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Abstract. We study the multiplicity of solutions for a two-point boundary
value problem of Neumann type associated with a Hamiltonian system
which couples a system with periodic Hamiltonian in the space variable
with a second one with positively-(p,q)-homogeneous Hamiltonian. The
periodic problem is also treated.
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1. Introduction and statement of the main result

In the recent paper [7], a multiplicity result for a Neumann-type boundary
value problem associated with a Hamiltonian system has been proved. It is the
aim of this paper to extend this result to coupled systems, the first of which is
of the type considered in [7], while the second one involves a positively-(p, q)-
homogeneous and positive Hamiltonian function.

Denoting by J the standard symplectic matrix, our Hamiltonian system

Jż = ∇zH(t, z),

when writing z = ((x, y), (u, v)) ∈ R
2M × R

2L, is driven by a Hamiltonian
function of the type

H(t, z) = H(t, x, y) + H (u, v) + P (t, x, y, u, v).
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To be more precise, we are dealing with the Hamiltonian system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = ∇yH(t, x, y) + ∇yP (t, x, y, u, v) ,

ẏ = −∇xH(t, x, y) − ∇xP (t, x, y, u, v),
u̇ = ∇vH (u, v) + ∇vP (t, x, y, u, v),
v̇ = −∇uH (u, v) − ∇uP (t, x, y, u, v),

(1.1)

with Neumann-type boundary conditions
{

y(a) = 0 = y(b),
v(a) = 0 = v(b).

(1.2)

We write

x = (x1, . . . , xM ) ∈ R
M , y = (y1, . . . , yM ) ∈ R

M ,

u = (u1, . . . , uL) ∈ R
L, v = (v1, . . . , vL) ∈ R

L .

The functions H : [a, b]×R
2M → R, H : R2L → R and P : [a, b]×R

2M+2L → R

are continuous, and continuously differentiable with respect to (x, y), (u, v) and
(x, y, u, v), respectively.

In the sequel, the notation for the standard symplectic matrix

J =
(

0 −I
I 0

)

,

where I is the identity matrix, will also be used in any other dimensions.
Here are our hypotheses.

A1. For every i ∈ {1, . . . , M} there exists κi > 0 such that the functions
H(t, x, y) and P (t, x, y, u, v) are κi-periodic in the variable xi.

The periodicity assumption A1 naturally leads us to consider the torus

T
M = (R/κ1Z) × · · · × (R/κMZ).

Indeed, in view of this assumption, the x component of the solutions could
sometimes be interpreted as belonging to T

M .
A2. The function P (t, x, y, u, v) has a bounded gradient with respect to
(x, y, u, v).

Assumption A2 guarantees that the coupling term P (t, x, y, u, v) can be
seen as some kind of not so large perturbation term.
A3. All the solutions of system (1.1) satisfying y(a) = v(a) = 0 are defined on
[a, b].

In view of the results in [5,7], assumption A3 is surely satisfied if there
exists a constant K1 such that

|∇xH(t, x, y)| ≤ K1(1 + |y|), for every (t, x, y) ∈ [a, b] × T
M × R

M .

A4. The function H : R2L → R is of the type

H (u, v) =
L∑

j=1

Hj(uj , vj),
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for some functions Hj : R2 → R which are positively-(pj , qj)-homogeneous and
positive, meaning that for some pj > 1 and qj > 1 with

(
1/pj

)
+

(
1/qj

)
= 1

we have

Hj(γqj r, γpj s) = γpj+qjHj(r, s) > 0, for every (r, s) ∈ R
2 \ {0} and γ > 0.

In this setting, the origin (0, 0) is an isochronous center for the planar
autonomous system

Jζ̇ = ∇Hj(ζ). (1.3)

For every j ∈ {1, . . . , L}, besides the origin all solutions of system (1.3) are
periodic and have the same minimal period, which will be denoted by τj .
Moreover, for all solutions ζ(t) = (ζ1(t), ζ2(t)) of (1.3) starting with ζ1(0) < 0
and ζ2(0) = 0, there is a first time τj+ > 0 for which ζ2(τj+) = 0, while
ζ2(t) > 0 for all t ∈ ]0, τj+ [, and this time τj+ is independent of ζ1(0) < 0.
Similarly, if ζ1(0) > 0 and and ζ2(0) = 0, there is a first time τj− > 0 for which
ζ2(τj−) = 0, while ζ2(t) < 0 for all t ∈ ]0, τj− [, and this time τj− is independent
of ζ1(0) > 0. Clearly enough, τj = τj+ + τj− .

Here is our main result.

Theorem 1.1. Assume that A1 – A4 hold true. Let τj+ = τj− and

b − a

τj+

/∈ N, for every j ∈ {1, . . . , L}.

Then there are at least M + 1 geometrically distinct solutions of the boundary
value problem (1.1)–(1.2).

Notice that, when a solution has been found, infinitely many others ap-
pear by just adding an integer multiple of κi to the xi-th component. We say
that two solutions are geometrically distinct if they cannot be obtained from
each other in this way.

Let us remark here that a sufficient condition for having satisfied the
assumption τj+ = τj− is that the function Hj is even in v. This is a frequent
case in the applications, where, e.g., Hj is quadratic in v.

Theorem 1.1 generalizes the result in [7], where the case P ≡ 0 was
treated, dealing only with the system in (x, y). In order to prove it, we first
consider the case when, writing w = (u, v), the second Hamiltonian functions is
of the type H (w) = 1

2 〈Aw,w〉, where A is a particular diagonal matrix. Then,
by a symplectic change of variables, we are able to transform the positively-
(p, q)-homogeneous Hamiltonian in the quadratic one.

We also study the periodic problem for such kind of Hamiltonian sys-
tems, and obtain a similar multiplicity result when a suitable twist condition
is assumed. This part of the paper is related to the Poincaré–Birkhoff Theorem
[15], and we exploit some results obtained in [4], where any symmetric matrix
A can be considered, provided that a nonresonance condition is also assumed.
We thus generalize to this setting some results obtained in [3,8,9].

At the end of the paper we will analyze the possibility of dealing with
any symmetric matrix A, provided that a nonresonance condition is assumed,



   41 Page 4 of 28 A. Fonda and W. Ullah NoDEA

also for the Neumann-type problem. However, we succeed doing this only in
the case L = 1, while the case L ≥ 2 remains an open problem.

Let us describe more in detail how the paper is organized.
In Sect. 2 we study the Neumann-type boundary value problem in the

particular case when

H (u, v) =
1
2

L∑

j=1

λj(u2
j + v2

j ),

for some positive constants λ1, . . . , λL. The proof is variational, and it is mod-
eled on the method developed in [7]. However, some delicate estimates are
needed in order to prove the invertibility of the involved selfadjoint operator.

In Sect. 3 we provide the proof of Theorem 1.1. The idea is to construct
a symplectic change of variables, so to reduce the problem to the one already
treated in Sect. 2.

In Sect. 4 we study the periodic problem. Here we need to introduce a
twist condition, which recalls the classical assumption in the Poincaré–Birkhoff
Theorem. We obtain a similar multiplicity result as in Theorem 1.1 by applying
a corollary of the main result in [4].

Some possible applications are given in Sect. 5. For example, we propose
a system of the type

{
ẋ = f(y) + E(t), ẏ = −A sin x − ∂xP (t, x, u),
u̇ = |v|q−2v, v̇ = −μ(u+)p−1 + ν(u−)p−1 + ∂uP (t, x, u),

where u+ = max{u, 0} and u− = max{−u, 0}. The first two equations can be
seen as a generalization of the pendulum equation (obtained when f(y) = y),
while the last two equations correspond to the scalar equation

d

dt

(|u̇|p−2u̇
)

+ μ(u+)p−1 − ν(u−)p−1 = ∂uP (t, x, u).

