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A B S T R A C T

Energy dispersive X-ray fluorescence (EDXRF) is one of the most quick, environmentally friendly and least
expensive spectroscopic analytical methodologies for assessing soil quality parameters. However, challenges in
EDXRF spectral data analysis still demand more efficient methods. One possible solution is using Machine
Learning (ML), particularly Multi-target Regression (MTR) methods, which predict multiple parameters taking
advantage of inter-correlated parameters. In this study, we proposed the Multi-target Stacked Generalisation
(MTSG), a novel MTR method relying on learning from different regressors in stacking structure for a boosted
outcome. We compared MTSG and 5 MTR methods for predicting 10 parameters of soil fertility. Random Forest
and Support Vector Regression (SVR) were used as learning algorithms embedded into each MTR method. Results
showed the superiority of MTR methods over the Single-target Regression (the traditional ML method), reducing
the predictive error for 5 parameters. Particularly, MTSG obtained the lowest error for phosphorus, total organic
carbon and cation exchange capacity. When observing the relative performance of SVR with a radial kernel, the
prediction of base saturation percentage was improved by 19%. Finally, the proposed method was able to reduce
the average error from 0.67 (single-target) to 0.64 analysing all targets, representing a global improvement of
4.48%.
1. Introduction

Evaluation of soil management is of fundamental importance in
modern agriculture to achieve an effective soil correction with focus on
highly productive crops and high harvesting performance [1,2], as well
as for supporting sustainable development [3]. In order to obtain such
benefits, precision agriculture with proximal soil sensor (PSS) is an
optimal solution and a tendency [4]. Non-destructive spectroscopic
analytical methodologies coupled with machine learning have been
studied to correlate the analytical signal to the soil fertility parameter of
interest, including Visible/Infrared Spectroscopy [5–9] and X-ray Fluo-
rescence (XRF) [10–13]. Particularly, XRF has been commonly used with
benchtop equipment. However, with the advance in portable equipment,
this analytical methodmay become a viable PSS technique for agriculture
[14–18].

The Energy Dispersive XRF (EDXRF) is the modality that has been
ntana), fe.chicoo@gmail.com (F.
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successfully applied for soil parameters analysis in different fields such as
agronomy and environment (soil pollution) [19]. The EDXRF spectral
data signal or the soil elemental concentrations are obtained faster, it is
non-destructive, environmentally friendly, and is less expensive than the
conventional methods. These features make EDXRF feasible as a PSS.
However, analytical drawbacks such as poor performance for low-Z el-
ements, matrix effects (due to moisture, granulometry, complex soil
composition) and spectral interferences are challenges to be overcome
with improvement in data collection and data analysis. In this paper we
focus on data analysis, i.e., in the use of machine learning algorithms to
pursuit high performance regression models for soil fertility parameters.

Commonly more than one parameter is involved in these analyses,
forming an output set Y composed of d target variables. The traditional
method to attack these problems is transforming the problem into d sub-
problems with a single output variable, sharing the same input set X. This
method is known as Single-target (ST) and serves as a baseline when
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Fig. 1. Representation of SG ensemble technique.
referring to problems with multiple targets. In ST, independent individ-
ual models (regressors) are generated for each sub-problem considering
the same input set X and the actual target.

Recent literature shows that new methods were developed especially
to address multi-target settings. These methods, which are named Multi-
target Regression (MTR) methods, oppose to ST by taking into account
the correlation that the targets might have [20–24]. The MTR methods
have been applied to different fields, as to predict vegetation condition,
water quality and rock mass parameters, wheat flour quality and in soil
assessment for heavy metal concentration [21,25–27]. Moreover, the
prediction of multiple targets showed to be advantageous also for soil
properties studies based on infrared data [28–30]. These results moti-
vated the application and evaluation of MTR methods to handle soil
samples analysed by EDXRF, which present difficulties of identification
due to the complexity of the soil EDXRF spectra.

Besides applying existing MTR methods to this problem, in this work
we developed a novel MTR method, Multi-target Stacked Generalisation
(MTSG). Stacked Generalisation (SG) was the first stacking technique
proposed in the literature, but it has not been explicitly addressed in the
MTR tasks. As an ensemble technique, SG aims at combining the learning
biases of different base-learners towards reducing the prediction error,
specially if these regressors are dissimilar in their bias [31]. We believe
this error reduction can also be achieved in the MTR field, particularly on
EDXRF spectra, since the signal represents different properties and lin-
earities from the same set of data. In other words, the proposed method is
able to support the improved predictions of several targets taking
advantage of different base-learner characteristics such as linearity,
monotonicity and kernel function.

In short, this work aims at evaluating MTR methods in an EDXRF soil
spectra dataset to predict 10 soil quality parameters and attest the best
predictor for each target. Besides, it assesses the performance of the new
method MTSG for minimising the prediction error. Random Forest and
Support Vector Regression (with linear and radial kernels) were used as
2

base learners for the methods.
After examining the motivation and novelty of this research, the work

is organised as follows: Section 2 introduces the explored MTR methods
and strategies. Section 3 describes MTSG, the new developedmulti-target
method. Following, Section 4 details the experimental setup, showing the
dataset acquisition, the compared methods and algorithms, and the
evaluation metrics. In Section 5, the results and their discussion are
presented. Section 6 outlines the main conclusions of the work. Lastly,
two appendices were added with the descriptive statistic of the soil pa-
rameters and the MTSG performance in benchmarking datasets.

