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Programmable quantum devices are now able to probe wave functions at unprecedented levels. This is
based on the ability to project the many-body state of atom and qubit arrays onto a measurement basis which
produces snapshots of the system wave function. Extracting and processing information from such
observations remains, however, an open quest. One often resorts to analyzing low-order correlation
functions—that is, discarding most of the available information content. Here, we introduce wave-function
networks—a mathematical framework to describe wave-function snapshots based on network theory. For
many-body systems, these networks can become scale-free—a mathematical structure that has found
tremendous success and applications in a broad set of fields, ranging from biology to epidemics to Internet
science. We demonstrate the potential of applying these techniques to quantum science by introducing
protocols to extract the Kolmogorov complexity corresponding to the output of a quantum simulator and
implementing tools for fully scalable cross-platform certification based on similarity tests between networks.
We demonstrate the emergence of scale-free networks analyzing experimental data obtained with a Rydberg
quantum simulator manipulating up to 100 atoms. Our approach illustrates how, upon crossing a phase
transition, the simulator complexity decreases while correlation length increases—a direct signature of
buildup of universal behavior in data space. Comparing experiments with numerical simulations, we achieve
cross-certification at the wave-function level up to timescales of 4 μs with a confidence level of 90% and
determine experimental calibration intervals with unprecedented accuracy. Our framework is generically
applicable to the output of quantum computers and simulators with in situ access to the systemwave function
and requires probing accuracy and repetition rates accessible to most currently available platforms.
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I. INTRODUCTION

Harnessing and probing many-body systems at the single
particle (qubit) level are hallmark features of present-day
quantum simulators and computers [1–4]. One of the most
drastic demonstrations of these tools is the possibility of
taking a large number of “photos” of a many-body system,
obtained via projective measurements of the full many-
body wave function. While this flood of available obser-
vations could be seen as a blessing, it immediately
encounters practical as well as conceptual challenges:
How can this large amount of data be processed, without
a priori discarding information (in the data science lan-
guage, before performing a dimensional reduction)? What
can one learn, that is, e.g., not available by utilizing low-
order correlation functions? Answering these questions
requires a structured, mathematical understanding of the
experimental wave function snapshots that addresses the
information limbo between traditional many-body theory
based on few-points correlation functions [5] and full-
fledged—but experimentally limited to few-particle sys-
tems—tomographic methods [6].
Here, we develop a theoretical framework to characterize

and classify experimentally accessible collections of wave
function snapshots utilizing network theory that is scalable
and allows one to retain all available information. The
backbone of our method is a mapping between collections
of wave function snapshots and a wave function network
(WFN), schematically depicted in Fig. 1, that is applicable
to spin, bosonic, and fermionic systems. Utilizing well-
established tools in network theory we unravel several key
characteristics of the underlying quantum wave function
that are inaccessible by conventional means.
The pivotal finding is that the resulting quantum wave

function networks can become scale-free—a mathematical

structure that has found widespread application in several
fields, ranging frompower distribution and internet networks
to epidemics [7–9]. We demonstrate this property using
experimental snapshots obtained on a Rydberg quantum
simulator operating with more than 100 atoms [2,10] and
with large-scale numerical simulations using neural quantum
states (NQSs) [11,12]. We then argue about its generic
applicability to state preparation protocols and discuss
how other types of networks—Erdős-Rényi (ER) [13]—
can instead emerge if the resulting dynamics describes
uncorrelated states. In terms of observables, required resour-
ces and applicability regimes, our approach is complemen-
tary to other methods aimed at fully characterizing quan-
tum states via snapshots such as those based on classical
shadows [14], randomized measurements [15–17], and
chaotic dynamics [18,19]. Its main distinctive features, that
we elaborate upon below, are direct interpretability and
straightforward scalability for strongly correlated, low-
temperature states.
The correspondence between quantum simulator outputs

and conventional network theory immediately enables a
transfer of methods and concepts from previously discon-
nected fields. We leverage this connection to address two
challenges in the field of quantum simulation. Firstly, we
show that we are able to characterize the complexity of the
quantum simulator output by determining its Kolmogorov
complexity (KC)—the accepted absolute measure of infor-
mation content of finite objects [20,21] that quantifies the
(in)compressibility of the quantum wave function informa-
tion as contained in the snapshots. This allows us to
demonstrate the emergence of critical behavior at the level
of information complexity, directly probing at the wave
function level the emergent simplicity dictated by renorm-
alization group theory.

FIG. 1. Network description of many-body wave function snapshots. (a) Construction of the network. First, samples of a wave
function are collected (i) and individually mapped onto the target data space (ii). All data are then merged into a single data structure
(iii) that defines a set of points in the configuration data space. This data structure is then mapped onto the corresponding wave function
network (iv) by drawing links in the network according to a cutoff distance R that is determined by the data structure and the choice of
metric (see text). (b) Physical interpretation of the network structure. Within the network, the number of neighbors of given points
follows a specific distribution. Points with a large number of links k (i.e., large number of points within R) are hubs, and are indicated in
darker colors. As an example, taking snapshots of a classical antiferromagnet below its critical temperature will feature the
antiferromagnetic state as a hub (top illustration), while doing so well above its critical temperature will lead to a graph with no hubs and
random connections (bottom illustration).

T. MENDES-SANTOS et al. PHYS. REV. X 14, 021029 (2024)

021029-2



Secondly, we introduce a method to perform cross-
platform verification of quantum simulators [22,23]. The
method is based on the full network information without
the need to perform an exponentially increasing number of
measurements for increasing system size, which is the
case for generic cross-verification based on the density
matrix [22,23]. By means of the Epps-Singleton (ES)
test [24] we identify, with statistical significance, a time-
scale beyond which cross-verification falters due to exper-
imental imperfections not covered by our theoretical
description. In addition, we provide statistically rigorous
bounds for previously observed time-delay effects that
demonstrate the capability of our methods to identify
systematic effects that are invisible to low-order correlation
functions. Beyond these two demonstrative tools, the
quantum wave function networks introduced in this work
provide a new generically applicable framework to probe
and characterize the quantum many-body wave function
accessible in a variety of atomic and solid-state quantum
hardware, solely requiring in situ imaging of the many-
body wave function.

II. WAVE FUNCTION NETWORKS:
THEORETICAL FRAMEWORK

In this section, we describe how datasets generated by a
collection of wave function snapshots can be represented
by a network structure with nodes and links. For the sake of
simplicity, we consider a many-body system composed of
spin-1=2 degrees of freedom defined on a two-dimensional
lattice: The approach can be straightforwardly generalized
to continuum theories, as well as to different types of local
Hilbert spaces.
Snapshot dataset.—Each wave function snapshot,

labeled by an index j, takes the form

Xj½w� ¼ ðsj1; sj2;…; sjNÞ; ð1Þ

where sjm is the measured value of the spin at positionm.N is
the total number of sites in the system, while w are the
external parameters related to the snapshot—in our case the
Hamiltonian couplings. Each of these configurations corre-
sponds to a single data point embedded in a data spacewhose
embedding dimension isN. This is depicted in Fig. 1(a) with
the three examples of green, orange, and blue dots.
The dataset we are interested in is formed by the

collection of all available snapshots:

X½w� ¼ fXjg ¼ fX1; X2;…; XNr
g; ð2Þ

where Nr is the number of available snapshots, that is, the
number of realizations. The dataset might, in principle,
include repetitions—e.g., Xl ¼ Xf for some l ≠ f—in
particular, at very small volumes. It is possible to take
care of them, as we detail in Ref. [25]. However, to simplify

the remainder of the discussion here, we assume no
repetitions are present.
From datasets to wave function networks.—We now

discuss how to translate the wave function snapshot data-
sets into a network structure. There are two key choices that
have to be made: (i) the selection of a proper metric in the
embedding space, that allows one to compute distances
between data points, and (ii) a criterion to activate links
between data points, based solely on their distances.
The choice of a proper metric is an important aspect of

the approach. Taking inspiration from recent results in the
context of classical and quantum statistical mechanics
models, we use the Hamming distance [26,27]. Given
two configurations Xi, Xj, such distance counts the number
of spins that are aligned differently and reads

dðXi; XjÞ ¼
XN
p¼1

jsip − sjpj: ð3Þ

The statistics of Hamming distances are related to arbitrary
rank correlation functions between local degrees of free-
dom (i.e., sk) [26]. Hence, they are sensitive to short-range
and long-range correlations alike, which justifies their use
as a similarity measure to define links between nodes.
Specifically, we define a (geometric) network from our
datasets by adopting the following procedure.
(1) Each point Xi in the dataset represents a node.
(2) If two nodes are at distance d < R, we draw a link.
(3) The distance R is chosen in a way that is dependent

on the number of samples taken and reflects the
typical value of distances for a given set of external
parameters w. In particular, we define R as

R ¼ hrci ¼
1

Nr

XNr

i¼1

rcðiÞ; ð4Þ

where rcðiÞ is the distance between point Xi and its
c-nearest neighbor.