Notice that the particular case p = 2 leads to a classical asymmetric oscillator.
Both Neumann-type and periodic problems are analyzed.

Finally, in Sect. 6 we end with some further remarks and proposing an
open problem.

In all the rest of the paper we will denote by 〈·, ·〉 and | · | the Euclidean
scalar product and norm on R

k, for any k ∈ N.

2. Coupling with a linear system

In this section we consider a Hamiltonian system of the type
⎧
⎪⎨

⎪⎩

ẋ = ∇yH(t, x, y) + ∇yP (t, x, y, w) ,

ẏ = −∇xH(t, x, y) − ∇xP (t, x, y, w),
Jẇ = Aw + ∇wP (t, x, y, w).

(2.1)

Here, the functions H : [a, b] × R
2M → R and P : [a, b] × R

2M+2L → R are
continuous, and continuously differentiable with respect to (x, y) and (x, y, w),
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respectively. The 2L × 2L matrix A is of the type

A =
(
BL 0
0 BL

)

, (2.2)

where

BL =

⎡

⎢
⎢
⎢
⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 . . . 0 λL

⎤

⎥
⎥
⎥
⎦

,

for some positive real numbers λ1, . . . , λL. Writing

x = (x1, . . . , xM ) ∈ R
M , y = (y1, . . . , yM ) ∈ R

M ,

and w = (u, v) ∈ R
2L, with

u = (u1, . . . , uL) ∈ R
L, v = (v1, . . . , vL) ∈ R

L,

we consider the Neumann-type boundary conditions
{

y(a) = 0 = y(b),
v(a) = 0 = v(b).

(2.3)

Here is the main result of this section.

Theorem 2.1. Assume that A1 – A3 hold true, and
b − a

π
λj /∈ N, for every j ∈ {1, . . . , L}.

Then, the boundary value problem (2.1)–(2.3) has at least M +1 geometrically
distinct solutions.

Proof. Without loss of generality, we may assume that [a, b] = [0, π]. By A3
and a standard compactness argument, there exists a constant K2 > 0 such
that, for any solution (x, y, w) of (2.1) satisfying y(0) = v(0) = 0, one has that

|y(t)| ≤ K2, for every t ∈ [0, π]. (2.4)

Notice indeed that, by the nonresonance assumption we have, one can find a C1

a priori bound on w, which hence belongs to a compact subset of C([0, π],R2L).
Let σ : R → R be a C∞-function such that

σ(s) =

{
1, if |s| ≤ K2,

0, if |s| ≥ K2 + 1,

set

Ĥ(t, x, y) = σ(|y|)H(t, x, y), (2.5)

and consider the modified system
⎧
⎪⎨

⎪⎩

ẋ = ∇yĤ(t, x, y) + ∇yP (t, x, y, w) ,

ẏ = −∇xĤ(t, x, y) − ∇xP (t, x, y, w),
Jẇ = Aw + ∇wP (t, x, y, w).

(2.6)



   41 Page 6 of 28 A. Fonda and W. Ullah NoDEA

The new Hamiltonian function is thus

H̃(t, x, y, w) = Ĥ(t, x, y) + 1
2 〈Aw,w〉 + P (t, x, y, w). (2.7)

We will prove that the boundary value problem (2.6)–(2.3) has at least M + 1
geometrically distinct solutions. By the above argument, these solutions will
satisfy (2.4), hence they will be the solutions of (2.1)–(2.3) we are looking for.

The proof is variational, and it is based on a theorem by Szulkin recalled
below. We will now introduce the function spaces and the needed functionals.

2.1. The function spaces

For any α ∈ ]0, 1[ , we define Xα as the set of those real valued functions
x̃ ∈ L2(0, π) such that

x̃(t) ∼
∞∑

m=1

x̃m cos(mt),

where (x̃m)m≥1 is a sequence in R satisfying
∞∑

m=1

m2αx̃2
m < ∞.

The space Xα is endowed with the inner product and norm

〈x̃, φ̃〉Xα
=

∞∑

m=1

m2αx̃mφ̃m, ||x̃||Xα
=

√
√
√
√

∞∑

m=1

m2αx̃2
m.

For any β ∈ ]0, 1[ , we define Yβ as the set of those real valued functions y ∈
L2(0, π) such that

y(t) ∼
∞∑

m=1

ym sin(mt),

where (ym)m≥1 is a sequence in R satisfying
∞∑

m=1

m2βy2
m < ∞.

The space Yβ is endowed with the inner product and norm

〈y, ρ〉Yβ
=

∞∑

m=1

m2βymρm, ||y||Yβ
=

√
√
√
√

∞∑

m=1

m2βy2
m.

From now on, we will consider functions x, y, u, v which can be written as

x(t) = x̄ + x̃(t) , x̄ =
1
π

∫ π

0

x(t) dt ,

u(t) = ū + ũ(t) , ū =
1
π

∫ π

0

u(t) dt ,

where x̃ and y belong to the spaces XM
α and Y M

β respectively, while functions
ũ and v belong to the spaces XL

α and Y L
β respectively.
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Choose two positive numbers α, β such that

α < 1
2 < β and α + β = 1.

Consider the space E = XM
α × Y M

β × (RL × XL
α ) × Y L

β , and the torus T
M =

(R/κ1Z) × · · · × (R/κMZ). The space E is endowed with the scalar product

〈(x̃ , y , ū , ũ , v), (X̃ , Y , U , Ũ , V )〉E =〈x̃, X̃〉XM
α

+ 〈y, Y 〉Y M
β

+

+ 〈ū , U〉 + 〈ũ, Ũ〉XL
α

+ 〈v, V 〉Y L
β

,

and the corresponding norm

||(x̃, y, ū, ũ, v)||E =
√

||x̃||2
XM

α
+ ||y||2

Y M
β

+ |ū|2 + ||ũ||2
XL

α
+ ||v||2

Y L
β

.

Since Xα, Yβ and R are separable Hilbert spaces [7, Proposition 2.3 and 2.6],
the same is true for E.

By A1, the Hamiltonian function H̃ in (2.7) is κi-periodic in xi for i ∈
{1, . . . , M}, hence writing x(t) = x̄ + x̃(t), with

x̄ =
1
π

∫ π

0

x(t) dt,

we can assume that x̄ ∈ T
M and look for solutions (z, x̄) ∈ E × T

M , where

z = (x̃, y, ū, ũ, v).

These solutions will be found as critical points of a suitable functional, by
applying the following theorem of Szulkin [18] (see also [10,13]).

Theorem 2.2. ([18]) If ϕ : E × T
M → R is a continuously differentiable

functional of the type

ϕ(z, x̄) =
1
2
〈L z, z〉E + ψ(z, x̄),

where L : E → E is a bounded selfadjoint invertible operator and dψ(E×T
M )

is relatively compact, then ϕ has at least M + 1 critical points.

2.2. The functional and the bilinear form

We define a functional ψ : E × T
M → R as

ψ(z, x̄) = ψ
(
(x̃ , y , ū , ũ, v) , x̄

)

=
∫ π

0

H̃
(
t , x̄ + x̃(t) , y(t) , ū + ũ(t) , v(t)

)
dt .