2. Background

MTR methods can be split into several categories according to their
training procedures [32]. Transforming the original problem into
sub-problems is a well-grounded approach of MTR and it is based on two
main strategies: stacking and chaining.

In stacking, one or more regressors are trained for each target (as in
ST). They can be referred to as base-models. After that, predictions are
obtained using the base-models for training a new regressor for each
target in different manners. These new models, called meta-models, can
be obtained following different stacking assumptions [21,33,34].

The precursor stacking MTRmethod was Stacked Single Target (SST),
proposed by Ref. [21]. SST creates one base-model with a given regres-
sion algorithm (base-learner) for each target. Predictions are made by
merging the output of base-models and the original input set, forming an
augmented dataset. A new regressor is trained for each target taking into
account the transformed dataset, generating dmeta-models in the second
layer.

[33] proposed the Deep Regressor Stacking (DRS) method, in which
the stacking process of SST is repeated continuously, creating a deep
meta-model. It stops when a maximum amount of pre-defined layers is
reached.



Fig. 2. Representation of MTSG method.
In another method, called Multi-target Augmented Stacking (MTAS),
multiple distinct base-learners (related to different algorithms) are
trained for each target using the same strategy as SST. However, the
authors [34] took advantage of predictions for only relevant targets,
obtaining boosted base-models. After that, just one final predictor per
target is generated using the best set of augmented data, obtaining an
accurate meta-model.

Chaining strategies, as the name implies, cascade the insertion of
target-related information when creating new predictors. Similarly to
stacking, chaining methods augment the original training set with pre-
dictions of the targets. Nonetheless, rather than using predictions of all
responses at once, the chaining methods incrementally augment the
datasets one target at the time. This idea is similar to the Bayesian
network inference in design and was used initially for classification
problems [35]. Different strategies were proposed in the recent MTR
literature [21,36].

The Ensemble of Regressor Chains (ERC) constructs multiple
randomly ordered target chains [21]. For each chain, base-models are
trained for each target, starting from the first one. New regressors use the
prediction of the previous base-models as extra input features. The final
predictions for each target are accounted for as the average output among
all chains.

Multi-output Tree Chaining (MOTC) [36] constructs a tree structure
rather than multiple chains, where each node represents a target. To this
end, a measure of inter-target correlation is used. Once the tree is con-
structed, starting from the leaves to the root, MOTC starts training the
base-models. Each node uses its descendants’ base-models predictions as
extra outputs. Thus, a specialised chain based on a tree branch is created
to improve each target prediction.

Our proposal follows the first strategy, stacking. Differently from the
other mentioned methods, MTSG uses the original input set only in the
first phase. After creating the first base-model and obtaining the pre-
dictions outputted by them, new base-models are created based only on
those predictions as the input. Hence, MTSG not only models inter-target
dependencies but also considers the learning strategies of different re-
gressor algorithms to provide responses. This proposal will be detailed in
the next Section.

3. Multi-target stacked generalisation

Ensemble methods were used in different tasks to improve predictive
performance over single predictors [37,38]. In Ref. [39], for instance,
stacking ensemble was adopted to predict soil organic matter. The wis-
dom of ensembles consists of the combination of different specialised
components (with local minima) to produce a global minimum. Besides,
these components can be obtained by different learning processes (either
by different learning algorithms, parameters or training sets). The
mentioned components can be classifiers or regressors, depending on the
kind of problem. Since we deal with a regression problem, the specialised
components in this work equal to regressors.

Ensemble approaches evolve generally two steps: ensemble
3

generation step and integration step. The first occurs when the compo-
nents are built and the second corresponds to when the output of the
components are aggregated to generate a new prediction [40]. This ag-
gregation can be made in different forms, for example, by a linear com-
bination of the models.

Another strategy to integrate the specialised components is to obtain a
model thathasas input thepredictiongeneratedby thecomponents, process
known as Stacked Generalisation (SG) [41]. Fig. 1 represents SG technique.

SG consists of two main phases. The Level 0 training set is composed
of the input set X with f features and the output variable y. Considering R
as the set of possible regression algorithms, j elements of it (r1…rj 2 R)
will be used to obtain the base-models m(1)…m(j) for the targets.

After creating these base-models, the X set is used once again to
obtain the first predictions (Y0). The set of predicted targets Y0 is then
considered the new input set at Level 1.

In the second phase, one learning algorithm is chosen as the regressor
(rb). Thus, one Level 1 meta-model will be induced and considered the
final predictor, and its prediction (y1) will be considered the final output.

The Multi-Target Stacked Generalisation (MTSG) extends the SG
concept to multiple outputs: whereas in original stacked generalisation
multiplemeta-models are trained fora single target, inMTSGmultiplemeta-
models are trained for the multiple targets. Fig. 2 illustrates the MTSG
design.

MTSG also has the generation and integration phases, increased by an
intermediate pruning step made by a filter F. The Level 0 training set is
composed of the input set X with f features and the output set Y with
d targets. j base-learners will be used to obtain base-models for each
target. In the first phase, j base-models m are induced for each target
using the original training set.

The Level 0 base-models will be used along with the X set to obtain
the first predictions (Y0). Since j base-models are induced for each target
at Level 0 and there are d targets, j � d values will be delivered for each
instance at this level.