We define the network formed by the collection of snap-
shots by the adjacency matrix: Ai;j ¼ ΘðR − di;jÞ [where Θ
is the Heaviside step function and di;j ¼ dðXi; XjÞ], which
we dub wave function network.
It is worth mentioning that the choice of R is not

arbitrary. One crucial aspect to consider is that the choice
of R is bounded by the minimum and maximum distances
(let us call such distances dmin and dmax, respectively:
R < dmin would generate a network with all the nodes
isolated, while R > dmax would generate a featureless, fully
connected network). The choice of R introduced in Eq. (4)
can be considered as a natural one, as it naturally detects
correlations at the average scale of the operator fluctuations
(in our case, magnetization). In particular, we show that our
main conclusions are independent of the choice of R for a
certain range of values of c in Eq. (4). We discuss this in
detail in Appendix C.
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A. Network representation and correlations

At a naive level, one could expect that such WFNs
simply reflect the intrinsic randomness of the wave function
sampling; that is, they are ultimately generated by a
Poissonian process. It turns out that this intuition is
fundamentally incorrect.
In order to underpin the relation between network repre-

sentation and correlations, we start by schematically illus-
trating the above procedure in Figs. 1(a)(i)–1(a)(iv). A
graphical example of a network with spin-1=2 systems
and cutoff radius equal to 1 (that is, only configurations
differing by a single spin flip are connected) is depicted
in Fig. 1(b): there, the black circle represents the Néel
state that is connected to several other states by a single
spin flip—and, thus, minimal distance—while it is not
connected to any other states. This example allows us to
intuitively connect physical properties to network pro-
perties: A wave function network that carries correlations
will feature “hubs,” that is, few stateswithmany connections,
and a lot of states with few connections. Conversely, a
random “infinite-temperature” state will likely feature a
majority of states with an intermediate number of neighbors,
and will not feature either hubs or states with very few links.
The simple picture defined above is, per se, not par-

ticularly informative; however, it crucially sheds light on
the classes of networks we can expect depending on how
correlated the system is. This description of correlated
states is reminiscent of what happens in several classes of
scale-free networks: typically described by a scaling
relation of the probability distribution Pk associated to
the number of connections k of each node (or, as is more
commonly called, the degree distribution), that follows a
power-law distribution,

Pk ∝ k−α: ð5Þ

Such a function monotonically decreases with k, and
allows us to distinguish between the majority of nodes
that have few links and the minority of those that have
many links [see Fig. 1(b)]. While the prominence of hubs
seems to be mostly relevant to ordered states, it is in fact a
property that is even more robust in the presence of very
strong correlations, such as, e.g., those emerging at
quantum critical points. Conversely, networks representing
random states will not be scale-free—and can be construed
as ER networks—where the probability Pk of a node
having k neighbors is approximately given by a Poisson
distribution [13].
We emphasize that in the many-body regime, the

number of snapshots Nr available from an experiment is
typically insufficient to tomographically reconstruct the
wave function, i.e., Nr ≪ 2N . The WFN construction aims
at a characterization of a state that focuses solely on the
most important (yet unknown) degrees of freedom in the
system, and not its entire data structure. So, our method is

conceptually different from tomographic methods, includ-
ing those based on specific Ansätze.

B. Illustrative example: Quantum Ising model
at equilibrium

Before discussing the experimental relevance of
WFNs, we illustrate the emergence of scale-free networks
in many-body systems by utilizing an example borrowed
from equilibrium statistical mechanics. In Fig. 2, we
show the degree distribution Pk obtained via sampling
the partition-function snapshots of the 2D quantum Ising
model on a square lattice, with samples in the z basis. The
Hamiltonian reads

H ¼ −
X
i;j

σziσ
z
j − g

X
j

σxj : ð6Þ

It features a quantum phase transition at gc ≈ 3.04 sepa-
rating a noncorrelated disordered phase (for g > gc) from a
ferromagnetically ordered state. The corresponding Pk is

(a)

(b)

FIG. 2. Degree distribution Pk for the WFN of the ground-state
quantum Ising model. Panel (a) shows Pk of the WFN with
Nr ¼ 105 nodes for g ¼ 5.0 and g ¼ 3.04 ≈ gc. In the para-
magnetic region, the resulting network is compatible with a
Poisson distribution (solid line, i.e., Erdős-Rényi network) with
hki ¼ 1. As expected, in the vicinity of the critical point,
the WFN becomes scale-free, with α ≃ 2.4 (dashed line). For
comparison we compute Pk using both linear (triangles) and
logarithmic (circles) histograms. Panel (b) shows Pk for different
values of Nr for g ≈ gc using logarithmic histograms, again with
the scale-free distribution shown as a dashed line. In all cases we
build the network using a cutoff R ¼ hr1i [where hr1i is defined
in Eq. (4)].
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obtained by taking snapshots of the partition function,
calculated via stochastic series expansion Monte Carlo
simulations [28,29] for a system of N ¼ L × L ¼ 8 × 8
sites, at inverse temperature β ¼ 2L, which in our calcu-
lations was high enough to observe convergence within
statistical uncertainty of energy and squared magnetization,
i.e., to reach the ground-state regime. Hence, the generated
datasets correspond to the ground-state WF snapshots
described above.
Figure 2(a) displays the results from Nr ¼ 105 realiza-

tions. Deep in the paramagnetic phase, g ¼ 5.0, there are
only weak correlations: The corresponding network is very
well described by a Poisson distribution with hki ¼ 1. In
the correlated regime, which is also the most entangled one,
close to the phase transition, the network is described by a
scale-free structure. We note that such a scale-free structure
is unrelated to the absence of scale at criticality (scale-free
networks can still be compatible with the presence of real-
space finite scales [7]).
Finite-sampling effects.—Once the degree k of neigh-

bors becomes a sizable fraction of the total size of the
network, we observe deviations from a scale-free profile,
as expected. Above this size, the network properties are
influenced by limited sampling [30]. To inspect this, we
plot in the lower panel Pk against k for various Nr.
We observe that indeed the origin of the bending is due
to the finite number of samples, and that the curves for
various Nr are all compatible with a single power law, in
this case, with exponent α ≃ 2.4.
The plot discussed above gives a qualitative viewpoint

on the presence of scale-free network here. In Appendix A,
we provide a quantitative analysis based on very recently
developed statistical tests [30], whose aim is precisely that
of diagnosing the presence and strength of scale-free
properties under limited sampling and finite volumes.
The corresponding results strongly back the scale-freeness
of the network structure in the vicinity of the quantum
critical point. Additionally, changing the cutoff distance R
used to build the WFN does not affect the power-law
scaling behavior of Pk for k above a certain threshold kc;
see Appendix C for more details.

C. Origin of scale-freeness:
A statistical mechanics viewpoint

Since early works on the World Wide Web [31], the
mechanisms at the basis of scale-free network have been
the subject of a large body of investigation. A particularly
successful approach has been that of generative model,
which has been able to shed considerable light on network
structures and their properties. Unfortunately, we believe
finding (and, importantly, fully understanding) the gener-
ative models at the basis of the quantum dynamics we are
interested in is in general very challenging: The reason is
that understanding this in the general case would be
equivalent to having full control on the state probability

distribution of arbitrary quantum many-body wave
functions.
Nevertheless, it is possible to formulate an argument on

why such scale-free structures shall appear in the presence
of strong physical correlations, based on generic statistical
mechanics considerations. The main idea, that we elaborate
in detail in Sec. VI C 2, is that features of networks built
with distance (or similarity) measures are inherently related
to physical properties that are characterized by nontrivial
(including scale-free) distributions. In our cases, such
physical properties are related to cumulants of the variables
used to create the dataset, namely, the magnetization.
Concretely, our consideration is drawn by explicitly

exploiting the dependence of distance measures on physical
variables, and, then, the dependence of WFN properties on
the latter. For instance, as we shown in Sec. VI C 2, the sum
of distances between a node i in the network and all other
nodes is

di ¼
XNr

j¼1

dðXi; XjÞ ¼
NrN
2

�
1 −

1

N

XN
p¼1

siphspi
�
; ð7Þ

where hspi represent the physical estimator of the local spin
at lattice site p. For a system with translation symmetry and
in the limit Nr → ∞, di is a function of the magnetization
of the corresponding snapshot:

mi ¼
1

N

XN
p¼1

sip: ð8Þ

Hence, the probability distribution associated to distances
PðdÞ is directly related to PðmÞ. The fact that the
distribution PðmÞ diverges the predictions based on the
central limit theorem in the vicinity of critical points
[32,33] allows then can be used as an indication that the
networks built from the statistics of distances is incom-
patible with the Erdős-Rényi one found in random phases.
In Appendix B, we elaborate further such argument to

take into account properties of theWFNs. In such a context,
the key reason why probability distributions associated to
WFNs can exhibit nontrivial behavior (including scale-
freeness) can also be traced back to the way certain network
features are connected to strongly correlated physical
variables. More concretely, we describe how the strength
distribution PðgÞ is related with the distributions of sums of
the physical variables sp.
Based on these arguments, at equilibrium, we expect the

same dichotomic (scale-free versus Erdős-Rényi) structure
to appear generically in models that feature both weak- and
strong-correlated regions. The key question we address
below is whether such structures are purely theoretical
constructions or if they can indeed be representative of the
intricate dynamics taking place in quantum simulators that
are (i) off equilibrium, open, and—a key difference from
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simulations—(ii) inherently probed with very high but not
100% fidelity.

