 0, and θLT ¼ þπ=2. The values
θLT ¼ �π=2 maximize the oblique polarization, whereas
θLT ¼ 0 gives no oblique polarization (in the LR symmetric
frame) as can be seen from Eq. (33). The values of the other
parameters are the same as given in the previous section.

1. Effect on the kinematic distributions

The effect of changing the values of jGL=GTj and θLT on
the z and pT distributions of the produced hadrons is small
and is not shown here. More sizeable effects can be seen in
the kinematic distributions of hadron pairs.
Figure 14 shows theM12 distribution for hadrons coming

from decays of vector mesons (left panel) and for all
hadrons (right panel), for the parameter values jGL=GTj ¼
5; 1; 1=5. The parameter θLT has a weaker influence and it
is set to zero. The peaks corresponding to the decays
ρ0 → ππ, ϕ → KK, and K� → Kπ can be seen. The
shoulder visible on the left of the ρ0 peak is due to the
decay ω → πππ. In the left panel, it is clearly seen that
the peaks corresponding to ρ0, K�, and ϕ decrease by
increasing jGL=GTj. This is due to the pT and z cuts applied
to the decay products which make the “acceptance” for
VMs depend on its polarization, therefore on these param-
eters. In fact, in the 2-body decay of a longitudinally
polarized vector meson one of the decay products has a low
z and can easily be rejected when applying the cut z > 0.1.
One the contrary, the ω shoulder increases with jGL=GTj,
due to the fact that the decay pions of a ω are emitted

preferentially perpendicular, instead of parallel, to the
linear polarization of the ω [see Eq. (41)].
These effects can be seen also in the invariant mass

distribution of all hadron pairs, shown in the right panel of
Fig. 14. In this case, another contribution to the increase of
the shoulder on the left of the ρ0 region for jGL=GTj ¼ 5 is
given by pairs of hadrons from the combinatorial back-
ground. Indeed, the decay pions of a longitudinal ρ are
separated in rapidity from their parent by typically more
than one unit and can be easily associated with other pions
to form low mass pairs. For jGL=GTj ¼ 1 the invariant
mass distribution is similar to that obtained with PYTHIA.
Instead, comparing with the distribution measured in SIDIS
(see, e.g., Ref. [39]), the combinatorial background is lower
than in the data.
From these examples it is clear that the VM polarization

has a non negligible role in the “spin-independent” kin-
ematic distributions of the observed hadron pairs, when the
experimental cuts are applied, and should be taken into
account in the description of all fragmentation processes,
the quark being polarized or not.

2. Effect on the transverse spin asymmetries

In this paragraph we consider the Collins effects for the
VMs (“global Collins effect”) and for their decay products.
The effects on the dihadron asymmetries are illustrated
in Sec. V.
The effect of varying the value of jGL=GTj on the Collins

analyzing power of ρþ, ρ0, and ρ− mesons is shown in
Fig. 15. The parameter θLT does not affect the global
Collins analyzing power of vector mesons and is set to zero.
In each row the analyzing power is given as function of z
(left plot) and of pT (right plot). To interpret these results it
is useful to look at the production of rank 1 and 2 VMs in
the classical stringþ 3P0 model illustrated in Fig. 16 for
jGL=GTj ≫ 1 (upper part) and jGL=GTj ≪ 1 (lower part).
Each diagram shows the application of the 3P0 mechanism
to the production of VMs polarized along Z (upper part),
and X or Y (lower part) for an initial quark polarized
along Y.
As it can be seen in Fig. 15, varying jGL=GTj produces

large effects for all ρmesons. In particular for jGL=GTj ¼ 5
the Collins analyzing power of ρþ mesons as function of z
is large rising up to 0.5. It is then dominated by the rank one
diagram (1) in Fig. 16. Rank one longitudinally polarized
ρþ have opposite but equal in magnitude analyzing power
compared to rank 1 PS meson [compare Eqs. (27) and
(29)]. For low values of jGL=GTj the analyzing power of ρþ
mesons is reduced due to the presence of two transverse
polarization states with opposite analyzing powers [dia-
grams (2) and (3) in Fig. 16].
Concerning ρ−, its analyzing power is small at large