As an additional step, the set of predicted targets Y0 will pass by the
filter F. This filter will assess the relevance of the predictions in relation
to each target and will preserve only the relevant ones for each target
(Y0). Those will be considered the new input set at Level 1. For per-
forming the filtering, different metrics can be used (e.g. liner correlation
among the targets). In this work, we adopted the importance extracted
from Random Forest (RF), as in MTAS, since it is capable of modelling
nonlinear relationships.

In the integration step, similarly to SG, one learning algorithm is
chosen as the base-learner (rb). In a supervised fashion, d Level 1 meta-
models will be induced, i.e., there will be one new regressor (m(b)) for
each target. These will be considered the final models and their pre-
dictions (Y1

1…d) will be considered the final output of the method.
The training procedure of MTSG is shown in Algorithm 1. It receives X

and Y, representing the input and output sets, respectively. R represents
the set of base-learners that will be used at Level 0 and rb represents the
base-learner employed to create the final meta-models.

Algorithm 1. MTSG training algorithm.



In this method, the original problem’s features are disregarded at
Level 1. To the best of our knowledge, this represents a distinction when
comparing to the other multi-target stacking methods of the literature.

Besides, since it is an ensemble method, the performance of MTSG is
sensitive to the diversity achieved by the Level 0 regressors. Using more
learning algorithms tends to bring more diversity, however it increases
the complexity of the method. For this reason, the number and type of
regressors that will be used represent the compromise between perfor-
mance and complexity in MTSG.
Fig. 3. Mean EDXRF spectr
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4. Experimental setup

4.1. EDXRF working principle

EDXRF is a technique used in several study fields for identification
and quantification of chemical elements present in varied materials, for
instance vegetables [42], bee honey [43], archaeological objects [44],
dog hair [45] and soils [46–48]. The working principle of EDXRF de-
pends on the interaction of high-energy X-rays with matter. These in-
teractions may be performed by photoelectric effect, elastic and inelastic
a of the analysed soil.



Table 1
Main default hyperparameters of RF, SVM_L and SVM_R in the packages ranger
and e1071.

Regressor Hyperparameter Value

RF number of trees 500
mtry (rounded down) square root of the number of

variables
minimum node
size

5

maximum depth None
split rule variance

SVR_L ε 0.1
tolerance 0.001
regularization 1

SVR_R ε 0.1
tolerance 0.001
regularization 1
γ 1/(data dimension)

1 http://www.uel.br/grupo-pesquisa/remid/?page_id¼145.
2 https://cran.r-project.org/web/packages/ranger/ranger.pdf.
3 https://cran.r-project.org/web/packages/e1071/e1071.pdf.
scattering [49]. The fluorescent phenomenon is related to the photo-
electric effect in which electrons are ejected from inner shells of the atom
by the incidence of an external X-ray beam. As a consequence, to stabilise
the atom, electrons from external layers fill these vacancies and the en-
ergy difference is emitted as characteristic X-ray photons. Thus, it is
possible to identify the elements present in the sample since these en-
ergies differences are well defined for each transition in each element. By
evaluating the peak intensities in the spectra, the elemental concentra-
tions may be calculated [49]. Besides the total inorganic content, the
EDXRF spectra also provide some information about the complex organic
content. The inorganic and organic samples’ information is mainly
embodied in the spectra scattering region since the cross-section of the
scattering effects is greater for low Z-elements.

4.2. Conventional analyses and spectral measurements

Soil samples (n ¼ 396) from an agricultural area in Ribeir~ao Vermelho
basin in Camb�e municipality, Paran�a State, Brazil (north region of Paran�a
state) were used in this study. The area has two types of soil classified as
Latossolo Vermelho Amarelo Distr�ofico (Orthic Ferralsol) and Nitossolo
Vermelho Distr�ofico, according to the Brazilian classification system and
FAO classification [50,51], both with high clay texture. Samples were
collected in three depths (0–5 cm, 5–10 cm and 10–20 cm), dried at 40 �C
for 48 h, grinded and sieved through a 2 mm stainless steel sieve. Next,
soil samples were sent to laboratory for conventional analysis of the
chemical parameters and EDXRF spectral measurements.

The soil fertility parameters analysed were: bioavailable phosphorus
(P), total organic carbon (TOC), pH, potential acidity (Hþ þ Al3þ, that
will be denoted by HþAl for simplification purpose), Caþ2 (Ca), Mgþ2

(Mg), Kþ (K), sum of exchange bases (SB), cation exchange capacity
(CEC) and base saturation percentage (BSP). TOC was determined by
dichromate-oxidation method (Walkley-Black). Ca and Mg were ob-
tained by KCl 1 mol L�1, with the solution being measured by atomic
absorption spectrometry. Using a Mehlich-1 extraction solution, K and P
were acquired by flame spectroscopy and UV–Vis molecular absorption
spectrophotometry. pH measurements were made using a potentiometer
in CaCl2 solution in 1:2.5 proportion. Adding an SMP buffer solution, the
readings of pH-SMP were employed to determine HþAl.

SB corresponds to the sum of Ca, Mg and K. CEC was set as the sum of
Ca, Mg, K and HþAl. Ultimately, BSP was given by:

BSP ¼ 100� SB
CEC

: (1)

All analyses were executed in the IAPAR Soil Analysis Laboratory in
Londrina, Paran�a, Brazil following the recommendations of [52]. The
statistical analysis of these measurements can be observed in Appendix A.