In the following, we will treat TM as being lifted to R
M , so E ×T

M will often
be identified with E × R

M . It has been shown in [7, Proposition 2.10] and
[6, Proposition 19, Proposition 22] that ψ is continuously differentiable, and
the gradient function ∇ψ has a relatively compact image. In what follows we
introduce the operator L .

We first consider the space

D = [C̃1([0, π])]M × [C1
0 ([0, π])]M × FL,
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where

FL =
(
R

L × [C̃1([0, π])]L
) × [C1

0 ([0, π])]L,

and define a symmetric bilinear form B : D × D → R as follows. For every
z = (x̃, y, ū, ũ, v) and Z = (X̃, Y, U, Ũ , V ) in D,

B(z,Z) =
∫ π

0

[
〈y′, X̃〉 − 〈x̃′, Y 〉 − 〈Jẇ,W 〉 + 〈Aw,W 〉

]
dt,

where w = (ū + ũ, v),W = (U + Ũ , V ) are in FL.

Proposition 2.3. The set D is dense in E, and the bilinear form B : D×D → R

is continuous with respect to the topology of E × E .

Proof. We know by [7, Proposition 2.5 and 2.8] that D is a dense subspace of
E. In order to prove the second part of the statement, let us write

B(z,Z) = B1

(
(x̃, y), (X̃, Y )

)
+ B2(w,W ),

where

B1

(
(x̃, y), (X̃, Y )

)
=

∫ π

0

(
〈y′, X̃〉 − 〈x̃′, Y 〉

)
dt, (2.8)

and

B2(w,W ) =
∫ π

0

(
− 〈Jẇ,W 〉 + 〈Aw,W 〉

)
dt. (2.9)

It has been proved in [6, Section 3.4] that B1 is continuous with respect to the
topology of XM

α ×Y M
β . We need to prove that B2 is continuous with respect to

the topology of RL × XL
α × Y L

β . For w = (w1, . . . , wL) and W = (W1, . . . ,WL)
in FL we have

∫ π

0

〈Jẇ,W 〉dt =
L∑

j=1

∫ π

0

〈Jẇj ,Wj〉dt, (2.10)

and, writing wj = (ūj + ũj , vj),Wj = (U j + Ũj , Vj),
∫ π

0

〈Jẇj ,Wj〉dt =
∫ π

0

u̇jVjdt −
∫ π

0

v̇jU jdt −
∫ π

0

v̇jŨjdt. (2.11)

We decompose the involved functions as

vj =
∞∑

m=1

vj
m sin(mt), Vj =

∞∑

m=1

V j
m sin(mt),

ũj =
∞∑

m=1

ũj
m cos(mt), Ũj =

∞∑

m=1

Ũ j
m cos(mt).

By the boundary condition v(0) = 0 = v(π), we see that
∫ π

0

v̇jU jdt = 0.

Recalling that α + β = 1, we have
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∣
∣
∣
∣

∫ π

0

u̇jVjdt

∣
∣
∣
∣ =

π

2

∣
∣
∣
∣
∣

∞∑

m=1

−mũj
mV j

m

∣
∣
∣
∣
∣

≤ π

2

∞∑

m=1

∣
∣mαũj

mmβV j
m

∣
∣

≤ π

2
||ũj ||Xα

||Vj ||Yβ
,

and
∣
∣
∣
∣

∫ π

0

v̇jŨjdt

∣
∣
∣
∣ =

π

2

∣
∣
∣
∣
∣

∞∑

m=1

mvj
mŨ j

m

∣
∣
∣
∣
∣

≤ π

2

∞∑

m=1

∣
∣
∣mαŨ j

mmβvj
m

∣
∣
∣

≤ π

2
||Ũj ||Xα

||vj ||Yβ
.

Going back to (2.11), for each j ∈ {1, . . . , L}, we thus have
∣
∣
∣
∣

∫ π

0

〈Jẇj ,Wj〉dt

∣
∣
∣
∣ ≤ π

2
||wj ||R×Xα×Yβ

||Wj ||R×Xα×Yβ
.

Hence, by (2.10),
∣
∣
∣
∣

∫ π

0

〈Jẇ,W 〉dt

∣
∣
∣
∣ ≤ π

2
||w||RL×XL

α ×Y L
β

||W ||RL×XL
α ×Y L

β
.

We have thus proved the continuity of the first part of the bilinear form defined
in (2.9).

For the second part, we can write
∫ π

0

〈Aw,W 〉dt =
L∑

j=1

λj

∫ π

0

〈wj ,Wj〉 dt, (2.12)

where
∫ π

0

〈wj ,Wj〉 dt =
∫ π

0

〈
(ūj + ũj , vj), (U j + Ũj , Vj)

〉
dt

=
∫ π

0

(ūj + ũj)(U j + Ũj)dt +
∫ π

0

vjVj dt .

Now for every j = 1, . . . , L, we have
∣
∣
∣
∣

∫ π

0

(ūj + ũj)(U j + Ũj)dt

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ π

0

ūjU j

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ π

0

ũjŨj

∣
∣
∣
∣

≤ π|ūj ||U j | +

∣
∣
∣
∣
∣

π

2

∞∑

m=1

ũj
mŨ j

m

∣
∣
∣
∣
∣

≤ π|ūj ||U j | +
π

2

∞∑

m=1

∣
∣mαũj

mmαŨ j
m

∣
∣

≤ π|ūj ||U j | +
π

2
||ũj ||Xα

||Ũj ||Xα
,
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while
∣
∣
∣
∣

∫ π

0

vjVjdt

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

π

2

∞∑

m=1

vj
mVmj

∣
∣
∣
∣
∣

≤ π

2

∞∑

m=1

∣
∣mβvj

mmβV j
m

∣
∣

≤ π

2
||vj ||Yβ

||Vj ||Yβ
.

Thus we have
∣
∣
∣
∣

∫ π

0

〈wj ,Wj〉dt

∣
∣
∣
∣ ≤ π||wj ||R×Xα×Yβ

||Wj ||R×Xα×Yβ
,

and, going back to (2.12),
∣
∣
∣
∣

∫ π

0

〈Aw,W 〉dt

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

L∑

j=1

λj

∫ π

0

〈wj ,Wj〉dt

∣
∣
∣
∣
∣
∣

≤
L∑

j=1

λj

∣
∣
∣
∣

∫ π

0

〈wj ,Wj〉dt

∣
∣
∣
∣

≤
L∑

j=1

πλj ||wj ||R×Xα×Yβ
||Wj ||R×Xα×Yβ

≤ πλ||w||RL×XL
α ×Y L

β
||W ||RL×XL

α ×Y L
β

,

where λ = max{λ1, . . . , λL}. This shows that also the second part of the
bilinear form B2 : D×D → R in (2.9) is continuous, and the proof is complete.

�

The bilinear form B : D × D → R can thus be extended in a unique way
to a continuous symmetric bilinear form B : E×E → R, for which we maintain
the same notation. A bounded selfadjoint operator L : E → E can thus be
defined by

〈L z,Z〉E = B(z,Z),

for z and Z in E. Referring to (2.8) and (2.9), we can write

L (x̃, y, ū, ũ, v) = (L1(x̃, y),L2(w)),

where

〈L1(x̃, y), (X̃, Y )〉XM
α ×Y M

β
= B1

(
(x̃, y), (X̃, Y )

)
,

and

〈L2(w),W 〉RL×XL
α ×Y L

β
= B2(w,W ),

for every z = (x̃, y, ū, ũ, v) and Z = (X̃, Y, U, Ũ , V ) in E with w = (ū, ũ, v),
and W = (U, Ũ , V ). It has been proved in [7, Proposition 2.14] that

||L1(x̃, y)||XM
α ×Y M

β
=

π

2
||(x̃, y)||XM

α ×Y M
β

. (2.13)
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We now need the following.