III. EXPERIMENTAL OBSERVATION
OF ERDŐS-RÉNYI AND SCALE-FREE

WAVE FUNCTION NETWORKS

A. Experimental data and analysis of the network

We now discuss the network structure of quantum
simulation experiments. We analyze a recent experiment
that focuses on the quasiadiabatic state preparation of a
large antiferromagnetic state using a Rydberg quantum
simulator [10]. This protocol plays a fundamental impor-
tance in quantum simulation and computing, and is very
widely employed in atomic physics platforms. In addition,
it typically features both regimes of no correlations (short
times) and of strong correlations, enabling us to test
predictions based on both Erdős-Rényi and scale-free
networks. Below, we summarize the main features of the
experiment that have been reported in Ref. [10].
The experiment consists of arrays of laser-cooled Rb

atoms, individually trapped into optical tweezers separated
by a distance a. Each atom can be considered as a pseudo-
spin, the ground state being j↓i and a Rydberg state
state being j↑i. Initially all the atoms are prepared in j↓i.

The atoms are then laser excited to Rydberg states via a
two-photon transition, so that the effective time-dependent
Hamiltonian describing the dynamics reads:

HðtÞ ¼ ℏδðtÞ
X
i

ni þ
ΩðtÞ
2

X
i

σxi þ
X
ij

Jijninj; ð9Þ

with ni ¼ ðσzi þ 1Þ=2, and σαi Pauli matrices at the site i.
Here, we have that Jij ¼ C6=r6ij as the atoms interact via the
Van derWaals interaction. This quantum spinmodel exhibits
both paramagnetic and antiferromagnetic phases in its
ground state; for a schematic phase diagram, see Fig. 3(a).
In the experiment a dynamical process has been imple-

mented which, upon varying slowlyΩðtÞ and δðtÞ over time,
transforms an initial paramagnetic state into an antiferro-
magnetic one, as depicted in Fig. 3(a). The adiabatic theorem
guarantees that such a transformation is possible for ground
states of systems with a nonzero gap whenever the para-
meter variations are sufficiently slow. Close to a continuous
quantum phase transition, however, the gap closes for a
thermodynamically large system and excitations are gener-
ated unavoidably. Importantly, the celebrated quantum
Kibble-Zurek (QKZ) mechanism predicts that this defect
generation, and on a more general level the dynamical

μ
μ
μ

μ
μ
μ

μ
μ
μ

μ
μ
μ

(a) (b)

(c)

FIG. 3. Observation of scale-free wave function networks in Rydberg quantum simulators. Panel (a) shows a schematic ground-state
phase diagram and the quasiadiabatic state preparation scheme. The inset shows the sweep shape, and the corresponding trajectory is
represented by the dashed lines in the phase diagram. In the paramagnetic (PM) regime, one expects a network description compatible
with a Rényi-Erdős network, while in the vicinity to the antiferromagnetic (AFM) region, that contains the Kibble-Zurek regime, a scale-
free network structure is expected with power-law degree distribution Pk, as illustrated by the network structures. Panel (b) presents the
Pk versus k of the experimentally observed wave function networks for a square lattice with L ¼ 8. At short times, i.e., before crossing
the phase transition, the distribution decreases exponentially (similar to Erdős-Rényi degree distribution with hki ≃ 1, represented by the
dashed lines in the graphs). At later times (t > 3 μs), we observe a power-law decay over 2 orders of magnitude, limited only by a
bending that is due to a finite value of Nr. Panel (c) shows NQS simulations of this quasiadiabatic protocol for the same square lattice.
The scale-free behavior of Pk is again observed until one is sensitive to the effects of finite sampling. We note that the value of the decay
exponent is α < 2, signifying very stable wave function network properties, that will be discussed later in the presence of defects. For all
cases we considered WFNs with Nr ¼ 2500 nodes.

T. MENDES-SANTOS et al. PHYS. REV. X 14, 021029 (2024)

021029-6



property itself of crossing such a transition, displays
universal behavior controlled by the underlying quantum
phase transition [34–36]. In the context of two-dimensional
systems, this has recently been described at the theoretical
level [37], and signatures have been observed in Rydberg
experiments [38]. For a finite-size system, such as the ones
we deal with here, the gap remains always finite. Because of
this, a crossover from a QKZ regime toward an adiabatic
regime emerges upon lowering the velocity of the ramp [37].
In the experiment an antiferromagnetic ordering pattern
has been achieved with a correlation length of the order of
the system diameter, so that it is to be expected that the
system resides in the crossover regime between QKZ and
adiabaticity.
In what follows we will support the experimental data

with numerically exact theory calculations, which will be
key in a later stage in the cross-certification of the quantum
simulator output. For that purpose, we will use NQSs,
which have been recently introduced as novel class of
variational wave functions for the quantum many-body
problem [11]. Most importantly for the purpose of this
work, recent paramount advances have pointed out a route
to numerically calculate quantum many-body dynamics in
interacting two-dimensional quantum matter beyond what
is achievable with other state-of-the-art methods [12,37].
For details on the utilized numerical method, see
Refs. [12,37] and Appendix D.
Contrarily to the work in Ref. [10], we consider for our

network analysis here two types of datasets. In the first one,
we use postselected data without any defects in the array;
i.e., each trap contains exactly one atom. In the second one,
we instead consider datasets including a mean number of
defects of ∼3%, coming from an imperfect assembly of the
atomic array [39]. The purpose of this second choice is
that it will allow us to make quantitative statements on the
resilience of scale-free structures and, most importantly, on
their significance in terms of information—and, thus,
complexity—content.
Scale-free and Erdős-Rényi networks.—In Fig. 3(b), we

plot the distribution Pk for defect-free experimental data for
square lattices of size 8 × 8 and Nr ¼ 2500 at different
times. We identify two regimes.
(A) At short times t ¼ 1.52 μs, Pk decays exponentially

with k, and its distribution resembles the one of a
random ER network with hki ≃ 1. This indicates that
only limited correlations in the z-basis measure-
ments are present in the system.

(B) Upon approaching the quantum phase transition
(t ∼ 2.6 μs) and at later times, the distribution
changes drastically. In particular, we observe the
emergence of a stable power-law profile with α < 2
over almost 2 orders of magnitude, until at large k
finite sampling with Nr < ∞ introduces an inevi-
table cutoff in the form of an exponential decay.
This phenomenology is characteristic of scale-free
networks.

In Fig. 3(c) we include as a comparison numerically exact
theoretical results for Pk by means of NQS simulations.
We utilize the same system parameters and number of
samples as for the experimental data. The simulations capture
the exact same qualitative pattern described by the experi-
ment, already indicating that, for the depicted timescale of the
experiments, the effect of dissipation on the full many-body
wave functions is likely to be negligible, and validating the
microscopic modeling at a quantitative level.
As depicted in Fig. 3, at large k, deviations from a

power-law scaling become appreciable. More precisely, for
a finite Nr, deviations of such behavior are expected to
appear above an upper degree kmax [30]. To properly take
into account such size effects, we consider a network
finite-size scaling (FSS) analysis of WFNs obtained for
different values of Nr and t; see Appendix A for more
details. The FSS analysis clearly shows that WFNs built at
initial times are not scale-free. However, as we approach
the time associated with diverging correlations (the critical
region), the analysis supports the conclusion that the WFNs
do correspond to scale-free networks. Interestingly, in the
late time regime where the system features correlations
whose lengths exceed the system size, our analysis does
not conclusively support the classification of the corre-
sponding WFNs as scale-free, despite their heavy-tailed Pk

(a)

(b)

(c)

μ

μ

μ

FIG. 4. Dependence of the degree distribution Pk with the
total number of nodes in the WFNs Nr at the different values of
t. In the scale-free regime the maximum size of the WFN at kmax
exhibit a strong dependence withNr. TheWFNs are obtained with
datasets generated by NQS simulations of Rydberg experiments.
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distribution. This might be signaling the onset of dissipa-
tion, or that further statistics is needed for a conclusive test.
As an example of the aforementioned behaviors, we show in
Fig. 4 the distribution Pk for three reference cases of times t
by means of data obtained using NQS. Both qualitatively
and quantitatively, Pk exhibits consistent features in all
regimes: For ER graphs [Fig. 4(a)], increasing the number of
nodesNr yields essentially the same structure of the network
(keeping hki ≃ 1). For the case of scale-free networks, see
Fig. 4(b), increasing the number of samples has the effect of
enlarging the regime in k of power-law behavior shifting
the eventual bending, i.e., the deviation from the scale-free
structure at large k, to larger and larger k. For long times, a
similar behavior is observed (this might point to the fact that
the graph is not unambiguously recognized as scale-free
only because of limited statistics).
Robustness of quantum simulator outputs.—We observe

that at late times t > 3 μs, the exponent α of the power-law
tail in Pk satisfies the condition α < 2 [see Fig. 4(c)]. As is
known from network theory, scale-free networks with such
an exponent α exhibit very robust information content with
respect to perturbations. We identify such a robustness also
in the experimental data. Specifically, as can be seen in
Fig. 5, the experimental datasets with defects in the atomic
array capture the same scaling behavior as without defects.
In analogy to network theory, this analysis provides an
interesting tool to characterize the robustness of quantum
simulators based solely on their outputs, whenever they are
described by scale-free or ER networks. An important
comment is in order: Such small values of the power-law
exponents are typically characteristic of finite networks:
this is compatible with our theory, since we know that, in

the infinite sampling limit Nr → ∞, our network becomes
infinitely large and it will be unavoidable to generate
repetitions of the same snapshot. Such repetitions, however,
we have excluded from the beginning and would require an
adaption of our approach by means of certain weighted
networks.