The EDXRFmeasurements were carried out in the Shimadzu (EDX720
model) benchtop equipment with Rh X-ray tube. For this, 5 g of samples
were placed in XRF plastic cups covered with Mylar films. The mea-
surements were repeated three times in different sample portions
(shaking the XRF cup before each measurement) using the operation
condition of 15 kV for 200 s. The detection was carried out using a Si (Li)
detector cooled with liquid nitrogen. All samples were measured using
10-mm focal spot without any filter in the primary beam. The mean
EDXRF spectra are presented in Fig. 3.

4.3. Methods and algorithms

The use of machine learning tools may help to work around and
minimise the analytical drawbacks mentioned in the introduction and
also perform rapid dataset analyses for soil characterisation [11,53].

The original dataset was split into two sub-sets following Kennard–-
Stone algorithm. 2/3 of the samples were reserved for training and 1/3
for test. This resulted in a hold-out validation training set containing 264
examples and a test set containing 132 examples (that were unseen
during the whole training). The samples were further pre-processed using
5

z-transform, also known as auto-scaling [54].
ST was compared to SST, ERC, MTAS, MOTC, DRS and the novel

method, MTSG. Random Forest (RF) and Support Vector Regression
(SVR) were used as Level 0 and base regressors in this work. All methods
along with the base regressors were implemented in R 3.4.0 with default
settings, and the implementation can be accessed in.1 The packages used
for RF and ε-insensitive SVR were ranger2 and e1071,3 respectively. The
main default hyperparemeters stated in these packages for each regressor
are shown in Table 1.

RF creates multiple decision trees considering subsets of training set
features, forming a forest with specialised trees. The output of RF, when
applied to regression problems, is the average of the trees in the forest.

SVR creates a hyperplane that minimises the training error. When
using a linear kernel (SVR_L), it creates a linear function to accomplish
the task of minimising the error. When using a radial kernel (SVR_R), it
maps the training data to a higher dimension via a radial function and
then finds a hyperplane that best minimises the error.

These algorithms were chosen due to the relevant performance in
previous studies and to guarantee a diversity to ensemble, since they are
grounded in different strategies to tackle the problem. We limited the
number of algorithms and used the default parameters in a sense of
fairness with the compared algorithms and MTR methods, and to avoid
the use of excessive computational resources.
4.4. Evaluation metrics

For analysing the quality of the methods concerning the prediction of
each soil variable, the Root Mean Squared Error (RMSE) of each target t
was calculated between the predicted value (yt) and the true value of the
target (ŷt) for the N testing instances. It indicates the concentration of the
data in relation to the fitting model [55]:

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðyit � ŷitÞ
2

N

s
(2)

Still focusing on the performance for each target, the multi-target
methods can be compared to the single-target by the Relative Perfor-
mance per Target (RPT), in which a value greater than 1 is a synonym of
improved performance of a specific MTR method in relation to the ST
method:

RPTMTR;t;r ¼ RMSEST ;t;r

RMSEMTR;t;r
(3)

http://www.uel.br/grupo-pesquisa/remid/?page_id=145
http://www.uel.br/grupo-pesquisa/remid/?page_id=145
https://cran.r-project.org/web/packages/ranger/ranger.pdf
https://cran.r-project.org/web/packages/e1071/e1071.pdf


Fig. 4. Pearson correlation coefficients among the 10 targets.
For this problem, t corresponds to each soil parameter and r, to the
base learner.

To compare the performance of different methods for different
problems, it is necessary a metric that can be computed regardless of the
number of targets d. The general performance of each method can be
computed by the average Relative Root Mean Square Error (aRRMSE)
[20]:

aRRMSEMTR ¼ 1
d

Xd

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðyit � ŷitÞ
2

PN
i¼1

ðyit � yÞ2

vuuuuut (4)

A complementary metric to access the performance of the best models
related to the reference values is the ratio of performance to deviation
(RPD) which is the ratio of the standard deviation (SD) of the conven-
tional analysis (reference) to the RMSE of the prediction:

RPD ¼ SD
RMSE

(5)

According to Ref. [56], for soil attributes RPD < 1.0 indicates very
poor predictions and their use is not recommended; RPD between 1.0 and
1.4 indicates poor predictions where only high and low values are
distinguishable; RPD between 1.4 and 1.8 indicates fair predictions
6

which may be used for assessment and correlation; RPD values between
1.8 and 2.0 indicates good predictions where quantitative predictions are
possible; RPD between 2.0 and 2.5 indicates very good, quantitative
predictions, and RPD > 2.5 indicates excellent predictions.

Additionally, the quality of the predictions can be given by the ratio of
performance to interquartile (RPIQ). RPIQ is based on quartiles, which
better represent the spread of the population. It is defined as the ratio of
the distance between the third quartile (Q3) and the first (Q1) to RMSE:

RPIQ ¼ Q3� Q1
RMSE

(6)

This metric better accounts for the spread of the population and large
RPIQ values indicate improved model performance [57].

5. Results and discussion

The results were presented and discussed starting by exposing the
correlation between the targets (Section 5.1). This information corrob-
orates with the importance of applying MTR methods since correlated
targets lead to reduced errors in MTR predictions. Afterwards, in Section
5.2, we present the results of ST and MTR methods, highlighting the
contribution of MTSG, which overcame the other methods. Finally, the
predictions of each soil property are compared for evaluating their



Fig. 5. aRRMSE for the different combinations of methods and regressors. The horizontal line represents the lowest aRRMSE for ST.

