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renner S. Rego a,∗, Diego Locatelli b, Davide M. Raimondo b,
uilherme V. Raffo a,c

Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Italy
Department of Electronics Engineering, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil

a r t i c l e i n f o

eywords:
onlinear state estimation
arameter identification
et-based computing
onstrained zonotopes

a b s t r a c t

This note presents a new method for set-based joint state and parameter estimation of discrete-time
systems using constrained zonotopes. This is done by extending previous set-based state estimation
methods to include parameter identification in a unified framework. Unlike in interval-based methods,
the existing dependencies between states and model parameters are maintained from one time step
to the next, thus providing a more accurate estimation scheme. In addition, the enclosure of states
and parameters is refined using measurements through generalized intersections, which are properly
captured by constrained zonotopes. The advantages of the new approach are highlighted in two
numerical examples.
1. Introduction

Without assuming knowledge of the stochastic properties of
nknown variables, set-based state estimation methods are able
o provide guaranteed enclosures of the system trajectories in ap-
lications affected by bounded uncertainties (Chisci et al., 1996;
cott et al., 2016). Set-based methods have also been widely used
n the parameter identification field as an alternative to stochastic
ethods, since they are able to provide guaranteed enclosures
f the model parameters when the uncertain model parameters
ave unknown stochastic properties. Zonotopes have been used
o approximate the parametric set for discrete-time systems with
dditive uncertainties in Bravo et al. (2006), which was later ex-
ended to allow multiplicative uncertainties in Wang et al. (2017).
owever, both methods are applied only to systems described by
egression models, and rely on conservative intersections with
trips to refine the parametric set. Intervals have been used in
he context of optimal design of experiments in Denis-Vidal et al.
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(2019), to minimize the conservatism of the parametric enclosure.
Moreover, a bisection-based interval algorithm has been used
in Rumschinski et al. (2010) to deal with non-convex parame-
ter sets using collections of intervals. Nevertheless, intervals are
not able to capture dependencies between variables, which may
result in conservative enclosures due to wrapping effect.

In the literature, parameter identification is typically addressed
as a separated problem from state estimation, in which a model
is identified off-line. Few state estimation strategies in the liter-
ature refine online the model parametric uncertainties in order
to improve the accuracy of state estimation. Such methodology
is referred to as joint state and parameter estimation, which
enables the simultaneous estimation of both states and model
parameters. It allows for a more efficient update of these vari-
ables using available measurement, besides taking into account
state-parameter dependencies, rather than dealing with two sep-
arated problems. A Kalman filtering (KF) strategy, based on multi-
innovation recursive extended least squares algorithm, has been
proposed in Cui et al. (2020) to enhance parameter estimation.
However, bias issues introduced by KF make such approaches
unreliable in case the assumptions on the stochastic properties of
the uncertainties are violated. Deterministic approaches include
Luenberger-based observers (Zhang et al., 2020) and set-based
interval estimation (Raıssi et al., 2004). The latter propose a
prediction-update state and parameter estimator suitable for
nonlinear continuous-time systems. However, besides not being
able to capture the dependencies between states and parameters,
the method can lead to high computational complexity due to the

use of multiple sets.
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The work presented in this note proposes a method for set-
ased joint state and parameter estimation of discrete-time sys-
ems. The strategy extends the algorithms based on constrained
onotopes (CZs) proposed in Rego et al. (2021) and Scott et al.
2016), to include parameter estimation in a unified framework
or the first time. In contrast to interval-based methods,1 this
ramework implemented using CZs allows the estimated enclo-
ures to propagate existing dependencies between states and
odel parameters. Besides, both the state and parameter en-
losures (which are unified in our method) are refined using
eneralized intersections, unlike in zonotope-based estimation
ethods. These advantages result in a significant improvement

n the accuracy of both state and parameter estimation.