B. Theory of wave function networks evolution over
quasiadiabatic state preparation

The scale-free and ER WFN phenomenologies we
observe in both experiment and numerical simulations are
not tied to the specific problem we explore here, but, as we
argue in this section, are generic features of quasiadiabatic
state preparation protocols. Starting from an uncorrelated
product state, it is natural to expect that at short times one
may typically find random networks of wave function
snapshots, i.e., networks with ER-type structures. An
example of such an instance is the case covered in this
work, where we start from a product state with spins aligned
in the z direction. At short times the unitary dynamics will
generate some weak but noticeable superposition of other
configurations with a few flipped spins, which we expect to
appear similar to the presence of local fluctuations such as
those caused by dissipation or thermal fluctuations. These
are inherently random, and should therefore yield an ER
network, with Poisson-like degree distribution. For
Nr ≪ 2N , such a process is expected to generate a very
sparse network with hki ≃ 1, due to the fact that the average
distance between configurations is roughly a constant.
Upon approaching the quantum phase transition, we

observe the emergence of a scale-free network structure.
The basic mechanism behind this can be understood upon
inspection of the introduced metric in Eq. (3), which is used
to impose the fundamental underlying structure on our
datasets. The network structure, which we probe through
Pk, is generated by correlations in distances between differ-
ent snapshots. Only in the case where such distances are
correlated is it possible to find a power-law distributionPk of
nodes having a connectivity k. As we discuss in the
following, these correlations in distances between nodes
in the network might be linked to the real-space correlation
length in the system. Upon entering the quantum phase
transition regime the system develops a large correlation
length of the order of the system diameter due to the almost
adiabatic dynamics generated through the experimental
protocol.
From previous works on data analysis of snapshot mea-

surements, it is expected that such large real-space corre-
lation lengths yield Pareto distributions, i.e., power-law
distributions, of distance measures in the dataset [26,27]. In
this light our observations of a scale-free network structure
in Pk appears natural in particular because Pk quantifies
correlations between distances of network nodes. We note
that the scale-free property of a scale-free network solely
concerns Pk—indeed, other network properties may carry

μ

μ
μ
μ

μ
μ
μ

μ
μ

μ
μ
μ

(a)

(b)

FIG. 5. Robustness of quantum simulator outputs. Comparison
of the degree distribution Pk of experimental WFNs generated
(a) without defects, and (b) with a mean density of defects of
∼3%. We consider Nr ¼ 800 in both cases. The results are
qualitatively equivalent.
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information that reflects the presence of a finite correlation
length.
Once the quantum phase transition regime is reached, the

system is effectively described by a large real-space
correlation length. Let us note that the dynamical behavior
of the considered quantum spin model is expected to be
potentially much richer as compared to the mostly studied
case of dimension D ¼ 1. Upon entering the broken-
symmetry phase, the system will eventually thermalize,
implying an infinite correlation length. In analogy to
classical systems, the temporal process of generating a
long-range ordered state is typically associated by coars-
ening and phase-ordering kinetics [40], which also comes
along with universal power-law behavior. In turn, this
means that upon crossing the quantum phase transition it
is expected that the correlation length grows further in time
also deep in the broken-symmetry phase. When linking
large real-space correlation lengths with scale-free network
structures, this would imply that the scale-free network
structure might survive also beyond the quantum phase
transition region. This underlines the universal character of
the data structure dynamics observed in the experiments.
The reasoning above applies also to first-order phase
transitions, as long as the correlation length at the critical
point is larger than the system diameter (so that, in fact, the
correlation functions in the system are not able to discern
differences with respect to a continuous transition).

IV. APPLICATION 1: KOLMOGOROV
COMPLEXITYOFWAVE FUNCTION SNAPSHOTS

The output of a quantum simulator obtained via wave
function snapshots is, per se, a classical object. How
complex must a classical computer program be in order
to reproduce such output? This is quantified by the so-
called Kolmogorov complexity [20,21].
For generic strings, computing the KC is an NP-hard

problem. The same holds true for generic graphs, where the
KC is quantified by the Haussdorf dimension [41]. This
implies that computing the Kolmogorov complexity of
wave function snapshots is an extremely challenging task
that cannot be undertaken in general.
However, as noted in the previous sections, quantum

simulators often generate scale-free networks: For these,
there exist known nonparametric learning algorithms
that allow us to estimate the intrinsic dimension of the
data points, and thus, the KC, in a manner that does not
depend on scale. In particular, we utilize the 2-NN
algorithm [42,43], that has already been applied in the
determination of critical properties of both classical and
quantum statistical mechanics partition functions [26,27].
The starting point is to consider, for each point Xj in our

dataset, the distances to its first and second nearest
neighbor, r1ðXjÞ and r2ðXjÞ, respectively. Under the
condition that the dataset is locally uniform in the range
of second-nearest neighbors, it has been shown in Ref. [42]

that the cumulative distribution function Femp of μ ¼
r2ðxÞ=r1ðxÞ obeys

Id ¼ −
ln ½1 − FempðμÞ�

lnðμÞ ; ð10Þ

where Id is the intrinsic dimension of the dataset. The
intrinsic dimension quantifies the number of degrees of
freedom required to capture the information content of the
dataset. While this is in principle a length-scale-dependent
property, our estimator directly focuses on the physically
relevant distance that is determined by the sampling of the
many-body wave functions.
In Fig. 6(a), we depict the relation between Femp and μ

obtained from [Fig. 6(a1)] experiments and [Fig. 6(a2)]
NQS simulations. In both cases, and for all times consid-
ered, the distribution is compatible with Pareto (additional
oscillations appear at short times, likely due to the very
simple structure of the network). These results guarantee
the applicability of the 2-NN approach [42].
In Fig. 6(b), we show the time dependence of the KC as

measured by the intrinsic dimension across the ramp. Both
experimental and simulation data clearly display two
regimes. (i) Up to 2 μs, the complexity increases. This
effect is trivial: The initial state is very close to a product
state along the z direction, so that at short times there is just
one single dominant snapshot as the measurement out-
come. The unitary evolution will necessarily generate
additional correlations afterward, thus increasing complex-
ity. (ii) From 2 μs onward, the complexity becomes a
monotonously decreasing function of time. This second
regime is a manifestation of the emergence of universal

(a1)

(b1)

(b2)

(a2)

FIG. 6. Complexity scaling in quantum simulators. (a1),(a2)
Cumulative distributions against μ ¼ r2=r1 for selected times.
Panels (a1) and (a2) show results for experimental and NQS
simulations datasets, respectively. The quality of a description in
terms of Pareto distribution (lines) increases as a function of time,
for both simulation and experiment. (b1),(b2) Time dependence
of the intrinsic dimension Id along the quasiadiabatic time
evolution for both experimental and simulated datasets. For
t > 2 μs, the complexity of the WFN is a monotonously
decreasing function of time in both experiments and simulations,
capturing the emergent simplicity (decrease of degrees of free-
dom) that is expected from the emergence critical behavior.
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behavior while crossing a phase transition. Following
quasiadiabatic dynamics, the correlation length monoto-
nously increases as a function of time: This implies that, in
order to describe network properties, fewer variables are
actually required—at equilibrium, these would just be the
critical exponents and the amplitudes of correlation func-
tions. The observations above are thus a direct manifesta-
tion of the emergent simplicity associated to universality
at critical points [27] and represent, to the best of our
knowledge, the first experimental demonstration of the link
between complexity and quantum critical behavior.
We note that, after some time, NQS simulations predict a

faster decrease of complexity with respect to the exper-
imental data. We attribute this to the fact that the simu-
lations can only partly keep track of the time evolution:
The neural network structure utilizes a smaller number of
effective variables, compatible with a decrease of KC, with
respect to those that are describing the time evolution
realized in experiment.

V. APPLICATION 2: CROSS-CERTIFICATION
BASED ON NETWORK PROPERTIES

One of the key challenges for quantum computers and
simulators is to verify their correct functioning or to certify
the validity of their outcome. One basic idea in the field is
cross-certification, which consists of directly comparing
the output of one quantum machine with another—either
quantum or classical. Recent protocols based on random
unitary circuitry, aiming to compare the full ground-state
wave functions, have been experimentally demonstrated to
be superior to tomographic methods [16,44]. However,
resources still scale exponentially with system size, making
the present methods inapplicable to large devices.

Here, we take a complementary angle and focus on a
comparison based on wave function snapshots that take
into account the maximum amount of extractable informa-
tion with currently available resources. At the formal level,
our goal is to compare two distributions in the limit where
Nr ≪ 2N , i.e., which is relevant to experiments exploring
many-body problems (oppositely, for N ≃ 10, it is possible
to reach by brute force the regime Nr ≃ 2N [44]). Clearly, a
configuration-by-configuration comparison sampled by
two distributions is meaningless unless the states are very
close to a product state; for generic states, the probability of
sampling the same set of configurations will scale expo-
nentially to zero with system size.
The network representation we use allows us to bypass

this limitation. Specifically, we wish to compare twoWFNs
obtained either by two experiments or by an experiment
and a simulation; see Fig. 7(a). For the concrete case
considered here, let us point out that the numerical
simulation by itself is a formidable challenge, which we
target again by means of the NQS approach [11,12,37]; see
also Appendix D for details. Finding and quantifying
similarities between two networks is a problem largely
explored in different applications of network theory and is
particularly useful for datasets that cannot be distinguished
by direct inspection or low-order correlations [45]. In our
case, such comparisons between networks are directly
related to the choice of metric used to define the WFN.
For scale-free WFN, this is particularly suitable, as we are
guaranteed to have chosen a metric distance capturing
correlations in the system.
As a simple and efficient way to compare experimental

and simulated WFNs, we check the hypothesis that the
corresponding degree distributions are equal by employing a
nonparametric test, known as the Epps-Singleton test [24].