Table 2
RPT for each target considering the different combinations of methods and regressors. The best average result of each regressor is highlighted in bold.

Regressor P TOC pH HþAl Ca Mg K SB CEC BSP Average

RPTSST SVR_L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RPTSST SVR_R 1.00 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01
RPTSST RF 1.01 1.00 1.00 1.00 1.13 1.00 1.00 1.10 1.00 1.03 1.03
RPTERC SVR_L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RPTERC SVR_R 1.00 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RPTERC RF 1.01 1.00 1.00 1.00 1.13 1.00 1.00 1.10 1.00 1.02 1.03
RPTMTAS SVR_L 1.01 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.13 1.03 1.02
RPTMTAS SVR_R 1.01 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.01
RPTMTAS RF 1.03 1.04 1.00 1.00 1.13 1.00 1.00 1.10 1.00 1.03 1.03
RPTMOTC SVR_L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RPTMOTC SVR_R 1.00 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RPTMOTC RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.03 1.01
RPTDRS SVR_L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RPTDRS SVR_R 1.01 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.01
RPTDRS RF 1.01 1.00 1.00 1.00 1.13 1.00 1.00 1.10 1.00 1.08 1.03
RPTMTSG SVR_L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RPTMTSG SVR_R 1.06 1.14 1.00 1.11 1.13 1.00 1.11 1.10 1.13 1.19 1.10
RPTMTSG RF 1.08 1.14 1.00 1.00 1.13 1.00 1.00 1.10 1.13 1.00 1.06
predictive performance and bring insights from patterns of EDXRF
spectra in Section 5.3.

5.1. Soil properties correlation

Fig. 4 reveals the Pearson correlation coefficients among the targets.
They were computed pair-wisely based upon the experimented dataset
and the closer to 1 or -1, the higher the linear correlation between the
two variables [58]. Coefficients closer to 0 means a low correlation.

As observed, several targets are strongly correlated: Ca and SB result
in the most expressive coefficient since they presented a correlation co-
efficient of 0.95, almost a perfect positive linear correlation. Other tar-
gets pairs that are strongly correlated are BSP and SB (0.91), BSP and pH
(0.86), BSP and Ca (0.83), CEC and Ca (0.82), and Mg and pH (0.79). The
targets BSP and HþAl presented a negative strong correlation (�0.90).
The mostly uncorrelated targets were P and SB (0.03), P and BSP
(�0.03), P and HþAl (0.05), and P and CEC (0.08). In fact, P was themost
uncorrelated target among the other nine.

5.2. Multi-target prediction

Fig. 5 shows the aRRMSE for all methods and base-learners. For this,
the lower the value, the better the performance. Comparing the base-
learners with the average error of all targets, SVR_L was an effective
machine learning algorithm, obtaining the same performance in all
methods (ST and MTR, except for MTAS). SVR_R and RF were able to
reduce the average error only when used embedded in DRS, MTAS and
MTSG.
7

With ST, the lowest aRRMSE was obtained using SVR with a linear
kernel, resulting in an aRRMSE of 0.67. Despite of introducing non lin-
earities, the MTSG presented a significative improvement in the predic-
tive power of the models. MTSG using SVR with a radial kernel and RF as
base regressor led to the lowest aRRMSE, 0.64. Other improvements in
relation to the lowest ST value were obtained by DRS using RF (0.66),
MTAS with SVR_L (0.66) and MTAS with RF (0.66). It is remarkable that
these base learners are using default hyperparameters, and these results
could be improved by tuning them. However, searching for optimal
hyperparameters increases the complexity of the methods and could in-
fluence the stacking performance.

After evaluating the general error results of the methods, their per-
formances were evaluated for each target in terms of RPT, as registered in
Table 2. For this metric, values greater than 1 represent an improvement
of MTR over ST.

For P, TOC, pH, HþAl, Ca, Mg, K, SB, CEC and BSP, i.e., all the targets,
all the combinations of MTR methods obtained improved or at least
equivalent performance with respect to their corresponding ST version.
Notably, many improvements reached up to around 10% (using MTSG)
in relation to the corresponding ST. When observing the average RPT
(last column in Table 2), just MTAS was able to improve results using
SVR_L. It may also be noted in Table 1 that RF generated a performance
improvement in all the MTRs in relation to ST for SB.
5.3. Soil properties prediction

Continuing the discussion for individual targets, we present (Fig. 6)
the absolute error values between the ST and the MTR methods for each



Fig. 6. RMSE values for each target considering the different combinations of methods and base-learners. The horizontal lines represent the lowest RMSE for ST
related to each target.
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Table 3
RMSE, RPD and RPIQ performances of the best models for each target.

Target Best model(s) RMSE RPD RPIQ

P (mg kg�1) MTSG (RF) 7.6 1.2 1.6
TOC (g kg�1) MTSG (SVR_R, RF) 2.1 2 3.1
pH All models 0.3 1.3 1.6
HþAl (cmolc kg�1) Several models 0.9 1.3 1.5
Ca (cmolc kg�1) Several models 0.8 1.9 3.0
Mg (cmolc kg�1) All models 0.4 1.5 2.0
K (cmolc kg�1) MTSG (SVR_R) 0.09 1.3 2.3
SB (cmolc kg�1) Several models 1 1.9 2.5
CEC (cmolc kg�1) MTAS (SVR_L), MTSG (SVR_R, RF) 0.8 1.9 2.8
BSP (%) DRS (RF) 6.1 1.8 1.9
target. For all the targets, except for BSP, ST models presented the lowest
RMSE using SVR_L, and it indicates a linear relationship between the
EDXRF spectral data and the studied targets.