. Preliminaries

Consider Z,W ⊂ Rn, Y ⊂ Rm, and a real matrix R ∈ Rm×n. Let
× W be the Cartesian product, and define the linear mapping,
inkowski sum, and generalized intersection, as

RZ ≜ {Rz : z ∈ Z}, (1)

⊕ W ≜ {z + w : z ∈ Z, w ∈ W }, (2)

Z ∩R Y ≜ {z ∈ Z : Rz ∈ Y }, (3)

espectively. In this note, functions with set-valued arguments
ill be used to denote the exact image of the set under the

unction, i.e. µ(X,W ) ≜ {µ(x,w) : x ∈ X, w ∈ W }. In addition,
et κ be a function of class C1 (i.e., continuously differentiable)
nd z denote its argument. Then, κq denotes the qth compo-
ent of κ, and ∇

T
z κ denotes the Jacobian of κ with respect to

. Constrained zonotopes are an extension of zonotopes, defined
s in Scott et al. (2016), capable of describing also asymmetric
onvex polytopes, while maintaining many of the well-known
omputational benefits of zonotopes (Kühn, 1998).

efinition 1. A set Z ⊂ Rn is a constrained zonotope if there exists
Gz, cz,Az, bz) ∈ Rn×ng × Rn

× Rnc×ng × Rnc such that

= {cz + Gzξ : ∥ξ∥∞ ≤ 1,Azξ = bz} . (4)

We refer to (4) as the constrained generator representation (CG-
ep). Each column of Gz is a generator, cz is the center, Azξ = bz
re the constraints, and ξ are the generator variables. By defining
he constrained unitary hypercube2 B∞(Az, bz) ≜ {ξ ∈ Rng :

ξ∥∞ ≤ 1, Azξ = bz}, a CZ Z can be written as Z = c ⊕

zB∞(Az, bz). We use the compact notation Z = {Gz, cz,Az, bz}

or CZs, and Z = {Gz, cz} for zonotopes. The set operations (1)–(3)
an be computed exactly with CZs. Let Z = {Gz, cz,Az, bz} ⊂ Rn,

= {Gw, cw,Aw, bw} ⊂ Rn, Y = {Gy, cy,Ay, by} ⊂ Rm, and
∈ Rm×n. Then, (1)–(3) are computed trivially in CG-rep as (Scott
t al., 2016)

RZ = {RGz,Rcz,Az, bz} , (5)

⊕ W =

{
[Gz Gw], cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]}
, (6)

Z ∩R Y =

{
[Gz 0], cz,

[ Az 0
0 Ay

RGz −Gy

]
,

[ bz
by

cy − Rcz

]}
. (7)

Operations (5)–(7) cause a linear increase in the complexity
f the CG-rep. Moreover, unlike other set representations (such

1 For comparison purposes, we extend the methods in Alamo et al. (2005)
nd Jaulin et al. (2001) to the proposed framework to include parameter
stimation.
2 We use the notation Bng

∞ for the ng -dimensional unitary hypercube
i.e., without equality constraints). We drop the superscript ng for B∞(Az , bz )
ince this dimension can be inferred from the number of columns of A .
z

2

s ellipsoids, intervals, and zonotopes), all operations (5)–(7) are
xact using CZs, and therefore, can be computed efficiently and
ccurately. Efficient methods for complexity reduction of CZs (to
nclose a CZ with another one with a fewer number of generators
nd constraints) are available (Scott et al., 2016). In this note, IR
enotes the set of real compact intervals. Let X ≜ {a ∈ R : xL ≤

a ≤ xU} ∈ IR be an interval. Then, mid(X) ≜ 1
2 (x

U
+ xL) and

ad(X) ≜ 1
2 (x

U
− xL). Let N ≜ {Nij ∈ IR, i ∈ {1, . . . , n}, j ∈

{1, . . . ,m}} ∈ IRn×m be an interval matrix. Then, mid(N) and
rad(N) are defined component-wise. In addition, for any bounded
Z , □Z denotes the interval hull of Z . If Z is a CZ, this operation
is performed by solving 2n linear programs (LPs) (Scott et al.,
2016). In the following, Theorem 1 defines the operation ◁(J, X)
or enclosing the product of an interval matrix J with a CZ X .
hen not required, the subscripts of the variables in (4) will be

omitted.

Theorem 1 (Rego et al., 2020). Let X = {G, c,A, b} ⊂ Rm be
a CZ with ng generators and nc constraints, let J ∈ IRn×m be an
interval matrix, and consider the set S = JX ≜ {Ĵx : Ĵ ∈ J, x ∈

X} ⊂ Rn. Let Ḡ ∈ Rn×n̄g and c̄ ∈ Rn satisfy X ⊆ {Ḡ, c̄}, and
let m be an interval vector such that m ⊇ (J − mid(J))c̄ and
mid(m) = 0. Finally, let P ∈ Rn×n be a diagonal matrix defined by
Pii = rad(mi)+

∑n̄g
j=1

∑m
k=1 rad(Jik)|Ḡkj| for all i = 1, 2, . . . , n. Then,

S is contained in the CZ-inclusion S ⊆ ◁(J, X) ≜ mid(J)X ⊕ PBn
∞
.