FIG. 7. Comparing the experimental and simulated WFNs, as illustrated in (a). In particular, we consider the Epps-Singleton two-
sample test to check the hypothesis that the experimental and simulated degree distribution Pk are equal. For each experimental time
texpt, we consider ES tests with the different simulated results at times tsim. Both WFNs have Nr ¼ 2500 nodes, and we choose a cutoff
distance R ¼ hr1i to generate them. Panels (a1)–(a6) show the corresponding pvalue as a function of tsim: results with pvalue > 0.1
(marked by the dashed lines) are interpreted as statistically significant. To cross-check our analysis, we also consider in (b) the order
parametermstg as a function of texpt. Each simulated result corresponds to the different times tsim for which pvalue > 0.1. Such an analysis
allows us to identify t�sim, the times where the best agreement exists between simulation and experimental data; the results corresponding
to t�sim are marked as the black star points in (a1)–(a6). Finally, panel (c) shows the corresponding time shift, Δt� ¼ t�sim − texpt, between
experiments and NQS simulations (see text).
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The latter allows us to identify, with statistical significance,
when twoWFNs are different. In the following, sincewewill
employ this test to establish the identity of two WFNs, we
will take as statistically significant proof of our claim cases in
which the p value of the test takes valuespvalue > 0.1, i.e., in
which both experimental and simulation data are compatible
with a common probability distribution.
The results are summarized in Fig. 7. In Figs. 7(a1)–7

(a6), we present the corresponding pvalue of the ES tests
obtained by comparing experimental data at a given time
texpt with the simulation data over a given time window
(i.e., 1 < tsim < 4.2 μs). This allows us to identify time
windows where the quantum and classical simulators can
be cross-certified with statistical significance in terms of the
maximum amount of information available from their wave
function networks. Interestingly, we note that the cross-
certification agreement occurs at time windows that are
shifted from the actual experimental times presented in the
legends of Figs. 7(a1)–7(a6).
The fact that the cross-certification agreement of quantum

systems occurs at a time texpt that is different from times
considered in the simulations tsim can be attributed to
miscalibrations of the parameters of the Hamiltonian [e.g.,
ΩðtÞ and δðtÞ]. Similar observations are found when com-
paring experiments with simulations of physical observables
based on matrix product states [10]. Although such mis-
calibrations do not affect the actual physics, quantifying the
corresponding time shift is essential for the cross-validation
of the quantum simulators.
In general, we find that the ES test can provide, for a

given texpt, multiple candidate simulation times tsim for
which pvalue > 0.1; see Fig. 7. In order to finally select
across these multiple candidates, we perform a second test
by computing for each of the candidates an independent
second quantity. Here, we consider the staggered magneti-
zation mstg ¼

P
ix;iyð−1Þixþiyσzix;iy , where we included the

results for all the candidate simulation times [see Fig. 7(b)].
Finally, we choose the candidate t�sim, in which the
simulated results for the order parameter are closest to
the experimental data. As one can see from Fig. 7, up to a
time of texpt ¼ 3.0 μs, we find that this procedure is capable
of cross-certifying the experimental and theoretical data
within the achievable accuracy, which is limited, for
instance, by the finite time grid of the theoretical data.
For intermediate times 3.0≲ texpt ≲ 4.0 μs, small devia-
tions start to emerge, whereas for times texpt ≳ 4.0 μs, the
cross-certification fails, which could be caused by dissi-
pation effects in the experiment that are not included in the
theory calculation, or by a decreasing accuracy of our
variational computation (similarly to what is observed in
the complexity scaling).
This scheme further defines an optimal time shift Δt� ¼

t�sim − texpt for the experimental data. Figure 7(c) shows the
estimated values of Δt�. Importantly, in the time interval
that the quantum simulator can be cross-certified, we

identify a small time dependence of Δt�, which has not
been addressed previously. We note that the procedure does
not work well for t < 1.5 μs, as expected: There, the
network is not scale-free yet, so a direct comparison can
only provide some rough qualitative guidance.

VI. CONCLUSIONS AND OUTLOOK

We have introduced a network theory framework to
interpret the maximum amount of information extractable
from quantum simulators—wave function snapshots.
Remarkably, such networks can become scale-free for
strongly correlated states of matter, and are of direct
experimental relevance, as we demonstrate with data from
a large-scale Rydberg atom array experiment. We have
illustrated the power of network description with two
applications: demonstrating the scaling of complexity
across a quantum phase transition during Kibble-Zurek
scaling, and cross-certifying the wave function of a
quantum and classical simulator up to system sizes that
have never been attained previously.
Our work opens up a series of research directions based

on a transfer of methods and concepts between network and
quantum science. At the big picture level, it would be
important to determine to what extent Erdős-Rényi and
scale-free networks are able to characterize quantum
simulators and computers. While our framework provides
strong evidence that it works at and close to equilibrium,
the structure of wave function networks in genuinely out-
of-equilibrium situations is presently completely unknown.
Understanding network properties corresponding to such
dynamics might provide qualitative insights into how
equilibrium is established at the wave function level,
complementing current efforts focusing on observables,
and providing direct links between dynamics and
Kolmogorov complexity. Going beyond the case of unitary
dynamics, understanding the role of dissipation might help
characterize the stability of quantum dynamics to noise,
which will ultimately always kick in and—very likely—
imprint an Erdős-Rényi structure onto the system wave
function.
In addition to conceptual insights, our framework is

ideally suited to developing scalable quantum information
tools. Examples range from improving cross-certification
methods for large-scale experiments, where computing
direct wave function overlap is impractical, to applying
it to datasets obtained through generalized quantum mea-
surements (e.g., positive operator-valued measure), from
which information about basis-independent properties can
be extracted. In the latter case, it will be particularly
interesting to investigate the prospects of accessing genuine
quantum properties. On a broader level, we believe that the
parallelism between two very active, but so far discon-
nected, fields could be an ideal playground for developing
new insights into how information is associated to many-
body phenomena.
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APPENDIX A: ANALYSES OF THE EMPIRICAL
DEGREE DISTRIBUTIONS:
FINITE-SIZE SCALING

Recently, the emergence of power laws in empirical
networks has been questioned. One argument is that alter-
native (non-scale-free) distributions can better describe the
degree distribution of networks. Rigorous statistical tests
indeed confirm that this is the case for several networks [47]
(previously taken as scale-free), although essential aspects
(finite-size effects of the network [30] or independence
of the empirical observations [48]) are typically ignored in
such analyses. To line up our conclusions with such recent
observations, in this appendix we discuss in detail the
analyses we employ to prove that in the vicinity of quantum
critical points WFNs become scale-free.
In a network containing Nr nodes, the degree can be at

maximum equal to Nr − 1. Hence, while for an infinite
network (Nr → ∞) one might observe a power-law behav-
ior in the scaling regime k ≥ kmin, for a finite network,
deviations of such behavior are expected to appear above an
upper degree kmax. In this way, a more precise definition of
a scale-free network takes into account the upper-degree
cutoff kmax in the form of the finite-size scaling hypothesis,

Pðk; NrÞ ¼ k−αfðk=kmaxÞ; ðA1Þ

where Nr represents the number of nodes of the network, α
is the power-law exponent, and the upper-degree cutoff
kmax is related to Nr: kmax ∼ N−d

r , d being a negative
exponent that defines the finite-size effects of the network.
The key aspect of the FSS hypothesis is that fðxÞ is a
universal function of x ¼ kNd

r that, for x → 0, is
fðxÞ ¼ const, in such a way that the power-law behavior
of Pðk; NrÞ is recovered for an infinite network.
The question of whether a WFN is a scale-free network is

then assessed by confirming the validity of the FSS hypoth-
esis. To keep our presentation self-contained, we highlight
below the main aspects of the FSS analyses; for a thorough
discussion, we refer the reader to Refs. [30,49].
The FSS analyses start with a WFN built with a cutoff R

and Nr nodes. We then determine the scaling region where
the corresponding degree distribution Pðk; NrÞ is fitted by a
power-law function, i.e., k ≥ kmin. We use the approach of
Clauset and co-workers [47,50], which determines the
optimal value of kmin by creating a power-law fit starting
from different values of kmin in the Pðk; NrÞ, and then
selects the one that results in the minimal Kolmogorov-
Smirnov distance between the empirical data and the fit. We
implement such a scheme with the code of Ref. [51].
As a second step, we generate a set of subnetworks of

different sizes n < Nr by removing nrem nodes randomly
among theNr nodes of the original WFN. For each value of
n, we construct 100 subnetworks and analyze the properties
of the averaged Pðk; nrÞ (or the corresponding cumulative
distribution). The analysis is performed for nodes with
k ≥ kmin. Hence, the number of nodes nr entering in
Eq. (A1) corresponds to the averaged number of nodes
with degree k ≥ kmin. Furthermore, we consider the cumu-
lative distributions Cðk; nrÞ ¼

R
∞
k Pðq; nrÞdq [instead of

Pðk; nrÞ], which allow us to mitigate errors caused by the
binning used to compute Pðk; nrÞ. For scale-free networks,
Cðk; nrÞ is also described by the FSS hypothesis,

Cðk; nrÞ ¼ k−γf̃ðkndrÞ; ðA2Þ

with exponents γ ¼ α − 1. We now discuss the approaches
we use to assess whether Cðk; nrÞ is described by the FSS
hypothesis.