Two properties, pH and Mg, did not improve their predictive per-
formances through the use of MTR. For pH and Mg, all base-learners
(SVR_L, SVR_R and RF) provided the same lowest RMSE in ST and
MTR methods, respectively 0.3 and 0.4 cmolc kg�1. When targets have
low or even none correlation among the other targets, it is possible to
affirm these targets hardly have their performances improved by using
MTR techniques. On the other hand, some cases with average or strong
correlation without predictive performance improvements reveal the
data’s limit to describe the specific target. In our experiments, we
observed the EDXRF spectra had already obtained the optimal perfor-
mance when describing the pH and Mg exposing likely description
boundaries on these soil properties.

For all the other properties, at least one meta-model had reduced
error in comparison to ST. Regarding K, all ST and MTR methods ob-
tained 0.10 cmolckg�1, except our proposal. MTSG (SVR_R) was able to
reduce the error to 0.09 cmolckg�1. For P, SVR_L provided the lowest
RMSE in ST method (7.8 mg kg�1). Considering P and MTR methods,
MTSG with RF was able to reduce this error to 7.6 mg kg�1. For TOC,
SVR_L provided the lowest RMSE in ST method (2.3 g kg�1). Regarding
TOC and MTRmethods, MTSG with SVR_R and RF was able to reduce the
error to 2.1 g kg�1. Dealing with HþAl, SVR_L and RF provided the
lowest RMSE in ST method (0.9 cmolckg�1). About MTR methods and
this property, SVR_L and RF achieved the same error (0.9 cmolckg�1).
MTSG with SVR_R was also able to achieve this value. When predicting
Ca, SVR_L provided the lowest RMSE in ST method (0.8 cmolc kg�1).
Using MTR methods, SST, ERC, MTAS and DRS with SVR_L and RF
achieved the same error (0.8 cmolc kg�1). MOTC achieved this error only
using SVR_L and MTSG achieved this error with RF, SVR_L and SVR_R.
Regarding SB, SVR_L provided the lowest RMSE in ST method (1.0 cmolc
kg�1). Considering MTR methods, SVR_L and RF achieved the same error
(1.0 cmolc kg�1). MTSG with SVR_R was also able to achieve this value.
For CEC, SVR_L, SVR_R and RF provided the lowest RMSE in ST method
(0.9 cmolc kg�1). Considering MTR methods, MTAS with SVR_L and
MTSGwith SVR_R and RF were able to reduce the error to 0.8 cmolc kg�1.
Finally, regarding BSP, RF provided the lowest RMSE in ST method
(6.6%). Considering MTR methods, DRS with RF was able to reduce the
error to 6.1%.

To summarise, in ST method, for pH and Mg, all base-learners shared
the same RMSE. RF alone presented the lowest error in ST only for BSP.
Thus, for ST method, SVR_R was not the unique best regressor for any of
the targets, and there is a prevalence of SVR_L. This scenario, however,
changed when these regressors were used as base-learners for the MTR
methods: ignoring the cases that MTR did not bring improvements to ST,
RF was present as the base-learner for 4 targets (P, TOC, CEC and BSP),
SVR_R for 3 targets (TOC, K and CEC) and SVR_L for 1 target (CEC). This
shows that the modifications inherent to MTR methods introduced non-
linearity to the data.

P is one target that was favoured by this non-linearly: the Pearson
correlation coefficients of P with other targets, as discussed in Fig. 4,
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revealed that it was least linearly correlated to other targets. Nonetheless,
its RMSE lowered with MTSG coupled with RF.

As observed, the best MTR methods resulted in RMSE values at least
equivalent to ST. For the targets pH, HþAl, Ca, Mg and SB, none of the
MTR methods improved the performance, so ST would be preferable to
predict them due to the lower complexity. On the other hand, for the
other 5 targets, at least one MTR method improved the performance,
specially MTSG, but also DRS and MTAS.

In order to evaluate the accuracy of the best models for each target
related to the conventional methods, the RPD for the predictions were
calculated (Table 3). The standard deviation data used for RPD calcula-
tion is on Appendix A, as well as the data needed for calculating the
interquartile distance in RPIQ.

According to RPD, the targets that presented poor prediction, where
only high and low values are distinguishable, were P, pH, HþAl and K.
These targets had low prediction performance with EDXRF sensor due to
its low detection sensibility for light elements. For Mg, the models ob-
tained fair predictions, indicating the viability of the method. BSP is in
the threshold of fair and good predictions. Ca, SB and CEC presented
good predictions. Finally, TOC is in the threshold between good and very
good quantitative predictions. In this sense, six relevant parameters used
for evaluating soil quality obtained at least fair predictions in relation to
conventional methods.

The RPIQ results agree with the RPD values, showing that most of the
targets had at least one satisfactory model for quantitative predictions. In
particular, TOC, Ca and CEC delivered the greatest RPIQ. For the three
parameters, MTSG was included among the best model.