jGL=GTj and it increases at small jGL=GTj, becoming
larger than ρþ and ρ0 for jGL=GTj ¼ 1=5. For jGL=GTj ¼ 5
the analyzing power is in fact dominated by diagrams (4)
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1=5 (dotted line), and θLT ¼ 0.
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and (5) in Fig. 16, which have opposite signs. For
jGL=GTj ¼ 1=5 the asymmetry is essentially given by
diagrams (7) and (6) associated to rank one PS. When
associated to rank one VM, (6) and (7) are canceled by (8)
and (9). For jGL=GTj ¼ 1 the analyzing power of all ρ
mesons are very similar, as already mentioned. Also the
analyzing power for ρ0 mesons is the weighted average of
the analyzing powers for ρþ and ρ− due to isospin
invariance of the production amplitude.
The effect as function of pT is also strong for ρþ and ρ0,

which for jGL=GTj ¼ 5 behave similarly to PS mesons but
with opposite analyzing power. Decreasing jGL=GTj, trans-
verse polarization states become dominant and the shape of
the analyzing power is changed. At large pT ρ mesons are
mostly rank 2 polarized alongN and the analyzing power is
essentially given, in Fig. 16, by the diagram (7) associated
to a rank one PS. When associated to a rank one VM,
diagrams (7) and (9) cancel each other, only contributing to
dilute the effect.
The parameter θLT has little influence on the global

Collins effect of the resonance, as said before, but a strong
influence on the Collins effects of the decay products.

This is seen in Fig. 17, which shows the analyzing power
of πþ produced in ρþ → π0πþ decays, for θLT ¼
−π=2; 0;þπ=2 and jGL=GTj ¼ 1. For sin θLT < 0 the
decay process acts as a source of a negative (positive)
Collins effect for the fastest (slowest) decay product, as
illustrated by the dashed contours in Fig. 5(b). For the
fastest decay pion this contribution adds destructively
with the Collins effect inherited from the ρ and gains
over it, giving an overall negative analyzing power. The
inverse is true for sin θLT > 0 (continuous contour
in Fig. 5).
Concerning the pT dependence (right panel of Fig. 17)

the largest effects can be seen for pT < 0.5 ðGeV=cÞ.
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FIG. 16. Classical stringþ 3P0 picture applied to the produc-
tion of rank 1 (left diagrams) and 2 (right diagrams) vector
mesons for jGL=GTj ≫ 1 (upper part) and jGL=GTj ≪ 1 (lower
part). The quark qA is polarized along Y; vmðXÞ, for instance,
indicates a VM polarized along X.
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Decay pions of this domain are mostly emitted with relative
transverse momenta opposite to that of the ρ mesons.
Besides the cut z > 0.2 selects mainly pions of positive p�

z .
Then, for sin θLT < 0, looking at the orientations of the
dotted ellipses in Fig. 5(b), one guesses that the pion
momentum p�

T in the ρ rest frame is most often on the side
opposite to the ρ one. Assuming the dominance of the first
term in Eq. (34), pTðπÞ also is on the side opposite to pTðρÞ.
This explains the negative analyzing power of πþ at not too
large pT. As for large pT, they are mainly obtained when p�

T
and pTðρÞ are on the same side, thus producing a positive
analyzing power. The Wigner rotation increases this effect
by making the major axis of the dashed ellipse nearly
perpendicular to the ẑ axis. For sin θLT > 0, according to
Fig. 5, the cut z > 0.2 mainly rejects the p�

T, which are
opposite to pTðρÞ, explaining the positive analyzing power
at all pTðπÞ.
The sensitivity to jGL=GTj and θLT of the Collins

analyzing power for all the final pions, with all VMs
decays, is shown in Fig. 18. As can be seen the overall
effect of vector meson is stronger for favored fragmentation
and weaker for unfavored fragmentation. In particular the z
dependence of the πþ analyzing power is no more linear for

both πþ and π− as it was in M19. The positive value of
sin θLT strongly decreases the size of the πþ analyzing
power and increases the size of the π− analyzing power. As
function of pT the effect of changing the parameters is large
for πþ in the small pT region, as expected from Fig. 17,
whereas for π− only small differences can be seen.
Summarizing, variations in the free parameters jGL=GTj

and θLT produce large effects on the Collins analyzing
power of the observed pions, and changes in jGL=GTj can
be competed by different choices of θLT. Precise measure-
ments would allow us to fix their values.