Lemma 2.4. There exist positive constants α, β, δ̃ with α < 1
2 < β, and α+β =

1 such that

||L2(w)||RL×XL
α ×Y L

β
≥ δ̃ ||w||RL×XL

α ×Y L
β

, (2.14)

for every w ∈ R
L × XL

α × Y L
β .

Proof. We first assume L = 1. Let (ζ, ζ̃, ξ) ∈ R × Xα × Yβ be such that
L2(w) = (ζ, ζ̃, ξ), so that

B2(w,W ) = 〈(ζ, ζ̃, ξ),W 〉R×Xα×Yβ
, (2.15)

for every W = (U, V ) ∈ R × Xα × Yβ . Recalling that w = (ū, ũ, v), we decom-
pose

ũ =
∞∑

m=1

um cos(mt), v =
∞∑

m=1

vm sin(mt),

ζ̃ =
∞∑

m=1

ζm cos(mt), ξ =
∞∑

m=1

ξm sin(mt).

By taking first V = 0 and then U = 0 in (2.15), and using (2.9), we obtain the
following identities

⎧
⎪⎨

⎪⎩

ζ = λ1πū,

ζmm2α = π
2 [λ1um + mvm],

ξmm2β = π
2 [mum + λ1vm].

(2.16)

Thus we have

ζmmα =
π

2
[λ1m

−αum + mβvm], ξmmβ =
π

2
[mαum + λ1m

−βvm],

and, by using the Young inequality,

ζ2mm2α + ξ2mm2β =
π2

4

[
λ2
1m

−2αu2
m + m2βv2

m + m2αu2
m

+ λ2
1m

−2βv2
m + 2λ1[mα−β + mβ−α]umvm

]

≥π2

4

[
λ2
1m

−2αu2
m + m2βv2

m + m2αu2
m

+ λ2
1m

−2βv2
m − λ1[mα−β + mβ−α]

(
u2

m + v2
m

)]

=
π2

4
m−4α

[
(λ1 − m)

(
λ1 − m4α−1

)]
m2αu2

m

+
π2

4
m−4β

[
(λ1 − m)

(
λ1 − m4β−1

)]
m2βv2

m . (2.17)

By hypothesis, we know that there exists a nonnegative integer n1 such that

n1 < λ1 < n1 + 1.

We now discuss separately the cases for n1 = 0 and n1 ≥ 1.
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Case 1. If n1 = 0, then 0 < λ1 < 1, and so λ1 < m for all m ≥ 1. Now for
m = 1, (2.17) implies that

ζ21 + ξ21 ≥ π2

4
(λ1 − 1)2(u2

1 + v2
1). (2.18)

For m ≥ 2, we have

(λ1 − m)(λ1 − m4α−1) > (1 − m)(1 − m4α−1) = (m − 1)(m4α−1 − 1).

By writing m−4α = m−1m−4α+1, and choosing α such that

1
4

(
log(4/3)

log 2
+ 1

)

< α <
1
2
,

we have

m−4α(λ1 − m)
(
λ1 − m4α−1

)
>

(

1 − 1
m

)(

1 − 1
m4α−1

)

≥
(

1 − 1
2

)(

1 − 1
24α−1

)

≥ 1
8

≥ λ2
1

8
,

since λ1 < 1. Similarly, since β > 1
2 > α, we get

m−4β(λ1 − m)
(
λ1 − m4β−1

) ≥ λ2
1

8
,

and thus (2.17) implies that

ζ2mm2α + ξ2mm2β ≥ π2

4
λ2
1

8
[
m2αu2

m + m2βv2
m

]
. (2.19)

Combining (2.18), (2.19), and the first identity in (2.16), we have

||L2(ū, ũ, v)||2
R×Xα×Yβ

= |ζ|2 + ||ζ̃||2Xα
+ ||ζ̃||2Yβ

= π2λ2
1|ū|2 + (ζ21 + ξ21) +

∞∑

m=2

(
ζ2mm2α + ξ2mm2β

)

≥ π2

4
λ2
1

8

[
|ū|2 +

(
1 − 1

λ1

)2

[u2
1 + v2

1 ] +
∞∑

m=2

(
u2

mm2α + v2
mm2β

)]

≥ δ̃2
[
|ū|2 +

∞∑

m=1

(
u2

mm2α + v2
mm2β

)]
= δ̃2||(ū, ũ, v)||2

R×Xα×Yβ
,

where

δ̃ =
π

8
λ1 min

{
1,

∣
∣
∣1 − 1

λ1

∣
∣
∣

}
.

This implies that (2.14) holds in this case, for L = 1.
Case 2. If n1 ≥ 1, then for m ∈ {1, . . . , n1} we have λ1 − m ≥ λ1 − n1 > 0,
and so

λ1 − m4α−1 ≥ λ1 − m ≥ λ1 − n1 > 0.

This implies that

m−4α(λ1 − m)
(
λ1 − m4α−1

) ≥ n−4α
1 (λ1 − n1)2 ≥ n−4β

1 (λ1 − n1)2.
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By choosing β such that

1
2

< β <
1
4

(
log

(
1
2 (λ1 + n1)

)

log n1
+ 1

)

, (2.20)

we obtain that λ1 − m4β−1 ≥ λ1 − n4β−1
1 > 1

2 (λ1 − n1) > 0 , and so

m−4β(λ1 − m)
(
λ1 − m4β−1

) ≥ n−4β
1

1
2
(λ1 − n1)2.

Thus, for m ∈ {1, . . . , n1}, (2.17) and (2.20) imply that

ζ2mm2α + ξ2mm2β ≥ π2

8
n−4β
1 (λ1 − n1)2

[
m2αu2

m + m2βv2
m

]
. (2.21)

For m = n1 + 1, we have λ1 − m = λ1 − (n1 + 1) < 0, and so

λ1 − m4β−1 = λ1 − (n1 + 1)4β−1 < λ1 − (n1 + 1) < 0.

This implies that

m−4β(λ1 − m)
(
λ1 − m4β−1

) ≥ (n1 + 1)−4β(λ1 − (n1 + 1))2.

By choosing α such that

1
4

(
log

(
1
2 (λ1 + n1 + 1)

)

log(n1 + 1)
+ 1

)

≤ α <
1
2
, (2.22)

we obtain

λ1 − m4α−1 = λ1 − (n1 + 1)4α−1 ≤ 1
2
(
λ1 − (n1 + 1)

)
< 0,

and so

m−4α(λ1 − m)
(
λ1 − m4α−1

) ≥ (n1 + 1)−4α 1
2
(
λ1 − (n1 + 1)

)2

≥ (n1 + 1)−4β 1
2
(
λ1 − (n1 + 1)

)2
.

Thus, for m = n1 + 1, (2.17) and (2.22) imply that

ζ2mm2α + ξ2mm2β ≥ π2

8
(n1 + 1)−4β(λ1 − (n1 + 1))2

[
m2αu2

m + m2βv2
m

]
.