6. Conclusion

In this work, we evaluated the usage of MTR methods to predict 10
soil parameters based on EDXRF as input information. We also developed
MTSG, a novel MTR method. In relation to the aRRMSE, MTR methods
were able to reduce the error over ST, especially MTAS, DRS and MTSG.
Concerning RPT, for all targets, all MTR methods were better than or
equal to their respective regressor version in ST.

MTSG was the best method for predicting the soil characteristics of
the studied problem, obtaining the lowest RMSE for 4 out of the 10
targets and was able to reduce the baseline aRRMSE from 0.67 to 0.64,
representing a global improvement of 4.48%. In the best target
improvement, i.e. BSP, the proposed method boosted in 19% the pre-
dictive performance using SVR_R baseline.

Finally, the comparison to reference methods showed that the MTR
predictions were at least fair for 6 targets. Among them, when using
MTSG, TOC delivered the best overall RPD and RPIQ. Based on the re-
sults, MTR is capable of improving the prediction of soil properties, with
a special highlight to MTSG. Notwithstanding, one of the limitation of
this method is the low interpretability.

As future work, we will investigate the use of MTSG with more
different base-learners when creating the base-models, even the meta-
model, since it was observed suitable algorithms for particular targets.
Optimising the regressors hyperparameters and investigating their in-
fluence in the stacking performance is also a research path. Besides, the
combination of different types of PSS and additional available MTR
methods may offer a viable solution for direct soil analysis, and it can be
further explored. Another possibility is performing spectral pre-
treatments to the input data. Lastly, the use of MTSG to analyse other
types of soils and applying the compared methods in larger spectral li-
braries is also encouraged.
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Appendix A. Descriptive statistics of the soil parameters

Table 4 presents the descriptive statistics of the soil parameters determined by conventional analysis for all samples, calibration set and prediction
set.
Table 4

Result of descriptive statistics of soil parameters determined by conventional methods. SD represents standard deviation and CV, coefficient of variation.

Parameters Mean � SD CV (%) Median Minimum Maximum 1st Quartile 3rd Quartile Skewness Kurtosis
All samples (n ¼ 396)

TOC (g kg-1)
 19.8 � 4.1
 22
 20.2
 7.6
 30.5
 16.8
 23.1
 �0.27
 �0.49

pH
 5.3 � 0.4
 8
 5.2
 4.2
 6.5
 5.0
 5.5
 0.32
 0.13

HþAl (cmolc kg-1)
 5.4 � 1.1
 20
 5.3
 2.7
 9.7
 5.0
 6.2
 0.29
 0.80

Ca (cmolc kg-1)
 6.0 � 1.5
 25
 6.2
 1.4
 9.2
 4.9
 7.2
 �0.43
 �0.49

Mg (cmolc kg-1)
 2.0 � 0.6
 28
 2.0
 0.7
 3.7
 1.6
 2.4
 0.56
 �0.24

K (cmolc kg-1)
 0.24 � 0.16
 67
 0.18
 0.05
 1.15
 0.12
 0.30
 1.56
 3.48

P (mg kg-1)
 13.9 � 9.9
 71
 12.3
 0.4
 69.8
 6.9
 18.9
 1.72
 5.35

SB (cmolc kg-1)
 8.2 � 1.9
 23
 8.4
 2.1
 12.6
 7.1
 9.6
 �0.52
 �0.17

CEC (cmolc kg-1)
 13.7 � 1.5
 11
 13.8
 9.3
 17.9
 12.6
 14.9
 �0.21
 �0.31

BSP (%)
 60 � 10
 18
 61
 18
 80
 55
 66
 �0.91
 1.56

Calibration set (n ¼ 264)

TOC (g kg-1)
 20.0 � 4.4
 22
 20.4
 7.6
 30.5
 16.8
 23.1
 �0.27
 �0.47

pH
 5.3 � 0.4
 8
 5.2
 4.2
 6.5
 5.0
 5.5
 0.34
 0.09

HþAl (cmolc kg-1)
 5.4 � 1.0
 19
 5.3
 2.7
 9.0
 5.0
 6.2
 0.00
 0.31

Ca (cmolc kg-1)
 6.1 � 1.5
 24
 6.2
 1.4
 9.2
 4.9
 7.1
 �0.46
 �0.47

Mg (cmolc kg-1)
 2.1 � 0.6
 28
 1.9
 0.7
 3.5
 1.6
 2.4
 0.60
 �0.37

K (cmolc kg-1)
 0.25 � 0.17
 68
 0.18
 0.05
 1.15
 0.12
 0.30
 1.73
 4.67

P (mg kg-1)
 14.1 � 10.2
 72
 13.1
 0.4
 69.8
 6.5
 18.7
 1.85
 6.55

SB (cmolc kg-1)
 8.4 � 1.8
 22
 8.5
 2.2
 12.6
 7.1
 9.6
 �0.53
 �0.22

CEC (cmolc kg-1)
 13.8 � 1.6
 11
 13.8
 9.3
 17.9
 12.5
 14.9
 �0.21
 �0.32

BSP (%)
 60 � 9
 15
 61
 20
 80
 55
 66
 �0.74
 1.19

Prediction set (n ¼ 132)