V. A NEW DIHADRON TRANSVERSE SPIN
ASYMMETRY

As mentioned in Sec. II B, vector meson decays do not
contribute to the dihadron asymmetry if in Eq. (58) h1 is
taken as the hþ of a hþh− pair (or the h� of a h�h0 pair)
due to parity invariance. This is not true when h1 is taken to
be the fastest hadron of the pair, namely the hadron such
that z1 > z2. In this case a dihadron asymmetry may
appear, related to the oblique polarization of the vector
meson, more precisely to the element ρ̂nplXZ of the density
matrix in the fX;Y;Zg basis of the null plane frame. We
refer to this asymmetry as to the z-ordered dihadron
asymmetry. ρ̂npl deduces from the density matrix in the
LR symmetric frame by the Wigner rotation ρ̂npl ¼
RNð−αW∞Þρ̂RNðαW∞Þ. The angular distribution of R is
given by Eq. (39), replacing r̂ by R̂ ¼ R=jRj and ρ̂ by ρ̂npl.
The z-ordered dihadron asymmetry is measured by
2hsinðϕR − ϕSqA

Þi=jSqATj with the restriction Rz > 0. It
occurs between the primary mesons as well.
The simulated asymmetry is shown in Fig. 19 for pions

produced in ρ0 decay as function of the fractional energy
of the pair z12. The same cuts as in the standard dihadron
asymmetry have been applied. For sin θLT ≠ 0, the large
negative and positive asymmetries shown in the left and
right panels are mainly due to the oblique polarization term
sin θLTSY in Reρ̂XZ [see Eq. (B2)]. When going to Reρ̂npl

the Wigner rotation is, on average, not strong enough to
change the sign of the XZ component. As can be seen the
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largest positive asymmetry is obtained for jGL=GTj ¼ 1
and θLT ¼ þπ=2. The combination jGL=GTj ¼ 5 and
θLT ¼ −π=2 gives also an asymmetry of the same size
but with opposite sign.
The small dihadron asymmetry shown in the middle

panel of Fig. 19 for θLT ¼ 0 and jGL=GTj ¼ 1 requires
another explanation. Indeed, with this choice of parameters
it can be seen from Eq. (33) that there is no oblique
polarization in the LR symmetric rest frame. There is
however a nonvanishing ρ̂mn element which, after the
Wigner rotation, produces ρ̂nplXZ < 0 in the null-plane frame.
Combined with Rz > 0 this produces the small positive
asymmetry at large z shown in Fig. 19 for θLT ¼ 0 and
jGL=GTj ¼ 1. The change of sign of the asymmetry at
small z is instead due to the cuts z1 > 0.1 and z2 > 0.1.
For jGL=GTj ≠ 1 but sin θLT ¼ 0 the matrix element ρ̂nplXZ

receives, by the Wigner rotation, a contribution from
ρmm − ρll ∝ jGLj2 − jGTj2 responsible for the negative
(positive) asymmetry for jGL=GTj ¼ 5 (1=5).
It has been checked that the sensitivity to the free

parameters as well as the size of the asymmetry remains
still large when the z-ordered dihadron asymmetry is
evaluated by using all final state hadron pairs in the ρ0

mass region. Thus the z-ordered dihadron asymmetry
depends strongly on the free parameters. The measurement
of this asymmetry in SIDIS or eþe− annihilation would
help to understand whether vector mesons produced in
polarized fragmentation processes possess oblique polari-
zation and to determine the values of the free parameters
jGL=GTj and θLT.

VI. COMPARISON WITH EXISTING DATA

In order to get hints on the values of the free parameters
jGL=GTj and θLT we have compared the model results for
fully polarized u quarks with the transverse spin asymme-
tries measured in SIDIS and in eþe− annihilation. In
particular we compare the simulated asymmetries with
the COMPASS results of Refs. [5,39], which are also in
good agreement with the HERMES results [3,40].
Concerning the eþe− measurements we compare with
the Collins asymmetries measured for oppositely charged
back-to-back pions in eþe− annihilation to hadrons at
BELLE [7], which are similar to the measurements per-
formed by BABAR [41] and BESIII [42].