1. Data collapse

We first consider the data collapse technique. As is
customarily done in statistical physics to analyze the
behavior of physical observables near phase transitions,
we select fitting parameters γ and d by attempting to
perform a data collapse of results of Cðk; nrÞkγ versus kndr
for different subnetworks. In practice, the basic idea is to try
to fit results for different nr with the same master curve.
The fitting quality allows determining the exponents γ and
d and establishing how well the FSS hypothesis describes
the empirical data. In particular, we follow the steps
described in Ref. [52] to define the master curve and the
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quantity Smeasuring the quality of collapse. We implement
the data collapse with code described in Ref. [53].

2. Moment ratio tests

We also consider the scaling of the moment ratios of
Cðk; nrÞ. Such an analysis is based on the fact that the ith
moment hkii of a scale-free network scales as

hkii ¼
Z

∞

kmin

dkki−1k−γfðkndr Þ ∝ n−dði−γÞr ; ðA3Þ

for i > γ; instead for i ≤ γ, hkii converges to a constant. As
a result, the ratio between two moments scales as

ri ¼ hkii=hki−1i ∝ n−dr ; ðA4Þ

when i − 1 > α. Likewise, for a scale-free network, ri
scales with the number of edges nE as

ri ∝ n−dEE ; ðA5Þ

where the exponent dE is related to d (more on this below).
Let us stress that nE is the number of edges in the scaling
regime, i.e., the total number of edges that are connected
with nodes with k ≥ kmin. The log-log plot of ri with nr and
nE for different i is then used to probe whether a network is
scale-free [30].

3. Results

a. Two-dimensional quantum Ising model

We start considering WFNs generated by the ground
state of the 2D quantum Ising model in the vicinity of
the quantum critical regime; we consider R ¼ hr1i (and
R ¼ hr2i). The power-law fitting [47,50] selects kmin ¼ 3
(kmin ¼ 9) and in both cases α > 2.0, i.e., α ≈ 2.35
(α ≈ 2.54). As shown in Figs. 8(a) and 8(b), the cumulative
distributions for different values of nr result in a high-
quality collapse, and the moment ratios ri are well
described by parallel lines for different values of i. More
quantitatively, the main outcomes of the analysis are the
following.
(1) We obtain S < 1.0 in both cases: S¼ 0.92 (S¼ 0.77)

for d ¼ −0.50� 0.04 and γ ¼ 1.4� 0.1 (d ¼
−0.42� 0.09 and γ ¼ 1.48� 0.03); such results
are consistent with our estimation of α obtained
with the fitting of the degree distribution,

(2) The scaling exponents d and dE are compatible
(within error bars), which is consistent with the fact
that the scaling of hki ∼ nd=dE−1r is independent of nr
for a scale-free network with α > 2.

Moreover, we observe that the exponents d and γ
(which dictates how the uppper-degree cutoff scale
with network size, kmax ∼ n−dr ) are well described by the
empirical relation d ≈ −ðγ þ 1Þ−1, which is consistent with a
scale-free network [30,49]. For those cases, thus, the finite-
size analysis shows clear evidence that theWFNs correspond
to a scale-free network: According to the classification
proposed in Ref. [30], those are strong scale-free networks.

(a1)

(a2) (a3)

(b1)

(b2) (b3)

FIG. 8. Panels (a) and (b) show the FSS analyses for the WFNs generated at the critical point of the quantum Ising model for R ¼ hr1i
and hr2i, respectively. Panel (a1) [(b1)] shows the cumulative distribution, while the inset shows the data collapse. The best collapse
occurs for d ¼ −0.50� 0.04 and γ ¼ 1.4� 0.1 (d ¼ −0.42� 0.09 and γ ¼ 1.48� 0.03). Panels (a2) and (a3) [(b2) and (b3)] show
the scaling of the moment ratio ri with the number of nodes nr and the number of nE, respectively, for different values of i. The exponent
d (and dE) corresponds to the slope of the fitting; the values presented in the panels are the average of the results for the different
values of i.
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b. Time evolution of Rydberg atom systems

We now consider FSS analyses of WFNs generated at
different times during the quasiadiabatic state preparation
protocol; we focus on datasets obtained with simulations
with NQSs. As described in the main text, during the
dynamical process, the system is characterized by a regime
of no correlations, a critical regime (for t ≈ 2.6 μs) where it
is close to a continuous quantum phase transition, and a
regime where correlations are characterized by a length
exceeding the system size (for t > 3.0 μs).
Figure 9 shows results of the power-law fitting for

different times: the estimated kmin, α, and the number of
nodes in the scaling regime nr. Within the critical regime,
2.5 < t < 2.7 μs, the power-law exponent is 1 < α < 3.
Now, we scrutinize the network structure over the different
time windows.

(i) In the regime of no correlations, we observe that
α > 3.0 and kmin is kmin ≈OðkmaxÞ. Furthermore, the
number of nodes for k ≥ kmin, which is nr < lnðNrÞ
for some generated subnetworks, indicates that
such WFNs do not correspond to a scale-free net-
work [30], in full agreement with our theoretical
arguments. The FSS analysis for t ¼ 1.52 μs is
depicted in Fig. 10, and confirms that the WFN is
not scale-free.

(ii) Approaching the transition time leads to diver-
ging correlations. As depicted in Fig. 10(b) for
t ¼ 2.56 μs, the WFN in this regime is consistent
with a scale-free network; we obtain S ¼ 1.75 for

FIG. 9. Results of the power-law fitting for different times
during the state preparation protocol. Panel (a) shows the
estimated kmin (red points) and the number of nodes nr with k ≥
kmin (blue points). Panel (b) shows the power-law exponent α; the
blue region in the graph corresponds to the region in which
1 ≤ α ≤ 3. The results, for each time, are an average of a set of 50
WFNs with Nr ¼ 9000 nodes.

(a1)

(a2) (a3)

(b1)

(b2) (b3)

FIG. 10. Panels (a) and (b) show the FSS analyses for the WFNs generated at times t ¼ 1.52 μs and t ¼ 2.56 μs of the state
preparation protocol, respectively. Panel (a1) [(b1)] shows the cumulative distribution, while the inset shows the data collapse. We
observe large deviations from the FSS hypothesis in (a1). In panel (b1) the best collapse occurs for d ¼ −0.35� 0.02 and
γ ¼ 1.80� 0.06, and S ¼ 1.75. Panels (a2) and (a3) [(b2) and (b3)] show the scaling of the moment ratio ri with the number of nodes nr
and the number of nE, respectively, for different values of i. The exponent d (and dE) corresponds to the slope of the fitting; the values
presented in the panels are the average of the results for the different values of i. In both cases, R ¼ hr1i.
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d ¼ −0.35� 0.02 and γ ¼ 1.80� 0.06 with the
data collapse analysis.

(iii) At later times (for t > 3 μs), the analysis is more
challenging to interpret due to the fact that the
estimated kmin is kmin ≈OðkmaxÞ. The FSS analyses
(performed with the selected kmin) show large devia-
tions of a power-law distribution; see Fig. 11(a). We
note, however, that in this case, Pðk; nrÞ [orCðk; nrÞ]
is characterized by a heavy-tailed distribution. For
instance, Fig. 11(b) shows the heavy-tailed Cðk; nrÞ
obtained by imposing an arbitrary kmin (i.e., we
consider kmin ¼ 10), which might strongly suggest
a scale-free behavior. However, here, while the
collapse analysis is in agreement with the absence
of any scale [see inset of Fig. 11(a1)], the log-log
moment ratio analysis shows deviations of a straight
line.We believe that a possible explanation here is that
the network is either scale-free or features a very large
scale, but that a precise determination of this fact is not
feasible given the very large, self-consistently deter-
mined value of kmin.

In conclusion, the finite-size scaling analysis we perform
strongly confirms that quantum critical Ising networks are
scale-free, and that the same phenomenology is observed
while crossing the phase transition during quasiadiabatic
ramps. The long-time system dynamics might also be scale-
free, but at present, signatures are not unambiguous.

APPENDIX B: WHY NETWORK BUILT
FROM DISTANCE (OR SIMILARITY)
MEASURES CAN BE SCALE-FREE

We now present an argument that provides reasons
why features of networks constructed from distance (or
similarity [54]) measures between wave function snapshots
can be characterized by heavy-tailed (and in some cases,

power-law) distributions. The key element of our argument
hinges on the demonstration that certain properties of
distances between physical configurations and of WFNs
(e.g., degree or strength distribution) are linked to physical
observables and, more importantly, to probability distribu-
tion functions (PDFs) known to exhibit heavy-tailed
behavior.

1. Distance (or similarity) measures
and physical observables

The definition of the Hamming distance [Eq. (3)] can be
recast as

dðXi; XjÞ≡ di;j ¼
XN
p¼1

1

2
ð1 − sips

j
pÞ; ðB1Þ

assuming that each site of the lattice can be in the states
sip ¼ þ1 (spin up) or sip ¼ −1 (spin down).
We start with the following observation: Quantities

related to sums over all the nodes of the network can be
linked to estimators of physical observables. For example,
the estimator of the local magnetization is

hspi ¼
1

Nr

XNr

j¼1

sjp: ðB2Þ

The estimator become equal to the exact value of the
local magnetization Mp ¼ P

2N

j¼1 PðXjÞsjp in the limit of
Nr → ∞. For the cases considered here, PðXjÞ ¼ jψðXjÞj2,
ψðXjÞ being a normalized wave function. For a finite Nr,
the estimator exhibits an error that scales as 1=

ffiffiffiffiffiffi
Nr

p
.