Remark 1. The zonotope {Ḡ, c̄} ⊇ X in Theorem 1 is obtained
y eliminating all constraints from X according to the algorithm
n Scott et al. (2016), while the interval vectorm is obtained using
nterval arithmetic.

. Joint state and parameter estimation

.1. Linear systems

Consider a linear discrete-time system with unknown-but-
ounded disturbances and model parameters, given by

k = Axk−1 + Buuk−1 + Bpp + Bwwk−1, (8a)

yk = Cxk + Duuk + Dpp + Dvvk. (8b)

here xk ∈ Rn is the system state, uk ∈ Rnu is the known
nput, wk ∈ Rnw is the process disturbance, yk ∈ Rny is the
easured output, vk ∈ Rnv is the measurement disturbance, and
∈ Rnp are the unknown parameters. In addition, A ∈ Rn×n,

u ∈ Rn×nu , Bp ∈ Rn×np , Bw ∈ Rn×nw , C ∈ Rny×n, Du ∈
ny×nu , Dd ∈ Rny×np , and Dv ∈ Rny×nv . The initial state, model
arameters, and disturbances are assumed to be unknown-but-
ounded, i.e., (x0, p,wk, vk) ∈ X0 × P ×W × V , ∀k ≥ 0, where X0,
, W , and V are polytopes representable as CZs.
For any k ≥ 0, the objective is to approximate the solution set

f (xk, p) satisfying (8), as accurately as possible, by a guaranteed
nclosure Ẑk ⊂ Rn+np satisfying (xk, p) ∈ Ẑk. We accomplish
his here by extending the prediction-update structure proposed
n Scott et al. (2016) to a joint state and parameter estimation
ramework, considering the refinement of the parametric uncer-
tainty p ∈ P . The proposed generalized scheme is given by the
following recursion:

Z̄k ⊇ {(Axk−1 + Buuk−1 + Bpp + Bwwk−1, p) :

(xk−1, p) ∈ Ẑk−1, wk−1 ∈ W }, (9)

Ẑk ⊇ {(xk, p) ∈ Z̄k :

Cxk + Duuk + Dpp + Dvvk = yk, vk ∈ V }, (10)

where (9) is the joint prediction step, (10) is the joint update step,
nd the scheme is initialized with Z̄ ≜ X × P in the joint update
0 0
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step. If Ẑk−1 is a valid enclosure of (xk−1, p) for some k ≥ 1, then
xk, p) ∈ Z̄k given by (9). By construction, this leads to (xk, p) ∈ Ẑk
rom (10).

Exact enclosures for the joint prediction step (9) and joint up-
ate step (10) can be obtained straightforwardly using CZs. Since,
y assumption, the unknown parameters p are constant, i.e., pk =

k−1, then the prediction and update steps can be computed in
G-rep by defining zk ≜ (xk, p), and extending the structure

proposed in Scott et al. (2016) to the unified formulation

Z̄k =

[
A Bp
0 I

]
Ẑk−1 ⊕

[
Bu
0

]
uk−1 ⊕

[
Bw

0

]
W , (11)

ˆk = Z̄k ∩[C Dp] ((yk − Duuk) ⊕ (−DvV )). (12)

ote that the enclosure of the parameters p is refined over time
hrough the proposed joint update step (12). In addition, as in
inear state estimation using CZs, all the operations in (11)–(12)
an be performed easily using (5)–(7), with linear complexity
ncrease in the number of generators and constraints. Besides, the
oupling between states xk and parameters p is preserved from
ach time step to the other using the proposed framework. Also,
he enclosures in (11)–(12) are exact if the complexity of the set
s not limited. In practice, due to finite computational resources,
omplexity reduction methods (Scott et al., 2016) are used to
nclose the sets Z̄k and Ẑk by CZs with a desired (lower) number

of generators and constraints.3

3.2. Nonlinear systems with linear output equation

Consider a class of nonlinear discrete-time systems with
bounded uncertainties, evolving according to the dynamics

xk = f(xk−1,uk−1, p,wk−1), (13)