A. SIDIS

Figure 20 shows the comparison between the Collins
analyzing power for charged pions as obtained from sim-
ulations with the Collins asymmetries measured by
COMPASS [5]. In experiments, quarks are only partially
polarized, following the transversity distribution [see
Eq. (2)]. To take into account this fact, for each combination
of the free parameters the MC results have been scaled by a
constant factor λ estimated by a χ2 minimization procedure

using the simulated and measured asymmetries for π− as
function of pT. The factor λ is similar for the different
combinations of the free parameters and generally larger (up
to a factor of two) than the value used for M18 in Ref. [21],
due to the fact that in M20 the average Collins analyzing
power is decreased as a consequence of the introduction of
vector mesons. This difference can be recovered by increas-
ing Imμ by a factor of two while keeping jμj2 constant.
All in all, given the small differences of the analyzing

power for different parameter settings as compared to the
experimental precision, no pair of values could be chosen.
To exclude some combinations, a χ2 test at 5% significance
level considering the πþ and π− asymmetries as function
of z, and the πþ asymmetry as function of pT has been
performed. For the test, the last two z bins have been
excluded since the trend at large z is expected to change
in simulations of SIDIS events where a realistic mixture of
the fragmenting quark flavors is considered [43]. We find
that the test is passed by only three combinations of
jGL=GTj and θLT: jGL=GTj ¼ 5 with θLT ¼ −π=2 or 0
and jGL=GTj ¼ 1 with θLT ¼ 0.
Concerning dihadron asymmetries, the comparison

between the simulated dihadron analyzing power and the
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corresponding asymmetries measured by COMPASS [39]
is given in Fig. 21. The asymmetries are shown as functions
of z12 and of the invariant mass M12. The sensitivity of
the dihadron analyzing power on the new parameters is
small compared to the uncertainties of data, and in the
figure only the results of the simulations obtained with
jGL=GTj ¼ 1 and θLT ¼ 0 have been used. Also the same
scale factor as for the Collins asymmetry has been taken.
The comparison is satisfactory apart from the invariant
mass dependence in the ρ0 region where the trend of the
simulated analyzing power seems to be opposite to the
data. This could be due to the fact that in the current
model we have neglected the interference between
amplitudes for the resonant and direct productions of
oppositely charged hadron pairs [12,14,44,45].
Recent measurement of the Collins asymmetries for ρ0

mesons produced inclusively in SIDIS on protons has been
performed by COMPASS in Ref. [46]. The pT dependence
is similar to our simulated results for jGL=GTj ¼ 5, up to
large statistical uncertainties coming from the combinato-
rial background under the ρ0 invariant mass peak.

B. e+ e− annihilation

We consider now the AUL
12 asymmetry as measured by

BELLE for back-to-back charged pions in the annihilation
process eþe− → qq̄ → h1h2 þ X [7]. AUL

12 asymmetry is
related to a12, introduced in Eq. (3), by AUL

12 ¼ aU12 − aL12
where the superscript U refers to pairs of pions with unlike
charges (h1h2 ¼ πþπ− or h1h2 ¼ π−πþ) and L refers
to pairs of pions with like charges (h1h2 ¼ πþπþ or
h1h2 ¼ π−π−). Experimentally, AUL

12 corresponds to the
amplitude of the cosðϕ1 þ ϕ2Þ modulation in the ratio
ð1þ aU12 cosðϕ1 þ ϕ2ÞÞ=ð1þ aL12 cosðϕ1 þ ϕ2ÞÞ between
the normalized yields for unlike and like charge pion pairs,
and is practically equivalent to aU12 − aL12. ϕ1 and ϕ2 are
the azimuthal angles of h1 and h2 about the thrust axis,

measured from the plane defined by this axis and the e−

beam (the thrust axis approximates the qq̄ axis).
We restrict ourselves to the case z1 ¼ z2 ¼ z and

p1T ¼ p2T ¼ pT. The asymmetry can be written as

AUL
12 ðz; pTÞ ¼ hâNNi × jafavðz; pTÞj2

×

�
5þ 5α2 þ 2α02

5þ 5β2 þ 2β02
−
5αþ α02

5β þ β02

�
: ð59Þ

It includes the sum over the light quark flavors q ¼ u, d, s.
The quantities α ¼ Hunf

1 =Hfav
1 , α0 ¼ Hunf

1;s =H
fav
1 , β ¼

Dunf
1 =Dfav

1 , and β0 ¼ Dunf
1s =D

fav
1 depend on z and the trans-

verse momentum pT with respect to the thrust axis. By
using isospin and charge conjugation invariance the
favored FF (fav) is defined asDfav