Equation (B2) and the definition of the Hamming
distance, Eq. (B1), allow us then to show how the total
distance dT ¼ PNr

i;j di;j and the quantity di ¼
PNr

j¼1 di;j

FIG. 11. Same results as Fig. 10 for t ¼ 3.18 μs. In the panels on the left (a1, a2, a3) we select kmin with the power-law fitting, while in
the panels on the right (b1, b2, b3) we impose kmin ¼ 10; see text. In both cases, hRi ¼ R1.
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(dubbed node distance) are related to physical observables.
The total distance is

dT ¼
XNr

i¼1

XNr

j¼1

di;j ¼
XN
p¼1

1

2

�
N2

r −
XNr

i¼1

sip
XNr

j¼1

sjp

�

¼ N2
rN
2

�
1 −

1

N

XN
p¼1

hspi2
�
: ðB3Þ

It is also worth mentioning that similar arguments to those
described above are used in the context of spin glass
physics [55].
More importantly for our argument, the node distance is

equal to

di ¼
XNr

j¼1

di;j ¼
XNr

j¼1

XN
p¼1

1

2
ð1 − sips

j
pÞ

¼ NrN
2

�
1 −

1

N

XN
p¼1

siphspi
�
: ðB4Þ

In the limit of Nr → ∞ and considering a system with
translation symmetry, we can simplify

di ¼
NrN
2

ð1 −mihsiÞ; ðB5Þ

where mi ¼ 1=N
P

p s
i
p is the magnetization of the node i.

It is straightforward to extend the aforementioned results
for other distances or similarity measures. As an example,
we consider the cosine similarity, ci;j ¼

P
N
p¼1 s

i
ps

j
p. In this

case, the node similarity is

ci ¼
XNr

j¼1

ci;j ¼ Nr

XN
p¼1

siphspi

¼ NrNmihsi: ðB6Þ
The above arguments highlight a crucial point for

understanding the nontrivial behavior of distributions
characterizing distance and similarity measures—namely,
the PDF of properties related to nodes [e.g., PðdÞ and PðcÞ]
is directly related to the PDF of the sum of a strongly
correlated random variable: the magnetization, pðmÞ.

2. WFNs and physical observables

We now turn back to our network construction to
illustrate how properties of WFNs are related to strongly
correlated physical variables. For the sake of argument, we
consider a weighted network, i.e., a network whose edges
between two nodes i and j has a weight given by

wi;j ¼ ci;jAi;j; ðB7Þ
where Ai;j ¼ Θðci;j − CÞ is the adjacency matrix of the
network; ΘðxÞ ¼ 1 when x > 0, and ΘðxÞ ¼ 0, otherwise.

Given the linear relation between the Hamming distance
and the cosine similarity, ci;j ¼ N − 2di;j, it is straightfor-
ward to show that the connectivity between the nodes of
such a weighted network is equal to the ones of the network
described in Sec. II. Specifically, their adjacency matrices
are equal, Ai;j ¼ Θðci;j − CÞ ¼ ΘðR − di;jÞ, while the
introduced cutoff C is C ¼ N − 2R.
In addition to the node degree ki ¼

P
j Ai;j defined

in the main text, we consider the strength gi of a node i,
given by

gi ¼
XNr

j¼1

wi;j ¼
XNr

j¼1

ci;jAi;j: ðB8Þ

For a scale-free weighted network, the PDF PðgÞ is also
described by power-law distributions (and it directly
simplifies to connectivity in the case of equal weights).
Considering the cutoff C (or R) to build the WFN, the node
strength can be written as

gi ¼
X
ðJÞi

ci;J ¼
XN
p¼1

sip
X
ðJÞi

sJp; ðB9Þ

where
P

ðJÞi represents a sum over the nodes that are
connected to the node i, instead of being a sum over all
nodes of the network. We now consider heuristic arguments
to establish some generic features of PðgÞ.
The cutoff serves as a filter for establishing edges

between nodes, prioritizing connectivity between nodes
characterized by large mi values. In WFNs, the hubs are
nodes that have the highest mi values. Consequently, the
primary impact of the cutoff is to emphasize the role of
large m in the distribution. It is important to note, however,
that mi couples with other physical properties that are
dependent on the cutoffC (or R) and the node i, as shown in
Eq. (B9). Although we do not specifically identify these
physical variables, this line of reasoning enables us to
highlight the crucial aspect for understanding the nontrivial
behaviors of PðgÞ. Specifically, the strength gi is related to
sums of strongly correlated random variables. As discussed
in Ref. [27], the latter are related to low-order correlation
functions: Thus, it appears extremely unlikely that the
corresponding network structure would feature a scale,
when such correlations are, by definition, scale-free.
A limiting case corresponds to a fully connected WFN,

i.e., the adjacency matrix is Ai;j ¼ 1. In this case, Eq. (B8)
is equivalent to Eq. (B6) and PðgÞ is related to the
distribution of magnetization PðgÞ ¼ PðNrNhsimÞ, so,
PðgÞ can exhibit nontrivial behavior reminiscent of the
PDF of magnetization.
Summary. Summing up our arguments, the primary

reason why WFNs can exhibit scale-free behavior can
be traced back to the way certain network features are
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connected to strongly correlated physical variables. To
elucidate this point, we demonstrated how the strength
distribution PðgÞ correlates with the distributions of the
sum of the variable sp. It is important to note that such
distributions can deviate from Gaussian distributions,
thereby diverging from the predictions of the standard
central limit theorem.
Interestingly, this argument can be made even sharper for

the universality class that we consider here. Results from
the 3D Ising classical model [32] (as well as for the one-
dimensional quantum Ising model [33]) indicate that the
large-m behavior of the tails of pðmÞ in critical regimes is
characterized by heavy-tailed distributions, which include
power-law factors, and definitely go well beyond Gaussian
Ansätze. These findings, in conjunction with the analytical
and heuristic arguments presented in this section, reinforce
our empirical observation that WFNs near quantum Ising
critical points are scale-free.

APPENDIX C: WAVE NETWORK STRUCTURE
AND THE CHOICE OF THE DISTANCE

CUTOFF R

As described in Sec. II, the structure of the wave function
network is defined by choosing a cutoff distance R in an
embedded space defined by the Hamming distances, which
allow us to define links between nodes. We now discuss in
more detail the influence of R on the observation that
WFNs can exhibit a scale-free structure.
Let us consider the list of all pairs of distances dðXi; XjÞ

between nodes Xi and Xj. One crucial aspect to consider is
that the choice of R is bounded by the minimum and
maximum distances on such a list (let us call these dmin and
dmax, respectively): R < dmin would generate a network
with all the nodes isolated, while R > dmax would generate
a featureless, fully connected network. The choice of R
introduced on Eq. (4) naturally takes into account the
typical scale distance in the embedded space, which
depends on the Nr or the Hamiltonian parameters.
Another important aspect is that we deal with distances

in a “high-dimensional” embedded space (the embedded
dimension is equal to the number of spinsN), where the so-
called curse of dimensionality is expected to play a
fundamental role. For instance, we could expect that the
difference between the minimum and the maximum dis-
tance (i.e., dmin − dmax) would become indiscernible com-
pared to any reasonable choice of R [56] given that the
volume of a high-dimensional space increases so fast that
the available data become sparse when Nr ≪ 2N . If this
were the case, we would have observed just a featureless,
fully connected network. In the correlated regime, however,
we observe nontrivial network structures, which can be
attributed to the fact that, in reality, the intrinsic dimension
of the WFNs is much lower than the dimension of the
embedded space [26,27].

Let us discuss how changes on R influence the scale-free
WFN. Figure 12 shows the degree distribution Pk asso-
ciated with the WFN generated at the quantum critical point
of the quantum Ising model. By increasing R, we observe
two main effects. First, the Pk is shifted by larger values of
k. Second, the threshold kc above which Pk starts to behave
as power law increases; see Fig. 12(a). Specifically, we
observe that our data for different values of R collapse in a
same curve when we rescale the x axis; see Fig. 12(b). This
result indicates that for the scale-free WFN, the main effect
of increasing R is to enlarge the cutoff kc below which the
network is not scale-free. In addition, we show the fraction
of isolated nodes fN0

by increasing R. For R ¼ hr10i less
then 1% of the nodes are isolated; however, we still observe
a power-law behavior for almost one decade in k. Overall,
we notice that for g ≈ gc we can always observe a scale-free
WFN for a wide range of choices of R.