(2.23)

Lastly, for m ≥ n1 + 2, by choosing α such that

1
4

( log
( 2(n1+1)(n1+2)

2n1+3

)

log(n1 + 2)
+ 1

)

≤ α <
1
2
, (2.24)

we have

(λ1 − m)(λ1 − m4α−1) > (n1 + 1 − m)(n1 + 1 − m4α−1)

= (m − (n1 + 1))(m4α−1 − (n1 + 1)) ,

and, writing m−4α = m−1 m−4α+1,
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m−4α(λ1 − m)
(
λ1 − m4α−1

)
>

(

1 − n1 + 1
m

)(

1 − n1 + 1
m4α−1

)

≥
(

1 − n1 + 1
n1 + 2

)(

1 − n1 + 1
(n1 + 2)4α−1

)

≥ 1
2

(

1 − n1 + 1
n1 + 2

)2

=
1
2

1
(n1 + 2)2

.

Similarly, since β > 1
2 > α, we obtain

m−4β(λ1 − m)
(
λ1 − m4β−1

) ≥ 1
2

1
(n1 + 2)2

.

Hence for m ≥ n1 + 2, (2.17) and (2.24) imply that

ζ2mm2α + ξ2mm2β ≥ π2

8
1

(n1 + 2)2
[
m2αu2

m + m2βv2
m

]
. (2.25)

Combining (2.21), (2.23), (2.25), and the first identity in (2.16) we have

||L2(ū, ũ, v)||2
R×Xα×Yβ

= |ζ|2 + ||ζ̃||2Xα
+ ||ζ̃||2Yβ

= π2λ2
1|ū|2 +

n1∑

m=1

[
ζ2mm2α + ξ2mm2β

]
+

+
[
ζ2n1+1(n1 + 1)2α + ξ2n1+1(n1 + 1)2β

]
+

∞∑

m=n1+2

[
ζ2mm2α + ξ2mm2β

]

≥ π2

8
|ū|2 +

π2

8
(n1 + 1)−4β

[(
1 − n1

λ1

)2
n1∑

m=1

[
m2αu2

m + m2βv2
m

]

+
(
1 − n1 + 1

λ1

)2[
(n1 + 1)2αu2

n1+1 + (n1 + 1)2βv2
n1+1

]]

+

+
π2

8
1

(n1 + 2)2

∞∑

m=n1+2

[
m2αu2

m + m2βv2
m

]

≥ δ̃2

[

|ū|2 +
∞∑

m=1

(
u2

mm2α + v2
mm2β

)
]

= δ̃2||(ū, ũ, v)||2
R×Xα×Yβ

,

where

δ̃ =
π

2
√

2
min

{
1

n1 + 2
, (n1 + 1)−2β

∣
∣
∣1 − n1 + 1

λ1

∣
∣
∣, (n1 + 1)−2β

∣
∣
∣1 − n1

λ1

∣
∣
∣

}

.

This implies that (2.14) holds also in this case, for L = 1.
Finally, by using (2.10) and (2.12), we can easily see that (2.14) holds for

any L ≥ 1. �

By combining (2.13) and (2.14) in Lemma 2.4, we can say that the selfad-
joint operator L : E → E is invertible, and the inverse operator L −1 : E → E
is continuous.

By Theorem 2.2, we conclude that the functional ϕ has at least M + 1
critical points. Arguing as in [6, Proposition 24], it can be seen that these
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critical points correspond to the solutions of the boundary value problem (2.6)–
(2.3) that we are looking for. The proof of Theorem 2.1 is thus completed. �

3. Proof of Theorem 1.1

Without loss of generality, we may assume that [a, b] = [0, π]. We start assum-
ing L = 1, and we first work on the planar system (1.3) so to transform it, by
a symplectic change of variables, into a linear one. We will follow the approach
developed in [1,8,11].

3.1. A symplectic change of variables

By using A4, we have that H (0, 0) = 0 and the generalized Euler Identity
holds true, i.e.,

〈

∇H (u, v),
(

u

p
,
v

q

)〉

= H (u, v). (3.1)

Choose the positive constant

Υ = min
{

1
|w|2H (w) : 1 ≤ |w| ≤ 2

}

, (3.2)

and let η : R → R be a C∞-function such that η′(s) ≤ 0 for all s ∈ R and

η(s) =

{
1, if s ≤ 1,

0, if s ≥ 2.

For w = (u, v), set

Ĥ (w) = η(|w|)Υ|w|2 + (1 − η(|w|))H (w), (3.3)

and consider the new system

Jẇ = ∇Ĥ (w). (3.4)

Notice that Ĥ (0) = 0. For every w = 0, we have

∇Ĥ (w) =
(
Υη′(|w|)|w| + 2Υη(|w|) − η′(|w|)

|w| H (w)
)
w + (1 − η(|w|))∇H (w).

Then, using (3.1) and (3.2), if w = (u, v) is such that 1 ≤ |w| ≤ 2, we have
〈

∇Ĥ (w),
(

u

p
,
v

q

)〉

= η′(|w|)|w|
(

u2

p
+

v2

q

)
(
Υ − 1

|w|2H (w)
)

+2η(|w|)Υ
(

u2

p
+

v2

q

)

+ (1 − η(|w|))H (w) > 0.

This implies that ∇Ĥ (w) = 0, for 1 ≤ |w| ≤ 2. For 0 < |w| ≤ 1, the
Hamiltonian function Ĥ is quadratic, so that ∇Ĥ (w) = 0. Lastly, for |w| ≥ 2,
we have ∇Ĥ (w) = ∇H (w), and it is clear from (3.1) that ∇H (w) = 0. Hence
∇Ĥ (w) = 0 for every w = 0, and this shows that every non-zero solution of
system (3.4) does not pass through the origin, and by Poincaré–Bendixson
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theory, all the solutions of system (3.4) are periodic. Thus the origin is still a
global center for the system (3.4).

Now for any w0 ∈ R
2 \ {0}, we denote by T̂ (w0) the minimal period of

the solution of (3.4) passing through w0. We notice here that this solution is
unique, even if we are not assuming ∇H to be locally Lipschitz continuous, cf.
[16]. The function T̂ : R2\{0} → R thus defined is continuously differentiable
(see [1]).

Define

δ� = [0,+∞[×{0},

and a function ξ : ]0,+∞[→ ]0,+∞[ as follows: for every r > 0, the level line
{w ∈ R

2 : Ĥ (w) = r} intersects δ� at the point (ξ(r), 0). Such a point is
unique, because for every (ξ, 0) ∈ δ� with ξ = 0 we have

〈

∇Ĥ (ξ, 0),
(

ξ

p
, 0

)〉

> 0,

which implies that
〈∇Ĥ (ξ, 0), (ξ, 0)

〉
> 0.

Thus, if w(t0) = (u(t0), v(t0)) = (u(t0), 0) is such that u(t0) > 0, then v′(t0) <

0, and so it is impossible for the level line {w ∈ R
2 : Ĥ (w) = r} to intersect

δ� at two different points.
Now define K̂ : R2 → R as

K̂(w) =
1
τ

∫ Ĥ (w)

0

T̂ (ξ(r), 0) dr.

This function is continuously differentiable, and

∇K̂(w) =
T̂ (w)

τ
∇Ĥ (w).

Hence, the origin is an isochronous center for the system

Jẇ = ∇K̂(w), (3.5)

since all solutions except the equilibrium 0 are periodic with minimal period
τ . Moreover,

K̂(w) =
π

τ
|w|2, if |w| ≤ 1.

Now, for every w0 ∈ R
2 \ {0}, let ζ(t;w0) be the solution of system (3.5)

satisfying ζ(0;w0) = w0, and define θ(w0) ∈ [0, 2π[ as the minimum time for
which

ζ
(

− τ

2π
θ(w0);w0

)
∈ δ�.