nd with linear output equation (8b), where the nonlinear func-
ion f : Rn

×Rnu×Rnp×Rnw → Rn is assumed to be of class C1. The
initial state, model parameters, and disturbances are assumed to
be unknown-but-bounded, i.e., (x0, p,wk, vk) ∈ X0 × P × W × V ,
∀k ≥ 0, where X0, P , W , and V are polytopes representable as CZs.
As in the linear case (8), the objective is to enclose the trajectories
of (13) as accurately as possible by a set Ẑk ⊂ Rn+np for any
k ≥ 0. This is accomplished by extending the method proposed
in Rego et al. (2021) to a joint state and parameter estimation
framework to allow the refinement of the parameter enclosure
P over time, as well as to preserve the couplings between states
and parameters. The proposed prediction-update scheme is given
by

Z̄k ⊇ {(f(xk−1,uk−1, p,wk−1), p)

: (xk−1, p) ∈ Ẑk−1, wk−1 ∈ W },
(14)

as the joint prediction step, and by (10) as the joint update step
which remains linear). As in the previous case, the scheme is
nitialized with Z̄0 ≜ X0 × P in the joint update step.

We first extend the prediction method described by Proposi-
ion 1 in Rego et al. (2021) to consider both states and model
arameters in a more general framework. This result will be
ecessary for the nonlinear joint state and parameter estimation
ethod developed in this section.
The following proposition is based on the Mean Value Theo-

em, and provides an enclosure for the state xk in the prediction
tep (14). A method to compute an enclosure Z̄k for the aug-
ented variable (xk, p) satisfying the joint prediction step is given
y Corollary 1, which is derived from the result of Proposition 1.

3 The coupling between states and parameters is maintained even in this
ase, thus providing benefits with respect to intervals.
3

Proposition 1 (State Prediction). Let f : Rn
×Rnu×Rnp×Rnw → Rn

be of class C1. Let u ∈ Rnu , and let X ⊂ Rn, P ⊂ Rnp , and
W ⊂ Rnw be CZs. Let Z = X × P, and choose any γz = (γx, γp) ∈

□X × □P. If Zw is a CZ such that f(γx,u, γp,W ) ⊆ Zw and J ∈

IRn×n+np is an interval matrix satisfying ∇
T
z f(□X,u,□P,W ) ⊆ J,

then f(X,u, P,W ) ⊆ Zw ⊕ ◁
(
J, Z − γz

)
.

Proof. Choose any (x, p,w) ∈ X × P × W . Let r ≜ (x, p),
γ r ≜ (γx, γp), R ≜ X × P . Lemma 1 in Rego et al. (2021) (with

≜ f, x ≜ r, γx ≜ γ r , and X ≜ R) ensures that there exists a real
atrix Ĵ ∈ J such that f(x,u, p,w) = f(γx,u, γp,w) + Ĵ(z − γz),
ith z = (x, p). By Theorem 1 and the choice of Zw , it follows
hat f(x,u, p,w) ∈ Zw ⊕ ◁

(
J, Z − γz

)
, as desired. ■

emark 2. In this note, the interval matrix J is computed by eval-
ating the analytical expression of ∇

T
z f(□X,u,□P,W ) using in-

erval arithmetic. Jacobians can also be computed using factorized
ormulations of polynomial equations into a quasi-linear form
nd slope arithmetic. Algorithmic differentiation-based solutions
ay be found in Moore et al. (2009).

orollary 1 (Joint Prediction). Let f : Rn
× Rnu × Rnp × Rnw →

n be of class C1. For k ≥ 1, let: (i) uk−1 ∈ Rnu , (ii) wk−1 ∈

= {Gw, cw,Aw, bw}, (iii) p ∈ P, and (iv) zk−1 = (xk−1, p) ∈

ˆk−1 = {Ĝk−1, ĉk−1, Âk−1, b̂k−1}. Choose any γz = (γx, γp) ∈

Ẑk−1. For all (xk−1, p) ∈ □Ẑk−1, wk−1 ∈ W, let: (i) Zw be a
Z such that f(γx,uk−1, γp,wk−1) ∈ Zw , and (ii) Jz ∈ IRn×n+np

atisfy ∇
T
z f(xk−1,uk−1, p,wk−1) ∈ Jz . If {Ĝ, ĉ} is a zonotope with

ng generators satisfying Ẑk−1 − γz ⊆ {Ĝ, ĉ}, then (xk, p) ∈ Z̄k, with

Z̄k =

[
H
E

]
Ẑk−1 ⊕

[
H
0

]
(−γz) ⊕

[
P̂
0

]
Bn

∞
⊕

[
I
0

]
Zw, (15)

where E ≜ [0np×n Inp ], H ≜ mid(Jz), P̂ ∈ Rn×n is diagonal with P̂ii =

rad(mi)+
∑ng

j=1
∑n+np

ℓ=1 rad(Jz,iℓ)|Ĝℓj|, and m ≜ (Jz −mid(Jz))ĉ ∈ IRn.