APPENDIX D: SIMULATIONS WITH NEURAL
QUANTUM STATES

Neural quantum states have emerged recently as a new
versatile class of variational wave functions [11]. The goal
is to find an efficient representation of a many-body wave
function jψi in the form of a parametrized function ψθðsÞ
that maps a computational basis configuration s ¼
ðs1;…; sNÞ to a complex number, such that

jψθi ¼
X
s

ψθðsÞjsi: ðD1Þ

Here, jsi ¼ js1i ⊗ � � � ⊗ jsNi denotes the computational
basis states of a system with N degrees of freedom, and for

(a)

(b)

FIG. 12. Degree distribution, Pk, for the WFNs of the ground-
state quantum Ising model at the critical point, g ¼ gc. Panel
(a) shows Pk of the WFNs with different values of R, where
R ¼ hrci is the average of the c-nearest neighbor distances, as
defined in Eq. (4). We also show the values of the fraction of
isolated nodes, fN0

, for the different values of R. In panel (b) we
consider a phenomenological collapse for the different Pk, where
c is the value of the indice related to hrci and α ¼ 2.4.
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our purposes si ∈ f↑;↓g. There are a number of appealing
reasons to choose ψθðsÞ in the form of an artificial neural
network (ANN) to render the Ansatz an NQS. Most impor-
tantly, rigorous representation theorems guarantee that any
possible wave function can be approximated by an ANN in
the limit of large network sizes [57–60]. This means that the
approach is numerically exact in the sense that the accuracy
of results can be certified self-consistently by convergence
checks. While the general function approximation theorems
do not tell us whether the representation in the form of an
ANN is efficient, it has been shown that NQSs cover some
volume law entangled states and correlated states of systems
in two spatial dimensions, which are notoriously difficult to
capture with established methods [61–66]. Finally, the
complexity of the algorithms involved scales gently with
system size and number of parameters, and large parts are
amenable to large-scale parallelization to take advantage of
distributed graphic processing unit clusters [67].
While the variational Ansatz with a limited number of

parameters solves the problem of efficient representation,
the efficient extraction of information from the wave
function is achieved by Monte Carlo sampling. For
example, the quantum expectation value of an operator
Ô can be rewritten as

hψθjÔjψθi ¼
X
s

jψθðsÞj2
hψθiψθ

OlocðsÞ; ðD2Þ

with the local estimator OlocðsÞ ¼
P

s0 Os;s0 ½ψθðs0Þ=ψθðsÞ�
that can be computed efficiently for local operators with
only a polynomial number of nonvanishing matrix elements
Os;s0 ¼ hsjÔjs0i. This means that the expectation value can
be estimated efficiently by Monte Carlo sampling the Born
probability distribution ðjψθðsÞj2=hψθiψθÞ [68], and the
same holds for all quantities of interest appearing in NQS
algorithms. Note that the only way to access the wave
function in quantum simulation experiments is projective
measurements, which are likewise a sampling of the Born
distribution; this is a very useful parallel when attempting a
direct comparison of the obtained data, because obtaining
samples from the wave function could turn out to be very
costly with alternative numerical approaches [10].
An optimal approximate solution of the Schrödinger

equation iðd=dtÞjψθi ¼ Ĥjψθi within the manifold of
wave functions jψθi is obtained via a time-dependent
variational principle (TDVP) [11,12,69]. This leads to an
ordinary differential equation prescribing the time evolu-
tion of the variational parameters,

Im½Sk;k0 �θ̇k0 ¼ −Im½iFk�; ðD3Þ

with the quantum metric tensor Sk;k0 ¼ h∂θkψθi×
∂θk0ψθ − h∂θkψθiψθhψθi∂θk0ψθ and the force vector Fk ¼
h∂θkψθjĤjψθi − h∂θkψθjψθihψθjĤjψθi; note that the imagi-
nary part appears on both sides of the equation as we are

considering real parameters [67,69]. Hence, the time-
evolved wave function starting from a given initial state
can be obtained by integrating Eq. (D3). In previous works
it was found that careful regularization is crucial to achieve
state-of-the-art results in this way [12,37]. For the present
work, we developed a new way of phrasing and solving the
variational problem, which we call the conditional TDVP.
The details of this approach will be described in a separate
paper [70]. All results presented here were obtained in
this way.
The network architecture used in our simulation is a

variant of the recurrent neural network (RNN) for two-
dimensional systems introduced in Ref. [71]. The structure
of this architecture is depicted schematically in Fig. 13. The
starting point is a one-hot encoding σi;j of the local spin
configurations si;j, i.e., σi;j ¼ ð1; 0Þ if si;j ¼ ↑ or σi;j ¼
ð0; 1Þ if si;j ¼ ↓. The neural network is then evaluated by
traversing the two-dimensional lattice in a snakelike
manner. Let us denote the kth lattice site index along the
snake path as ðik; jkÞ and assume that the linear dimension
of the lattice is L. At each lattice site, a conditional single
qubit state ψðsik;jk js1;1;…; sik−1;jk−1Þ is generated in the way
detailed below. From these conditional states, the coeffi-
cient of the many-body wave function is obtained as

FIG. 13. Schematic depiction of the used neural network
architecture. For evaluation the lattice is traversed along the path
indicated by the blue arrow. A hidden state hij is computed at
each site using the one-hot encoded local basis configurations and
the hidden states of previously visited neighboring sites, as
indicated by the pink arrows, which correspond to dense layers.
From the hidden state a correlated contribution to the conditional
qubit state q̄ij is computed and an additional uncorrelated
contribution q̃ij is added to it to obtain the logarithmic condi-
tional amplitudes χij after normalization, as noted in Eq. (D6).
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ψðsÞ ¼
YL2

k¼1

ψðsik;jk js1;1;…; sik−1;jk−1Þ: ðD4Þ

For the conditional states at every lattice site, a local
hidden state hði;jÞ is computed based on the spin configu-
ration and hidden state of two neighboring sites as

hðik;jkÞl ¼ fðWH
lmh

ðik−1;jk−1Þ
m þWV

lmh
ðik−L;jk−LÞ
m Þ

þ fðWS1
lmσ

ðik−1;jk−1Þ
m þWS2

lmσ
ðik−L;jk−LÞ
m Þ: ðD5Þ

Here, f denotes the nonlinear activation function and Wð·Þ
lm

denote the weights of the dense layers; double indices
indicate summation. At the boundaries, where required
neighboring sites do not exist, the corresponding input is
replaced by zeros. Next, the hidden state is processed by a
dense layer with two-dimensional output ðq̄ijR ; q̄ijI Þ, corre-
sponding to the real and imaginary parts of a complex
number q̄ij. This number constitutes the correlated con-
tribution to the logarithmic ↑ coefficient of the conditional
local qubit state, up to normalization and a global phase. In
addition, we introduced one complex-valued variational
parameter q̃ij ¼ q̃ijR þ iq̃ijI for each lattice site, which
corresponds to a contribution to the conditional qubit state
that is uncorrelated. With qij ¼ q̄ij þ q̃ij we finally pro-
duce the logarithmic conditional wave function amplitudes,

χij↑ ¼ 1

2
log

�
expðqijRÞ

1þ expðqijRÞ

�
þ iqijI ;

χij↓ ¼ 1

2
log

�
1

1þ expðqijRÞ

�
þ iqijI ; ðD6Þ

such that

ψðsik;jk js1;1;…; sik−1;jk−1Þ ¼ exp
�
χikjksik;jk

�
: ðD7Þ

The uncorrelated contribution q̃ij extends the standard
RNN architecture. We introduced it because we found it
difficult with the plain RNN to capture the initial part of the
control protocol, where only the orientation of the uncorre-
lated qubit states is rotated and hardly any correlations are
produced. In our architecture q̃ij can fully capture the
product state, such that the job of the RNN is just to account
for correlations on top of it. Including q̃ij does not affect the
autoregressive property of the Ansatz introduced by the
decomposition into a product of conditionals (D4). This
means that the architecture allows for direct sampling of
uncorrelated configurations at the cost of a single network
evaluation per sample [71,72].
For the simulations we incorporate further experi-

mental details, extending the elementary Rydberg atom
Hamiltonian given in Eq. (9) of the main text. We include
spatial laser intensity profiles that were extracted from

the experimental setup such that the considered model
Hamiltonian reads

HðtÞ ¼ ℏ
XL−1
k;l¼0

δkðtÞnðklÞ þ
1

2

XL−1
k;l¼0

ΩkðtÞσxðklÞ þ
X
i<j

Uijninj:

ðD8Þ

Here, we introduced the notation ðklÞ≡ kLþ l to map
between double and single indices of the lattice sites;
accordingly, the lasers shining in along one of the lattice
dimensions exhibit an intensity profile perpendicular to that
direction. The spatial and temporal form of the control fields
during the considered protocol are shown in Figs. 14(a)
and 14(b). The coupling is Uij ¼ U=Δr6ij with nearest-
neighbor interaction energy U=h ¼ 1.947 MHz, where h
is Planck’s constant, and ΔrðklÞðmnÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−mÞ2þðl−nÞ2

p
the Euclidian distance between lattice sites.
At the beginning of the protocol all atoms are prepared

in their ground state, meaning that the initial state in the
spin language is a polarized state jψðt ¼ 0Þi ¼ j↓;…;↓i.
The initial part of the protocol mostly consists of a

(a)

(b)

(c)

FIG. 14. (a),(b) Control protocols of the external fields ΩkðtÞ
and δkðtÞ. (c) Time dependence of αðtÞ, which parametrizes the
time-dependent choice of the computational basis as described in
the text. Initially, the quantization axis aligns with σx, before it is
rotated on the time interval between t0 ¼ 0.8 μs and t1 ¼ 1 μs
with αðtÞ ¼ −ðπ=2Þcos2½ðπ=2Þðt − t0Þ=ðt1 − t0Þ� to align with
the σz quantization axis.
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nearly adiabatic rotation of the polarization. This situation
is difficult to address with NQS when using a fixed
computational basis, because polarized states that align
with the computational basis are hard to encode with NQS.
Therefore, we implemented our simulation in a time-
dependent frame WðtÞ ¼ exp½−iαðtÞPi σ

y
i � with αðtÞ as

shown in Fig. 14(c) such that polarizations that align with
the computational basis are avoided throughout the time
evolution.
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