1 ¼ Dπþ
1u ¼ Dπ−

1ū ¼ Dπ−
1d ¼

Dπþ
1d̄

and similarly for the Collins function. Instead, the

unfavored FF (unf) is defined as Dunf
1 ¼ Dπ−

1u ¼ Dπþ
1ū ¼

Dπþ
1d ¼ Dπ−

1d̄
for u or d quarks, and Dunf

1;s ¼ Dπþ
1s ¼ Dπ−

1s ¼
Dπþ

1s̄ ¼ Dπ−
1s̄ for s quarks (and similarly for the unfavored

Collins function). afav is the Collins analyzing power for
the favored fragmentation. hâNNi ¼ hsin2 θi=h1þ cos2 θi
[8] where the θ is the angle between the e− beam and the
thrust axis.
The AUL

12 asymmetry measured by the BELLE collabo-
ration is shown in Fig. 22 as functions of z and of pT. It has
been corrected for the charm contribution by using the
charm contamination factors provided by BELLE and
assuming vanishing Collins asymmetries in events initiated
by charm quarks [7]. In the figure, the curves are the result
of Eq. (59) evaluated using the fragmentation functions
obtained from the simulated fragmentations of fully trans-
versely polarized u and s quarks with jGL=GTj ¼ 5; 1; 1=5,
θLT ¼ −π=2; 0;þπ=2, and the value hâNNi ¼ 0.91 pro-
vided in Ref. [7]. The simulation results have not been
rescaled in this case. Each row refers to a different value of
θLT. In each row the curves show the asymmetries from the
simulations with different values of jGL=GTj. The kin-
ematic cut z > 0.1 has been applied when looking at
the asymmetry as function of z, and the cuts z > 0.2
and pT > 0.1 GeV=c have been applied when looking at
the asymmetry as function of pT, as in the BELLE analysis.
Also, following the BELLE analysis, the cut αO < 0.3 is
applied on the opening angle αO of the hadrons with respect
to the string axis. This cut is relevant for the pT dependence
of the asymmetry and has practically no effect when
looking at the asymmetry as function of z.
As can be seen from Fig. 22, the simulated asymmetries

are in satisfactory agreement with the BELLE measure-
ments as function of z and of pT for the combinations
jGL=GTj ¼ 5 and θLT ¼ −π=2, except for the last point
in z, and for jGL=GTj ¼ 1 and θLT ¼ 0. This is consistent
with the comparison with SIDIS measurements of the
Collins asymmetries. For jGL=GTj ¼ 5 and θLT ¼ −π=2
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quarks would couple preferentially to vector mesons with
longitudinal polarization along the string axis but with
some oblique polarization. Instead, for jGL=GTj ¼ 1 and
θLT ¼ 0 there is no preference for transversely or longitu-
dinally polarized vector mesons and these would not have
oblique polarization in the LR symmetric frame.

VII. CONCLUSIONS

Vector meson production in the polarized quark frag-
mentation process has been studied within the recursive
stringþ 3P0 model and the new model M20 has been
developed. It improves the previous version (M19) by
treating both vector and pseudoscalar meson emissions. It
preserves the LR symmetry and the quantum mechanical
properties like positivity and entanglement. The production
of longitudinally and transversely polarized vector mesons
in the LR symmetric frame has been implemented by
introducing two different couplings to quarks of complex
coupling constants GL and GT. To this aim, the new
parameters jGL=GTj and θLT have been added to the
complex mass parameter μ already present in the model
M19. Both jGL=GTj and θLT enter the spin density matrix

of the vector mesons producing angular modulations in the
distribution of the decay products. The Wigner rotation
relating the LR symmetric frame and the null-plane frame,
where the decay products are recorded, has been studied.
M20 has been implemented in a stand alone Monte Carlo

program which allowed to perform detailed simulations of
the fragmentation process.We have found that the quark spin
degree of freedom enters both the kinematic distributions
(hidden-spin effects) and the spin dependent quantities like
the Collins and dihadron asymmetries. The Collins asym-
metries of vector mesons turns out to be opposite to their
pseudoscalar analogs for the favored fragmentation and
strongly dependent on the jGL=GTj parameter.
The contribution of the decay hadrons to the Collins

asymmetry has also been studied and found to depend on
the oblique polarization of the vector meson, which is
governed by the parameter θLT. The oblique polarization
has also a relevant role in the z-ordered dihadron asym-
metry, proposed here but not yet measured. Future precise
measurements of these asymmetries in SIDIS will allow a
better estimate of the free parameters of the model and more
safe predictions.
Finally, the simulation results on the Collins and the