Proof. Choose any (xk−1, p) = zk−1 ∈ Ẑk−1, wk−1 ∈ W . From
13), Proposition 1 and Theorem 1, there must exist δ ∈ Bn

∞

such that xk = f(xk−1,uk−1, p,wk−1) = f(γx,uk−1, γp,wk−1) +

mid(Jz)(zk−1 −γz)+ P̂δ, with P̂ defined as in the statement of the
corollary. Then, by the definition of zk−1 and E, p = Ezk−1 holds,
and we have that (considering H ≜ mid(Jz))

(xk, p) = (f(γx,uk−1, γp,wk−1) + H(zk−1 − γz) + P̂δ, Ezk−1)

= (Hzk−1 − Hγz + P̂δ + f(γx,uk−1, γp,wk−1), Ezk−1)

=

[
H
E

]
zk−1 +

[
H
0

]
(−γz)+

[
P̂
0

]
δ

+

[
I
0

]
f(γx,uk−1, γp,wk−1)

∈

[
H
E

]
Ẑk−1 ⊕

[
H
0

]
(−γz) ⊕

[
P̂
0

]
Bn

∞
⊕

[
I
0

]
Zw,

with Zw defined as in the statement of the corollary (this CZ can
be obtained analogously to Remark 4 in Rego et al. (2021)), which
proves the corollary. ■

An enclosure of the joint prediction step for the dynamics (13)
can be obtained in CG-rep using Corollary 1. As in the linear case,
and differently from interval methods, the CZ Z̄k given by (15)
preserves the existing couplings between state xk−1 and param-
eter p. Moreover, due to linearity of the output equation (8b),
an exact bound for the update step can be obtained using (12),
which in addition refines the enclosure of the parameters p, with
¯
Zk given by (15). Bounded enclosures can be obtained only if the
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condition of full detectability/identifiability of states and param-
eters is verified. See Paradowski et al. (2020) for observability
nalysis in the presence of uncertainty.

emark 3. Let the CZs (Ẑk−1, Z̄k,W , V ) have (n̂g , n̄g , ngw , ngv )
enerators, and (n̂c, n̄c , ncw , ncv ) constraints, respectively. Then,
he enclosure obtained by Corollary 1 has n̂g+2n+ngw generators
nd n̂c + ncw constraints. On the other side, the enclosure Ẑk
btained by (12) has n̄g + ngv generators, and n̄c + ncv + ny
onstraints. The computational complexities of all the operations
sed in this section can be found in Rego et al. (2020), while the
omplexities of the proposed method can be derived straightfor-
ardly by replacing n with n + np in the expressions obtained

n Rego et al. (2020, 2021).

. Numerical examples

This section presents numerical results4 for the set-based joint
tate and parameter estimation method proposed in this note. We
ompare the results provided by the new framework (denoted
y CZ-J for the linear case, and CZMV-J for the nonlinear case)
ith the CZ methods proposed in Rego et al. (2021) and Scott
t al. (2016), denoted by CZ and CZMV, respectively (i.e., with
rediction step given by Proposition 1, in which MV stands for
‘Mean Value’’), with the interval arithmetic method proposed
n Jaulin et al. (2001), based on forward–backward propagation
FBP), and the zonotope method proposed in Alamo et al. (2005),
ith intersection operator by Property 1 in Bravo et al. (2006)
Z-J and ZMV-J). Intervals and zonotopes are also applied to the
roposed joint estimation framework.
To demonstrate the advantages of performing joint state and

arameter estimation using CZ-J, we first consider 10 discrete-
ime linear systems defined as in (8), with n = nw = 10,
p = nv = ny = 6. The matrices A and C are generated
ccording to a uniform random distribution and satisfy |Aij| ≤