As shown in [1], the restricted function θ : R2 \ δ� → ]0, 2π[ is continuously
differentiable, and its gradient ∇θ can be continuously extended to R

2 \ {0}.
We will still denote this extension by ∇θ : R2 \ {0} → R

2.
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Hence, by [1, Proposition 2.2.], there exists a symplectic diffeomorphism
Λ : R2 → R

2 defined by

Λ(w) =

⎧
⎨

⎩

√
τ

π
K̂(w)

(
cos θ(w), − sin θ(w)

)
, if w = 0,

0, if w = 0,

such that, by the change of variable z = Λ(w), system (3.5) is changed to the
linear one

Jż =
2π

τ
z.

3.2. The proof in the case L = 1
First, we can modify the function H as in (2.5) so to obtain the modified
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = ∇yĤ(t, x, y) + ∇yP (t, x, y, u, v) ,

ẏ = −∇xĤ(t, x, y) − ∇xP (t, x, y, u, v),
u̇ = ∇vH (u, v) + ∇vP (t, x, y, u, v),
v̇ = −∇uH (u, v) − ∇uP (t, x, y, u, v).

(3.6)

Using the argument in [5, Section 3], it can be seen that all the solutions
of this system are globally defined. Moreover, those satisfying the boundary
conditions

{
y(0) = 0 = y(π),
v(0) = 0 = v(π)

(3.7)

are solutions of the original system (1.1).
Recalling the change of variables Λ(w) = z in Sect. 3.1, we define a map

P̃ (t, x, y, z) = P (t, x, y,Λ−1(z)).

Lemma 3.1. The function P̃ has a bounded gradient with respect to (x, y, z).

Proof. Clearly, by A2 both

∂xP̃ (t, x, y, z) = ∂xP (t, x, y,Λ−1(z)), ∂yP̃ (t, x, y, z) = ∂yP (t, x, y,Λ−1(z))

are bounded and denoting by M
∗ the transpose of a matrix M,

∇zP̃ (t, x, y, z) =
[
(Λ−1(z))′]∗ ∇wP (t, x, y,Λ−1(z))

=
[
(Λ′(Λ−1(z)))∗]−1 ∇wP (t, x, y,Λ−1(z))) .

Again by A2, ∇wP (t, x, y, w) is bounded, so it is sufficient to show that
(Λ′(w))−1 is bounded. For |w| large enough, we have that K̂(w) = H (w).
By denoting c(w) = cos θ(w) and s(w) = sin θ(w), we have

Λ′(w) =
[
a11(w) a12(w)
a21(w) a22(w)

]

,

where

a11(w) =
√

τ

π

(
∂uH (w)
2
√

H (w)
c(w) −

√
H (w)∂uθ(w)s(w)

)

,
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a12(w) =
√

τ

π

(
∂vH (w)
2
√
H (w)

c(w) −
√
H (w)∂vθ(w)s(w)

)

,

a21(w) =
√

τ

π

(

− ∂uH (w)
2
√

H (w)
s(w) −

√
H (w)∂uθ(w)c(w)

)

,

a22(w) =
√

τ

π

(

− ∂vH (w)
2
√

H (w)
s(w) −

√
H (w)∂vθ(w)c(w)

)

.

Recalling that Λ is symplectic, so det Λ′(w) = 1, the inverse matrix is

(Λ′(w))−1 =
[

a22(w) −a12(w)
−a21(w) a11(w)

]

.

From the definition of θ, for w = 0 and γ > 0 we see that θ(γqu, γpv) =
θ(u, v). Indeed, if w(t) = (u(t), v(t)) is a solution of system (3.5), then wγ =
(γqu, γpv) is also a solution of system (3.5) with vertical component of the
velocity equal to γpv̇(t). Hence, if w(t) needs a time τ

2π θ(u0, v0) to go from δ�

to (u0, v0) (it has a vertical speed v̇(t)), then the time for wγ(t) to go from δ�

to (γqu0, γ
pv0) must be the same, since its vertical speed is just γp times the

vertical speed of w(t). Thus we have

∂uθ(γqu, γpv)γq = ∂uθ(u, v), ∂vθ(γqu, γpv)γp = ∂vθ(u, v),

for every γ > 0. For w = (u, v) with |w| ≥ 2, since H is positively-(p, q)-
homogeneous, the following identities have been proved in [5]:

∂H

∂u
(γqu, γpv) = γq(p−1) ∂H

∂u
(u, v) = γp ∂H

∂u
(u, v),

∂H

∂v
(γqu, γpv) = γp(q−1) ∂H

∂v
(u, v) = γq ∂H

∂v
(u, v).

Thus we have

|a22(w)| ≤
√

τ

π

( |∂vH (w)|
2
√

H (w)
+

√
H (w) |∂vθ(w)|

)

=
√

τ

π

|w|q
∣
∣
∣
∣∂vH

(
u

|w|q ,
v

|w|p
)∣
∣
∣
∣

2|w|p+q

√

H

(
u

|w|2q
,

v

|w|2p

)+

+
√

τ

π

|w|p+q

|w|p(p+q)

√

H

(
u

|w|2q
,

v

|w|2p

)

∂vθ

(
u

|w|q(p+q)
,

v

|w|p(p+q)

)

≤
√

τ

π

∣
∣
∣
∣∂vH

(
u

|w|q ,
v

|w|p
)∣
∣
∣
∣

2

√

H

(
u

|w|2q
,

v

|w|2p

)+

+
√

τ

π

√

H

(
u

|w|2q
,

v

|w|2p

)

∂vθ

(
u

|w|q(p+q)
,

v

|w|p(p+q)

)

.
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Define three types of sets as follow:

S =
{(

u

|w|q ,
v

|w|p
)

: w = (u, v), |w| ≥ 1
}

,

S′ =
{(

u

|w|2q
,

v

|w|2p

)

: w = (u, v), |w| ≥ 1
}

,

and

S′′ =
{(

u

|w|q(p+q)
,

v

|w|p(p+q)

)

: w = (u, v), |w| ≥ 1
}

.

It is easy to see that the sets S, S′, and S′′ are subsets of the closed unit ball
B(0, 1) of R2. This implies that |a22(w)| is bounded, since the functions H and
θ are C1. Similarly we can show that all of the other elements of the matrix
(Λ′(w))−1 are bounded, which thus proves that the map P̃ has a bounded
gradient with respect to z. �

Now we consider the modified system
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = ∇yĤ(t, x, y) + ∇yP̃ (t, x, y, ξ, ζ),
ẏ = −∇xĤ(t, x, y) − ∇xP̃ (t, x, y, ξ, ζ),

ξ̇ =
2π

τ
ζ + ∂ζP̃ (t, x, y, ξ, ζ),

ζ̇ = −2π

τ
ξ − ∂ξj

P̃ (t, x, y, ξ, ζ),

(3.8)

where z = (ξ, ζ). By the assumption τ+ = τ−, the boundary conditions become
{

y(0) = 0 = y(π),
ζ(0) = 0 = ζ(π).

(3.9)

Thus, by taking λ1 = 2π
τ , all the assumptions of Theorem 2.1 are satisfied, so

that the boundary value problem (3.8)–(3.9) has at least M + 1 geometrically
distinct solutions.

Recalling that Λ is a diffeomorphism, we can apply the inverse change of
variables w = Λ−1(z), and obtain the M + 1 geometrically distinct solutions
of system (3.6) satisfying the boundary conditions (3.7) we were looking for.
This completes the proof of Theorem 1.1 in the case L = 1. �

3.3. The proof in the higher dimensional case

We now consider the case L ≥ 2, for which we will follow briefly the lines of
the proof in the previous section. We can define Ĥj as in (3.3) and consider
the new system

Jζ̇ = ∇Ĥj(ζ).