TOC (g kg-1)
 19.4 � 4.2
 22
 19.7
 9.5
 29.2
 16.5
 22.9
 �0.27
 �0.51

pH
 5.3 � 0.4
 8
 5.2
 4.2
 6.5
 5.0
 5.5
 0.30
 0.24

HþAl (cmolc kg-1)
 5.5 � 1.2
 22
 5.3
 3.1
 9.7
 5.0
 6.2
 0.86
 1.60

Ca (cmolc kg-1)
 5.6 � 1.5
 27
 6.0
 1.4
 8.7
 4.8
 7.2
 �0.38
 �0.50

Mg (cmolc kg-1)
 2.0 � 0.6
 30
 2.0
 0.6
 3.7
 1.7
 2.4
 0.48
 0.13

K (cmolc kg-1)
 0.20 � 0.12
 60
 0.20
 0.05
 0.65
 0.12
 0.33
 1.23
 1.13

P (mg kg-1)
 13.5 � 9.4
 70
 11.1
 0.6
 55.0
 7.4
 19.3
 1.44
 2.82

SB (cmolc kg-1)
 7.9 � 1.9
 24
 8.3
 2.1
 11.9
 7.2
 9.7
 �0.51
 �0.03

CEC (cmolc kg-1)
 13.4 � 1.4
 11
 13.7
 9.4
 17.2
 12.8
 15.0
 �0.19
 �0.35

BSP (%)
 58 � 11
 18
 61
 18
 77
 54
 66
 �1.23
 2.30
Appendix B. General comparison of MTSG with other methods

MTSG is being first proposed in this work. To validate this method, MTSG performance was assessed in benchmarking datasets commonly used in
MTR literature.

These datasets enclose different kind of problems, as shown in Ref. [21]: air ticket prices (atp1d and atp7d), machining parameter settings (edm),
solar flares types (sf1 and sf2), heavy metals concentration in soil (jura), energy efficient buildings requirements (enb), concrete properties (slump),
water quality properties (andro) and online engagement (scpf).

The aRRMSE resulting of the usage of ST, SST, ERC, MTAS, MTSG, MOTC and DRS with the base learners RF and SVR_R for these datasets are
presented in Table 5. The average rankings obtained by each of the MTR methods are also presented at the bottom of the table for visual clarity.



Table 5

aRRMSE comparison among the methods for literature benchmarking datasets. The bold values correspond to the smallest aRRMSE per dataset for each learning
algorithm.

Dataset ST SST ERC MTAS MOTC DRS MTSG
11
RF
 SVR_R
 RF
 SVR_R
 RF
 SVR_R
 RF
 SVR_R
 RF
 SVR_R
 RF
 SVR_R
 RF
 SVR_R
atp1d
 0.3927
 0.4291
 0.3889
 0.4290
 0.3898
 0.4290
 0.3841
 0.4170
 0.4064
 0.4627
 0.3894
 0.4311
 0.3935
 0.4230

atp7d
 0.5108
 0.6169
 0.5041
 0.6166
 0.5094
 0.6169
 0.5107
 0.5983
 0.5844
 0.7805
 0.5025
 0.6159
 0.5250
 0.5877

edm
 0.6668
 0.7400
 0.7146
 0.7321
 0.6620
 0.7355
 0.6852
 0.6779
 0.6655
 0.8761
 0.6799
 0.7489
 0.7404
 0.6691

sf1
 0.8749
 0.8054
 1.0145
 0.8131
 0.9078
 0.8013
 1.0347
 0.8167
 0.8723
 0.9938
 0.8744
 0.8040
 1.0499
 1.0001

sf2
 0.8254
 0.7840
 0.8955
 0.7878
 0.8399
 0.7851
 0.9150
 0.7894
 0.8280
 1.5992
 0.8303
 0.7829
 0.9324
 1.4815

jura
 0.5842
 0.6210
 0.5734
 0.6240
 0.5752
 0.6202
 0.5673
 0.5997
 0.5792
 0.6967
 0.5758
 0.6280
 0.5739
 0.6596

enb
 0.1504
 0.2510
 0.1145
 0.2190
 0.1293
 0.2415
 0.1085
 0.1236
 0.1169
 0.3171
 0.1129
 0.1688
 0.1162
 0.2017

slump
 0.8293
 0.7348
 0.8484
 0.7510
 0.8182
 0.7293
 0.8159
 0.8165
 0.7633
 0.7039
 0.8654
 0.7364
 0.7982
 0.7487

andro
 0.8131
 1.1912
 0.7330
 1.0197
 0.7886
 1.0929
 0.5952
 0.8980
 0.5568
 1.1806
 0.5435
 0.7713
 0.6078
 0.6009

scpf
 0.8683
 0.8190
 0.8533
 0.8016
 0.8321
 0.8060
 0.9466
 2.5352
 0.8701
 3.3978
 0.8444
 0.8026
 0.8793
 0.8033

Average rank
 7.20
 8.50
 6.60
 7.80
 6.20
 7.70
 6.20
 7.90
 5.90
 12.20
 5.40
 7.30
 8.10
 8.00
As observed, none of the methods is the best for all the problems. MTAS presented the lowest performance in 3 datasets for both RF and SVR_R. ERC,
MTSG, MOTC and DRS presented the lowest aRRMSE for 3 datasets each, depending on the base regressor. SST and ST were able to minimise the
aRRMSE once each.

To conclude, the result shows that MTSG performance is comparable to previous proposed methods. Also, depending on the problem, its perfor-
mance can be superior to the other methods.
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