/7 and |Cij| ≤ 1/4 , ∀(i, j). The matrices Bp and Dp are consti-
uted by values taken from a uniform distribution within [−1, 1].
dditionally, Bw = Inw , Dv = Inv , Bu = 0n×nu and Du =

ny×nu . Process and measurement disturbances satisfy ∥wk∥∞ ≤

.05 and ∥vk∥∞ ≤ 0.05, respectively. The sets X0 and P are
oxes whose centers are integers randomly selected from [−6, 6],
ccording to a uniform discrete distribution, while their radii
re 0.5. Measurement data have been collected simulating each
ystem and generating process and measurement disturbances
ccording to a uniform random distribution, as well as random
nitial states, using the listed bounds. The maximum number of
enerators and constraints of Ẑk are set to 70 and 20, respectively.
ig. 1 shows the average of the radii of the projections X̂k (top)
nd P̂k (bottom) of the enclosures provided by CZ, CZ-J, FBP, and
-J. In this work, only one iteration of FBP was applied, since
ultiple iterations did not provide a further refinement of the

esulting interval enclosures. As it is noticed, the capability to
apture the dependence between states and parameters allows
Zs to be tighter than intervals. CZ-J results in smaller sets w.r.t.
Z and Z-J because the former does not refine the parameter
et over time, and the latter relies on conservative intersections
ith strips. In addition to Z-J, in this example, FBP has not even
uaranteed a refinement of the parameter enclosure, which is
result from neglecting the dependencies between states and
arameters due to the wrapping effect.
Lastly, we present a nonlinear numerical example to demon-

trate the effectiveness of the method proposed in Section 3.2.

4 The simulations were performed using MATLAB, CPLEX and INTLAB.
4

Fig. 1. Linear example for k ∈ [0, 200], the average radii of the projections X̂k

(top) and P̂k (bottom) of the sets provided by CZ (⋄) and CZ-J (×), Z-J (◦), and
FBP (+), and the average radii of the original parameter set P (⋄).

Fig. 2. The variables (xk, p) (×), and the sets obtained using ZMV-J (yellow),
CZMV-J (red), and interval arithmetic (cyan), for the nonlinear system (16) at
k ∈ {3, 15, 149}. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Consider the nonlinear discrete-time system described by

x1,k = 3x1,k−1−px21,k−1−
4x1,k−1x2,k−1

4 + x1,k−1
+ w1,k−1

x2,k = −2x2,k−1 +
3x1,k−1x2,k−1

4 + x1,k−1
+ w2,k−1

1,k = x1,k + v1,k, y2,k = −x1,k + x2,k + (7p − 1) + v2,k,

(16)

ith ∥wk∥∞ ≤ 0.2, ∥vk∥∞ ≤ 0.1, and p ∈ P ⊂ R being an
nknown model parameter. The enclosures X0 and P are boxes

given by X0 = {diag(1.2, 0.6), (10, 0.5)} and P = {5, 1/7}.
easurement data have been obtained by simulating (16) with

0 = (10.2, 0.65) ∈ X0, and p = 1/7 ∈ P . The process and
measurement disturbances are generated from uniform random
distributions with the listed bounds. The numbers of generators
and constraints of Ẑk were limited to 8 and 3, respectively.

Fig. 2 shows the sets Ẑk obtained using FBP, ZMV-J, and CZMV-
J, as well as the evolution of x , for k ∈ {3, 15, 149}. As in
k
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Fig. 3. Areas of the projections X̂k (top) and radii of P̂k (bottom) provided by
ZMV (⋄) and CZMV-J (×), FBP (+), ZMV-J (◦), and the radius of the original
arameter set P (⋄) for the nonlinear system (16).

he linear case, the state enclosures provided by CZMV-J are
ignificantly smaller than the ones obtained with FBP, due to
apability to capture the dependencies between states and pa-
ameters. Fig. 3, which shows the areas of X̂k (top) and the radii
f P̂k (bottom), as well as the results obtained using ZMV-J (the
ZMV-J to ZMV-J average area ratio of X̂k is 71%, while the average
adius ratio of P̂k is 34%), corroborates the advantages of using the
proposed joint framework CZMV-J.

5. Conclusions

This note developed a new method for set-based joint state
and parameter estimation of discrete-time systems with
unknown-but-bounded model parameters. By extending state
estimation methods using CZs to a unified framework, allowing
to maintain the dependencies between states and parameters,
the accuracy of both state and parameter estimation was signifi-
cantly improved. Future works will include extending the method
5

developed in Section 3.1 to joint state and parameter estimation
of linear descriptor systems.
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