We define K̂j : R2 → R as

K̂j(ζ) =
1
τj

∫ Ĥ j(ζ)

0

T̂j(ξj(r), 0) dr,
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so that the origin is an isochronous center for the system

Jζ̇ = ∇K̂j(ζ), (3.10)

i.e., for every j ∈ {1, . . . , L}, all solutions of system (3.10) except the origin are
periodic and have the same minimal period τj . Now, for every j ∈ {1, . . . , L},
there exists a symplectic diffeomorphism Λj : R

2 → R
2 such that, by the

change of variables ρ = Λj(ζ), system (3.10) becomes

Jρ̇ =
2π

τj
ρ.

By the use of a cut-off function, we modify the Hamiltonian H like in (2.5), so
that the new Hamiltonian Ĥ has a bounded gradient with respect to (x, y).

Defining Λ : R2L → R
2L by

Λ(u, v) = (Λ1(u1, v1), . . . ,ΛL(uL, vL)) ,

we see that Λ is a symplectic diffeomorphism. By writing

P̃ (t, x, y, z) = P (t, x, y,Λ−1(z)),

as in Lemma 3.1 we can show that the function P̃ has a bounded gradient
with respect to (x, y, z).

We apply the change of variables z = Λ(w) and write z = (ξ, ζ) with

ξ = (ξ1, . . . , ξL), ζ = (ζ1, . . . , ζL),

so to obtain the modified system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = ∇yĤ(t, x, y) + ∇yP̃ (t, x, y, z),
ẏ = −∇xĤ(t, x, y) − ∇xP̃ (t, x, y, z),

ξ̇j =
2π

τj
ζj + ∂ζj

P̃ (t, x, y, z), j = 1, . . . , L,

ζ̇j = −2π

τj
ξj − ∂ξj

P̃ (t, x, y, z), j = 1, . . . , L.

(3.11)

Moreover, since τj+ = τj− , the boundary conditions become the same as those
in (3.9). Hence, by taking λj = 2π

τj
, Theorem 2.1 implies that the modified

system (3.11) has at least M +1 geometrically distinct solutions satisfying the
boundary conditions (3.9).

Recalling that Λ is a diffeomorphism, we can apply the inverse change of
variables w = Λ−1(z) and obtain the solutions of problem (1.1)–(1.2) we are
looking for. �

4. The periodic problem

In this section, we consider the Hamiltonian system (1.1), where besides the
regularity assumptions already made on the functions involved, we assume
that all these functions are T -periodic in t. While maintaining assumptions
A1, A2 and A4 we will reinforce assumption A3 by a twist condition, and for
this we first recall some definitions.
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By a convex body of RM , we mean a closed convex bounded subset D
of R

M having nonempty interior. If in addition, D has a smooth boundary,
then we denote the unit outward normal at ζ ∈ ∂D by νD(ζ). Moreover, we
say that D is strongly convex if for any p̄ ∈ ∂D, the map F : D → R defined
by F(ξ) = 〈ξ − p̄, νD(p̄)〉 has a unique maximum point at ξ = p̄. Below is our
twist condition.
B3′. There are a strongly convex body D of RM having a smooth boundary
and a symmetric regular M × M matrix B such that, for every C1-function
W : [0, T ] → R

2L, all the solutions (x, y) of system
{

ẋ = ∇yH(t, x, y) + ∇yP (t, x, y,W(t)),
ẏ = −∇xH(t, x, y) − ∇xP (t, x, y,W(t)),

(4.1)

starting with y(0) ∈ D are defined on [0, T ], and

y(0) ∈ ∂D ⇒ 〈x(T ) − x(0), BνD(y(0))〉 > 0.

Here is our first result for the periodic problem.

Theorem 4.1. Assume that A1, A2, B3′ and A4 hold true, and let
T

τj
/∈ N, for every j ∈ {1, . . . , L}.

Then there are at least M + 1 geometrically distinct T -periodic solutions of
system (1.1), with y(0) ∈ D̊.

Proof. Following the lines of the proof of Theorem 1.1, we modify the problem
so to have a coupling with a perturbed linear system. Then, [4, Corollary 2.4]
applies (instead of Theorem 2.1), and the proof is readily completed. �

We can state some variants of Theorem 4.1 replacing the twist assumption
B3′ by B3′′ or by B3′′′ given below.
B3′′. There exists a convex body D of RM , having a smooth boundary, such
that for σ ∈ {−1, 1} and for every C1-function W : [0, T ] → R

2L, all the
solutions (x, y) of system (4.1) starting with y(0) ∈ D are defined on [0, T ],
and

y(0) ∈ ∂D ⇒ x(T ) − x(0) /∈ {σλνD(y(0)) : λ ≥ 0}.

B3′′′. Let D be a rectangle in R
M , i.e.

D = [c1, d1] × · · · × [cM , dM ].

There exists an M -tuple σ = (σ1, . . . , σM ) ∈ {−1, 1}M such that, for every
C1-function W : [0, T ] → R

2L, all the solutions (x, y) of system (4.1) starting
with y(0) ∈ D are defined on [0, T ], and, for every i ∈ {1, . . . , M}, we have

{
yi(0) = ci ⇒ σi(xi(T ) − xi(0)) < 0,

yi(0) = di ⇒ σi(xi(T ) − xi(0)) > 0.

The proofs of such results are similar to those of [8, Theorem 4.2, Theorem
4.3], so we avoid them for briefness.
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5. Some possible applications

As an example of application of Theorem 1.1, we consider the following system
for L = M = 1:

{
ẋ = f(y) + E(t), ẏ = −A sin x − ∂xP (t, x, u),
u̇ = |v|q−2v, v̇ = −μ(u+)p−1 + ν(u−)p−1 + ∂uP (t, x, u),

(5.1)

with the Neumann-type boundary conditions
{

y(a) = 0 = y(b),
v(a) = 0 = v(b).

(5.2)

Here we use the notation u+ = max{u, 0}, u− = max{−u, 0}. We assume
that the constants A,μ, ν are positive, and the functions f : R → R, E :
[a, b] → R and P : [a, b] × R

2 → R are continuous. Assume further that
P (t, x, u) is 2π-periodic in x, continuously differentiable in (x, u), and that it
has a bounded gradient with respect to (x, u). Since sinx and ∂xP (t, x, u) are
bounded, assumption A3 clearly holds.

On the other hand, notice that the last two equations in system (5.1)
correspond to the scalar equation

d

dt

(|u̇|p−2u̇
)

+ μ(u+)p−1 − ν(u−)p−1 = ∂uP (t, x, u).

If we define H by

H (u, v) =
|v|q
q

+
1
p

(
μ(u+)p + ν(u−)p

)
,

then H is positively-(p, q)-homogeneous and positive, and all the solutions of
system Jẇ = ∇H (w) with w = (u, v) are periodic with the same minimal
period

τ = πp(μ−1/p + ν−1/p), (5.3)

(see [12,17]), where

πp =
2(p − 1)1/p

p sin(π/p)
π.

We thus get the following immediate consequence of Theorem 1.1.

Corollary 5.1. In the above setting, assume moreover that

(μν)1/p

μ1/p + ν1/p
= nπp

2(b − a)
, for every n ∈ N.

Then problem (5.1)–(5.2) has at least two geometrically distinct solutions.