dihadron asymmetries have been compared to the SIDIS
and eþe− annihilation data finding an encouraging sim-
ilarity. The precision of the existing experimental data,
however, does not allow us to fix the values of the free
parameters but give some indication that the values
jGL=GTj ≥ 1 and θLT ≤ 0 are the preferred ones, namely
that quarks may couple preferentially to longitudinally
polarized vector mesons with oblique polarization in the
LR symmetric frame.
To summarize, this new version of the stringþ 3P0

model with vector meson production is rich in the predicted
phenomena, like the oblique polarization and the hidden
spin effects, and it is successful in the description of the
experimental data.
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APPENDIX A: THE POLARIZATION ELLIPSOID

In the decay of a vector meson in two pseudoscalar
mesons, the angular distribution of the decay products is
given by

dN ðr̂Þ=dΩ ¼ 3

4π
A2ðr̂Þ;

A2ðr̂Þ ¼ r̂αρ̂αα0 ðhÞr̂α0 ; ðA1Þ
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FIG. 22. Comparison between the eþe− Collins asymmetry A12

as measured by BELLE [7] (full points) as function of z (left
panel) and of pT (right panel), and the calculated Collins
asymmetry from the simulation results for different values of
the free parameters θLT and jGL=GTj (curves).
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where ρ̂αα0 is the density matrix of the VM, r the relative
momentum of the decay mesons and r̂ ¼ r=jrj. One can
replace ρ̂αα0 by the tensor polarization matrix Reρ̂αα0 . From
this matrix on can build the polarization ellipsoid, whose
symmetry axes are along the eigenvectors, with half lengths
equal to the square roots of the eigenvalues. It is the dual of
the ellipsoid rαρ̂αα0rα0 ¼ 1 in the polar reciprocal trans-
formation. This is the 3D generalization of the polarization
ellipse of photons.
Aðr̂Þ is obtained geometrically as shown in Fig. 23: the

distance between two planes orthogonal to r̂ and tangential
to the ellipsoid is 2Aðr̂Þ. The projection of the ellipsoid on,
for instance, the ðx; yÞ plane is the polarization ellipse
associated to the 2 × 2 reduced matrix of elements Reρ̂xx,
Reρ̂xy, Reρ̂yx, and Reρ̂yy.

APPENDIX B: THE FULL VM DENSITY MATRIX

Including the imaginary, antisymmetric part of the VM
density matrix, Eq. (33) generalizes as

ρ̂ll ¼ ð1 − âSnÞjGLj2=NðSÞ;
ρ̂mm ¼ ð1 − âSnÞjGTj2=NðSÞ;
ρ̂nn ¼ ð1þ âSnÞjGTj2=NðSÞ;
ρ̂ml ¼ ið−Sn þ âÞGTG�

L=NðSÞ ¼ ðρ̂lmÞ�;
ρ̂mn ¼ ðiSl − âSmÞjGTj2=NðSÞ ¼ ðρ̂nmÞ�;
ρ̂nl ¼ ð−iSm þ âSlÞGTG�

L=NðSÞ ¼ ðρ̂lnÞ�: ðB1Þ

Note.—If jSqj ¼ 1, then ρ̂ is a matrix of rank 2 (i.e.,
det ρ̂ ¼ 0). Indeed, its rank is bounded by the rank of ρ̂ðqÞ,
which is 1, times the rank of the acceptance matrix ρ̌ðq0Þ,
which is 2 as long as the fragmentation of q0 has not yet
been performed by the simulation.
The real part of ρ̂ in the fX;Y;Zg basis linked to the

quark transversity (i.e., SX ¼ 0) is

ρ̂ZZ ¼ ð1þ âmXSYÞjGLj2=NðSÞ;
ρ̂XX ¼ ð1þ âmXSYÞjGTj2=NðSÞ;
ρ̂YY ¼ ð1 − âmXSYÞjGTj2=NðSÞ;

Reρ̂XY ¼ âmXSY jGTj2=NðSÞ;
Reρ̂XZ ¼ −½sin θLTðSY þ âmXÞ

þ cos θLTâmYSZ�jGLGTj=NðSÞ;
Reρ̂YZ ¼ ð− sin θLTâmY

þ cos θLTâmXSZÞjGLGTj=NðSÞ: ðB2Þ
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