Remark 5.2. Surprisingly enough, besides continuity, in the above corollary
no further assumption is needed on the function f .
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Concerning the periodic problem, as a first example of application of
Theorem 4.1 we consider the system

{
ẍ + A sin x = e(t) + ∂xP (t, x, u),
d
dt

(|u̇|p−2u̇
)

+ μ(u+)p−1 − ν(u−)p−1 = ∂uP (t, x, u),
(5.4)

where the constants A,μ, ν are positive. Assume that P (t, x, u) is T -periodic
in t and 2π-periodic in x, and that it has a bounded gradient with respect to
(x, u). Setting E(t) =

∫ t

0
e(s) ds, system (5.4) is equivalent to

{
ẋ = y + E(t), ẏ = −A sin x + ∂xP (t, x, u),
u̇ = |v|q−2v, v̇ = −μ(u+)p−1 + ν(u−)p−1 + ∂uP (t, x, u).

(5.5)

Assuming e(t) to be T -periodic with
∫ T

0

e(t) dt = 0,

the function E(t) is T -periodic, as well.
Let us verify that the first two equations in (5.5) satisfy the twist condi-

tion B3′′′, with M = 1. Notice that there exists K3 > 0 such that, for every
C1-function U : [0, T ] → R, all the solutions (x, y) of the system

ẋ = y + E(t), ẏ = −A sin x + ∂xP (t, x,U(t))

are defined on [0, T ] and satisfy

|ẏ(t)| ≤ K3, for every t ∈ [0, T ].

Define d = K3T + ‖E‖∞ + 1 and c = −(K3T + ‖E‖∞ + 1). Then, if y(0) = d,
we have

ẋ(t) = y(t) + E(t) = y(0) +
∫ t

0

ẏ(s) ds + E(t) ≥ d − K3T − ‖E‖∞ > 0,

for every t ∈ [0, T ], and so x(T ) − x(0) > 0. Similarly, if y(0) = c, then
x(T ) − x(0) < 0, which shows that the twist condition is satisfied.

As a consequence of Theorem 4.1 we then immediately have the following.

Corollary 5.3. In the above setting, assume moreover that

(μν)1/p

μ1/p + ν1/p
= nπp

T
, for every n ∈ N.

Then system (5.4) has at least two geometrically distinct T -periodic solutions.

A variant of the previous example is provided by the system
⎧
⎪⎨

⎪⎩

ẍ + A sin x = e(t) + ∂xP (t, x, u),
u̇ = ν(v−)q−1 − μ(v+)q−1,

v̇ = μ(u+)p−1 − ν(u−)p−1 − ∂uP (t, x, u).
(5.6)

where, being w = (u, v), one has w+ = (u+, v+) and w− = (u−, v−). Assuming
μ, ν to be positive, if we define H by

H (u, v) =
1
q

(
μ(v+)q + ν(v−)q

)
+

1
p

(
μ(u+)p + ν(u−)p

)
,
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then H is positively-(p, q)-homogeneous and positive, and all the solutions of
system Jẇ = ∇H (w) with w = (u, v) are periodic having the same minimal
period τ , which can be computed as follows.

We first consider the dynamics in the first quadrant, i.e., when u > 0 and
v > 0. In this case we can write Jẇ = ∇H (w) as

u̇ = μvq−1, v̇ = −μup−1,

leading to the equation
d

dt

(|u̇|p−2u̇
)

+ μpup−1 = 0.

Then, recalling (5.3), the time needed to pass from the positive v-axis to the
positive u-axis is

τ1 =
1
4
πp2(μp)− 1

p =
πp

2μ
.

Similarly, in the fourth quadrant, where u > 0 and v < 0, the system becomes

u̇ = −ν|v|q−2v, v̇ = μup−1,

leading to the equation
d

dt

(|u̇|p−2u̇
)

+ μνp−1up−1 = 0.

So, the time needed to pass from the positive u-axis to the negative v-axis is

τ2 =
1
4
πp2(μνp−1)− 1

p =
πp

2μ
1
p ν

1
q

.

In a similar way, we obtain that the time needed to pass from the negative
v-axis to the negative u-axis is

τ3 =
πp

2ν

and the time needed to pass from the negative u-axis to the positive v-axis is

τ4 =
πp

2μ
1
q ν

1
p

.

Hence,

τ = τ1 + τ2 + τ3 + τ4 =
πp

2

(
1
μ

+
1
ν

+
1

μ
1
p ν

1
q

+
1

μ
1
q ν

1
p

)

.

We thus get the following consequence of Theorem 4.1.

Corollary 5.4. In the above setting, assume moreover that

πp

2

(
1
μ

+
1
ν

+
1

μ
1
p ν

1
q

+
1

μ
1
q ν

1
p

)

= T

n
, for every n ∈ N \ {0}.

Then system (5.6) has at least two geometrically distinct T -periodic solutions.

Both Corollaries 5.3 and 5.4 generalize a classical theorem of Mawhin
and Willem [14] on the multiplicity of periodic solutions for the pendulum
equation.
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6. Final remarks

In Theorem 2.1, dealing with the Neumann problem, we have only considered
a diagonal matrix A like in (2.2). However, for the T -periodic problem, the
first author with Gidoni in [4] were able to deal with any symmetric matrix A,
provided that the nonresonance condition σ(JA) ∩ 2π

T iZ = ∅ is assumed. We
are confident that a similar result should also hold for the Neumann problem,
but we have been able to prove it only when L = 1 and the matrix has a
positive determinant. Here is our result.

Theorem 6.1. Assume L = 1 and that A1 – A3 hold true. Let A be a symmetric
2 × 2 matrix such that detA > 0. If the non-resonance condition σ(JA) ∩

π
b−a iZ = ∅ holds, then there are at least M + 1 geometrically distinct solutions
of the boundary value problem (2.1)–(2.3).

Proof. Consider the planar Hamiltonian system

Jẇ = Aw. (6.1)

We can diagonalize A by a symplectic transformation. Indeed, there exist a
matrix U with detU = 1 and a diagonal matrix D such that

A = U
−1

DU.

Since detU = 1, and the dimension is 2, the change of variables � = Uw
is symplectic. Hence, system (6.1) is transformed into the new Hamiltonian
system

J�̇ = D�, (6.2)

with

D =
(

α 0
0 β

)

,

for some α, β such that αβ > 0. Now, the symplectic change of variables
� = M�, with

M =

(
4

√
α
β 0

0 4

√
β
α

)

.

transforms system (6.2) into

J�̇ = λ�,

with λ = ±√
αβ, according to the signs of α and β. However, if λ < 0, a

final change of variables t �→ −t will lead to a positive λ. We can now apply
Theorem 2.1 to conclude the proof. �

The general case L ≥ 2 remains an open problem. However, writing
w = (w1, . . . , wL) with wj = (uj , vj) and applying componentwise the same
procedure in the proof of Theorem 6.1 above, Theorem 2.1 can be generalized
to the case when the last equation in system (2.1) is of the type

Jẇj = Ajwj + ∇wj
P (t, x, y, w), j = 1, . . . , L,
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where Aj is a symmetric 2 × 2 matrix such that detAj > 0. We omit the
details, for briefness.

As a final remark, we recall that, for the periodic problem, Chen and Qian
in [2] proved a multiplicity result, coupling resonant linear components with
twisting components by using Ahmad-Lazer-Paul type resonance condition. In
our case, a similar result can be expected for Neumann problem without any
twist assumption. The problem remains open for further investigation.
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